JP2012031587A - Device for restraining support post in earthquake control and reinforcement frame structure - Google Patents

Device for restraining support post in earthquake control and reinforcement frame structure Download PDF

Info

Publication number
JP2012031587A
JP2012031587A JP2010170097A JP2010170097A JP2012031587A JP 2012031587 A JP2012031587 A JP 2012031587A JP 2010170097 A JP2010170097 A JP 2010170097A JP 2010170097 A JP2010170097 A JP 2010170097A JP 2012031587 A JP2012031587 A JP 2012031587A
Authority
JP
Japan
Prior art keywords
strut
frame
column
main structure
seismic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010170097A
Other languages
Japanese (ja)
Other versions
JP4585046B1 (en
Inventor
Hitoshi Shiobara
等 塩原
Kenji Yokota
健治 横田
Koji Oka
功治 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kse Network
KSE Network Co Ltd
Ohmoto Gumi Co Ltd
Original Assignee
Kse Network
KSE Network Co Ltd
Ohmoto Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kse Network, KSE Network Co Ltd, Ohmoto Gumi Co Ltd filed Critical Kse Network
Priority to JP2010170097A priority Critical patent/JP4585046B1/en
Application granted granted Critical
Publication of JP4585046B1 publication Critical patent/JP4585046B1/en
Publication of JP2012031587A publication Critical patent/JP2012031587A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the damping effect of a damper-integrated brace disposed between support posts horizontally adjacent to each other inside the structure plane in an earthquake control and reinforcement frame structure which is constructed outside the structure plane of an existing or new main structure of concrete or the like and in parallel to the structure plane for earthquake control and reinforcement of the main structure.SOLUTION: Restraint devices 8 which permit the horizontal relative movement between the top portions of uppermost support post members 23 and restrain their vertical movements are constructed around support posts 2 positioned on horizontal both sides inside a structure plane in an earthquake control and reinforcement frame structure which comprises the support posts 2 arranged outside the structure plane of a main structure 60 including a frame 6 composed of posts and beams and in parallel to the structure plane and a damper-integrated brace 5 disposed between the support posts 2 and 2 adjacent to each other. The support post 2 is vertically separated into the plurality of support post members 21, 22 and 23, insulation devices 3 which permit the horizontal relative movement between the vertically separated support post members 21, 22 and 23, respectively, are disposed therebetween and joint beams 4 are arranged between the support post members 22 and 22 (23 and 23) adjacent to each other horizontally inside the structure plane.

Description

本発明は例えば既存の、あるいは新設のコンクリート造、鉄骨造等の主構造体の構面外にその構面に平行に構築され、主構造体を制震補強する制震補強架構を構成し、構面内水平方向に隣接する支柱間に架設されるダンパー一体型ブレースのダンパーの効きを高める制震補強架構における支柱の拘束装置に関するものである。   The present invention, for example, is constructed in parallel to the surface of the main structure such as an existing or new concrete structure, steel structure and the like, and constitutes a vibration control reinforcement frame for controlling and reinforcing the main structure, The present invention relates to a strut restraining device in a seismic reinforcing frame that enhances the effectiveness of a damper of a damper-integrated brace installed between struts adjacent in the horizontal direction in the construction plane.

例えば既存のコンクリート造躯体等の主構造体に耐震性能、あるいは制震性能を付与する目的で、主構造体の表面に接した状態で構築される制震補強架構は主構造体の構面外にその構面内水平方向に配列する支柱と、隣接する支柱間に架設される、ブレース本体にダンパーを組み込んだダンパー一体型ブレースと、同じく隣接する支柱材間に架設されるつなぎ梁を基本的な構成要素とする(特許文献1参照)。   For example, an anti-seismic reinforcement frame constructed in contact with the surface of the main structure for the purpose of imparting seismic performance or vibration control performance to the existing main structure such as a concrete structure. Basically, there are struts arranged in the horizontal direction in the construction surface, a damper-integrated brace built between the braces and a damper integrated in the brace body, and a bridging beam constructed between the adjacent strut members. (See Patent Document 1).

各支柱は特許文献1の図3に示すように鉛直方向に分離した複数本の支柱材からなり、上下に分離した支柱材間には両者間の相対水平移動を許容する、水平剛性の小さい絶縁装置(積層ゴム支承や滑り支承)が介在し、ダンパー一体型ブレースは隣接する支柱の支柱材間に、層間に跨るように架設される。   As shown in FIG. 3 of Patent Document 1, each support column is composed of a plurality of support members separated in the vertical direction, and between the support members separated in the vertical direction, relative horizontal movement between them is allowed, and insulation with low horizontal rigidity is provided. A device (laminated rubber bearing or sliding bearing) is interposed, and the damper-integrated brace is laid between strut members of adjacent struts so as to straddle between layers.

つなぎ梁は主構造体が層間変形を生じたときに、その層間変形に制震補強架構が追従するよう、主構造体と制震補強架構を一体構造化するために、隣接する支柱材間に架設されながら、主構造体に接合される(特許文献1の段落0066)。絶縁装置は構面内水平方向に隣接する支柱材間の相対移動時には支柱材が鉛直状態を維持するように、上下に隣接する支柱材間に介在させられる。特許文献1の図3は本件明細書に添付の図11である。   In order to make the main structure and the seismic strengthening frame integral with each other so that when the main structure undergoes interlayer deformation, the tethered beam follows the interlayer deformation so that the main structure and the seismic strengthening frame are integrated. While being installed, it is joined to the main structure (paragraph 0066 of Patent Document 1). The insulating device is interposed between the vertically adjacent struts so that the struts maintain a vertical state during relative movement between the struts adjacent in the horizontal direction in the composition plane. FIG. 3 of Patent Document 1 is FIG. 11 attached to this specification.

主構造体(制震補強架構)の構面内水平方向に地震が発生し、その方向に層間変形が生じたときには主構造体の各階のスラブ等に接合され、制震補強架構の一部となるつなぎ梁とそのつなぎ梁に接合されている支柱材が主構造体に追従して相対移動し(特許文献1の図3)、構面内水平方向に隣接する支柱材間に架設されているブレースのダンパーが伸縮することにより減衰力を発生し、振動エネルギを吸収する。   When an earthquake occurs in the horizontal direction of the main structure (seismic reinforcement frame) and interlaminar deformation occurs in that direction, it is joined to the slabs etc. on each floor of the main structure. The connecting beam and the column material joined to the connecting beam relatively move following the main structure (FIG. 3 of Patent Document 1), and are installed between the adjacent column materials in the horizontal direction in the composition plane. The brace damper expands and contracts to generate a damping force and absorb vibration energy.

特許第4038472号公報(請求項1、段落0013〜0026、図1、図3)Japanese Patent No. 4038472 (Claim 1, paragraphs 0013 to 0026, FIGS. 1 and 3)

特許文献1では制震補強架構の構面内水平方向の層間変形時に、上下に分離した支柱材間に介在する絶縁装置がせん断変形することにより上下の支柱材が互いに平行な状態を維持したまま相対移動し、結果としてブレースのダンパーに軸方向力を与え、ダンパーに減衰力を発生させる(特許文献1の図3)。   In Patent Document 1, when an interlayer deformation in the horizontal direction in the structural surface of the seismic reinforcement frame is carried out, the insulating device interposed between the upper and lower strut members undergoes shear deformation, so that the upper and lower strut materials remain parallel to each other. As a result, the axial force is applied to the damper of the brace and a damping force is generated in the damper (FIG. 3 of Patent Document 1).

しかしながら、特許文献1では絶縁装置(積層ゴム)を構成するゴムに引張力を負担させないよう、絶縁装置上に位置する支柱材がその下方に位置する支柱材から浮き上がりを生ずることが許容されているため(特許文献1の段落0071、図5)、制震補強架構の構面内水平方向両側に位置する支柱材の上端部は鉛直方向にも水平方向にも拘束を受けていないこともあって、水平方向への相対移動に伴い、本件の図12に示すように鉛直方向上向きに相対移動する(浮き上がりが生ずる)ことが想定される。   However, in Patent Document 1, it is allowed that the support material positioned on the insulation device is lifted from the support material positioned below the support material so that the tensile force is not applied to the rubber constituting the insulation device (laminated rubber). For this reason (paragraph 0071 of Patent Document 1, FIG. 5), the upper end portions of the column members positioned on both sides in the horizontal direction in the structural surface of the seismic reinforcement frame are not restricted in the vertical direction or the horizontal direction. With the relative movement in the horizontal direction, as shown in FIG. 12 of the present case, it is assumed that the film moves relatively upward (lifts up) in the vertical direction.

図12では構面内水平方向左側の支柱2の内、最上部に位置する支柱材23の上端部が鉛直方向上向きに相対移動するときと、下向きに相対移動する(沈み込みを生ずる)ときを示しているが、特許文献1の支柱材23は絶縁装置の接続状態から主に浮き上がりを生じ易い。図12では浮き上がり状態と沈み込み状態を破線で示している。二点鎖線は浮き上がりも沈み込みもなく、水平方向に移動したときの様子を示している。   In FIG. 12, when the upper end of the column member 23 located at the uppermost portion of the column 2 on the left side in the horizontal direction in the composition plane moves relatively upward in the vertical direction and when it moves relatively downward (causes subduction). Although shown, the column member 23 of Patent Document 1 tends to be lifted mainly from the connected state of the insulating device. In FIG. 12, the floating state and the sinking state are indicated by broken lines. The alternate long and two short dashes line does not lift or sink, and shows the situation when moving horizontally.

本来、支柱材には水平方向に相対移動する挙動のみが期待されているが(特許文献1の図3)、鉛直方向の相対移動が伴うことで、ダンパーの伸縮量が想定量より小さくなり、ダンパーが十分なエネルギ吸収能力を発揮できないことが起こり得る。   Originally, only the behavior of the relative movement in the horizontal direction is expected for the support material (FIG. 3 of Patent Document 1), but the relative expansion in the vertical direction is accompanied, so that the amount of expansion and contraction of the damper becomes smaller than the assumed amount, It may happen that the damper cannot exhibit sufficient energy absorption capability.

例えば特許文献1の図3(本件の図11)において、本件の図12に破線で示すように構面内水平方向左側の最上部に位置する支柱材が静止状態から右側へ相対移動したときに、支柱材の上端部が上方へ移動すれば、その上端部に接続されているブレースの収縮量が本来の収縮量より小さくなるため、それだけダンパーの効きが低下し、エネルギ吸収効果も低下する。同様に構面内水平方向左側の最上部に位置する支柱材が静止状態から左側へ相対移動したときに、支柱材の上端部が下方へ移動すれば、その上端部に接続されているブレースの伸長量が本来の伸長量より小さくなるため、それだけダンパーの効きが低下する。   For example, in FIG. 3 of Patent Document 1 (FIG. 11 of the present case), as shown in FIG. 12 of the present case, when the strut member positioned at the top of the left side in the horizontal direction in the composition plane is relatively moved from the stationary state to the right side. If the upper end portion of the strut member moves upward, the shrinkage amount of the brace connected to the upper end portion becomes smaller than the original shrinkage amount, so that the effectiveness of the damper is lowered and the energy absorption effect is also lowered. Similarly, if the strut material located at the top of the left side in the horizontal direction in the composition plane moves relative to the left side from a stationary state, if the upper end of the strut material moves downward, the brace connected to the upper end of the brace Since the extension amount is smaller than the original extension amount, the effectiveness of the damper is reduced accordingly.

各支柱2が4本の支柱材21、22、23からなる場合の特許文献1の制震補強架構1のモデルを図13に示す。構面内水平方向に隣接する支柱2、2間には、支柱2、2を互いに連結すると共に、主構造体に接合するためのつなぎ梁4が架設される。このモデルの内、太線で示す構面内水平方向中間部(端部より中心側)に位置する支柱2、2間に架設されるブレース5に内蔵されるダンパーの各層での履歴特性を図14−(a)〜(d)に、同じく太線で示す構面内水平方向両側(端部)に位置する支柱2、2間に架設されるブレース5に内蔵されるダンパーの各層での履歴特性を図15−(a)〜(d)に示している。   FIG. 13 shows a model of the damping control frame 1 of Patent Document 1 in the case where each column 2 is composed of four column members 21, 22, and 23. Between the columns 2 and 2 adjacent to each other in the horizontal direction in the composition plane, a connecting beam 4 for connecting the columns 2 and 2 to each other and joining the main structure is installed. In this model, the hysteresis characteristics in each layer of the damper built in the brace 5 installed between the support columns 2 and 2 located in the horizontal intermediate portion (center side from the end portion) in the composition plane indicated by the thick line are shown in FIG. -(A) to (d) show the hysteresis characteristics in each layer of the damper built in the brace 5 installed between the columns 2 and 2 located on both sides (ends) in the horizontal direction in the construction plane, which are also indicated by bold lines. It is shown in FIGS. 15- (a) to (d).

図14と図15の(a)は1階と3階間に架設されるブレースのダンパー、(b)は3階と5階間に架設されるブレースのダンパー、(c)は5階と7階間に架設されるブレースのダンパー、(d)は7階と9階間に架設されるブレースのダンパーの履歴特性を示している。図14に示すように構面内水平方向中間部に位置するブレースのダンパーは下層から最上層まで荷重−変形曲線が面積を持った紡錘形のループを描いているのに対し、構面内水平方向端部に位置するブレースのダンパーは図15に示すように上層階程、曲線(ループ)が潰れる傾向を示している。   14 and 15 (a) is a brace damper erected between the first and third floors, (b) is a brace damper erected between the third and fifth floors, and (c) is the fifth and seventh floors. The brace damper constructed between the floors, (d) shows the hysteresis characteristics of the brace damper constructed between the seventh and ninth floors. As shown in FIG. 14, the brace damper located in the middle portion in the horizontal direction in the composition plane forms a spindle-shaped loop having an area of a load-deformation curve from the lower layer to the uppermost layer, whereas in the horizontal direction in the composition surface. As shown in FIG. 15, the brace damper located at the end shows a tendency that the upper floor and the curve (loop) are crushed.

図15を見る限り、構面内水平方向の端部(両側)に架設されるブレースの内、1−3階から5−7階までのブレース内のダンパーは履歴曲線が紡錘形のループを描き、ダンパーとしてのエネルギ吸収能力を発揮しているのに対し、7−9階のブレース内のダンパーは履歴曲線が潰れ、ほとんどエネルギ吸収能力を発揮できていないことが分かる。一方、構面内水平方向の中間部に架設されているブレースのダンパーは図14に示すように7−9階においても1−3階から5−7階までより面積が小さくなるものの、紡錘形のループを描き、エネルギ吸収能力を発揮していることが分かる。   As far as FIG. 15 is seen, the dampers in the braces from the first to third floors to the fifth to seventh floors of the braces erected on the horizontal ends (both sides) in the composition plane have a spindle-shaped loop. It can be seen that while the energy absorbing ability as a damper is exhibited, the damper in the braces on the 7th to 9th floors has a history curve collapsed and hardly exhibits the energy absorbing ability. On the other hand, as shown in FIG. 14, the brace damper erected in the middle part in the horizontal direction in the construction surface is smaller in the area from the 1-3th floor to the 5-7th floor on the 7th-9th floor. It can be seen that it draws a loop and demonstrates its energy absorption capability.

図14と図15の対比から、構面内水平方向両側で、上層部に位置するブレースのダンパーは本来のエネルギ吸収能力を発揮できていないことが推定される。図14と図15の履歴曲線の違いは前記のように構面内水平方向両側に位置する支柱を構成し、最上部に位置する支柱材の上端部が水平方向の相対移動に伴って鉛直方向に、特に鉛直方向上向きに相対移動することに起因して発生すると考えられる。   From the comparison between FIG. 14 and FIG. 15, it is presumed that the brace dampers located in the upper layer portion on both sides in the horizontal direction in the composition plane cannot exhibit their original energy absorbing ability. The difference between the hysteresis curves in FIG. 14 and FIG. 15 is that, as described above, the struts located on both sides in the horizontal direction in the plane are constituted, and the upper end portion of the strut material located at the top is vertical along with the relative movement in the horizontal direction. In particular, it is considered to be caused by the relative movement upward in the vertical direction.

この発明は上記背景より、既存の構造体等、主構造体を制震補強する制震補強架構において、その架構を構成し、構面内水平方向両側の支柱の内、特に最上部に位置する支柱材に接続されるブレースのダンパーの効きを高める支柱の拘束装置を提案するものである。   In view of the above background, the present invention provides an anti-seismic reinforcement frame for damping and reinforcing a main structure, such as an existing structure, and constitutes the frame and is located at the uppermost part of the columns on both sides in the horizontal direction in the frame. The present invention proposes a restraint device for a strut that increases the effectiveness of a brace damper connected to the strut material.

請求項1に記載の発明の制震補強架構における支柱の拘束装置は、柱・梁からなるフレームを有する主構造体の構面外にその構面に平行に配列し、互いに間隔を隔てて地上、もしくは基礎上に立設される支柱と、構面内水平方向に隣接する支柱間に架設される、ブレース本体にダンパーを組み込んだダンパー一体型ブレースを備え、
前記支柱が鉛直方向に複数本の支柱材に分離し、上下に分離した支柱材間に両者間の相対水平移動を許容する絶縁装置が介在すると共に、構面内水平方向に隣接する支柱材間につなぎ梁が架設された、前記主構造体を制震補強するための制震補強架構において、
前記制震補強架構の構面内水平方向両側に位置する前記支柱の周囲に構築され、前記支柱の少なくとも最上部に位置する支柱材の頂部の水平方向の相対移動を許容しながら、鉛直方向の移動を拘束していることを構成要件とする。
A restraint device for a column in a seismic retrofitting frame according to claim 1 is arranged outside and parallel to the main surface of the main structure having a frame made of columns and beams, and spaced apart from the ground. Or, it is equipped with a damper-integrated brace that is built between a strut that is erected on the foundation and a strut that is adjacent in the horizontal direction in the construction plane and that incorporates a damper in the brace body.
The struts are separated into a plurality of strut members in the vertical direction, and an insulating device that allows relative horizontal movement between the strut members separated vertically is interposed between the strut members adjacent in the horizontal direction in the construction surface. In the seismic reinforcement frame for the seismic reinforcement of the main structure in which the connecting beam is installed,
Constructed around the struts located on both sides in the horizontal direction in the structural surface of the seismic reinforcement frame, and allowing the relative movement in the horizontal direction of the top of the strut material located at least on the top of the strut, in the vertical direction It is a constituent requirement that the movement is restricted.

主構造体を含む構造物は例えば既存のコンクリート造(鉄筋コンクリート造、鉄骨鉄筋コンクリート造を含む)構造物の他、鉄骨造の構造物であり、建築構造物と土木構造物の双方を含む。制震補強架構が接合される主構造体は建物の柱、梁、スラブ、基礎等の他、橋梁の橋桁、橋脚、フーチング等が該当する。主構造体は主として鉄筋コンクリート造構造物の一部であるが、無筋コンクリートやモルタル等の場合もある。   The structure including the main structure is, for example, an existing concrete structure (including reinforced concrete structure and steel reinforced concrete structure), a steel structure, and includes both a building structure and a civil structure. The main structures to which the seismic retrofit frames are joined include building columns, beams, slabs, foundations, etc., as well as bridge girders, piers, footings, etc. The main structure is mainly a part of a reinforced concrete structure, but may be unreinforced concrete or mortar.

主構造体と制震補強架構の接合部位は問われず、例えば新旧のスラブ同士、梁(桁)同士、柱同士、基礎同士等、あるいは付加構造体の構築位置等に応じ、これらの任意の組み合わせ等になるが、制震補強架構は主構造体のいずれかの部位の表面に制震補強架構を構成するスラブや梁等が接合された状態で構築される。主構造体に対する制震補強架構の構築の時期も問われず、主構造体との打ち継ぎのように主構造体の構築直後に制震補強架構を構築する場合の他、主構造体の構築が完了し、使用期間中に主構造体に対する補強の必要性が発生したとき等になる。   The joint part of the main structure and the seismic reinforcement frame is not limited. For example, old and new slabs, beams (girder), columns, foundations, etc., or any combination of these depending on the construction position of the additional structure However, the seismic reinforcement frame is constructed with the slabs, beams, etc. constituting the seismic reinforcement frame joined to the surface of any part of the main structure. Regardless of the time of construction of the seismic reinforcement frame for the main structure, in addition to the construction of the seismic reinforcement frame immediately after construction of the main structure, such as jointing with the main structure, the construction of the main structure When it is completed, there is a need to reinforce the main structure during use.

制震補強架構は主構造体の構面に平行に配列し、その構面内水平方向に互いに間隔を隔てて地上、もしくは基礎上に立設され、鉛直方向に複数本の支柱材に分離した支柱と、上下に分離した支柱材間に介在し、両者間の相対水平移動を許容する絶縁装置と、同一レベルで隣接する支柱材間に架設され、両支柱材を互いにつなぐつなぎ梁と、既存フレームの構面内の支柱材間に架設される上記ブレースから構成される。   The seismic retrofit frames are arranged parallel to the surface of the main structure, are erected on the ground or on the foundation in the horizontal direction within the surface of the structure, and separated into a plurality of support members in the vertical direction. An insulating device that is interposed between the struts and the struts that are separated vertically and that allows relative horizontal movement between them, and a bridge beam that connects between the struts adjacent to each other at the same level, and existing It is comprised from the said brace constructed between the support | pillar materials in the construction surface of a flame | frame.

制震補強架構は主構造体の構面外に、主構造体に接する形で構築される場合と、構面から距離を置いて構築される場合がある。つなぎ梁は前記の通り、隣接する支柱材間に架設されながら、主構造体に接合されることにより(特許文献1の段落0066)、主構造体と制震補強架構を一体構造化し、主構造体の層間変形に制震補強架構を追従させる。   There are cases where the seismic reinforcing frame is constructed outside the main structure, in contact with the main structure, or at a distance from the structure. As described above, the bridging beam is joined to the main structure while being installed between adjacent strut members (paragraph 0066 of Patent Document 1), so that the main structure and the vibration-damping reinforcement frame are integrally structured. Make the seismic reinforcement frame follow the body deformation.

各支柱は地上や基礎上に定着される最下部の支柱材とその上に位置する上部の支柱材の、計2本の支柱材からなる場合と、図11(特許文献1の図3)に示すように最下部の支柱材とその上に位置する2本以上の上部の支柱材の、計3本以上の支柱材からなる場合がある。   Each strut is composed of a total of two strut materials, the bottom strut material fixed on the ground or the foundation and the upper strut material positioned thereon, as shown in FIG. 11 (FIG. 3 of Patent Document 1). As shown, it may be composed of a total of three or more strut materials, that is, a lowermost strut material and two or more upper strut materials positioned thereon.

最下部に位置する支柱材は地盤、もしくは基礎に定着され、最下部より上に位置する支柱材は主構造体に、支柱材をつなぐつなぎ梁が主構造体に接合されることにより間接的に接合されて主構造体と共に挙動する。最下部より上に位置する支柱材が直接主構造体に接合されることも想定されるが、支柱材と主構造体との一体性を高め、主構造体からの地震力を制震補強架構に伝達させる上では、つなぎ梁を主構造体(のフレーム)に接合することが有効である。   The strut material located at the bottom is fixed to the ground or foundation, the strut material located above the bottom is indirectly connected to the main structure, and the connecting beam connecting the struts is joined to the main structure indirectly. Be joined and behave with the main structure. Although it is assumed that the strut material located above the bottom is directly joined to the main structure, the unity between the strut material and the main structure is improved, and the seismic force from the main structure is controlled by the seismic reinforcement frame. It is effective to join the connecting beam to the main structure (frame).

ダンパー一体型ブレース(ブレース)は具体的には水平方向に間隔を隔てて配列する支柱間において、いずれかの支柱を構成するいずれかの支柱材と、その支柱材より上、もしくは下に位置し、その支柱の両側に隣接する支柱を構成する支柱材との間に傾斜し、前記いずれかの支柱に関して対称に架設される(請求項5)。   Specifically, the damper-integrated brace (brace) is located between the struts arranged at intervals in the horizontal direction and any strut material constituting any strut, and above or below the strut material. Inclined between the columns constituting the columns adjacent to both sides of the column and installed symmetrically with respect to any of the columns.

ブレースがいずれかの支柱に関して対称に架設されることで、図11に矢印で示すようにある層に架設されているブレースに作用する引張力、もしくは圧縮力が支柱に関して対称位置にあるブレースに流れ、最終的には地盤、もしくは基礎に伝達されるため、制震補強架構を構成する支柱自身が最終的に引張力と圧縮力を負担し、処理する場合より支柱の耐力(強度)が小さくて済み、支柱の断面も小さくて済む利点がある。   Since the brace is installed symmetrically with respect to one of the columns, a tensile force or a compressive force acting on the brace installed on a certain layer as shown by an arrow in FIG. In the end, it is transmitted to the ground or the foundation, so the struts that make up the seismic reinforcement frame will ultimately bear the tensile and compressive forces, and the proof strength (strength) of the struts is smaller than when processing. There is an advantage that the cross section of the support is small.

ブレースは制震補強架構の層間変形時における構面内水平方向に隣接する支柱の、レベルの相違する支柱材間の相対変形時に軸方向力を負担するため、この隣接する支柱の、レベルの相違する支柱材間に架設される。この関係で、ブレースの一端は構面内水平方向に隣接する支柱材の内、一方の支柱材の、フレーム、もしくはつなぎ梁との接合部、またはつなぎ梁の、支柱材との接合部に接続され、他端は他方の支柱材の、フレーム、もしくはつなぎ梁との接合部、またはつなぎ梁の、支柱材との接合部に接続される(請求項5)。   The brace bears an axial force at the time of relative deformation between the strut members of different levels in the horizontal direction in the structural plane when the seismic reinforcement frame is deformed between layers. It is installed between the supporting struts. In this relationship, one end of the brace is connected to the joint of the strut material with the frame or connecting beam, or the joint of the connecting beam to the strut material, of the strut materials adjacent in the horizontal direction in the construction plane. The other end is connected to the joint portion of the other strut member with the frame or the connecting beam, or the joint portion of the connecting beam to the strut member.

主構造体が地震力により構面内で変形しようとするときには、図11に二点鎖線で示すように主構造体に一体化している、最下部の支柱材より上の支柱材が主構造体と共に挙動することと、その直下の支柱材から分離し、両支柱材間に両者間の相対水平移動を許容する絶縁装置が介在していることで、最下部の支柱材より上の支柱材が直下の支柱材に対して相対水平移動する。   When the main structure is to be deformed in the plane by the seismic force, the strut material that is integrated with the main structure as shown by a two-dot chain line in FIG. It is separated from the strut material immediately below it, and an insulating device that allows relative horizontal movement between the two strut materials is interposed between the strut materials, so that the strut material above the bottom strut material is Moves relative to the strut material directly below.

ブレースは主構造体に一体化している支柱材やその付近のつなぎ梁と、その直下、または直上の支柱材に隣接する支柱材やその付近のつなぎ梁との間に架設されていることで、上下の支柱材の相対水平移動に伴って伸長、または収縮し、その伸長量や収縮量、あるいは伸縮時の速度に応じた減衰力をダンパーが発生し、振動エネルギを吸収する。同時にダンパーが発生する減衰力が主構造体に一体化している支柱材やつなぎ梁から主構造体に作用することで、主構造体の揺れが抑制される。   The brace is built between the strut material integrated into the main structure and the connecting beam near it, and the strut material adjacent to the strut material immediately below or directly above and the connecting beam near it. Along with the relative horizontal movement of the upper and lower support members, the material expands or contracts, and a damper generates a damping force corresponding to the amount of expansion or contraction, or the speed at the time of expansion or contraction, and absorbs vibration energy. At the same time, the damping force generated by the damper acts on the main structure from the support members and the connecting beams integrated with the main structure, so that the swing of the main structure is suppressed.

図11に示すように主構造体の構面内水平方向の変形に伴い、分離した上下の支柱材が相対水平移動したとき、ブレースが接続された支柱材にはダンパーからの軸方向力が作用するが、最下部の支柱材に作用する軸方向力に対する反力は地盤や基礎で負担される。   As shown in FIG. 11, when the separated upper and lower support members move horizontally relative to each other in the horizontal direction of the main structure, the axial force from the damper acts on the support members to which the braces are connected. However, the reaction force against the axial force acting on the lowermost support member is borne by the ground or foundation.

また最下部より上の支柱材に作用する軸方向力に対する反力はつなぎ梁を介して支柱材が接続される主構造体で負担されるため、ダンパーからの軸方向力によって支柱材に過大な曲げモーメントとせん断力が作用する事態は回避され、分離している各支柱材が転倒する可能性と、支柱材の脚部や頂部に過大な応力を生じさせる可能性は解消される。支柱材の脚部や頂部に過大な応力を生じさせる可能性が解消されることで、支柱材自身は必ずしもダンパーからの軸方向力に抵抗し得る強度を有する必要はない。   In addition, the reaction force against the axial force acting on the strut material above the bottom is borne by the main structure to which the strut material is connected via the connecting beam, so the axial force from the damper causes excessive force on the strut material. The situation where the bending moment and the shearing force are applied is avoided, and the possibility that each separated strut material falls and the possibility of causing excessive stress on the leg portion and the top portion of the strut material is eliminated. Since the possibility of causing excessive stress on the legs and the top of the support material is eliminated, the support material itself does not necessarily have a strength capable of resisting the axial force from the damper.

特に最下部の支柱材と最上部の支柱材の中間位置でブレースが接続される支柱材のようにブレースが構面内水平方向の両側に、2方向に接続される支柱材には変形前に同一線上に位置するブレースからの軸方向力が実質的に相殺されるため、支柱材にはダンパーからの軸方向力による曲げモーメントとせん断力はほとんど作用しない。   In particular, the brace is connected to both sides in the horizontal direction in the construction surface like the support material to which the brace is connected at an intermediate position between the lowermost support material and the uppermost support material. Since the axial force from the braces located on the same line is substantially cancelled, almost no bending moment and shearing force due to the axial force from the damper act on the support material.

主構造体に入力する地震力の一部は主構造体に接合され、ブレースが接続されている支柱材からブレースに伝達され、そのブレースが負担する。最終的にはブレースが接続され、地盤や基礎に定着されている最下部の支柱材から地盤に伝達され、負担される。地震力の一部がブレースで負担され、最終的に地盤で負担されることで、主構造体が負担すべき地震力が軽減されるため、主構造体の地震力に対する安全性が向上する。   Part of the seismic force input to the main structure is joined to the main structure and transmitted to the brace from the support material to which the brace is connected. Eventually, braces are connected and transmitted to the ground from the bottom strut material fixed to the ground and foundation, and are borne. Since a part of the seismic force is borne by the braces and finally borne by the ground, the seismic force that the main structure should bear is reduced, so the safety of the main structure against the seismic force is improved.

ブレースが地震力の一部を負担しても、制震補強架構を構成する支柱とつなぎ梁は主構造体に入力する地震力を主構造体と共に分担するのではなく、最下部の支柱材より上の支柱材が主構造体と共に挙動して直下の支柱材との間で相対移動を生ずることで、ダンパーが発生する減衰力を主構造体に作用させる働きをする。このため、支柱とつなぎ梁は地震力に抵抗するブレースのダンパーから受ける軸方向力に対する反力を地盤や基礎、あるいは主構造体から受けることができればよく、支柱とつなぎ梁が全長に亘って地震力に抵抗する必要がない。   Even if the brace bears part of the seismic force, the struts and connecting beams that make up the seismic reinforcement frame do not share the seismic force input to the main structure with the main structure. The upper strut member behaves together with the main structure and causes relative movement between the strut member directly below, thereby acting on the main structure with the damping force generated by the damper. For this reason, it is only necessary that the strut and the connecting beam be able to receive the reaction force against the axial force received from the brace damper that resists the seismic force from the ground, foundation, or main structure. There is no need to resist the force.

ブレースが接続される支柱材にはダンパーからの軸方向力が作用する結果、軸方向力の鉛直成分が絶縁装置を通じてその上下に隣接する支柱材に伝達されるものの、その上下に隣接する支柱材とは絶縁装置によって切り離されているため、絶縁装置の水平変形可能な範囲で軸方向力の水平成分は上下に隣接する支柱材には伝達されない。また上記のように支柱材自身は必ずしもダンパーからの軸方向力に抵抗し得る強度を有する必要がないことから、支柱とつなぎ梁は主構造体の耐力と剛性を補う程の耐力と剛性を有する必要がなく、地震力を主構造体と共に分担する場合より断面を減ずることが可能になる。   As a result of the axial force from the damper acting on the strut material to which the brace is connected, the vertical component of the axial force is transmitted to the strut material adjacent to the top and bottom through the insulation device, but the strut material adjacent to the top and bottom The horizontal component of the axial force is not transmitted to the vertically adjacent strut members within the range in which the insulating device can be horizontally deformed. In addition, as described above, since the support material itself does not necessarily have a strength capable of resisting the axial force from the damper, the support material and the connecting beam have the strength and rigidity enough to supplement the strength and rigidity of the main structure. It is not necessary, and the cross section can be reduced as compared with the case where the seismic force is shared with the main structure.

制震補強架構を構成する支柱とつなぎ梁が主構造体と共に地震力を分担するとすれば、大地震時に地震力に抵抗することで損傷を受ける可能性があるが、支柱とつなぎ梁は全長に亘って地震力に抵抗する必要がなく、またそれぞれの断面の低減により地震力を主構造体と共に分担する場合より制震補強架構自体の剛性を低下させることができることで、制震補強架構は大地震に対しても柔軟に変形することができるため、損傷を受けることは回避される。   If the struts and connecting beams that make up the seismic reinforcement frame share the seismic force with the main structure, they may be damaged by resisting the seismic force in the event of a large earthquake. It is not necessary to resist the seismic force over a long period, and the rigidity of the seismic retrofit frame itself can be reduced by reducing the cross section of the seismic force with the main structure. Because it can be flexibly deformed against earthquakes, it is avoided to be damaged.

請求項1において、支柱の拘束装置が「制震補強架構の構面内水平方向両側に位置する支柱の周囲に構築される」とは、平面上、拘束装置が拘束の対象とする支柱の周囲に制震補強架構とは別に構築される場合(図1)と、制震補強架構の一部(支柱等)を利用する形で(図2〜図4)、あるいは制震補強架構に組み込まれる形で構築される場合(図5、図6)があることを言う。図1〜図4の例は後述の請求項2の具体的な場合に該当し、図5、図6は請求項3の具体的な場合に該当している。   In claim 1, the support device for the support column is "constructed around the support columns positioned on both sides in the horizontal direction in the structural surface of the seismic retrofitting frame". If it is constructed separately from the seismic retrofitting frame (Fig. 1), it uses a part of the seismic retrofitting frame (posts, etc.) (Figs. 2 to 4) or is incorporated into the seismic retrofit frame. It is said that there is a case where it is constructed in a form (FIGS. 5 and 6). 1 to 4 correspond to a specific case of claim 2 described later, and FIGS. 5 and 6 correspond to a specific case of claim 3.

制震補強架構を構成する支柱の内、拘束装置が主として拘束の対象とする支柱が「構面内水平方向両側に位置する支柱」であって、両側以外に位置する支柱を除外する趣旨ではないため、拘束装置は「構面内水平方向両側に位置する支柱」とその内側に位置する支柱に対しても構築されることがある。拘束装置の対象とする支柱が「構面内水平方向両側に位置する支柱」以外の支柱を含むことは請求項4においても同様であり、請求項4の拘束装置は「構面内水平方向両側に位置する支柱」とその内側に位置する支柱の支柱材間に架設されることもある。   Of the struts that make up the seismic reinforcement frame, the struts that the restraint device mainly restrains are “struts that are located on both sides in the horizontal direction in the construction surface”, and are not intended to exclude struts that are located on both sides. For this reason, the restraining device may be constructed with respect to the “posts positioned on both sides in the horizontal direction in the construction surface” and the support columns positioned inside thereof. It is the same as in claim 4 that the struts targeted by the restraining device include struts other than “the struts located on both sides in the horizontal direction in the composition plane”. It may be constructed between the support | pillar material of the support | pillar located in the inside and the support | pillar located in the inside.

「支柱の少なくとも最上部に位置する支柱材」とは、支柱を構成する複数本の支柱材の内、少なくとも最上部に位置する支柱材のことであり、「少なくとも」であるから、最上部に位置する支柱材に加え、それ以外の高さ方向の中間部に位置する支柱材も含む趣旨である。   “The strut material positioned at the top of the strut” is a strut material positioned at least at the top of the plurality of struts constituting the strut, and is “at least”. In addition to the supporting strut material, it also includes a strut material positioned in the other intermediate portion in the height direction.

「支柱材の頂部の水平方向の相対移動」とは、主構造体の構面内水平方向の層間変形に追従して制震補強架構が層間変形を生ずるときに、制震補強架構と支柱材の頂部との間に生ずる水平方向の相対移動を指す。拘束装置はこの支柱材頂部の、制震補強架構に対する水平方向の相対移動を許容する一方、その相対移動に伴って発生し得る鉛直方向の移動を拘束する(請求項1)。   “Horizontal relative movement of the top of the strut material” means that when the seismic reinforcement frame is subjected to interlayer deformation in the horizontal direction in the main plane of the main structure, the seismic reinforcement frame and strut material Horizontal relative movement that occurs between the top of The restraint device permits the horizontal movement of the top of the column member with respect to the seismic reinforcement frame, while restraining the vertical movement that can occur with the relative movement (claim 1).

拘束装置が支柱材頂部の水平方向の相対移動を許容する理由は、主構造体の構面内方向の層間変形に追従して制震補強架構が自由に層間変形を生ずるようにするためであり、拘束装置が支柱材頂部の相対移動を許容しなければ、制震補強架構自体が自由な層間変形を阻害されるためである。   The reason why the restraint device allows the horizontal movement of the top of the column material is to allow the seismic reinforcement frame to freely cause interlayer deformation following the interlayer deformation in the in-plane direction of the main structure. This is because, if the restraint device does not allow relative movement of the top of the column material, the seismic reinforcement frame itself is hindered from free interlayer deformation.

「鉛直方向の移動」は「上向きの移動(浮き上がり)」と「下向きの移動(沈み込み)」を含むが、前記のように制震補強架構を構成する支柱の支柱材間に介在する絶縁装置が下側の支柱材から浮き上がり可能な状態にあることから(特許文献1の段落0071)、支柱材は下側に隣接する支柱材に対して上向きに移動する可能性が高いため、「鉛直方向の移動」は主として「上向きの移動(浮き上がり)」を言う。   “Vertical movement” includes “upward movement (lifting)” and “downward movement (sinking)”. As described above, the insulation device interposed between the column members of the column that constitutes the vibration control reinforcement frame Since it is in a state that can be lifted from the lower column material (paragraph 0071 of Patent Document 1), the column material is likely to move upward with respect to the column material adjacent to the lower side. "Movement" mainly means "upward movement (lift)".

拘束装置が支柱材頂部の鉛直方向上向きの移動と下向きの移動を拘束することで、図12に破線で示すような浮き上がりと沈み込みがなくなり、二点鎖線で示すように主構造体の構面内方向の層間変形時に原則として支柱材の頂部を水平方向にのみ相対移動させることができる。「原則として」とは、水平方向の相対移動に伴う多少の鉛直方向の相対移動は許容されることがある趣旨である。層間変形時の支柱材頂部の移動の方向が原則として水平方向に制限されることで、ブレースのダンパーに主構造体の層間変形に見合った、本来の伸縮変形を与え、ダンパーの効きを高めることが可能になり、ダンパーのエネルギ吸収能力を有効に発揮させることが可能になる。   The restraint device restrains the vertical upward movement and downward movement of the top of the column material, so that the lifting and sinking as shown by the broken line in FIG. 12 is eliminated, and the structure of the main structure as shown by the two-dot chain line In principle, the top portion of the support material can be relatively moved only in the horizontal direction at the time of inward interlayer deformation. “In principle” means that some vertical relative movement may be allowed due to horizontal relative movement. By restricting the direction of movement of the top of the strut material during inter-layer deformation in principle, it is limited to the horizontal direction, giving the brace damper the original expansion and contraction that matches the inter-layer deformation of the main structure, and improving the effectiveness of the damper Thus, the energy absorbing ability of the damper can be effectively exhibited.

上記のように制震補強架構を構成する支柱の支柱材は積層ゴム支承等の絶縁装置を介して互いに連結されるものの、絶縁装置自身は下側の支柱材には定着されないことから、上側に隣接する支柱材が下側の支柱材から浮き上がり(上向きに移動)を生ずる可能性が高く、下向きに移動(沈み込み)を生ずる可能性は高くはない。このため、拘束装置は鉛直方向の相対移動を拘束すべき支柱材の頂部に対しては、基本的に浮き上がり(上向きの移動)を拘束することができれば足りる。   As described above, the struts of the struts constituting the seismic reinforcement frame are connected to each other via an insulating device such as a laminated rubber bearing, but the insulating device itself is not fixed to the lower strut material, so Adjacent struts are likely to lift (move upward) from the lower struts, and are not likely to cause downwards (sink). For this reason, it is sufficient for the restraining device to basically restrain the lifting (upward movement) with respect to the top portion of the support material to be restrained in the vertical relative movement.

拘束装置は具体的には「水平方向の相対移動を許容しながら、鉛直方向の移動を拘束」すべき支柱の周囲の、地上、もしくは基礎上に立設される柱部材と、その柱部材の頂部と最上部に位置する支柱材の頂部を通って架設される梁部材と、この梁部材と前記支柱材の頂部との間に介在し、前記支柱材の頂部の水平方向の相対移動を許容する絶縁装置からなる(請求項2)。この他、主構造体と制震補強架構とに跨って架設され、主構造体に接合されるフレーム材と、このフレーム材と制震補強架構との間に介在し、両者間の水平方向の相対移動を許容する絶縁装置からなる場合(請求項3)がある。   Specifically, the restraint device is a column member standing on the ground or on the foundation around the support column that should “restrain vertical movement while allowing relative movement in the horizontal direction”, and the column member A beam member erected between the top and the top of the column material positioned at the top, and interposed between the beam member and the top of the column material, and allowing horizontal relative movement of the top of the column material It comprises an insulating device. In addition to this, the frame material spanned between the main structure and the seismic reinforcement frame is interposed between the frame material and the seismic reinforcement frame. In some cases, the insulating device may allow relative movement.

前者の場合(請求項2)、梁部材は拘束対象である支柱の周囲に立設された複数本の柱部材間に、支柱材の頂部を通って架設される場合(図1)と、支柱の脇に立設された1本、もしくは複数本の柱部材とその支柱の最上部の支柱材の頂部との間に架設される場合(図2)がある。   In the former case (Claim 2), the beam member is erected between the plurality of column members erected around the column to be restrained through the top of the column member (FIG. 1), and the column There is a case where it is constructed between one or a plurality of pillar members erected on the side of the head and the top of the pillar material at the top of the pillar (FIG. 2).

いずれの場合も、主構造体の構面内方向の層間変形に追従して制震補強架構が層間変形を生ずるときに、絶縁装置が支柱材頂部の梁部材に対する水平方向の相対移動を許容しながら、梁部材が鉛直方向の相対移動を拘束することで、図12に二点鎖線で示すように支柱材の頂部を水平方向にのみ移動可能にするため、その支柱材に接続されているブレースの端部に浮き上がりも沈み込みも生じさせることがない。   In any case, the insulation device allows relative movement in the horizontal direction with respect to the beam member at the top of the column material when the seismic reinforcement frame is subjected to interlayer deformation following the interlayer deformation in the in-plane direction of the main structure. However, since the beam member restrains the relative movement in the vertical direction, the brace connected to the strut material can be moved only in the horizontal direction as shown by a two-dot chain line in FIG. There will be no lifting or sinking at the edges.

請求項2の場合、梁部材は主にその下に配置される絶縁装置を介して支柱材の頂部を下向きに押さえ込むことで、支柱材頂部の浮き上がりを阻止する。支柱材の頂部が沈み込みを生じようとするときには、絶縁装置が支柱材の頂部に連結されることで、支柱材頂部の沈み込み時に絶縁装置が引張力を負担し得る範囲で、支柱材頂部の沈み込みを阻止することができる。   In the case of claim 2, the beam member mainly presses down the top of the support material downward via an insulating device disposed under the beam member, thereby preventing the support material from rising up. When the top of the column material is about to sink, the insulation device is connected to the top of the column material, so that the insulation device can bear the tensile force when the column material top sinks. Can be prevented from sinking.

請求項2の拘束装置を構成する柱部材は制震補強架構とは別に構築されるため、梁部材が最上部の支柱材頂部の浮き上がり、または浮き上がりと沈み込みを拘束するときの反力は地盤、もしくは基礎が負担する。   Since the column member constituting the restraint device according to claim 2 is constructed separately from the seismic reinforcement frame, the reaction force when the beam member restrains the top of the uppermost column member from rising or sinking and sinking is the ground Or the foundation will bear.

請求項3のフレーム材は図6に示すように主構造体側の一部において主構造体に接合された状態で、制震補強架構側の一部において制震補強架構のいずれかの部分、例えば支柱材の一部、あるいは支柱材から主構造体側へ張り出した部分(突出部24)に絶縁装置を介して鉛直方向上向きの移動を拘束した状態に置かれる。フレーム材は請求項2の梁部材と同じく、絶縁装置を介して制震補強架構の一部を下向きに押さえ込む働きをするため、絶縁装置はフレーム材の下に配置され、絶縁装置の下に制震補強架構の一部が入り込む(図6)。   As shown in FIG. 6, the frame material of claim 3 is joined to the main structure at a part on the main structure side, and a part of the vibration control reinforcement frame at a part on the vibration control reinforcement frame side, for example, A part of the column material or a portion protruding from the column material to the main structure side (projecting part 24) is placed in a state in which the upward movement in the vertical direction is restricted through an insulating device. Like the beam member of claim 2, the frame material works to push down a part of the vibration-damping reinforcement frame downward via the insulation device. Therefore, the insulation device is arranged under the frame material and is controlled under the insulation device. Part of the seismic reinforcement frame enters (Fig. 6).

請求項3ではフレーム材が主構造体と制震補強架構間に跨って架設され、フレーム材の下と制震補強架構のいずれかの部分との間に絶縁装置が介在することで(図5、図6)、主構造体の構面内方向の層間変形に追従して制震補強架構が層間変形を生ずるときには、フレーム材自身は相対移動(相対変形)することなく、層間変形前の状態(形態)を維持しようとする。   According to the third aspect, the frame material is laid between the main structure and the seismic reinforcement frame, and an insulating device is interposed between the bottom of the frame material and any part of the seismic reinforcement frame (FIG. 5). , FIG. 6), when the seismic reinforcement frame is subjected to interlayer deformation following the interlayer deformation in the in-plane direction of the main structure, the frame material itself does not move relatively (relative deformation), and the state before the interlayer deformation Try to maintain (form).

絶縁装置はその下に位置する制震補強架構の、フレーム材に対する水平方向の相対移動を許容しながら、鉛直方向の相対移動(主に上向きの移動(浮き上がり))を拘束することで、支柱材の頂部を水平方向にのみ移動可能に保持するため、その支柱材に接続されているブレースの端部に浮き上がりも沈み込みも生じさせることがない。   The insulation device supports the seismic reinforcement frame underneath it while allowing the relative movement in the horizontal direction relative to the frame material while restraining the vertical relative movement (mainly upward movement (lifting)). Since the top portion of the brace is held so as to be movable only in the horizontal direction, the end of the brace connected to the support member does not rise or sink.

請求項3ではフレーム材の制震補強架構側の一部が支柱材等、制震補強架構の一部の上向きの移動を拘束した状態にあることで、請求項2の梁部材と同様に、制震補強架構の支柱材等、制震補強架構の一部を下向きに押さえ込むため、支柱材等の浮き上がりを阻止することになる。支柱材等が沈み込みを生じようとするときには、絶縁装置が支柱材等に連結されることで、支柱材等の沈み込み時に絶縁装置が引張力を負担し得る範囲で、支柱材等の沈み込みを阻止することができる。   In the third aspect of the present invention, a part of the frame material on the side of the seismic reinforcement frame is in a state of restraining upward movement of a part of the seismic reinforcement frame, such as a column member, Since a part of the seismic reinforcing frame such as the supporting material of the seismic reinforcing frame is pressed downward, the lifting of the supporting material is prevented. When the strut material is about to sink, the insulation device is connected to the strut material, etc., so that the insulation device can bear the tensile force when the strut material sinks. Can be prevented.

この結果、請求項3では制震補強架構の一部がフレーム材による拘束を受けることによってブレース端部に浮き上がりも沈み込みも生じないことで、請求項2の場合と同じく、図12において支柱材が右側へ相対移動するときにはそれに接続されているブレースは収縮し、左側へ相対移動するときには伸長するため、ブレースの内蔵されているダンパーは収縮量と伸長量に応じた減衰力を発生することが可能になる。ダンパーはブレースの収縮時と伸長時に生ずる相対移動量に応じた減衰力を発生する場合と相対移動時の相対速度に応じた減衰力を発生する場合がある。   As a result, in claim 3, since a part of the seismic reinforcement frame is restrained by the frame material, the brace end does not rise or sink, so that, as in the case of claim 2, in FIG. The brace connected to the right side of the brace contracts when it moves relative to the right side and expands when it moves relative to the left side. Therefore, the damper built in the brace may generate a damping force corresponding to the amount of contraction and extension. It becomes possible. The damper may generate a damping force corresponding to the relative movement amount generated when the brace contracts and extends, and may generate a damping force corresponding to the relative speed during the relative movement.

請求項3では拘束装置を構成するフレーム材が主構造体と制震補強架構間に跨って架設され、主構造体に接合されているフレーム材が制震補強架構の一部(支柱材を含む)の浮き上がり、または浮き上がりと沈み込みを拘束するため、フレーム材が制震補強架構の浮き上がり、または浮き上がりと沈み込みを拘束するときの反力は主構造体が負担する。   In Claim 3, the frame material which comprises a restraint device is constructed ranging over between the main structure and the vibration control reinforcement frame, and the frame material joined to the main structure is a part of the vibration control reinforcement frame (including the column material). The main structure bears the reaction force when the frame material restrains the lifting of the seismic reinforcement frame or the lifting and sinking.

請求項2、請求項3では前記のように拘束の対象とする支柱材の頂部が、あるいは制震補強架構の一部が主として鉛直方向上向きの移動に対して拘束されればよいため、梁部材、またはフレーム材は支柱材の頂部等を少なくとも上から押さえ付ける状態にあればよく、必ずしも梁部材等の下に位置する絶縁装置が支柱材の頂部等に連結されている必要はない。絶縁装置は支柱材の頂部等を水平方向に自由に相対移動させればよいため、絶縁装置には図示するような積層ゴム支承、滑り支承の他、弾性滑り支承等が使用される。絶縁装置は支柱材の頂部等に連結されている場合もある。   In the second and third aspects, the top of the column material to be constrained as described above or a part of the seismic reinforcement frame may be mainly restrained against the upward movement in the vertical direction. Alternatively, the frame material may be in a state in which the top of the column material is pressed at least from above, and the insulating device located below the beam member or the like is not necessarily connected to the top of the column material. Since the insulating device is only required to relatively move the top of the column material in the horizontal direction, an elastic sliding bearing or the like is used for the insulating device in addition to the laminated rubber bearing and sliding bearing as shown in the figure. The insulating device may be connected to the top of the support material.

支柱の拘束装置はまた、図7〜図10に示すように制震補強架構の構面内水平方向両側に位置する支柱内の、上下に隣接する支柱材間に架設され、支柱材間の鉛直方向の、互いに分離する向きの相対移動を拘束する引張材からなる場合もある(請求項4)。   As shown in FIGS. 7 to 10, the support device for the support is also installed between the support members adjacent to each other in the horizontal direction on both sides in the horizontal direction of the structure of the vibration control reinforcement frame, and the vertical between the support members It may be made of a tensile material that restrains relative movement of directions in directions separated from each other.

引張材は主構造体の層間変形に追従した制震補強架構の構面内方向の層間変形時に、上下に隣接する支柱材が互いに水平方向に相対移動しようとするときに、上側に位置する支柱材を下側の支柱材に対して水平方向に自由に相対移動させながら、上側の支柱材が下側の支柱材に対して上昇する移動(上向きの移動)を抑える働きをする。上側の支柱材の水平移動を許容するために、引張材には軸方向に伸縮自在な機能が与えられるが、伸長時に上側の支柱材の上昇を抑えるために、一定量を超える伸長が制限される。   Tensile material is the upper strut located when the struts adjacent to each other in the horizontal direction are moving relative to each other in the horizontal direction during the inter-layer deformation of the seismic reinforcement frame following the inter-layer deformation of the main structure. While the material is freely moved relative to the lower support material in the horizontal direction, the upper support material functions to suppress the upward movement of the lower support material. In order to allow horizontal movement of the upper strut material, the tension material is given a function that can be expanded and contracted in the axial direction, but in order to prevent the upper strut material from rising when stretched, it is limited to extend beyond a certain amount. The

引張材は軸方向の伸縮時に伸長量が一定量以内に制限されることにより上側の支柱材の浮き上がりを抑制する。伸長量を一定量以内に制限することは、一定量を超える伸長が引張材に生じようとするときに、引張材を構成する部材間の軸方向の相対移動を、圧油(オイル)等の流体の流れを停止させる(流量を制御する)ことで拘束(ロック)する形式のダンパーを使用することにより、あるいは一定量を超える伸長が生じない形式のコイルスプリングや皿ばね、輪ばね等のばねを使用することにより可能になる。   The tensile material is restricted from being lifted within a certain amount during expansion and contraction in the axial direction, thereby suppressing lifting of the upper support material. Limiting the amount of elongation within a certain amount means that when the tensile material exceeds a certain amount of elongation, the relative movement in the axial direction between the members constituting the tensile material is reduced with pressure oil (oil) or the like. Coil springs, disc springs, ring springs, etc. that use a damper that is restrained (locked) by stopping the flow of fluid (controlling the flow rate) or that does not expand beyond a certain amount Made possible by using.

引張材がダンパーの場合、上側に位置する支柱材が下側の支柱材に対して水平方向に相対移動しようとするときに、引張材は軸方向に伸長しながら伸長量の増大に伴って圧油等、流体の流量を制限することで、伸長量を制限し、上側の支柱材の浮き上がりを阻止しながら水平方向の相対移動を許容する。引張材がばねの場合にも、上側に位置する支柱材が下側の支柱材に対して水平方向に相対移動しようとするときに、引張材は軸方向に伸長しながら伸長量の増大に伴って復元力を増大させることで、自ら伸長量を制限し、上側の支柱材の浮き上がりを阻止しながら水平方向の相対移動を許容する。   When the tension member is a damper, when the strut material located on the upper side tries to move relative to the lower strut material in the horizontal direction, the tensile material stretches in the axial direction while increasing the amount of expansion. By restricting the flow rate of fluid such as oil, the amount of extension is restricted, and relative movement in the horizontal direction is allowed while preventing the upper strut material from being lifted. Even when the tension material is a spring, when the upper strut material tries to move relative to the lower strut material in the horizontal direction, the tension material stretches in the axial direction and increases in extension. By increasing the restoring force, the amount of expansion is limited by itself, and the horizontal relative movement is allowed while preventing the upper strut material from being lifted.

ダンパーを使用する場合には引張材の伸長時に減衰力を得ることが可能であり、ばねを使用する場合には引張材の伸長時に復元力を期待することが可能であるから、ダンパーとばねはそれぞれ単独で使用される他、併用されることもある。   When using a damper, it is possible to obtain a damping force when the tensile material is extended, and when using a spring, it is possible to expect a restoring force when the tensile material is extended. In addition to being used alone, they may be used in combination.

いずれの場合も、主構造体の構面内方向の層間変形に追従して制震補強架構が層間変形を生じるときに、引張材が支柱材頂部の梁部材に対する水平方向の相対移動を許容しながら、鉛直方向の相対移動を拘束することで、図12に二点鎖線で示すように支柱材の頂部を水平方向にのみ移動可能にするため、その支柱材に接続されているブレースの端部に浮き上がりを生じさせることがない。   In either case, when the seismic reinforcement frame is subjected to interlayer deformation following the interlayer deformation in the in-plane direction of the main structure, the tensile material allows horizontal movement relative to the beam member at the top of the column material. However, by restraining the relative movement in the vertical direction, as shown by a two-dot chain line in FIG. 12, the top of the support material can be moved only in the horizontal direction, so that the end of the brace connected to the support material Does not cause any lift.

この結果、図12において支柱材が右側へ相対移動するときにはそれに接続されているブレースは収縮し、左側へ相対移動するときには伸長するため、ブレースの内蔵されているダンパーは収縮量と伸長量に応じた減衰力を発生することが可能になる。ダンパーはブレースの収縮時と伸長時に生ずる相対移動量に応じた減衰力を発生する場合と相対移動時の相対速度に応じた減衰力を発生する場合がある。   As a result, in FIG. 12, the brace connected to the support member contracts when it moves relative to the right side and expands when it moves relative to the left side. It is possible to generate a damping force. The damper may generate a damping force corresponding to the relative movement amount generated when the brace contracts and extends, and may generate a damping force corresponding to the relative speed during the relative movement.

図16に、図1等に示す8層構造物の主構造体60に2層のフレーム6に亘るブレース5を持つ制震補強架構1が接合された場合のみの、各ブレース5内のダンパー52によるエネルギ吸収量と、本発明の拘束装置8が付加された場合の各ブレース5内のダンパー52によるエネルギ吸収量の差(解析結果データ)を示している。   FIG. 16 shows a damper 52 in each brace 5 only when the seismic reinforcing frame 1 having the brace 5 extending over the two-layer frame 6 is joined to the main structure 60 of the eight-layer structure shown in FIG. And the energy absorption amount difference (analysis result data) by the damper 52 in each brace 5 when the restraining device 8 of the present invention is added.

ダンパー52によるエネルギ吸収量は図14、図15に示すような荷重−変形関係を表す履歴曲線のループの面積から算出される値であり、横軸はブレース5が跨る主構造体60の層と、制震補強架構1における構面内方向の架設区間を示し、縦軸はエネルギ吸収量を98J(tf・cmのSI単位換算値)の倍数で表している。図16は図1、図2に示す形式の拘束装置8のモデルを用いた場合の結果を示している。   The amount of energy absorbed by the damper 52 is a value calculated from the area of the loop of the hysteresis curve representing the load-deformation relationship as shown in FIGS. 14 and 15, and the horizontal axis represents the layer of the main structure 60 that the brace 5 straddles. In addition, the construction section in the in-plane direction of the seismic reinforcement frame 1 is shown, and the vertical axis represents the amount of energy absorption in multiples of 98 J (converted to SI unit of tf · cm). FIG. 16 shows the results when the model of the restraint device 8 of the type shown in FIGS. 1 and 2 is used.

図1等では制震補強架構1の隣接する支柱2、2で挟まれたブレース5の架設区間が6区間ある場合の例を示しているが、図16における横軸の末尾の数字はこの区間位置(立面上、左から、もしくは右からの位置)を指している。図16ではまた、制震補強架構1のみのダンパー52によるエネルギ吸収量を四角の点を持つ折れ線(破線)で、拘束装置8が付加された場合にダンパー52によるエネルギ吸収量を三角の点を持つ折れ線(実線)で示している。   In FIG. 1 and the like, an example is shown in which there are six erection sections of the brace 5 sandwiched between the adjacent struts 2 and 2 of the seismic reinforcement frame 1, but the numbers at the end of the horizontal axis in FIG. It refers to the position (on the elevation, from the left or from the right). In FIG. 16, the energy absorption amount by the damper 52 of the seismic reinforcement frame 1 alone is indicated by a broken line (broken line) having a square point. When the restraint device 8 is added, the energy absorption amount by the damper 52 is indicated by a triangular point. This is indicated by a broken line (solid line).

図16より、制震補強架構1全体では下層寄りに架設されるブレース5内のダンパー52より、上層寄り、特に最上層に架設されるブレース5内のダンパー52によるエネルギ吸収量が低下していることが分かる。   As shown in FIG. 16, in the entire damping control frame 1, the amount of energy absorbed by the damper 52 in the brace 5 installed in the upper layer, particularly in the uppermost layer is lower than the damper 52 in the brace 5 installed in the lower layer. I understand that.

但し、四角の点を持つ折れ線(破線)で示す制震補強架構1のみの場合には構面内方向両側におけるダンパー52によるエネルギ吸収量が極端に小さいのに対し、三角の点を持つ折れ線(実線)で示す拘束装置8付きの場合には構面内方向両側におけるダンパー52によるエネルギ吸収量の低下がないか、少ないことが分かる。すなわち、制震補強架構1の構面内方向両側への拘束装置8の設置によって制震補強架構1内の構面内方向両側におけるダンパー52によるエネルギ吸収効果が有効に発揮されることが分かる。   However, in the case of only the seismic reinforcement frame 1 shown by the broken line (dotted line) having a square point, the energy absorption amount by the dampers 52 on both sides in the in-plane direction is extremely small, whereas the broken line having a triangular point ( In the case with the restraining device 8 indicated by a solid line), it can be seen that there is little or no decrease in the amount of energy absorbed by the dampers 52 on both sides in the in-plane direction. That is, it can be seen that the energy absorption effect by the dampers 52 on both sides in the in-plane direction of the seismic reinforcement frame 1 is effectively exhibited by installing the restraining devices 8 on both sides in the in-plane direction of the seismic wall frame 1.

この制震補強架構1内の構面内方向両側におけるダンパー52によるエネルギ吸収量の確保が本発明の拘束装置8付加の目的であり、解析結果データからその目的が十分に達成されていることが確認される。解析結果に拘束装置8付加の効果が顕著に表れることで、逆に解析モデルを簡素化することができるため、モデルの構築(モデル化)もし易く、解析結果への信頼性も高い、と言える。
Ensuring the amount of energy absorption by the dampers 52 on both sides in the in-plane direction of the seismic retrofitting frame 1 is the purpose of adding the restraining device 8 of the present invention, and that the purpose is sufficiently achieved from the analysis result data. It is confirmed. Since the analysis model can be simplified by conspicuously showing the effect of adding the restraint device 8 to the analysis result, it can be said that the model can be easily constructed (modeled), and the reliability of the analysis result is high. .

請求項1乃至請求項3では支柱の拘束装置が制震補強架構の構面内水平方向両側に位置する支柱の少なくとも最上部に位置する支柱材頂部の水平方向の相対移動を許容しながら、鉛直方向の移動を拘束するため、制震補強架構の構面内方向の層間変形時にその支柱材に接続されているブレースの端部に少なくとも浮き上がりを生じさせずに済む。この結果、最上部の支柱材が水平方向に相対移動するときにはそれに接続されているブレースを純粋に収縮、もしくは伸長させることができるため、ブレースに内蔵されているダンパーに収縮量と伸長量に応じた減衰力を発生させることができる。   In the first to third aspects of the present invention, the column restraining device allows the relative movement in the horizontal direction of at least the top of the column member positioned at the uppermost portion of the column positioned on both sides in the horizontal direction in the structural surface of the seismic reinforcement frame. In order to constrain the movement in the direction, it is not necessary to raise at least the end of the brace connected to the column member when the interlayer deformation in the in-plane direction of the vibration control reinforcement frame is performed. As a result, the brace connected to the uppermost strut member can be contracted or expanded purely when it moves relatively in the horizontal direction, so that the damper built in the brace can respond to the amount of contraction and extension. Damping force can be generated.

請求項4では支柱の拘束装置が制震補強架構の構面内水平方向両側に位置する支柱内の、上下に隣接する支柱材間に架設され、支柱材間の鉛直方向の、互いに分離する向きの相対移動を拘束する引張材からなり、制震補強架構の構面内方向の層間変形時に、上側の支柱材の、下側の支柱材に対する上昇を抑えるため、軸方向の伸縮時に伸長量を一定量以内に制限することにより上側の支柱材の浮き上がりを抑制することができる。   In claim 4, the support device for the support is installed between the support members adjacent to each other in the horizontal direction on both sides in the horizontal direction of the seismic reinforcement frame, and the vertical direction between the support members is separated from each other. It is made of a tension material that restrains the relative movement of the seismic reinforcement. By limiting the amount to within a certain amount, it is possible to suppress the lifting of the upper support material.

この結果、支柱材の頂部を水平方向にのみ移動可能にすることができ、その支柱材に接続されているブレースの端部に浮き上がりを生じさせることがないため、ブレースを純粋に収縮、もしくは伸長させることができ、ブレースに内蔵されているダンパーに収縮量と伸長量に応じた減衰力を発生させることができる。
As a result, the top of the strut material can be moved only in the horizontal direction, and the brace end connected to the strut material will not be lifted, so the brace is purely contracted or stretched. A damping force corresponding to the amount of contraction and extension can be generated in the damper built in the brace.

支柱の拘束装置が制震補強架構の構面内水平方向両側に位置する支柱の両側に並列して立設される柱部材と、両柱部材の頂部間に架設される梁部材からなる場合の制震補強架構と拘束装置の関係を示した斜視図である。When the strut restraining device is composed of column members standing in parallel on both sides of the struts located on both sides in the horizontal direction of the seismic reinforcement frame, and beam members erected between the tops of both column members It is the perspective view which showed the relationship between the damping control frame and the restraint device. 支柱の拘束装置が制震補強架構の構面内水平方向両側に位置する支柱の片側に立設される柱部材と、最上部に位置する支柱材の頂部との間に架設される梁部材からなる場合の制震補強架構と拘束装置の関係を示した斜視図である。From the beam member installed between the column member that is erected on one side of the column and the top of the column material that is positioned at the top, the column restraint device is located on both sides in the horizontal direction in the frame of the seismic reinforcement frame It is the perspective view which showed the relationship between the seismic control reinforcement frame | frame in the case where it becomes, and a restraint device. 図2における拘束装置の頂部での梁部材と支柱材との取合いの様子を示した拡大図である。It is the enlarged view which showed the mode of the connection with the beam member and support | pillar material in the top part of the restraint apparatus in FIG. 図2における拘束装置の中間部での梁部材と支柱材との取合いの様子を示した拡大図である。It is the enlarged view which showed the mode of the connection with the beam member and support | pillar material in the intermediate part of the restraint apparatus in FIG. 支柱の拘束装置が主構造体と制震補強架構とに跨って架設されるフレーム材と、このフレーム材と制震補強架構との間に介在する絶縁装置からなる場合の制震補強架構と拘束装置の関係を示した斜視図である。Seismic control reinforcement frame and restraint in the case where the strut restraining device is composed of a frame material that spans between the main structure and the seismic control reinforcement frame, and an insulating device interposed between the frame material and the seismic control reinforcement frame It is the perspective view which showed the relationship of the apparatus. 図5における制震補強架構の高さ方向中間部の拡大図である。FIG. 6 is an enlarged view of a middle portion in the height direction of the vibration control reinforcement frame in FIG. 5. 支柱の拘束装置が制震補強架構の構面内水平方向両側に位置する支柱内の、上下に隣接する支柱材間に架設され、コイルスプリングを用いた引張材からなる場合の制震補強架構と拘束装置の関係を示した斜視図である。A seismic reinforcement structure in which the strut restraining device is constructed between the struts adjacent to each other in the horizontal direction in the strut located on both sides in the horizontal direction in the structural surface of the seismic retrofit structure, and is made of a tensile material using a coil spring. It is the perspective view which showed the relationship of the restraint apparatus. 図7における拘束装置部分の拡大図である。It is an enlarged view of the restraint apparatus part in FIG. 支柱の拘束装置が制震補強架構の構面内水平方向両側に位置する支柱内の、上下に隣接する支柱材間に架設され、ダンパーを用いた引張材からなる場合の制震補強架構と拘束装置の関係を示した斜視図である。Seismic retrofit frame and restraint when the strut restraining device is constructed between the struts adjacent to the top and bottom in the strut located on both sides in the horizontal direction in the structural surface of the seismic retrofit frame and made of tensile material using dampers It is the perspective view which showed the relationship of the apparatus. 図9における拘束装置部分の拡大図である。FIG. 10 is an enlarged view of a restraining device portion in FIG. 9. 制震補強架構を構成する支柱が3本の支柱材からなる場合に、制震補強架構に層間変形が生じ、最下層より上の支柱材が水平方向に相対移動したときの様子を示した立面図である。When the struts that make up the seismic retrofitting frame are made of three struts, an interlayer deformation occurs in the seismic retrofitting frame, and the struts above the bottom layer move relative to each other in the horizontal direction. FIG. 制震補強架構の層間変形時に最上部に位置する支柱材に想定される浮き上がり、もしくは沈み込みの様子を示した立面図である。It is the elevation which showed the state of the rising or sinking assumed to the support | pillar material located in the uppermost part at the time of the interlayer deformation | transformation of a seismic reinforcement frame. 図12に示す最上部の支柱材に生ずる浮き上がりや沈み込みによるダンパーのエネルギ吸収能力への影響を確認するための、4本の支柱材からなる制震補強架構のモデルを示した立面図である。FIG. 13 is an elevation view showing a model of a seismic reinforcing frame composed of four struts for confirming the influence on the energy absorption capacity of the damper due to lifting and sinking generated in the uppermost struts shown in FIG. is there. (a)〜(d)は構面内水平方向両側より内側に架設される各層のブレース内のダンパーの履歴特性を示した荷重−変形曲線図である。(A)-(d) is the load-deformation curve figure which showed the hysteresis characteristic of the damper in the brace of each layer constructed inside from the horizontal direction both sides in a composition surface. (a)〜(d)は構面内水平方向両側に架設される各層のブレース内のダンパーの履歴特性を示した荷重−変形曲線図である。(A)-(d) is the load-deformation curve figure which showed the hysteresis characteristic of the damper in the brace of each layer constructed by the horizontal direction both sides in a construction surface. 主構造体が図1等に示す8層の構造物である場合に、図示するように2層に亘るブレースに内蔵されたダンパーによる各2層単位でのエネルギ吸収量を構面内方向の架設区間毎に纏めて表したグラフである。When the main structure is an eight-layer structure shown in FIG. 1 and the like, the energy absorption amount in each two-layer unit is installed in the in-plane direction by a damper built in a brace extending over two layers as shown in the figure. It is the graph collectively represented for every area.

以下、図面を用いて本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

図1は柱61と梁62からなるフレーム6を有する主構造体60の構面外にその構面に平行に配列し、構面内水平方向に互いに間隔を隔てて地上、もしくは基礎上に立設される支柱2と、構面内水平方向に隣接する支柱2、2間に架設される、ブレース本体51にダンパー52を組み込んだダンパー一体型ブレース(以下、ブレース)5を備え、主構造体60を制震補強するための制震補強架構1における支柱の拘束装置8の構成例を示す。主構造体60の柱61と梁62は図6に示している。   FIG. 1 shows an arrangement of a main structure 60 having a frame 6 composed of columns 61 and beams 62 arranged parallel to the surface of the main structure 60, and standing on the ground or the foundation with a space between each other in the horizontal direction in the surface of the structure. A main structure having a damper-integrated brace (hereinafter referred to as a brace) 5 built between a brace body 51 and a damper 52, which is provided between the supporting pillar 2 to be installed and the supporting pillars 2 and 2 adjacent in the horizontal direction in the composition plane. The structural example of the restraint apparatus 8 of the support | pillar in the seismic reinforcement frame 1 for carrying out the seismic reinforcement of 60 is shown. The columns 61 and beams 62 of the main structure 60 are shown in FIG.

支柱2は鉛直方向に複数本の支柱材21、22、23に分離し、上下に分離した支柱材21、22間、及び支柱材22、23間に両者間の相対水平移動を許容する絶縁装置3が介在すると共に、構面内水平方向に隣接する支柱材21、22(22、23)間に、制震補強架構1と主構造体60のフレーム6を一体化させるつなぎ梁4が架設される。以下、支柱2を構成する支柱材21〜23の内、最下部に位置する支柱材を21、最上部に位置する支柱材を23、その中間部に位置する支柱材を22とする。   The column 2 is divided into a plurality of column members 21, 22, 23 in the vertical direction, and an insulating device that allows relative horizontal movement between the column members 21, 22 separated vertically and between the column members 22, 23. 3 is interposed, and a connecting beam 4 is installed between the strut members 21 and 22 (22 and 23) adjacent to each other in the horizontal direction in the composition plane to integrate the vibration control reinforcement frame 1 and the frame 6 of the main structure 60 together. The Hereinafter, among the support members 21 to 23 constituting the support column 2, the support material positioned at the lowermost portion is referred to as 21, the support material positioned at the uppermost portion is referred to as 23, and the support material positioned at an intermediate portion thereof is referred to as 22.

つなぎ梁4は構面内水平方向に配列する複数本の支柱2、2をつなぐ働きをすればよいため、つなぎ梁4が支柱2の構面内方向の側面に突き当たる形で接合されるか、支柱2の構面外方向の側面に重なる形で接合されるかは問われない。   Since the connecting beam 4 only needs to work to connect a plurality of support columns 2 and 2 arranged in the horizontal direction in the composition plane, the connection beam 4 is joined so as to abut against the side surface in the composition direction of the support column 2; It does not matter whether or not the columns 2 are joined so as to overlap the side surfaces in the direction of the construction surface.

主構造体60のフレーム6は建築構造物で言えば、鉄筋コンクリート造、鉄骨鉄筋コンクリート造、外壁等にALC版を張り付けた鉄骨造、あるいは鋼管コンクリート造の別を問わず、制震補強架構1を構成する支柱2とつなぎ梁4も鉄筋コンクリート造、鉄骨鉄筋コンクリート造、鉄骨造、鋼管コンクリート造の場合がある。コンクリート造の場合は現場打ちコンクリート造とプレキャストコンクリート製の場合がある。制震補強架構1、すなわち制震補強架構1を構成する支柱2とつなぎ梁4も鉄筋コンクリート造、鉄骨鉄筋コンクリート造、鉄骨造の場合がある。図1、図2以下に示す例では主構造体60が8階建て(8層)の構造物(建物)であり、その主構造体60のスパン方向の片面に接合される制震補強架構1が主構造体60の2層に亘って架設されるブレース5を持つ場合を示している。   The frame 6 of the main structure 60 is a reinforced concrete structure, a steel reinforced concrete structure, a steel structure with an ALC plate attached to the outer wall, etc., or a steel pipe concrete structure. The supporting column 2 and the connecting beam 4 may be reinforced concrete, steel reinforced concrete, steel frame, or steel pipe concrete. In the case of concrete, there are cases where it is made of cast-in-place concrete or precast concrete. The seismic reinforcement frame 1, that is, the column 2 and the connecting beam 4 constituting the seismic reinforcement frame 1 may be reinforced concrete, steel reinforced concrete, or steel. In the example shown in FIGS. 1 and 2 and subsequent figures, the main structure 60 is an eight-story (eight-layer) structure (building), and the seismic reinforcement frame 1 joined to one side of the main structure 60 in the span direction. Shows a case where the brace 5 is provided over two layers of the main structure 60.

最下部に位置する支柱材21は図1等に示すように地盤、もしくは既存建物の基礎10(11)等に定着され、最下部の支柱材21より上に位置する支柱材22、23はつなぎ梁4を介してフレーム6に間接的に接合されることによりフレーム6と共に挙動する。図1等では支柱材21の、地中に位置する下端部に基礎10としてのフーチングを形成し、フーチングを地中に埋設することにより地盤に定着させているが、地盤や基礎10への定着方法は問われない。基礎10は杭11を含む。   As shown in FIG. 1 or the like, the support material 21 located at the bottom is fixed to the ground or the foundation 10 (11) of the existing building, and the support materials 22 and 23 located above the support material 21 at the bottom are connected. It behaves together with the frame 6 by being indirectly joined to the frame 6 via the beam 4. In FIG. 1 and the like, a footing as the foundation 10 is formed at the lower end portion of the support material 21 located in the ground, and the footing is buried in the ground to fix it to the ground. The method is not asked. The foundation 10 includes a pile 11.

ブレース5は支柱2、2とつなぎ梁4、4からなる架構(フレーム)内に、水平と鉛直に対して傾斜して架設されるから、ブレース5の一端は構面内水平方向に隣接する支柱材21、21(22、22)の内、一方の支柱材21(22)、もしくはその支柱材21(22)寄りのつなぎ梁4に接続(連結)され、他端は他方の支柱材21(22)の直下、または直上の支柱材22(21)、もしくはその支柱材22(21)寄りのつなぎ梁4に接続(連結)される。   Since the brace 5 is installed in a frame (frame) composed of the columns 2 and 2 and the connecting beams 4 and 4 while being inclined with respect to the horizontal and vertical directions, one end of the brace 5 is adjacent to the column in the horizontal direction in the frame. Of the members 21, 21 (22, 22), one column member 21 (22) or the connecting beam 4 near the column member 21 (22) is connected (connected), and the other end is connected to the other column member 21 ( 22 (21), or directly above (or just) the supporting beam 22 (21) or the connecting beam 4 near the supporting column 22 (21).

制震補強架構1を構成する支柱2、2が図1、図2等に示すように構面内水平方向に3本以上、配列する場合には、ブレース5は構面内水平方向両側以外の中間部に位置するいずれかの支柱2を構成するいずれかの支柱材21(22、23)と、その支柱材21(22、23)より上、もしくは下に位置し、その支柱2の両側に隣接する支柱2、2を構成する支柱材21(22、23)との間に傾斜し、前記いずれかの支柱2に関して対称(線対称)に架設される。   When three or more struts 2 and 2 constituting the vibration-damping reinforcement frame 1 are arranged in the horizontal direction in the composition plane as shown in FIGS. One of the support members 21 (22, 23) constituting one of the support members 2 located in the middle portion, and above or below the support member 21 (22, 23), on both sides of the support member 2 It is inclined between the supporting columns 21 (22, 23) constituting the adjacent supporting columns 2, 2, and is installed symmetrically (axisymmetric) with respect to any of the supporting columns 2.

図示しないが、例えば1本の支柱2が2本の支柱材21、22からなる場合、ブレース5の一端は最下部の支柱材21やつなぎ梁4に接続され、他端は水平方向に隣接する最下部の支柱材21の直上の支柱材22やつなぎ梁4に接続される。図1等では主構造体60が複数層に亘る集合住宅等の建築物であり、フレーム6の構面が平面をなす場合の例を示しているが、構面が曲面の場合を含め、既存建物の形態、あるいは既存建物の用途は限定されない。   Although not shown, for example, when one support column 2 is composed of two support members 21 and 22, one end of the brace 5 is connected to the lowermost support member 21 and the connecting beam 4, and the other end is adjacent to the horizontal direction. It is connected to the column material 22 and the connecting beam 4 directly above the lowermost column material 21. In FIG. 1 and the like, an example in which the main structure 60 is a building such as an apartment house extending over a plurality of layers and the frame 6 has a flat surface is shown. The form of the building or the use of the existing building is not limited.

図11に示すように1本の支柱2が3本以上の支柱材21、22、23からなる場合はブレース5の架設層が2層以上に亘ることから、最下層のブレース5の一端は2本の場合と同じく最下部の支柱材21やつなぎ梁4に接続され、他端は水平方向に隣接する最下部の支柱材21の直上の支柱材22やつなぎ梁4に接続される。その直上層のブレース5の一端は最下部の支柱材21の直上の支柱材22やつなぎ梁4に接続され、他端はその支柱材22に隣接する支柱材22の直上の支柱材23やつなぎ梁4に接続される。その直上層のブレース5も同様に接続される。   As shown in FIG. 11, when one strut 2 is composed of three or more strut members 21, 22, and 23, the construction layer of the brace 5 extends over two or more layers, so one end of the lowermost brace 5 is 2 As in the case of the book, it is connected to the lowermost support member 21 and the connecting beam 4, and the other end is connected to the support member 22 and the connecting beam 4 immediately above the lowermost support member 21 adjacent in the horizontal direction. One end of the brace 5 in the upper layer is connected to the support member 22 and the connecting beam 4 immediately above the lower support member 21, and the other end is connected to the support member 23 immediately above the support member 22 adjacent to the support member 22. Connected to beam 4. The brace 5 immediately above is connected in the same manner.

最上部の支柱材23を除き、基本的に各支柱材21、22はブレース5への地震力の入力と、その軸方向の変形に伴うダンパー52によるエネルギ吸収の効果を発揮させるために、フレーム6の層間変位に追従するよう、つなぎ梁4を介したフレーム6への接合位置に応じ、1層分乃数層分の高さを有する。最上部の支柱材23はつなぎ梁4を介したフレーム6への接合と、ブレース5の接続ができればよく、必ずしも1層分の高さを有する必要がないため、図1等では最上部の支柱材23の高さをつなぎ梁4の成程度、あるいはそれより大きめの程度に留めている。   Except for the uppermost support member 23, each of the support members 21 and 22 is basically a frame in order to exhibit the effect of energy absorption by the damper 52 accompanying the input of seismic force to the brace 5 and its axial deformation. In order to follow the inter-layer displacement of 6, the height is equivalent to one layer or several layers according to the joining position to the frame 6 via the connecting beam 4. The uppermost support member 23 only needs to be able to be connected to the frame 6 via the connecting beam 4 and to connect the brace 5, and does not necessarily have to have a height of one layer. The height of the material 23 is kept to the extent of the connecting beam 4 or larger.

支柱材21、22が数層分の高さを有する場合は1本のブレース5が数層に亘って架設されることになることで、1層の場合より層間変位によるブレース5の変形量が大きくなるため、ダンパー52によるエネルギ吸収効率が高まる利点がある。   When the support members 21 and 22 have a height of several layers, one brace 5 is installed over several layers, so that the amount of deformation of the braces 5 due to the interlayer displacement is larger than that in the case of one layer. Since it becomes large, there exists an advantage which the energy absorption efficiency by the damper 52 increases.

ブレース5は互いに軸方向に相対移動自在なブレース本体51、51と、一方のブレース本体51に内蔵され、他方のブレース本体51に接続されるダンパー52からなり、ブレース本体51、51の端部に一体化したブラケット53、53において、例えば制震補強架構1の支柱2やつなぎ梁4に接合されたベースプレート等に一体化したガセットプレート7に連結される。ブレース5はブレース本体51、51がその両端間に作用する圧縮力と引張力によって相対移動するときにダンパー52が減衰力を発生することによりフレーム6の揺れを抑制する。ダンパー52にはオイルダンパー(油圧シリンダ)等の粘性流体を用いたダンパーが使用される。   The brace 5 is composed of brace bodies 51, 51 that are axially movable relative to each other, and a damper 52 that is built into one brace body 51 and connected to the other brace body 51, at the end of the brace bodies 51, 51. The integrated brackets 53 and 53 are connected to, for example, a gusset plate 7 integrated with a base plate or the like joined to the column 2 or the connecting beam 4 of the seismic reinforcement frame 1. The brace 5 suppresses the shaking of the frame 6 by the damper 52 generating a damping force when the brace bodies 51 and 51 move relative to each other by the compressive force and the tensile force acting between both ends thereof. As the damper 52, a damper using a viscous fluid such as an oil damper (hydraulic cylinder) is used.

絶縁装置3には積層ゴム支承、または支柱材21、22(22、23)からの離脱防止のための変形制限機構付きの弾性滑り支承や滑り支承等が使用される。絶縁装置3として積層ゴム支承を使用した場合、ゴムの引張破断を防止するために絶縁装置3は図3、図6に示すように上端と下端のいずれか一方において上下に分離した支柱材21、22(22、23)の内のいずれか一方の支柱材21(22)に接合され、他方において他方の支柱材22(23)に鉛直方向に相対移動自在に接続(支持)される。「鉛直方向に相対移動自在」とは、支柱材21(22)からの抜け出しが自在であることであり、上側の支柱材22(23)からは下向きに抜け出し自在で、下側の支柱材21(22)からは浮き上がり自在であることを言う。   As the insulating device 3, a laminated rubber bearing or an elastic sliding bearing or a sliding bearing with a deformation limiting mechanism for preventing separation from the support members 21, 22 (22, 23) is used. When a laminated rubber support is used as the insulating device 3, in order to prevent the rubber from being pulled and broken, the insulating device 3 is separated from the upper and lower columns 21 as shown in FIGS. 22 (22, 23) is joined to one of the support members 21 (22), and the other is connected (supported) to the other support member 22 (23) so as to be relatively movable in the vertical direction. “Relative movement in the vertical direction” means that the column material 21 (22) can be pulled out freely, and the upper column material 22 (23) can be pulled out downward, so that the lower column material 21 can be pulled out downward. (22) says that it can float freely.

絶縁装置3は積層ゴムの上下に一体化しているフランジ31、32の内の例えば上部のフランジ31を上側の支柱材22(23)の下面に定着させ、下部のフランジ32を下側の支柱材21(22)の上面に定着させることなく、図3、図6に示すようにフランジ32の下面に接合されたシアキー33を下側の支柱材21(22)の上面から形成された空洞2aに嵌合させ、水平方向に係合させることにより支柱材22(23)に鉛直方向に相対移動自在に接続される。シアキー33を上部のフランジ31の上面に接合し、これを上側の支柱材22(23)の下面から形成された空洞2aに嵌合させると共に、下部のフランジ32を下側の支柱材21(22)の上面に定着させることもある。   The insulating device 3 fixes, for example, the upper flange 31 of the flanges 31 and 32 integrally formed on the upper and lower sides of the laminated rubber to the lower surface of the upper support member 22 (23) and the lower flange 32 to the lower support member. 3 and 6, the shear key 33 joined to the lower surface of the flange 32 is formed in the cavity 2a formed from the upper surface of the lower support member 21 (22) without being fixed to the upper surface of the lower support member 21 (22). By being fitted and engaged in the horizontal direction, it is connected to the support material 22 (23) so as to be relatively movable in the vertical direction. The shear key 33 is joined to the upper surface of the upper flange 31 and is fitted into the cavity 2a formed from the lower surface of the upper support member 22 (23), and the lower flange 32 is connected to the lower support member 21 (22). ) May be fixed on the upper surface.

シアキー33を空洞2aに嵌合させる場合、絶縁装置3より上側の支柱材22(23)からの鉛直荷重はフランジ31、32と積層ゴムを通じて、またはフランジ31、32と積層ゴム、及びシアキー33を通じて下側の支柱材21(22)に伝達される。   When the shear key 33 is fitted in the cavity 2 a, the vertical load from the support material 22 (23) above the insulating device 3 is through the flanges 31 and 32 and the laminated rubber, or through the flanges 31 and 32 and the laminated rubber and the shear key 33. It is transmitted to the lower support member 21 (22).

図1は拘束装置8が制震補強架構1の構面内(構面内水平)方向両側に位置する支柱2の周囲に並列して立設される複数本の柱部材81、81と、最上部の支柱材23の頂部を通って柱部材81、81間に架設される梁部材82と、梁部材82と支柱材23の頂部との間に介在し、支柱材23の頂部の水平方向の相対移動を許容する絶縁装置9から構成される場合の具体例を示している。この絶縁装置9も上下に隣接する支柱材21、22(22、23)間に介在する絶縁装置3と同じく、積層ゴム支承の他、弾性滑り支承や滑り支承等が使用される。   FIG. 1 shows a plurality of column members 81, 81 in which a restraining device 8 is erected in parallel around a column 2 positioned on both sides in the direction (horizontal in the plane) of the seismic reinforcement frame 1. The beam member 82 is installed between the column members 81, 81 through the top of the upper support member 23, and is interposed between the beam member 82 and the top of the support member 23. The specific example in the case of comprising the insulating device 9 that allows relative movement is shown. This insulating device 9 also uses an elastic sliding bearing, a sliding bearing, etc., in addition to the laminated rubber bearing, in the same manner as the insulating device 3 interposed between the support members 21 and 22 (22, 23) adjacent vertically.

柱部材81、81は制震補強架構1の支柱2と干渉しない領域に立設され、下端部は基礎10、もしくは杭11に接合される。柱部材81を支持する基礎10や杭11は制震補強架構1を支持する基礎10や杭11である場合と、制震補強架構1の基礎10等とは別に地中に構築される場合がある。図1の例では梁部材82は少なくとも2本の柱部材81、81間に架設されるから、柱部材81、81は少なくとも2本で対になる。   The column members 81 and 81 are erected in a region where they do not interfere with the column 2 of the seismic reinforcement frame 1, and the lower ends are joined to the foundation 10 or the pile 11. The foundation 10 and the pile 11 that support the column member 81 may be constructed in the ground separately from the foundation 10 and the pile 11 that support the seismic reinforcement frame 1 or the foundation 10 and the like of the seismic reinforcement frame 1. is there. In the example of FIG. 1, since the beam member 82 is installed between at least two column members 81, 81, at least two column members 81, 81 are paired.

図1の場合、柱部材81の下端部は地盤、もしくは基礎10に定着されることにより、鉛直方向上向きの反力が地盤、もしくは基礎10等に負担される。基礎10は既設の場合と新設の場合がある。   In the case of FIG. 1, the lower end portion of the column member 81 is fixed to the ground or the foundation 10, so that a reaction force upward in the vertical direction is borne on the ground or the foundation 10. The foundation 10 may be an existing one or a new one.

図1では制震補強架構1の構面内水平方向両側に位置する支柱2の周囲に拘束装置8を構築しているが、拘束装置8はいずれか片側の支柱2の周囲にのみ構築される場合の他、少なくともいずれか片側の支柱2と両側より内側に位置する支柱2の周囲に構築される場合もある。拘束装置8を構成する柱部材81と梁部材82は鉄骨造の場合と鉄筋コンクリート造(プレキャストコンクリート製を含む)の場合がある。柱部材8はまた、1本の連続した部材である場合と、軸方向に連結(接合)されながら構築される場合がある。2本の柱部材81、81とその頭部間に架設される梁部材82はラーメン構造のフレームを構成する。   In FIG. 1, the restraint device 8 is constructed around the pillars 2 positioned on both sides in the horizontal direction in the structural surface of the seismic reinforcement frame 1, but the restraint device 8 is constructed only around one of the pillars 2 on one side. In addition to the case, it may be constructed around at least one of the columns 2 and the column 2 positioned inside both sides. The column member 81 and the beam member 82 constituting the restraint device 8 may be a steel structure or a reinforced concrete structure (including precast concrete). The column member 8 may also be constructed while being connected (joined) in the axial direction when it is a single continuous member. The two column members 81, 81 and the beam member 82 installed between the head portions thereof constitute a frame having a ramen structure.

図1ではまた、柱部材81、81の頂部間にのみ梁部材82を架設しているが、梁部材82は図2に示すように柱部材81、81の高さ方向(軸方向)の中間部間にも架設される場合がある。その場合、高さ方向中間部の梁部材82は高さ方向中間部の支柱材22のいずれかの部分、もしくは支柱材22の側面から突出した部分(突出部41)、あるいはつなぎ梁4を通って柱部材81、81間に架設される。   In FIG. 1, the beam member 82 is installed only between the tops of the column members 81 and 81. However, the beam member 82 is intermediate in the height direction (axial direction) of the column members 81 and 81 as shown in FIG. There is also a case where it is erected between clubs. In that case, the beam member 82 in the intermediate portion in the height direction passes through any portion of the support member 22 in the intermediate portion in the height direction, a portion protruding from the side surface of the support member 22 (protrusion portion 41), or the connecting beam 4. Are installed between the column members 81, 81.

更に図1では制震補強架構1の構面内水平方向両側に位置する支柱2を挟むように支柱2の両側に柱部材81、81が立設されることから、制震補強架構1との干渉を回避するために、両柱部材81、81は制震補強架構1の構面に対して振った方向(構面外方向)に立設される。   Further, in FIG. 1, column members 81 and 81 are erected on both sides of the support column 2 so as to sandwich the support columns 2 positioned on both sides in the horizontal direction in the structural surface of the vibration control reinforcement frame 1. In order to avoid interference, both the column members 81 and 81 are erected in the direction swung with respect to the construction surface of the vibration-damping reinforcement frame 1 (outside the construction surface).

絶縁装置9の軸方向の上端と下端にはそれぞれ梁部材82と支柱材23に接続、あるいは接合されるための上部フランジ91と下部フランジ92が一体化する。絶縁装置9が積層ゴム支承等の場合、本体の積層ゴムが水平力を受けてせん断変形するから、上部フランジ91は基本的に梁部材82の下面にボルト等により一体的に接合され、下部フランジ92は図1に示すように支柱材23の頂部、あるいは支柱材23の頂部の位置に架設されるつなぎ梁4の上面にボルト等により一体的に接合される。但し、絶縁装置9自身が梁部材82と支柱材23(つなぎ梁4)に対して水平方向に相対移動自在であってもよいため、それぞれ梁部材82の長さ方向とつなぎ梁4の長さ方向(水平方向)にスライド自在に支持(接続)されることもある。   An upper flange 91 and a lower flange 92 for connecting to or joining to the beam member 82 and the column member 23 are integrated with the upper and lower ends in the axial direction of the insulating device 9, respectively. When the insulating device 9 is a laminated rubber bearing or the like, the laminated rubber of the main body undergoes shear deformation due to horizontal force. Therefore, the upper flange 91 is basically integrally joined to the lower surface of the beam member 82 by a bolt or the like, and the lower flange. As shown in FIG. 1, 92 is integrally joined by bolts or the like to the top of the support member 23 or the upper surface of the connecting beam 4 installed at the top of the support member 23. However, since the insulating device 9 itself may be relatively movable in the horizontal direction with respect to the beam member 82 and the column member 23 (connecting beam 4), the length direction of the beam member 82 and the length of the connecting beam 4, respectively. It may be supported (connected) slidably in the direction (horizontal direction).

図2は拘束装置8が制震補強架構1の構面内水平方向両側に位置する支柱2と並列して立設される柱部材81と、その支柱2の最上部の支柱材23の頂部と柱部材81の頂部との間に架設される梁部材82と、梁部材82の先端部と支柱材23の頂部との間に介在する絶縁装置9から構成される場合の具体例を示している。図3は図2における梁部材82部分の拡大図、図4は柱部材81の高さ方向(軸方向)中間部から水平に、支柱2側へ張り出す張出部材83の部分の拡大図である。図2では制震補強架構1の構面と同一面内に柱部材81を立設しているが、必ずしもその必要はなく、図1のように制震補強架構1の構面に対して振った方向(構面外方向)に立設されることもある。   FIG. 2 shows a column member 81 in which the restraining device 8 is erected in parallel with the columns 2 positioned on both sides in the horizontal direction in the structural surface of the damping control frame 1, and the top of the column material 23 at the top of the column 2 The specific example in the case where it comprises the beam member 82 constructed between the top part of the column member 81 and the insulation apparatus 9 interposed between the front-end | tip part of the beam member 82 and the top part of the support | pillar member 23 is shown. . 3 is an enlarged view of the beam member 82 portion in FIG. 2, and FIG. 4 is an enlarged view of a portion of the projecting member 83 projecting horizontally from the intermediate portion in the height direction (axial direction) of the column member 81 to the column 2 side. is there. In FIG. 2, the column member 81 is erected in the same plane as the surface of the seismic reinforcement frame 1, but this is not always necessary. May be erected in the other direction (out-of-plane direction).

図1、図2では制震補強架構1の構面内水平方向両側に位置する支柱2の高さ方向中間部に位置する支柱材22と、最上部に位置する支柱材23から、制震補強架構1の構面内方向に主構造体60との接合のための突出部41を突出させている。突出部41はつなぎ梁4の延長線上に、支柱材22、23から構面内方向の外側に向かって突出する。つなぎ梁4は例えば主構造体60のフレーム6と制震補強架構1との接合のためのスラブ63を増し打ちするような場合に、そのスラブ63の端部とつなぎ梁4との接合のために突出させられ、その結果として突出部41が形成されるが、突出部41はスラブ63の有無に拘らず、形成されないこともある。   In FIG. 1 and FIG. 2, the vibration control reinforcement is made up of the column material 22 located at the middle in the height direction of the column 2 located on both sides in the horizontal direction in the frame of the vibration suppression reinforcement frame 1 and the column material 23 located at the top. A projecting portion 41 for joining to the main structure 60 is projected in the in-plane direction of the frame 1. The protrusion 41 protrudes from the support members 22 and 23 toward the outside in the in-plane direction on the extension line of the connecting beam 4. For example, when the slab 63 for joining the frame 6 of the main structure 60 and the seismic reinforcement frame 1 is increased, the joining beam 4 is used for joining the end of the slab 63 and the joining beam 4. As a result, the protrusion 41 is formed, but the protrusion 41 may not be formed regardless of the presence or absence of the slab 63.

図2における張出部材83は図4に示すように柱部材81からこのつなぎ梁4の突出部41側へ向かって張り出し、この張出部材83の下面とつなぎ梁4の突出部41との間に絶縁装置9が介在させられる。張出部材83は図6におけるフレーム材84の横枠84bのようにつなぎ梁4以外の方向に張り出す(突出する)部材との間に架設され、両者間に絶縁装置9が介在させられることもある。   As shown in FIG. 4, the projecting member 83 in FIG. 2 projects from the column member 81 toward the projecting portion 41 of the connecting beam 4, and between the lower surface of the projecting member 83 and the projecting portion 41 of the connecting beam 4. An insulating device 9 is interposed between the two. The overhang member 83 is installed between a member that projects (projects) in a direction other than the connecting beam 4 like the horizontal frame 84b of the frame member 84 in FIG. 6, and the insulating device 9 is interposed therebetween. There is also.

図2では拘束装置8を構成する柱部材81が1本であることで、拘束装置8(柱部材81)が片持ち梁になり、支柱2の浮き上がりを阻止する上での曲げ剛性が乏しい可能性があるため、柱部材81の高さ方向の複数箇所で支柱2の浮き上がりを押さえるよう、柱部材81の頂部と高さ方向中間部から梁部材82と張出部材83を張り出させている。但し、柱部材81単体の剛性の程度によっては必ずしも張出部材83を張り出させる必要はない。その場合、柱部材81の頂部のみから梁部材82を架設すればよく、梁部材82の下面に配置される絶縁装置9によって最上部の支柱材23の頂部を下向きに押さえ込めればよい。   In FIG. 2, since there is only one column member 81 constituting the restraint device 8, the restraint device 8 (column member 81) becomes a cantilever and may have poor bending rigidity in preventing the column 2 from lifting up. Therefore, the beam member 82 and the projecting member 83 are projected from the top of the column member 81 and the intermediate portion in the height direction so as to suppress the lifting of the column 2 at a plurality of positions in the height direction of the column member 81. . However, the protruding member 83 does not necessarily have to be extended depending on the degree of rigidity of the column member 81 alone. In that case, the beam member 82 may be installed only from the top of the column member 81, and the top of the uppermost support member 23 may be pressed downward by the insulating device 9 disposed on the lower surface of the beam member 82.

図5は拘束装置8が主構造体60と制震補強架構1とに跨って架設されるフレーム材84と、このフレーム材84と制震補強架構1との間に介在し、両者間の水平方向の相対移動を許容する絶縁装置9からなる場合の具体例を示している。図6は図5におけるフレーム材84部分の拡大図である。   In FIG. 5, the restraint device 8 is interposed between the main structure 60 and the vibration control reinforcement frame 1, and the frame material 84 is interposed between the frame material 84 and the vibration control reinforcement frame 1, and the horizontal between them A specific example in the case of the insulating device 9 that allows relative movement in the direction is shown. FIG. 6 is an enlarged view of the frame member 84 in FIG.

フレーム材84は例えば主構造体60の柱61や壁等に接触した状態で接合される縦枠84aと縦枠84aの上端部と下端部の少なくともいずれかから制震補強架構1側へ張り出す横枠84bから図示するようにコの字形、もしくはL字形等の立面形状をし、横枠84bの制震補強架構1側の端部において絶縁装置9を介して制震補強架構1の構面内方向両側に位置する支柱2のいずれかの部分を下向きに押さえ込む。   For example, the frame member 84 protrudes from the vertical frame 84a joined in contact with the pillar 61 or the wall of the main structure 60 and the upper end portion and the lower end portion of the vertical frame 84a toward the seismic reinforcement frame 1 side. As shown in the figure from the horizontal frame 84b, the U-shaped or L-shaped surface is formed, and the end of the horizontal frame 84b on the side of the vibration-damping reinforcement frame 1 is connected to the structure of the vibration-damping reinforcement frame 1 via the insulating device 9. Any part of the column 2 located on both sides in the in-plane direction is pressed downward.

フレーム材84は支柱2の最上部に位置する支柱材23の頂部を押さえ込むこともあるが、図面ではフレーム材84の横枠84bが主構造体60の最上階と中間階に増し打ちされたスラブ63の下面に入り込んだ状態で主構造体60に接合されている関係で、高さ方向の中間部に位置する支柱材22と最上部に位置する支柱材23の高さ方向中間部から主構造体60側へ突出する突出部24の上に横枠84bが位置し、各横枠84bの下と突出部24との間に絶縁装置9が配置されるようにしている。図5、図6の場合も絶縁装置9は横枠84bの下面と突出部24の上面との間に配置され、フランジ91、92がそれぞれにボルト等により接合される。   Although the frame member 84 may hold down the top of the support member 23 located at the uppermost part of the support column 2, in the drawing, the slab in which the horizontal frame 84 b of the frame member 84 is beaten on the uppermost floor and the intermediate floor of the main structure 60. 63. The main structure from the intermediate portion in the height direction of the strut member 22 located in the middle portion in the height direction and the strut member 23 located in the uppermost portion in the relationship of being joined to the main structure 60 while entering the lower surface of 63. The horizontal frame 84 b is positioned on the protruding portion 24 protruding to the body 60 side, and the insulating device 9 is disposed between the lower portion of each horizontal frame 84 b and the protruding portion 24. 5 and 6, the insulating device 9 is disposed between the lower surface of the horizontal frame 84b and the upper surface of the protruding portion 24, and the flanges 91 and 92 are joined to each other by bolts or the like.

図5、図6では横枠84bが支柱材22、23の突出部24からの上向きの反力を受けるときの横枠84bの変形を抑制するために、横枠84bと縦枠84aとの間にブレース84cを架設している。ここでは特に制震補強架構1のブレース5と同様に、横枠84bの縦枠84aに対する相対変形時にエネルギを吸収できるよう、ブレース84cにダンパー84dを内蔵させている。   In FIGS. 5 and 6, in order to suppress the deformation of the horizontal frame 84b when the horizontal frame 84b receives an upward reaction force from the protrusions 24 of the support members 22 and 23, it is between the horizontal frame 84b and the vertical frame 84a. A brace 84c is erected. Here, like the brace 5 of the seismic damping reinforcement frame 1, a damper 84d is incorporated in the brace 84c so that energy can be absorbed when the horizontal frame 84b is deformed relative to the vertical frame 84a.

図7〜図10は拘束装置8が制震補強架構1の構面内水平方向両側に位置する支柱2内の、上下に隣接する支柱材21、22(22、23)間に架設され、その支柱材21、22(22、23)間の鉛直方向の、互いに分離する向きの相対移動を拘束する引張材85からなる場合の具体例を示す。図7、図8は特に引張材85がコイルスプリングや皿ばね等のばねである場合の例を、図9、図10は引張材85が制震補強架構1のブレース5やフレーム材84のダンパー84dと同様の油圧シリンダ等のダンパーである場合の例を示している。   7 to 10, the restraint device 8 is installed between the support members 21 and 22 (22 and 23) adjacent to each other in the support column 2 positioned on both sides in the horizontal direction in the structural surface of the vibration control reinforcement frame 1. A specific example in the case of the tension member 85 that restrains the relative movement in the direction in which the column members 21 and 22 (22 and 23) are separated from each other in the vertical direction will be described. FIGS. 7 and 8 show examples in which the tension member 85 is a spring such as a coil spring or a disc spring, and FIGS. 9 and 10 show dampers for the brace 5 and the frame member 84 of the vibration damping reinforcement frame 1. An example of a damper such as a hydraulic cylinder similar to 84d is shown.

引張材85が図7、図8に示すコイルスプリング等である場合、上下に隣接する支柱材21、22(22、23)間に水平方向の相対移動が生じていないときに自然長の状態、またはある程度伸長した状態にあり、水平方向に相対移動が生じたときに伸長し、一定量を超える伸長量に達した後にはそれ以上の伸長が生じない状態に至ることで、上側の支柱材22(23)の浮き上がりを防止(阻止)する。   When the tension member 85 is a coil spring or the like shown in FIGS. 7 and 8, the natural length state is obtained when no horizontal relative movement occurs between the vertically adjacent support members 21 and 22 (22 and 23). Alternatively, it is in a state where it has been stretched to some extent and stretches when relative movement occurs in the horizontal direction, and after reaching a stretch amount exceeding a certain amount, it reaches a state where no further stretch occurs. Prevent (block) the lifting of (23).

一定量を超える伸長後に伸長しないことは、引張材85(コイルスプリング等)に例えば変形量の増大に伴ってばね定数が増加するハードニングばね(硬化ばね)を使用することにより、あるいは一定量の伸長時に伸長仕切るばねを使用することにより可能であり、その場合、ばね(コイルスプリング)に一定の伸長が生じた後にはそれ以上の伸長が不能になるため、浮き上がりが阻止される。この場合、引張材85(コイルスプリング)のばね定数は支柱材21、22(22、23)間に許容される水平方向の相対移動量までは伸長可能な大きさに設定される。許容される水平方向の相対移動量は絶縁装置9のせん断変形量等、水平変形量でもある。   The fact that the material does not extend after a certain amount of extension means that a tensile spring 85 (coil spring, etc.) is used, for example, by using a hardening spring (hardening spring) whose spring constant increases as the amount of deformation increases, or a certain amount. This can be achieved by using a spring that partitions during stretching. In this case, after the spring (coil spring) has been stretched to a certain extent, it cannot be stretched any further, so that lifting is prevented. In this case, the spring constant of the tension member 85 (coil spring) is set to a size that can be extended up to the horizontal relative movement amount allowed between the support members 21 and 22 (22 and 23). The allowable horizontal relative movement amount is also a horizontal deformation amount such as a shear deformation amount of the insulating device 9.

引張材85が図9、図10に示すダンパーの場合、上下に隣接する支柱材21、22(22、23)間に水平方向の相対移動が生じていないときに引張材85(ダンパー)に引張力が作用していない状態、または既に一定の引張力を負担した状態にあり、水平方向に相対移動が生じたときに引張力を負担し、一定量を超える引張力を負担したとき以降は、それ以上の引張力を負担しない状態に設定されることで、上側の支柱材22(23)の浮き上がりを防止(阻止)する。引張材85(ダンパー)が一定量を超える引張力を負担しない状態は引張力が一定値を超えたときに、ダンパーを構成するシリンダ内の、ピストンを挟んだ油圧室間を移動する圧油等、流体の流量を制限するか、停止させることによって実現される。
When the tension member 85 is the damper shown in FIGS. 9 and 10, the tension member 85 (damper) is pulled when there is no relative movement in the horizontal direction between the strut members 21 and 22 (22 and 23) adjacent to each other in the vertical direction. When the force is not applied, or is already in a state of bearing a certain tensile force, when the relative movement occurs in the horizontal direction, the tensile force is borne, and after the tensile force exceeding a certain amount is borne, By setting the state in which no further tensile force is borne, the upper support material 22 (23) is prevented from being lifted (blocked). When the tensile material 85 (damper) does not bear a tensile force exceeding a certain amount, when the tensile force exceeds a certain value, the hydraulic oil in the cylinder that constitutes the damper moves between the hydraulic chambers sandwiching the piston, etc. This is accomplished by limiting or stopping the fluid flow rate.

1……制震補強架構、2……支柱、21、22、23……支柱材、2a……空洞、24……突出部、
3……絶縁装置、31……上部フランジ、32……下部フランジ、33……シアキー、
4……つなぎ梁、41……突出部、
5……ダンパー一体型ブレース、51……ブレース本体、52……ダンパー、53……ブラケット、
6……フレーム、60……主構造体、61……柱、62……梁、63……スラブ、
7……ガセットプレート、
8……拘束装置、81……柱部材、82……梁部材、83……張出部材、84……フレーム材、84a……縦枠、84b……横枠、85……引張材、
9……絶縁装置、91……フランジ、92……フランジ、
10……基礎、11……杭。
1 …… Seismic control reinforcement frame, 2 …… Posts, 21, 22, 23 …… Post material, 2a …… Cavity, 24 …… Protrusion,
3 …… Insulator, 31 …… Upper flange, 32 …… Lower flange, 33 …… Shear key,
4 …… Bridge beam, 41 …… Protruding part,
5 ... Damper integrated brace, 51 ... Brace body, 52 ... Damper, 53 ... Bracket,
6 ... frame, 60 ... main structure, 61 ... pillar, 62 ... beam, 63 ... slab,
7 …… Gusset plate,
8: Restraint device, 81: Column member, 82: Beam member, 83 ... Projecting member, 84 ... Frame material, 84a ... Vertical frame, 84b ... Horizontal frame, 85 ... Tensile material,
9: Insulating device, 91 ... Flange, 92 ... Flange,
10 ... foundation, 11 ... pile.

Claims (5)

柱・梁からなるフレームを有する主構造体の構面外にその構面に平行に配列し、互いに間隔を隔てて地上、もしくは基礎上に立設される支柱と、構面内水平方向に隣接する支柱間に架設される、ブレース本体にダンパーを組み込んだダンパー一体型ブレースを備え、
前記支柱は鉛直方向に複数本の支柱材に分離し、上下に分離した支柱材間に両者間の相対水平移動を許容する絶縁装置が介在すると共に、構面内水平方向に隣接する支柱材間につなぎ梁が架設された、前記主構造体を制震補強するための制震補強架構において、
前記制震補強架構の構面内水平方向両側に位置する前記支柱の周囲に構築され、前記支柱の少なくとも最上部に位置する支柱材の頂部の水平方向の相対移動を許容しながら、鉛直方向の移動を拘束していることを特徴とする制震補強架構における支柱の拘束装置。
The main structure with a frame consisting of pillars and beams is arranged outside the surface of the main structure in parallel with the surface of the structure, and is adjacent to the pillars that are erected on the ground or on the foundation with a space between each other. It is equipped with a damper-integrated brace that is built between the struts,
The support column is divided into a plurality of support members in the vertical direction, and an insulating device that allows relative horizontal movement between the support members separated vertically is interposed between the support members adjacent to each other in the horizontal direction in the construction surface. In the seismic reinforcement frame for the seismic reinforcement of the main structure in which the connecting beam is installed,
Constructed around the struts located on both sides in the horizontal direction in the structural surface of the seismic reinforcement frame, and allowing the relative movement in the horizontal direction of the top of the strut material located at least on the top of the strut, in the vertical direction A strut restraining device in a seismic reinforcement frame characterized by restraining movement.
前記支柱の周囲の、地上、もしくは基礎上に立設される柱部材と、その柱部材の頂部と前記最上部に位置する支柱材の頂部を通って架設される梁部材と、この梁部材と前記支柱材の頂部との間に介在し、前記支柱材の頂部の水平方向の相対移動を許容する絶縁装置からなることを特徴とする請求項1に記載の制震補強架構における支柱の拘束装置。   A column member standing on the ground or foundation around the column, a beam member constructed through the top of the column member and the top of the column material positioned at the top, and the beam member 2. The strut restraining device for a seismic retrofit structure according to claim 1, wherein the strut restraining device is interposed between the top portion of the strut member and allows the horizontal movement of the top portion of the strut member in a horizontal direction. . 前記主構造体と前記制震補強架構とに跨って架設され、前記主構造体に接合されるフレーム材と、このフレーム材と前記制震補強架構のいずれかの部分との間に介在し、両者間の水平方向の相対移動を許容する絶縁装置からなることを特徴とする請求項1に記載の制震補強架構における支柱の拘束装置。   The frame material spanned between the main structure and the seismic damping reinforcement frame, and is interposed between the frame material and any part of the damping control frame, and joined to the main structure, The strut restraining device in the seismic reinforcement frame according to claim 1, comprising an insulating device that allows horizontal relative movement between the two. 柱・梁からなるフレームを有する主構造体の構面外にその構面に平行に配列し、互いに間隔を隔てて地上、もしくは基礎上に立設される支柱と、構面内水平方向に隣接する支柱間に架設される、ブレース本体にダンパーを組み込んだダンパー一体型ブレースを備え、
前記支柱は鉛直方向に複数本の支柱材に分離し、上下に分離した支柱材間に両者間の相対水平移動を許容する絶縁装置が介在すると共に、構面内水平方向に隣接する支柱材間につなぎ梁が架設された、前記主構造体を制震補強するための制震補強架構において、
前記制震補強架構の構面内水平方向両側に位置する前記支柱内の、上下に隣接する支柱材間に架設され、前記支柱材間の鉛直方向の、互いに分離する向きの相対移動を拘束する引張材からなることを特徴とする制震補強架構における支柱の拘束装置。
The main structure with a frame consisting of pillars and beams is arranged outside the surface of the main structure in parallel with the surface of the structure, and is adjacent to the pillars that are erected on the ground or on the foundation with a space between each other. It is equipped with a damper-integrated brace that is built between the struts,
The support column is divided into a plurality of support members in the vertical direction, and an insulating device that allows relative horizontal movement between the support members separated vertically is interposed between the support members adjacent to each other in the horizontal direction in the construction surface. In the seismic reinforcement frame for the seismic reinforcement of the main structure in which the connecting beam is installed,
The struts located on both sides in the horizontal direction of the seismic reinforcement frame are installed between the strut members adjacent to each other in the vertical direction, and restrain the relative movement in the vertical direction between the strut members in the direction separating from each other. A strut restraining device for a seismic retrofit frame comprising a tensile material.
前記ダンパー一体型ブレースは水平方向に間隔を隔てて配列する支柱間において、いずれかの支柱を構成するいずれかの支柱材と、その支柱材より上、もしくは下に位置し、その支柱の両側に隣接する支柱を構成する支柱材との間に傾斜し、前記いずれかの支柱に関して対称に架設され、
前記隣接する支柱間に架設されたダンパー一体型ブレースの一端は一方の支柱材の、フレーム、もしくはつなぎ梁との接合部、またはつなぎ梁の、支柱材との接合部に接続され、他端は他方の支柱材の、フレーム、もしくはつなぎ梁との接合部、またはつなぎ梁の、支柱材との接合部に接続されていることを特徴とする請求項1乃至請求項4のいずれかに記載の制震補強架構における支柱の拘束装置。
The damper-integrated brace is located between the columns arranged at intervals in the horizontal direction, one of the columns constituting the column, and above or below the column, and on both sides of the column. Inclined between the supporting struts constituting the adjacent struts, and installed symmetrically with respect to any of the struts,
One end of the damper-integrated brace laid between the adjacent struts is connected to the joint of one strut material with the frame or connecting beam, or the joint of the connecting beam to the strut material, and the other end is 5. The other strut member is connected to a joint portion with a frame or a connecting beam, or a joining portion of a connecting beam with a strut member. A strut restraining device for seismic retrofitting frames.
JP2010170097A 2010-07-29 2010-07-29 Post restraint device in seismic retrofitting frame Active JP4585046B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010170097A JP4585046B1 (en) 2010-07-29 2010-07-29 Post restraint device in seismic retrofitting frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010170097A JP4585046B1 (en) 2010-07-29 2010-07-29 Post restraint device in seismic retrofitting frame

Publications (2)

Publication Number Publication Date
JP4585046B1 JP4585046B1 (en) 2010-11-24
JP2012031587A true JP2012031587A (en) 2012-02-16

Family

ID=43365177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010170097A Active JP4585046B1 (en) 2010-07-29 2010-07-29 Post restraint device in seismic retrofitting frame

Country Status (1)

Country Link
JP (1) JP4585046B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5143301B1 (en) * 2012-04-02 2013-02-13 等 塩原 Seismic retrofitting structure
WO2015098084A1 (en) * 2013-12-24 2015-07-02 三菱日立パワーシステムズ株式会社 Boiler support structure
JP5759608B1 (en) * 2014-12-08 2015-08-05 新日鉄住金エンジニアリング株式会社 Reinforcement structure of existing building
JP5917758B1 (en) * 2015-09-14 2016-05-18 株式会社新井組 External reinforcement frame of existing building, its unit structure and construction method
JP6117974B1 (en) * 2016-05-27 2017-04-19 国立大学法人 東京大学 Joint structure of seismic retrofitting frame
JP6181894B1 (en) * 2017-06-09 2017-08-16 国立大学法人 東京大学 Axial force introducing device for seismic retrofitting frame
JP2018087461A (en) * 2016-11-29 2018-06-07 株式会社竹中工務店 Support structure of existing exterior wall
JP7438313B1 (en) 2022-11-21 2024-02-26 株式会社新井組 External steel reinforcement structure for existing buildings

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4837145B1 (en) * 2011-08-30 2011-12-14 等 塩原 Seismic retrofitting structure
CN115404987B (en) * 2022-10-18 2024-01-30 山东一建装配式建筑科技有限公司 Steel structure with shock absorption damper and construction method
CN117605148B (en) * 2024-01-22 2024-04-30 成都中品建设工程有限公司 Green building and construction method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09235892A (en) * 1995-12-28 1997-09-09 Kajima Corp Facing repairing/reinforcing method for existing building

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09235892A (en) * 1995-12-28 1997-09-09 Kajima Corp Facing repairing/reinforcing method for existing building

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213338A (en) * 2012-04-02 2013-10-17 Hitoshi Shiobara Structure with vibration control reinforcement frame
JP5143301B1 (en) * 2012-04-02 2013-02-13 等 塩原 Seismic retrofitting structure
WO2015098084A1 (en) * 2013-12-24 2015-07-02 三菱日立パワーシステムズ株式会社 Boiler support structure
TWI611083B (en) * 2014-12-08 2018-01-11 Nippon Steel & Sumikin Engineering Co Ltd Reinforcing structure of an existing building
JP5759608B1 (en) * 2014-12-08 2015-08-05 新日鉄住金エンジニアリング株式会社 Reinforcement structure of existing building
WO2016093207A1 (en) * 2014-12-08 2016-06-16 新日鉄住金エンジニアリング株式会社 Reinforcement structure for existing buildings
JP2016108843A (en) * 2014-12-08 2016-06-20 新日鉄住金エンジニアリング株式会社 Reinforcement structure of existing building
CN105940167A (en) * 2014-12-08 2016-09-14 新日铁住金工程技术株式会社 Reinforcement structure for existing buildings
JP5917758B1 (en) * 2015-09-14 2016-05-18 株式会社新井組 External reinforcement frame of existing building, its unit structure and construction method
JP2017057568A (en) * 2015-09-14 2017-03-23 株式会社新井組 External reinforcing frame for existing building, unit body structure thereof, and construction method
JP6117974B1 (en) * 2016-05-27 2017-04-19 国立大学法人 東京大学 Joint structure of seismic retrofitting frame
JP2017210830A (en) * 2016-05-27 2017-11-30 国立大学法人 東京大学 Junction structure of reinforcement frame column for vibration control
JP2018087461A (en) * 2016-11-29 2018-06-07 株式会社竹中工務店 Support structure of existing exterior wall
JP6181894B1 (en) * 2017-06-09 2017-08-16 国立大学法人 東京大学 Axial force introducing device for seismic retrofitting frame
JP2018204398A (en) * 2017-06-09 2018-12-27 国立大学法人 東京大学 Axial force introduction device of vibration control reinforcement frame column
JP7438313B1 (en) 2022-11-21 2024-02-26 株式会社新井組 External steel reinforcement structure for existing buildings

Also Published As

Publication number Publication date
JP4585046B1 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
JP4585046B1 (en) Post restraint device in seismic retrofitting frame
JP5007380B2 (en) Seismic isolation / damping mechanism
JP6243366B2 (en) Pier structure
JP4038472B2 (en) Seismic retrofitting frame for existing buildings and seismic control structures using the same
JP5082131B2 (en) Distribution warehouse with seismic isolation and control functions
JP2005207111A (en) Seismic response controlled bridge pier
JP5406631B2 (en) Seismic isolation structure and seismic isolation structure
JP2007197930A (en) Base isolation/seismic response control device used for arch bridge, high pier, cable stayed bridge and suspension bridge main tower
KR101449930B1 (en) Outside type vibration control system for construction
JP7270134B2 (en) Pier structure of road bridge
JP3728650B2 (en) Column base support structure and earthquake-resistant building
JP2010047933A (en) Damping reinforcement frame
JP4391335B2 (en) Intermediate seismic isolation structure of existing buildings
JP4837145B1 (en) Seismic retrofitting structure
JP7154328B2 (en) damping building
JP4722560B2 (en) Building materials that effectively use the strength of reinforced steel
JPH10280725A (en) Damping skeleton construction
JP3925868B2 (en) Seismic retrofit structure and seismic control structure using the same
JP5415093B2 (en) Vibration control structure
JPH10266620A (en) Vibration damping frame structure and construction method therefor
JP2012233374A (en) Seismic reinforcement structure
JP7239459B2 (en) Pull-out/overturn prevention structure for seismically isolated buildings
JP5142214B2 (en) Seismic reinforcement structure for viaduct
JP5060842B2 (en) Damping structure
KR102094814B1 (en) Bridge seismic reinforcement structure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100902

R150 Certificate of patent or registration of utility model

Ref document number: 4585046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250