JP2012031005A - Method of manufacturing silicon single crystal - Google Patents

Method of manufacturing silicon single crystal Download PDF

Info

Publication number
JP2012031005A
JP2012031005A JP2010171327A JP2010171327A JP2012031005A JP 2012031005 A JP2012031005 A JP 2012031005A JP 2010171327 A JP2010171327 A JP 2010171327A JP 2010171327 A JP2010171327 A JP 2010171327A JP 2012031005 A JP2012031005 A JP 2012031005A
Authority
JP
Japan
Prior art keywords
temperature
silicon
single crystal
silicon melt
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010171327A
Other languages
Japanese (ja)
Other versions
JP5482547B2 (en
Inventor
Yuichi Miyahara
祐一 宮原
Sho Takashima
祥 高島
Atsushi Iwasaki
淳 岩崎
Masanori Kitagawa
勝之 北川
Nobuaki Mitamura
伸晃 三田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2010171327A priority Critical patent/JP5482547B2/en
Publication of JP2012031005A publication Critical patent/JP2012031005A/en
Application granted granted Critical
Publication of JP5482547B2 publication Critical patent/JP5482547B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a silicon single crystal capable of adjusting a silicon melt surface temperature to a proper seeding temperature by stably measuring the silicon melt surface temperature in a seeding process in manufacturing a silicon single crystal by a horizontal magnetic field application Czochralski method (HMCZ method), remarkably suppressing generation of dislocations during cone growth caused by a failure of drawing or improper drawing as compared with a conventional one, and thereby improving productivity.SOLUTION: In this method of manufacturing a silicon single crystal, a silicon melt surface temperature distribution is previously measured by a two-dimensional thermometer before landing a seed crystal on a silicon melt, a range 19 where the melt surface temperature can be set in a low-temperature region lower than the other regions is identified, and thereafter, when the surface temperature of the silicon melt surface is measured by a radiation thermometer to adjust the melt temperature in landing of the seed crystal on the silicon melt 3 by the measurement temperature, the temperature measurement point by the radiation thermometer is set outside the range 19 that can be in a low-temperature region.

Description

本発明は、水平磁場印加CZ(Horizontal Magnetic field application CZ;HMCZともいう)法によるシリコン単結晶の製造方法に関するものである。   The present invention relates to a method for producing a silicon single crystal by a horizontal magnetic field application CZ (also referred to as a horizontal magnetic field application CZ; HMCZ) method.

半導体基板に用いられるシリコン単結晶を製造する方法には種々の方法があるが、そのなかでも回転引き上げ法として広く採用されているものにチョクラルスキー法(以下、「CZ法」ともいう)がある。
さらに、シリコン単結晶の低酸素濃度化や大口径結晶を容易に製造することなどを目的に、水平磁場を印加しながらCZ法でシリコン単結晶を引き上げるHMCZ法が広く知られている。
There are various methods for producing a silicon single crystal used for a semiconductor substrate. Among them, the Czochralski method (hereinafter also referred to as “CZ method”) is widely adopted as a rotation pulling method. is there.
Furthermore, the HMCZ method in which the silicon single crystal is pulled up by the CZ method while applying a horizontal magnetic field is widely known for the purpose of reducing the oxygen concentration of the silicon single crystal and easily manufacturing a large-diameter crystal.

ここで、CZ法では、種付け前に、シリコン融液の表面温度を測定し、その結果を元にシリコン融液形成用のヒーターの出力を調整し、種付けに適したシリコン融液表面温度に合わせてから種付けを行っている。
そして、その後ダッシュネッキング法等により種結晶を引き上げてシリコン融液から種絞りを作製し、所定の直径を有する直胴部(定径部)の直径にまで拡径する為のコーンを育成した後、所定の直径でシリコン単結晶を育成する直胴部を形成し、単結晶が目標の長さに達すると終端部のテール絞りを行い、単結晶の育成を終了することが一般的に行われている。
Here, in the CZ method, the surface temperature of the silicon melt is measured before seeding, and the output of the heater for forming the silicon melt is adjusted based on the result to match the surface temperature of the silicon melt suitable for seeding. Seeding has been done since then.
Then, after raising the seed crystal by a dash necking method or the like to produce a seed squeezed from the silicon melt, and growing a cone for expanding the diameter to the diameter of the straight body part (constant diameter part) having a predetermined diameter In general, a straight body part for growing a silicon single crystal with a predetermined diameter is formed, and when the single crystal reaches a target length, tail termination is performed at the end part to complete the growth of the single crystal. ing.

ところで、種付けに適した融液表面温度とは、種付け後の絞り作製時に、適正な直径の絞りが作製できる温度のことを言う。
例えば、融液表面温度が高過ぎる場合には、絞りが所定の直径より細くなり、引き上げるシリコン単結晶の重量に耐えられなくなる。さらに融液表面温度が高い場合には、絞りがシリコン融液から切り離れてしまい、単結晶引き上げが継続できなくなる。
また、融液表面温度が低過ぎる場合には、絞りの直径が縮径せず、その結果種付け時に種結晶に導入された転位が抜けきらず、単結晶が有転位化してしまう。
これらの場合(高温でも低温でも)には、単結晶の引き上げは再度種付けからやり直しとなる為、生産性の低下を招く。
By the way, the melt surface temperature suitable for seeding refers to a temperature at which a diaphragm having an appropriate diameter can be produced when producing a diaphragm after seeding.
For example, if the melt surface temperature is too high, the aperture becomes thinner than a predetermined diameter and cannot withstand the weight of the silicon single crystal to be pulled up. Further, when the melt surface temperature is high, the diaphragm is separated from the silicon melt, and the single crystal pulling cannot be continued.
Further, when the melt surface temperature is too low, the diameter of the squeezing is not reduced, and as a result, the dislocations introduced into the seed crystal at the time of seeding are not completely removed, and the single crystal is dislocated.
In these cases (both high temperature and low temperature), the pulling of the single crystal is re-started from seeding, resulting in a decrease in productivity.

このように、種付け時のシリコン融液表面温度はシリコン単結晶を引き上げる上で非常に重要であり、その融液表面温度を種付け前に安定して測定することが要求される。   Thus, the surface temperature of the silicon melt at the time of seeding is very important for pulling up the silicon single crystal, and it is required to stably measure the surface temperature of the melt before seeding.

しかし、HMCZ法では、シリコン融液表面に磁力線と平行な方向に周囲より温度の低い低温範囲が形成されることが知られており(特許文献1等参照)、その融液表面の低温範囲の位置は、印加する磁場強度およびルツボ回転により変化する。また、磁場強度およびルツボ回転が一定条件の下でも、融液表面の低温範囲の位置は特定範囲内(低温領域)で常に移動しており、安定していない。
その為、融液表面温度の測定位置によっては当該低温領域の温度を計測したりしなかったりで、融液表面温度の測定値がばらつき、その結果種付け時の融液表面温度を適正な温度に合わせることができず、適正な直径の絞りが作製できないという問題があった。
However, in the HMCZ method, it is known that a low temperature range lower in temperature than the surroundings is formed in the direction parallel to the magnetic field lines on the surface of the silicon melt (see Patent Document 1, etc.). The position changes depending on the applied magnetic field strength and the crucible rotation. Further, even when the magnetic field strength and the crucible rotation are constant, the position of the low temperature range on the melt surface is constantly moving within a specific range (low temperature region) and is not stable.
Therefore, depending on the measurement position of the melt surface temperature, the measured value of the melt surface temperature varies depending on whether the temperature in the low temperature region is measured, and as a result, the melt surface temperature at the time of seeding is set to an appropriate temperature. There was a problem that the aperture could not be matched and a diaphragm with an appropriate diameter could not be produced.

この解決策として、特許文献2では、1台の引き上げ装置に複数の放射温度計を設置し、融液表面の複数位置の温度を測定し、その平均値を用いることが提案されている。   As a solution to this problem, Patent Document 2 proposes that a plurality of radiation thermometers are installed in one pulling device, the temperatures at a plurality of positions on the melt surface are measured, and the average value thereof is used.

特開2000−272992号公報Japanese Patent Laid-Open No. 2000-272992 特開2009−161400号公報JP 2009-161400 A

しかし、特許文献2に記載の方法では複数の放射温度計が必要となる為、装置コストが高くなるという問題がある。   However, since the method described in Patent Document 2 requires a plurality of radiation thermometers, there is a problem that the apparatus cost increases.

また、温度計としてCCDカメラを使った二次元温度計を利用する方法もある。
しかしながら、この二次元温度計は、放射温度計に対して非常に高価であり、この方法も装置コストが高くなるという問題がある。また、この二次元温度計は、CCDカメラから出力される輝度信号から温度を求めている為、温度測定用に設けられた引き上げ装置のガラス窓がシリコン融液から発生するシリコン酸化物などで汚れると、放射温度計とは異なって温度測定値が大きく変化してしまい、種付けに適正なシリコン融液表面温度を測定できないという問題がある。
There is also a method of using a two-dimensional thermometer using a CCD camera as a thermometer.
However, this two-dimensional thermometer is very expensive compared to the radiation thermometer, and this method also has a problem that the apparatus cost becomes high. In addition, since this two-dimensional thermometer obtains the temperature from the luminance signal output from the CCD camera, the glass window of the lifting device provided for temperature measurement is contaminated with silicon oxide generated from the silicon melt. Unlike the radiation thermometer, the temperature measurement value changes greatly, and there is a problem that the silicon melt surface temperature appropriate for seeding cannot be measured.

本発明は、上記問題に鑑みなされたものであって、HMCZ法によるシリコン単結晶製造における種付け(種結晶をシリコン融液に着液させる)工程において、シリコン融液表面温度を安定して測定することで、適正な種付け温度に合わせることができ、絞りの失敗や不適正な絞りに起因するコーン育成時の有転位化を従来に比べて大幅に抑制することができ、これによって生産性を向上させることができるシリコン単結晶の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and stably measures the surface temperature of a silicon melt in a seeding process (making a seed crystal settle in a silicon melt) in the production of a silicon single crystal by the HMCZ method. Therefore, it is possible to adjust to the appropriate seeding temperature, and it is possible to greatly suppress dislocations at the time of corn growth due to failure of drawing or inappropriate drawing, which improves productivity. An object of the present invention is to provide a method for producing a silicon single crystal that can be produced.

上記課題を解決するため、本発明では、単結晶製造装置内のルツボに多結晶シリコン原料を充填し、ヒーターで加熱して前記多結晶シリコン原料を融解した後に該シリコン融液に種結晶を着液して該種結晶の下方に単結晶を育成する際に、前記ヒーターの外側に磁場印加装置を前記ルツボを挟んで対向配備して、前記原料融液に水平磁場を印加する、水平磁場印加チョクラルスキー法を用いたシリコン単結晶の製造方法であって、前記種結晶を前記シリコン融液に着液する前に、予め二次元温度計により前記シリコン融液表面温度分布を測定して該融液表面温度が他の領域より低温となる低温領域となり得る範囲を特定し、その後、放射温度計によって前記シリコン融液表面の表面温度を測定して該測定温度により前記種結晶の前記シリコン融液の着液時の融液温度を調節する際に、前記放射温度計による温度測定点を前記低温領域となり得る範囲外に設定することを特徴とするシリコン単結晶の製造方法を提供する。   In order to solve the above problems, in the present invention, a crucible in a single crystal manufacturing apparatus is filled with a polycrystalline silicon raw material, heated with a heater to melt the polycrystalline silicon raw material, and then a seed crystal is attached to the silicon melt. When a single crystal is grown under the seed crystal, a magnetic field applying device is arranged opposite to the outside of the heater with the crucible in between, and a horizontal magnetic field is applied to the raw material melt. A method for producing a silicon single crystal using the Czochralski method, wherein the surface temperature distribution of the silicon melt is measured in advance by a two-dimensional thermometer before the seed crystal is deposited on the silicon melt. A range in which the melt surface temperature can be a low temperature region lower than other regions is specified, and then the surface temperature of the silicon melt surface is measured by a radiation thermometer, and the silicon of the seed crystal is measured based on the measured temperature. In regulating the melt temperature during deposition solution of a liquid, said to provide a method for manufacturing a silicon single crystal, characterized in that setting the temperature measuring points with a radiation thermometer outside the range that can be the low temperature region.

このように、HMCZ法によるシリコン単結晶を育成する際に、種付け時のシリコン融液表面温度の測定位置を、予め二次元温度計による測定から求めた他の領域に比べて低温となっている低温領域となり得る範囲の外側に設定し、その位置で測定したシリコン融液表面温度を元に種付けを行い、その後単結晶の引き上げを行う。
これによって、シリコン融液表面温度が低温となって測定温度が揺らぐことを防止することができるため、融液表面温度の検出値が安定し、ヒーター出力の制御を従来に比べて安定化・高精度化することができる。そして、種付け時のシリコン融液表面温度を適正な温度に合わせることができ、絞りの失敗やコーン育成中の有転位化を従来に比べてその発生頻度を低くすることができる。よって生産性の改善を図ることができ、シリコン単結晶のコストを低減することができる。
Thus, when growing a silicon single crystal by the HMCZ method, the measurement position of the surface temperature of the silicon melt at the time of seeding is lower than other regions obtained in advance by measurement with a two-dimensional thermometer. It is set outside the range that can be a low temperature region, seeding is performed based on the surface temperature of the silicon melt measured at that position, and then the single crystal is pulled up.
This prevents the measurement temperature from fluctuating due to the low temperature of the silicon melt surface, which stabilizes the detected value of the melt surface temperature and stabilizes and increases the heater output control compared to the conventional technology. It can be made accurate. The surface temperature of the silicon melt at the time of seeding can be adjusted to an appropriate temperature, and the frequency of occurrence of dislocation failure during squeezing failure and corn growth can be reduced compared to the conventional case. Therefore, productivity can be improved and the cost of the silicon single crystal can be reduced.

ここで、前記低温領域となり得る範囲を特定した後に前記二次元温度計を取り外し、該二次元温度計を取り外した位置に前記放射温度計を取り付けることが好ましい。
これによって、取り外した二次元温度計は、別の単結晶製造装置の測定に用いることができ、シリコン単結晶引き上げの種付け時において、一般的な1台の引き上げ装置に1台のシリコン融液表面温度測定用の放射温度計の構成でも、融液表面温度を安定して測定することができる。その結果、装置コストを安くでき、かつ種付け時のシリコン融液表面温度を適正な温度に合わせることができ、シリコン単結晶の製造コストの更なる低減を達成することができる。
Here, it is preferable that the two-dimensional thermometer is removed after specifying a range that can be the low temperature region, and the radiation thermometer is attached at a position where the two-dimensional thermometer is removed.
As a result, the removed two-dimensional thermometer can be used for the measurement of another single crystal manufacturing apparatus, and one silicon melt surface is added to one general pulling apparatus when seeding silicon single crystal pulling. Even with the configuration of a radiation thermometer for temperature measurement, the melt surface temperature can be stably measured. As a result, the apparatus cost can be reduced, the surface temperature of the silicon melt at the time of seeding can be adjusted to an appropriate temperature, and the manufacturing cost of the silicon single crystal can be further reduced.

以上説明したように、本発明によれば、種付け時のシリコン融液表面温度の測定値が安定する為、種付けに適正なシリコン融液表面温度に合わせることができる。そして、絞りの失敗やコーン育成時の有転位化を従来より確実に防止できるようになり、生産性の改善及びシリコン単結晶の製造コストの低減を図ることができる。また、高価なカメラを多数台準備する必要もなく、装置コストを安くすることができるため、単結晶製造コストの低減も図ることができる。   As described above, according to the present invention, since the measured value of the silicon melt surface temperature at the time of seeding is stabilized, it can be adjusted to the silicon melt surface temperature appropriate for seeding. And it becomes possible to prevent the failure of drawing and the dislocation at the time of corn growth more reliably than before, so that the productivity can be improved and the manufacturing cost of the silicon single crystal can be reduced. In addition, since it is not necessary to prepare a large number of expensive cameras and the cost of the apparatus can be reduced, the manufacturing cost of the single crystal can be reduced.

HMCZ法によるシリコン単結晶の製造方法を実施するのに適した単結晶製造装置の概略の一例を示す図である。It is a figure which shows an example of the outline of the single crystal manufacturing apparatus suitable for enforcing the manufacturing method of the silicon single crystal by HMCZ method. HMCZ法によるシリコン融液のシリコン融液表面の温度分布を模式的に示す図である。It is a figure which shows typically the temperature distribution of the silicon melt surface of the silicon melt by HMCZ method. 実施例・比較例における放射温度計のシリコン融液表面温度測定位置の概略を示す図である。It is a figure which shows the outline of the silicon melt surface temperature measurement position of the radiation thermometer in an Example and a comparative example. 実施例・比較例における放射温度計でのシリコン融液表面温度測定値を示す図である。It is a figure which shows the silicon melt surface temperature measured value in the radiation thermometer in an Example and a comparative example. 実施例と比較例における結晶1本当たりのトラブル(絞りの失敗とコーンの有転位化)発生率を示す図である。It is a figure which shows the trouble (throttle failure and corn dislocation) occurrence rate per crystal in Examples and Comparative Examples.

以下、本発明について図を参照して詳細に説明するが、本発明はこれらに限定されるものではない。
まず、本発明のようなHMCZ法によるシリコン単結晶の製造方法を実施するのに適した単結晶製造装置の概略の一例を図1を用いて説明する。
Hereinafter, the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto.
First, an example of an outline of a single crystal manufacturing apparatus suitable for carrying out a method for manufacturing a silicon single crystal by the HMCZ method as in the present invention will be described with reference to FIG.

図1に示すように、単結晶製造装置20の外観は、中空円筒状のメインチャンバー9aとそれに連通するプルチャンバー9bで構成され、メインチャンバー9aの外側には、水平磁場を印加する為の電磁石12が設置されている。   As shown in FIG. 1, the appearance of the single crystal manufacturing apparatus 20 is composed of a hollow cylindrical main chamber 9a and a pull chamber 9b communicating therewith, and an electromagnet for applying a horizontal magnetic field outside the main chamber 9a. 12 is installed.

そしてメインチャンバー9aの中心部にはルツボが配設されている。
このルツボは二重構造であり、有底円筒状をなす石英製の内層保持容器1a(以下、単に「石英ルツボ」という)と、その石英ルツボ1aの外側を保持すべく適合された同じく有底円筒状の黒鉛製の外層保持容器1b(以下、単に「黒鉛ルツボ」という)とから構成されている。これらのルツボは、回転および昇降が可能になるように支持軸7の上端部に固定されている。
A crucible is disposed at the center of the main chamber 9a.
This crucible has a double structure, and is an inner-layer holding container 1a made of quartz having a bottomed cylindrical shape (hereinafter, simply referred to as “quartz crucible”), and also has a bottomed structure adapted to hold the outside of the quartz crucible 1a. It is composed of a cylindrical graphite outer layer holding container 1b (hereinafter simply referred to as “graphite crucible”). These crucibles are fixed to the upper end of the support shaft 7 so that they can be rotated and lifted.

そして、石英ルツボ1a及び黒鉛ルツボ1bの外側には抵抗加熱式ヒーター2が概ね同心円状に配設されており、このヒーター2によってルツボ内に投入された所定重量の多結晶シリコン原料が溶融され、シリコン融液3が形成される。
また、ヒーター2の周辺には保温材が施されており、ヒーター2の外側には保温筒8aが同心円状に配設され、またその下方で装置底部には保温板8bが配設されている。
A resistance heating heater 2 is disposed substantially concentrically outside the quartz crucible 1a and the graphite crucible 1b, and a predetermined weight of polycrystalline silicon raw material charged into the crucible is melted by the heater 2, A silicon melt 3 is formed.
A heat insulating material is applied to the periphery of the heater 2, a heat insulating cylinder 8a is concentrically disposed outside the heater 2, and a heat insulating plate 8b is disposed below the apparatus at the bottom thereof. .

また、シリコン融液3を充填したルツボの中心軸上には、支持軸7と同一軸上で逆方向または同方向に所定の速度で回転する引き上げワイヤー(または引き上げシャフト、以下両者を合わせて「引き上げ軸4」という)が配設されており、引き上げ軸4の下端には種ホルダー6が設置され、種ホルダー6に種結晶5が保持されている。さらに、引き上げ軸4と同心円状にパージチューブ10が配設され、その下端にはカラー11が設けられている。   Further, on the central axis of the crucible filled with the silicon melt 3, a pulling wire (or a pulling shaft, which is rotated at a predetermined speed in the reverse direction or the same direction on the same axis as the support shaft 7, A lifting shaft 4 ”) is provided, and a seed holder 6 is installed at the lower end of the lifting shaft 4, and a seed crystal 5 is held on the seed holder 6. Further, a purge tube 10 is disposed concentrically with the pulling shaft 4, and a collar 11 is provided at the lower end thereof.

更に、プルチャンバー9bもしくはメインチャンバー9aの外側にはシリコン融液表面温度測定用の温度計や、融液表面温度を測定する為のガラス窓16が設けられており、ここから温度計でシリコン融液表面温度を測定できるようになっている。
このプルチャンバー9bに設けられた温度測定用のガラス窓16の外側には、通常の結晶引き上げ時は、種付け時のシリコン融液表面温度を測定する為の放射温度計15aが1台設置されている。
Further, a thermometer for measuring the silicon melt surface temperature and a glass window 16 for measuring the melt surface temperature are provided outside the pull chamber 9b or the main chamber 9a. The liquid surface temperature can be measured.
One radiation thermometer 15a for measuring the surface temperature of the silicon melt at the time of seeding is installed outside the glass window 16 for temperature measurement provided in the pull chamber 9b during normal crystal pulling. Yes.

この様な単結晶製造装置20を用いて、HMCZ法によってシリコン単結晶を製造するには、まず、前記石英ルツボ内に多結晶シリコン原料を投入し、これをヒーター2によって加熱して原料を溶融させて、シリコン融液3とする。   In order to manufacture a silicon single crystal by the HMCZ method using such a single crystal manufacturing apparatus 20, first, a polycrystalline silicon raw material is introduced into the quartz crucible and heated by the heater 2 to melt the raw material. Thus, the silicon melt 3 is obtained.

そして単結晶を育成するのに適した温度に融液表面温度が安定したら、種ホルダー6に固定された種結晶5をルツボ内のシリコン融液3に着液させて、引き上げワイヤーを回転させながら巻き上げて、種結晶の下方にシリコン単結晶を育成させていく。
このとき、ヒーター2の外側にルツボを挟んで対向配備した水平磁場印加装置12によりシリコン融液3に水平磁場(磁場中心14を中心とした磁力線13のような磁場)を印加しながら単結晶を育成させる。
When the melt surface temperature is stabilized at a temperature suitable for growing a single crystal, the seed crystal 5 fixed to the seed holder 6 is deposited on the silicon melt 3 in the crucible and the pulling wire is rotated. Winding up and growing a silicon single crystal under the seed crystal.
At this time, a single crystal is applied while applying a horizontal magnetic field (a magnetic field like a magnetic force line 13 centering on the magnetic field center 14) to the silicon melt 3 by a horizontal magnetic field applying device 12 disposed opposite to the heater 2 with a crucible interposed therebetween. Develop.

ここで、この種結晶5をシリコン融液3に着液させる種付け前に、シリコン融液3の表面温度を測定し、その結果を元にヒーター2の出力を調整し、種付けに適した融液表面温度に合わせてから種付けを行う必要がある。
そして本発明においては、プルチャンバー9bの温度測定用のガラス窓16の外側に設置されていた放射温度計15aでいきなりシリコン融液表面の温度を測定するのではなく、予め二次元温度計15bによって、シリコン融液3の表面温度分布を測定して、図2に示すようなシリコン融液3の表面温度が他の領域より低温となる領域18と、不規則に移動する該低温領域18が経時的に移動してきて低温領域となり得る低温領域となり得る範囲19を特定する。具体的には、ルツボ中心から同一半径における磁力線と垂直方向の温度を測定し、5℃以上低い温度となる領域を低温領域として特定する。
Here, before seeding the seed crystal 5 on the silicon melt 3, the surface temperature of the silicon melt 3 is measured, and the output of the heater 2 is adjusted based on the result, so that the melt is suitable for seeding. It is necessary to perform seeding after adjusting to the surface temperature.
In the present invention, the temperature of the silicon melt surface is not measured suddenly by the radiation thermometer 15a installed outside the glass window 16 for temperature measurement of the pull chamber 9b, but by the two-dimensional thermometer 15b in advance. The surface temperature distribution of the silicon melt 3 is measured, and the region 18 in which the surface temperature of the silicon melt 3 is lower than the other regions as shown in FIG. A range 19 that can be a low temperature region that can move to a low temperature region is specified. Specifically, the temperature in the direction perpendicular to the magnetic field lines at the same radius from the center of the crucible is measured, and the region where the temperature is lower by 5 ° C. or more is specified as the low temperature region.

なお、このシリコン融液表面の低温領域18は、ある範囲内で不規則に移動する為、シリコン融液表面温度の二次元分布測定は1分間以上60分間以内の時間で行って、低温領域18となり得る範囲19の範囲を十分に確定させることが望ましい。   Since the low temperature region 18 on the surface of the silicon melt moves irregularly within a certain range, the two-dimensional distribution measurement of the surface temperature of the silicon melt is performed within a time period of 1 minute to 60 minutes. It is desirable to sufficiently determine the possible range 19.

また、シリコン融液表面温度の二次元分布測定時の磁場強度は、低温領域が形成される2000ガウス以上5000ガウス以下で行うことが望ましい。
さらには、実際の種付け時に使用する磁場強度で行うことが望ましい。
In addition, it is desirable that the magnetic field strength at the time of measuring the two-dimensional distribution of the silicon melt surface temperature is 2000 gauss or more and 5000 gauss or less where the low temperature region is formed.
Furthermore, it is desirable to carry out with the magnetic field strength used at the time of actual seeding.

また、シリコン融液表面温度の二次元分布測定時のルツボの回転条件は、実際の種付け時に使用するルツボ回転条件とすることが望ましい。その他、ガス流量、炉内圧、ルツボ位置等の条件も実際の種付け時と同じにするほうが良い。   The crucible rotation conditions at the time of measuring the two-dimensional distribution of the silicon melt surface temperature are preferably the crucible rotation conditions used during actual seeding. Other conditions such as gas flow rate, furnace pressure, crucible position, etc. should be the same as in actual seeding.

そして、上述のようなシリコン融液表面温度の二次元分布測定によって低温領域となり得る範囲19を特定したら、放射温度計15aによってシリコン融液3表面の表面温度を測定して、該測定温度により種結晶5のシリコン融液3への着液時の融液温度をヒーター2の出力などを制御して調節するが、この際に、放射温度計15aによる温度測定点17を、低温領域となり得る範囲19の外側に設定する。   When the range 19 that can be a low temperature region is specified by the two-dimensional distribution measurement of the silicon melt surface temperature as described above, the surface temperature of the silicon melt 3 surface is measured by the radiation thermometer 15a, and the seed temperature is measured by the measured temperature. The melt temperature when the crystal 5 is deposited on the silicon melt 3 is adjusted by controlling the output of the heater 2 and the like. At this time, the temperature measurement point 17 by the radiation thermometer 15a is within a range that can be in a low temperature region. 19 outside.

なお、シリコン融液表面温度の測定点17が種結晶5が融液表面に着液する位置(ルツボの中心)から離れるのにしたがい、測定した融液表面温度と実際に種結晶5が融液表面に着液した時の温度との乖離が大きくなる為、放射温度計15aによるシリコン融液表面温度の測定点17は、低温領域となり得る範囲19から外れた位置で、かつルツボの中心から引き上げるシリコン単結晶の半径の1.0倍以内の位置とすることが望ましい。   In addition, as the measurement point 17 of the silicon melt surface temperature moves away from the position (center of the crucible) where the seed crystal 5 is deposited on the melt surface, the measured melt surface temperature and the seed crystal 5 are actually melted. Since the deviation from the temperature at the time of landing on the surface becomes large, the measurement point 17 of the silicon melt surface temperature by the radiation thermometer 15a is lifted from the center of the crucible at a position outside the range 19 which can be a low temperature region. The position is preferably within 1.0 times the radius of the silicon single crystal.

このように放射温度計15aによるシリコン融液表面温度の測定位置17を設定することで、融液表面温度の測定値が融液表面温度が他の領域に比べて低くなる低温領域18の影響を受けなくなる為、融液表面温度の測定値は安定する。
その結果、不適正なシリコン融液表面温度の状態で種付けがなされることを防ぐことができるため、種付けに起因する絞りの失敗やコーンの有転位化の発生率を従来に比べて低くすることができ、単結晶製造歩留りを改善することができ、製造コストの低減を図ることができる。
Thus, by setting the measurement position 17 of the silicon melt surface temperature by the radiation thermometer 15a, the measurement value of the melt surface temperature is affected by the low temperature region 18 where the melt surface temperature is lower than other regions. Since it is not received, the measured value of the melt surface temperature is stable.
As a result, it is possible to prevent seeding from being performed at an inappropriate surface temperature of the silicon melt, so that the incidence of squeezing failure and corn dislocation due to seeding should be reduced compared to the conventional case. Thus, the yield of single crystal production can be improved, and the production cost can be reduced.

ここで、低温領域となり得る範囲19を特定した後に、二次元温度計15bを取り外し、該二次元温度計15bを取り外した位置に放射温度計15aを取り付けることができる。
このような方法を採ることで、高価な二次元温度計15bは、シリコン融液表面温度の二次元分布測定用に1台あれば、複数の単結晶製造装置においても使用することができるようになるため、一台の二次元温度計によって同様の方法で各単結晶製造装置毎の適正なシリコン融液表面温度測定点17を求めることができる。
また、シリコン単結晶の引き上げを行う時には、一般的な放射温度計15aを1台設置すれば済む為、装置コストは従来とほとんど変わらないこととすることができる。また、放射温度計であれば、ガラス窓16の汚れによる温度測定値への影響を抑制することができ、製造歩留りの改善を達成することができる。
Here, after specifying the range 19 that can be a low temperature region, the two-dimensional thermometer 15b can be removed, and the radiation thermometer 15a can be attached to the position where the two-dimensional thermometer 15b is removed.
By adopting such a method, if one expensive two-dimensional thermometer 15b is used for measuring the two-dimensional distribution of the silicon melt surface temperature, it can be used in a plurality of single crystal manufacturing apparatuses. Therefore, an appropriate silicon melt surface temperature measurement point 17 for each single crystal manufacturing apparatus can be obtained by the same method using a single two-dimensional thermometer.
Further, when pulling up the silicon single crystal, it is only necessary to install one general radiation thermometer 15a, so that the apparatus cost can be almost the same as the conventional one. Moreover, if it is a radiation thermometer, the influence on the temperature measurement value by the stain | pollution | contamination of the glass window 16 can be suppressed, and the improvement of a manufacturing yield can be achieved.

その後ダッシュネッキング法等により種結晶5を引き上げて、シリコン融液3から種絞りを作製し、所定の直径を有する直胴部(定径部)の直径にまで拡径する為のコーンを育成する。
更に、所定の直径でシリコン単結晶を育成させ、単結晶が目標の長さに達した時点で終端部のテール絞りを行い、単結晶の育成を終了する。
以上の方法により、絞りの失敗やコーンの有転位化を抑制することができるシリコン単結晶の製造方法となる。
Thereafter, the seed crystal 5 is pulled up by a dash necking method or the like, a seed drawing is produced from the silicon melt 3, and a cone for expanding the diameter to a diameter of a straight body portion (constant diameter portion) having a predetermined diameter is grown. .
Further, a silicon single crystal is grown with a predetermined diameter. When the single crystal reaches a target length, tail termination is performed at the end portion, and the growth of the single crystal is completed.
By the above method, it becomes the manufacturing method of the silicon single crystal which can suppress the failure of a squeezing and the dislocation of a cone.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例)
図1に示すような単結晶製造装置を用いて、内径800mmの石英ルツボ1aに多結晶シリコン原料を充填して、ヒーターによって溶融させてシリコン融液3を形成した後に、直径300mmの単結晶を引き上げた。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.
(Example)
A single crystal manufacturing apparatus as shown in FIG. 1 is used to fill a quartz crucible 1a having an inner diameter of 800 mm with a polycrystalline silicon raw material and melt it with a heater to form a silicon melt 3. Raised.

ここで、種付け時の磁場強度を4000ガウス、ルツボ回転は0.5rpmとした。
この状態でプルチャンバー9bの上に設けられたガラス窓16の外側に二次元温度計15bを設置した。そして、ガラス窓16を通して、二次元温度計15bによりパージチューブ10の内側のシリコン融液表面温度の二次元分布を5分間測定し、シリコン融液表面の低温領域となり得る範囲19を予め求めた。このとき、ルツボ中心から同一半径における磁力線と垂直方向の温度を測定し、5℃以上低い温度となる領域を低温領域として特定した。
上記二次元温度計による測定結果より求めたシリコン融液表面の低温領域となり得る範囲19は、ルツボ中心を通る磁力線13に沿って、これと垂直な方向にルツボ中心から約±50mmの範囲であることが判った。
Here, the magnetic field strength during seeding was 4000 gauss, and the crucible rotation was 0.5 rpm.
In this state, a two-dimensional thermometer 15b was installed outside the glass window 16 provided on the pull chamber 9b. Then, a two-dimensional thermometer 15b was used to measure the two-dimensional distribution of the silicon melt surface temperature inside the purge tube 10 through the glass window 16 for 5 minutes, and a range 19 that could be a low temperature region on the silicon melt surface was determined in advance. At this time, the temperature in the direction perpendicular to the magnetic field lines at the same radius from the center of the crucible was measured, and the region having a temperature lower by 5 ° C. or more was specified as the low temperature region.
A range 19 that can be a low temperature region on the surface of the silicon melt obtained from the measurement result of the two-dimensional thermometer is a range of about ± 50 mm from the crucible center in a direction perpendicular to the magnetic force line 13 passing through the crucible center. I found out.

その後、二位次元温度計15bを取り外し、放射温度計15aを設置した。この時、放射温度計15aのシリコン融液表面温度測定位置17’を、図3に示すような、上述したシリコン融液表面の低温領域となり得る範囲19の外で、かつルツボの中心から半径150mmの位置に設定した。   Then, the two-dimensional thermometer 15b was removed and the radiation thermometer 15a was installed. At this time, the silicon melt surface temperature measurement position 17 ′ of the radiation thermometer 15 a is outside the range 19 that can be the low temperature region of the silicon melt surface as shown in FIG. 3 and has a radius of 150 mm from the center of the crucible. Set to position.

そしてこの様に設定した温度測定位置17’でのシリコン融液表面の温度変動と、経過時間との関係を評価した。その結果を図4に示す。なお、図4の縦軸は、時間0秒での温度との温度差であり、これを温度変動値とした。
図4に示すように、シリコン融液表面温度の測定値の変動幅は2.6℃で安定しており、変動幅も後述する比較例の温度変動幅の1/3倍以下であった。
Then, the relationship between the temperature fluctuation of the silicon melt surface at the temperature measurement position 17 ′ set in this way and the elapsed time was evaluated. The result is shown in FIG. In addition, the vertical axis | shaft of FIG. 4 is a temperature difference with the temperature in time 0 second, and this was made into the temperature fluctuation value.
As shown in FIG. 4, the fluctuation range of the measured value of the silicon melt surface temperature was stable at 2.6 ° C., and the fluctuation range was not more than 1/3 times the temperature fluctuation range of the comparative example described later.

また、図5に、実施例と後述する比較例における結晶1本当たりのトラブル(絞りのやり直しやコーンの有転位化)発生率を示した。
図5に示すように、絞りのやり直しとコーンの有転位化率は0.2回/本で、比較例の1/6倍以下に改善された。
FIG. 5 shows the occurrence rate of trouble (re-drawing and dislocation of cone) per crystal in the example and the comparative example described later.
As shown in FIG. 5, the redrawing of the squeezing and the dislocation conversion rate of the cone were 0.2 times / piece, which was improved to 1/6 times or less of the comparative example.

(比較例)
実施例において、二次元温度計15aによるシリコン融液表面の融液温度分布を測定せず、放射温度計での温度測定位置を図3に示す17’’の位置とした以外は、実施例と同様の条件でシリコン融液表面の温度変動を測定し、同様に種付け工程を行った。
そしてこの時の温度測定位置17’’でのシリコン融液表面の温度変動と、経過時間との関係を評価した。その結果を図4に示す。また、図5に、比較例における結晶1本当たりのトラブル(絞りのやり直しやコーンの有転位化)発生率を示した。
(Comparative example)
In the embodiment, the melt temperature distribution on the surface of the silicon melt was not measured by the two-dimensional thermometer 15a, and the temperature measurement position on the radiation thermometer was changed to the position 17 ″ shown in FIG. The temperature variation on the surface of the silicon melt was measured under the same conditions, and the seeding process was performed in the same manner.
Then, the relationship between the temperature fluctuation of the silicon melt surface at the temperature measurement position 17 ″ at this time and the elapsed time was evaluated. The result is shown in FIG. FIG. 5 shows the occurrence rate of trouble (redrawing and relocation of cones) per crystal in the comparative example.

図4に示すように、シリコン融液の融液表面温度の測定値の変動幅は8.6℃で、実施例の3倍以上であった。
また、図5に示すように、絞りのやり直しとコーンの有転位化率は1.3回/本で、実施例の6倍以上であった。
As shown in FIG. 4, the fluctuation range of the measured value of the melt surface temperature of the silicon melt was 8.6 ° C., which was more than three times that of the example.
Also, as shown in FIG. 5, the redrawing and the dislocation conversion rate of the cone were 1.3 times / piece, which was 6 times or more that of the example.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

1a…石英ルツボ、 1b…黒鉛ルツボ、 2…ヒーター、 3…シリコン融液、 4…引き上げ軸、 5…種結晶、 6…種ホルダー、 7…支持軸、 8a…保温筒、 8b…保温板、 9a…メインチャンバー、 9b…プルチャンバー、 10…パージチューブ、 11…カラー、 12…水平磁場用電磁石、 13…磁力線、 14…磁場中心、 15a…放射温度計、 15b…二次元温度計、 16…ガラス窓、 17,17’、17’’…シリコン融液表面温度測定点、
18…低温領域、 19…低温領域となり得る範囲、
20…単結晶製造装置。
DESCRIPTION OF SYMBOLS 1a ... Quartz crucible, 1b ... Graphite crucible, 2 ... Heater, 3 ... Silicon melt, 4 ... Pulling shaft, 5 ... Seed crystal, 6 ... Seed holder, 7 ... Supporting shaft, 8a ... Insulating cylinder, 8b ... Insulating plate, 9a ... Main chamber, 9b ... Pull chamber, 10 ... Purge tube, 11 ... Collar, 12 ... Electromagnet for horizontal magnetic field, 13 ... Magnetic field line, 14 ... Magnetic field center, 15a ... Radiation thermometer, 15b ... Two-dimensional thermometer, 16 ... Glass window, 17, 17 ', 17''... Silicon melt surface temperature measurement point,
18 ... low temperature region, 19 ... range that can be a low temperature region,
20: Single crystal manufacturing apparatus.

Claims (2)

単結晶製造装置内のルツボに多結晶シリコン原料を充填し、ヒーターで加熱して前記多結晶シリコン原料を融解した後に該シリコン融液に種結晶を着液して該種結晶の下方に単結晶を育成する際に、前記ヒーターの外側に磁場印加装置を前記ルツボを挟んで対向配備して、前記原料融液に水平磁場を印加する、水平磁場印加チョクラルスキー法を用いたシリコン単結晶の製造方法であって、
前記種結晶を前記シリコン融液に着液する前に、予め二次元温度計により前記シリコン融液表面温度分布を測定して該融液表面温度が他の領域より低温となる低温領域となり得る範囲を特定し、その後、放射温度計によって前記シリコン融液表面の表面温度を測定して該測定温度により前記種結晶の前記シリコン融液の着液時の融液温度を調節する際に、前記放射温度計による温度測定点を前記低温領域となり得る範囲外に設定することを特徴とするシリコン単結晶の製造方法。
A crucible in a single crystal manufacturing apparatus is filled with polycrystalline silicon raw material, heated with a heater to melt the polycrystalline silicon raw material, and then seeded into the silicon melt and a single crystal below the seed crystal. When a single crystal of silicon using a horizontal magnetic field application Czochralski method is applied, a magnetic field application device is disposed opposite to the outside of the heater with the crucible interposed therebetween, and a horizontal magnetic field is applied to the raw material melt. A manufacturing method comprising:
Before the seed crystal is deposited on the silicon melt, the silicon melt surface temperature distribution is measured in advance by a two-dimensional thermometer, and the melt surface temperature can be in a low temperature region that is lower than other regions. And then measuring the surface temperature of the silicon melt surface with a radiation thermometer and adjusting the melt temperature at the time of landing of the silicon melt on the seed crystal by the measured temperature. A method for producing a silicon single crystal, characterized in that a temperature measurement point by a thermometer is set outside the range that can be the low temperature region.
前記低温領域となり得る範囲を特定した後に前記二次元温度計を取り外し、該二次元温度計を取り外した位置に前記放射温度計を取り付けることを特徴とする請求項1に記載のシリコン単結晶の製造方法。   2. The silicon single crystal production according to claim 1, wherein the two-dimensional thermometer is removed after the range that can be the low temperature region is specified, and the radiation thermometer is attached at a position where the two-dimensional thermometer is removed. Method.
JP2010171327A 2010-07-30 2010-07-30 Method for producing silicon single crystal Active JP5482547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010171327A JP5482547B2 (en) 2010-07-30 2010-07-30 Method for producing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010171327A JP5482547B2 (en) 2010-07-30 2010-07-30 Method for producing silicon single crystal

Publications (2)

Publication Number Publication Date
JP2012031005A true JP2012031005A (en) 2012-02-16
JP5482547B2 JP5482547B2 (en) 2014-05-07

Family

ID=45844900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010171327A Active JP5482547B2 (en) 2010-07-30 2010-07-30 Method for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JP5482547B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218402A (en) * 2013-05-09 2014-11-20 信越半導体株式会社 Silicon single crystal manufacturing method
JP2017210387A (en) * 2016-05-25 2017-11-30 株式会社Sumco Production method and device of silicon single crystal
JP7124938B1 (en) 2021-07-29 2022-08-24 信越半導体株式会社 Manufacturing method of silicon single crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002104896A (en) * 2000-09-27 2002-04-10 Shin Etsu Handotai Co Ltd Method of growing single crystal and growing device
WO2003091483A1 (en) * 2002-04-24 2003-11-06 Shin-Etsu Handotai Co., Ltd. Method for producing silicon single crystal and, silicon single crystal and silicon wafer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002104896A (en) * 2000-09-27 2002-04-10 Shin Etsu Handotai Co Ltd Method of growing single crystal and growing device
WO2003091483A1 (en) * 2002-04-24 2003-11-06 Shin-Etsu Handotai Co., Ltd. Method for producing silicon single crystal and, silicon single crystal and silicon wafer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218402A (en) * 2013-05-09 2014-11-20 信越半導体株式会社 Silicon single crystal manufacturing method
JP2017210387A (en) * 2016-05-25 2017-11-30 株式会社Sumco Production method and device of silicon single crystal
WO2017203968A1 (en) * 2016-05-25 2017-11-30 株式会社Sumco Method and device for manufacturing silicon single crystal
KR20180126542A (en) * 2016-05-25 2018-11-27 가부시키가이샤 사무코 Method and apparatus for manufacturing silicon single crystal
KR102157388B1 (en) 2016-05-25 2020-09-17 가부시키가이샤 사무코 Silicon single crystal manufacturing method and apparatus
US10858753B2 (en) 2016-05-25 2020-12-08 Sumco Corporation Method and apparatus for manufacturing silicon single crystal
JP7124938B1 (en) 2021-07-29 2022-08-24 信越半導体株式会社 Manufacturing method of silicon single crystal
WO2023008508A1 (en) * 2021-07-29 2023-02-02 信越半導体株式会社 Method for producing silicon single crystal
JP2023019420A (en) * 2021-07-29 2023-02-09 信越半導体株式会社 Method for manufacturing silicon single crystal

Also Published As

Publication number Publication date
JP5482547B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
CN109196144B (en) Method and apparatus for manufacturing silicon single crystal
JP5664573B2 (en) Method for calculating height position of silicon melt surface, method for pulling silicon single crystal, and silicon single crystal pulling apparatus
CN108779577B (en) Method for producing silicon single crystal
JP5482547B2 (en) Method for producing silicon single crystal
JP4862826B2 (en) Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
JP5169814B2 (en) Method for growing silicon single crystal and silicon single crystal grown by the method
JP2008063165A (en) Manufacturing method of silicon single crystal
TWI635199B (en) Manufacturing method of single crystal silicon
JP5088338B2 (en) Method of pulling silicon single crystal
CN111088525B (en) Device for preparing single crystal and method for preparing silicon carbide single crystal
KR102422843B1 (en) Method of estimating oxygen concentration of silicon single crystal and manufacturing method of silicon single crystal
TWI738352B (en) Semiconductor crystal growth apparatus
JP5929825B2 (en) Method for producing silicon single crystal
JP2011184227A (en) Method for producing silicon single crystal
JP4725752B2 (en) Single crystal manufacturing method
TWI745974B (en) Semiconductor crystal growing apparatus
JP2012006802A (en) Method and apparatus for producing silicon single crystal
CN110904510A (en) Single crystal furnace for InSb crystal growth
CN109666968A (en) The manufacturing method of silicon single crystal
JP2014058414A (en) Method for producing silicon single crystal for evaluation
JP2020037499A (en) Heat shield member, apparatus for pulling single crystal and method for manufacturing single crystal
TWI745973B (en) A semiconductor crystal growth apparatus
JPH09183692A (en) Apparatus for producing silicon single crystal and method therefor
JP2003055084A (en) Device and method for pulling single crystal
CN211471635U (en) Device for preparing single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131220

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R150 Certificate of patent or registration of utility model

Ref document number: 5482547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250