JP2012030536A - Casting mold and gas-insulated switchgear - Google Patents

Casting mold and gas-insulated switchgear Download PDF

Info

Publication number
JP2012030536A
JP2012030536A JP2010173140A JP2010173140A JP2012030536A JP 2012030536 A JP2012030536 A JP 2012030536A JP 2010173140 A JP2010173140 A JP 2010173140A JP 2010173140 A JP2010173140 A JP 2010173140A JP 2012030536 A JP2012030536 A JP 2012030536A
Authority
JP
Japan
Prior art keywords
mold
casting
mold body
cast
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010173140A
Other languages
Japanese (ja)
Inventor
Daiyu Hirata
大裕 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010173140A priority Critical patent/JP2012030536A/en
Priority to CN201110219235.6A priority patent/CN102343650B/en
Priority to EP20110175768 priority patent/EP2412504A3/en
Priority to EP12186218.9A priority patent/EP2540468B1/en
Publication of JP2012030536A publication Critical patent/JP2012030536A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2725Manifolds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14467Joining articles or parts of a single article
    • B29C2045/1454Joining articles or parts of a single article injecting between inserts not being in contact with each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14467Joining articles or parts of a single article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/2669Moulds with means for removing excess material, e.g. with overflow cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/34Moulds having venting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/10Thermosetting resins
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/06Totally-enclosed installations, e.g. in metal casings
    • H02G5/066Devices for maintaining distance between conductor and enclosure

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To stabilize the quality of a cast-molded article using a thermosetting material and to improve the productivity of the cast-molded article.SOLUTION: A casting mold 25 has a mold body 26 having a material inlet 32 for injecting a thermosetting casting material while pressurizing it in the bottom and a plurality of cavity parts 31 formed respectively with their positions in the height direction (Z1 direction) in the mold body 26 aligned. Since each cavity part 31 is arranged with the mutual position in the height direction aligned, the casting material injected from the material inlet 32 is elevated in the mold body 26 while resisting its own weight and packed approximately simultaneously into respective cavity parts 31 to start thermosetting.

Description

本発明は、熱硬化性の材料を用いた注形に使用される注形用金型、及びこの金型を用いて製造される注形品を備えたガス絶縁開閉装置に関する。   The present invention relates to a casting mold used for casting using a thermosetting material, and a gas-insulated switchgear provided with a casting manufactured using the mold.

エポキシ樹脂製の注形品は、固体絶縁物としての電気絶縁性や機械的特性に優れているため、例えばガス絶縁開閉装置などの高電圧の変電設備内に設置される構造絶縁物として利用されている。近年では、エポキシ樹脂製の注形品は、固体絶縁物としての長期的な信頼性を確保したうえで、より高電圧な電力設備などへの適用が要求されている。   Epoxy resin castings have excellent electrical insulation and mechanical properties as solid insulators, and are therefore used as structural insulators installed in high-voltage substations such as gas-insulated switchgear. ing. In recent years, cast products made of epoxy resin have been required to be applied to higher-voltage power facilities and the like while ensuring long-term reliability as a solid insulator.

エポキシ樹脂製の注形品の製造方法としては、加圧ゲル化法などが利用されている。加圧ゲル化法は、金型内に注入される樹脂の熱硬化温度以上に、金型内を加熱した状態で樹脂の注入を開始し、金型キャビティ内への樹脂の充填が完了するまで、樹脂硬化時の体積収縮分に相当する樹脂を加圧補給し続ける製法である。このような加圧ゲル化法は、注形品の一次硬化を短時間で行えるため、高品質で信頼性の高い注形品を大量生産することが可能となる(例えば特許文献1参照)。   As a method for producing an epoxy resin cast product, a pressure gelation method or the like is used. In the pressure gelation method, resin injection is started in a state where the inside of the mold is heated above the thermosetting temperature of the resin injected into the mold until filling of the resin into the mold cavity is completed. This is a production method in which the resin corresponding to the volume shrinkage at the time of resin curing is continuously supplied under pressure. Such a pressure gelation method can perform primary curing of a cast product in a short time, and thus enables mass production of a cast product with high quality and high reliability (see, for example, Patent Document 1).

今日では、海外市場の拡大によりエポキシ樹脂製品に対して短納期で大量の需要が発生する傾向にあり、上記の加圧ゲル化法についても、さらなる改善が求められている。つまり、加圧ゲル化法は、一つの注形品を短時間で製造できる利点があるものの、温度制御の難しい熱硬化性の注形材料を継続的に加圧補給するといった製法上の制約によって、金型一台に対し注形品を一個取りで注形することが一般的となっている。   Today, with the expansion of overseas markets, there is a tendency for a large amount of demand to be generated for epoxy resin products in a short delivery time, and further improvement is required for the pressure gelation method described above. In other words, the pressure gelation method has the advantage of being able to manufacture a single cast product in a short time, but due to manufacturing constraints such as continuously replenishing a thermosetting casting material whose temperature is difficult to control. In general, it is common to cast a single cast for a single mold.

一方、加圧ゲル化法を適用しない一般の注形法では、一台の金型による注形品の複数個取りが可能ではあるものの、注形品のサイズによっては、その一時硬化に例えば10数時間あまりもの多くの時間を要する場合もあり、結果的に、注形品一つあたりの注形時間を短縮できず、大量生産には不向きである。   On the other hand, in a general casting method in which the pressure gelation method is not applied, it is possible to take a plurality of cast products with one mold, but depending on the size of the cast product, for example, 10 In some cases, a lot of time is required, and as a result, the casting time per cast product cannot be shortened, which is not suitable for mass production.

具体的には、定格電圧が例えば145kVを超える仕様の上記したガス絶縁開閉装置では、エポキシ樹脂製の固体絶縁物が多数使用されることになるが、このような装置に対する絶縁部品の供給を想定した場合、後者の一般的な注形法は勿論、前者の加圧ゲル化法を適用する既知の注形法は、生産能力の点で課題を抱えているといえる。   Specifically, in the gas insulated switchgear described above having a rated voltage exceeding, for example, 145 kV, a large number of epoxy resin solid insulators are used. However, it is assumed that insulating parts are supplied to such a device. In this case, it can be said that the known casting method to which the former pressure gelation method is applied as well as the latter general casting method has a problem in terms of production capacity.

特開2005−53165号公報JP 2005-53165 A

本発明は、上記課題を解決するためになされたものであり、熱硬化性の材料を用いた注形品の品質の安定化を図りつつ生産性を高めることができる注形用金型、及びこの注形用金型を用いて製造される注形品を備えたガス絶縁開閉装置の提供を目的とする。   The present invention has been made in order to solve the above-mentioned problems, and a casting mold capable of enhancing productivity while stabilizing the quality of a cast product using a thermosetting material, and An object of the present invention is to provide a gas-insulated switchgear having a cast product manufactured by using this casting mold.

上記目的を達成するために、本発明の一態様である注形用金型は、熱硬化性の注形材料を加圧しながら注入するための材料注入口を底部に備えた金型本体と、前記金型本体内での高さ方向の位置を揃えて各々形成され、前記金型本体の底部の前記材料注入口から注入された前記注形材料がそれぞれ充填される複数のキャビティ部と、を具備することを特徴とする。   In order to achieve the above object, a casting mold according to one aspect of the present invention includes a mold main body provided with a material inlet at the bottom for injecting a thermosetting casting material while applying pressure, A plurality of cavities that are respectively formed at the same height in the mold body and filled with the casting material injected from the material injection port at the bottom of the mold body, respectively. It is characterized by comprising.

本発明によれば、熱硬化性の材料を用いた注形品の品質の安定化を図りつつ生産性を高めることができる注形用金型、及びこの注形用金型を用いて製造される注形品を備えたガス絶縁開閉装置を提供することが可能である。   According to the present invention, a casting mold capable of improving productivity while stabilizing the quality of a cast product using a thermosetting material, and the casting mold manufactured using the casting mold. It is possible to provide a gas insulated switchgear having a cast product.

本発明の第1の実施形態に係るガス絶縁開閉装置の構成を示す図。The figure which shows the structure of the gas insulated switchgear which concerns on the 1st Embodiment of this invention. 図1のガス絶縁開閉装置が備える接続母線の構造を示す断面図。Sectional drawing which shows the structure of the connection bus line with which the gas insulated switchgear of FIG. 1 is provided. 図2の接続母線に設けられたポスト形の絶縁スペーサの構造を示す断面図。Sectional drawing which shows the structure of the post-shaped insulation spacer provided in the connection bus-line of FIG. 図3の絶縁スペーサの製造に用いる本実施形態の注形用金型をパーティング面に沿った方向からみた断面図。Sectional drawing which looked at the casting mold of this embodiment used for manufacture of the insulating spacer of FIG. 3 from the direction along the parting surface. 図4の注形用金型をパーティング面と対向する方向からみた断面図。Sectional drawing which looked at the metal mold | die for casting of FIG. 4 from the direction facing a parting surface. 図5の注形用金型の材料注入口に注形材料の注入が開始された状態を示す断面図。Sectional drawing which shows the state by which injection | pouring of the casting material was started to the material injection port of the casting mold of FIG. 図6Aの注形用金型の一次ランナに注形材料が注入された状態を示す断面図。FIG. 6B is a cross-sectional view showing a state in which the casting material is injected into the primary runner of the casting mold of FIG. 6A. 図6Bの注形用金型の二次ランナに注形材料が注入された状態を示す断面図。FIG. 6B is a cross-sectional view showing a state in which the casting material is injected into the secondary runner of the casting mold of FIG. 6B. 図6Cの注形用金型の各キャビティ部に注形材料が充填された状態を示す断面図。FIG. 6C is a cross-sectional view showing a state in which a casting material is filled in each cavity of the casting mold of FIG. 6C. 本発明の第2の実施形態に係る注形用金型の構造を示す断面図。Sectional drawing which shows the structure of the metal mold | die for casting which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る注形用金型の構造を示す断面図。Sectional drawing which shows the structure of the metal mold | die for casting which concerns on the 3rd Embodiment of this invention. 図8の注形用金型が備えるエア排出機構において、ストップ弁が開放されている状態を示す断面図。Sectional drawing which shows the state by which the stop valve is open | released in the air discharge mechanism with which the casting mold of FIG. 8 is equipped. 図9Aのエア排出機構におけるストップ弁の閉塞状態を示す断面図。Sectional drawing which shows the obstruction | occlusion state of the stop valve in the air discharge mechanism of FIG. 9A. 図8の注形用金型に第2の実施形態の構成をもり込んだ注形用金型の構造を示す断面図。Sectional drawing which shows the structure of the casting mold which put the structure of 2nd Embodiment in the casting mold of FIG. 本発明の第4の実施形態に係る注形用金型の構造を示す断面図。Sectional drawing which shows the structure of the metal mold | die for casting which concerns on the 4th Embodiment of this invention. 図11の注形用金型が備えた入れ子の構造を示す分解斜視図。The disassembled perspective view which shows the structure of the nesting with which the casting mold of FIG. 11 was equipped. 図11の注形用金型に第3の実施形態の構成をもり込んだ注形用金型の構造を示す断面図。Sectional drawing which shows the structure of the casting mold which put the structure of 3rd Embodiment in the casting mold of FIG.

以下、本発明を実施するための形態を図面に基づき説明する。
[第1の実施の形態]
図1に示すように、この実施形態に係るガス絶縁開閉装置(GIS:Gas Insulated Switchgear)1は、主母線12、14及びブッシング21を備えているとともに、六フッ化硫黄(SF6)ガスが充填された接地容器内に、断路器15、16、遮断器17、変流器18、接続母線19などを収容した開閉設備として構成されている。上記した例えば遮断器17は、電流を遮断する際には、開閉器のアーク放電している電極間に、高絶縁性を有する前記の六フッ化硫黄ガスを吹き付けることで放電を消滅させる。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
[First Embodiment]
As shown in FIG. 1, a gas insulated switchgear (GIS: Gas Insulated Switchgear) 1 according to this embodiment includes main busbars 12 and 14 and a bushing 21 and is filled with sulfur hexafluoride (SF6) gas. The open / close facility accommodates the disconnectors 15 and 16, the circuit breaker 17, the current transformer 18, the connection bus 19, and the like in the grounded container. For example, when breaking the current, the breaker 17 described above extinguishes the discharge by blowing the sulfur hexafluoride gas having high insulation between the arc-discharged electrodes of the switch.

また、図2に示すように、接続母線19は、電流通電用の高電圧導体22を接地電位の接続容器20の内部に収めたかたちで構成されている。高電圧導体22は、コーン形(円錐形)の絶縁スペーサ23、24やポスト形の絶縁スペーサ3を介して接続容器20内に支持されている。コーン形の絶縁スペーサ23、24は、接続容器20内部の六フッ化硫黄ガスを隔離しつつ高電圧導体22を支持している。   As shown in FIG. 2, the connection bus 19 is configured in such a manner that a high-voltage conductor 22 for energizing current is housed inside a connection container 20 having a ground potential. The high voltage conductor 22 is supported in the connection container 20 via the cone-shaped (conical) insulating spacers 23 and 24 and the post-shaped insulating spacer 3. The cone-shaped insulating spacers 23 and 24 support the high voltage conductor 22 while isolating the sulfur hexafluoride gas inside the connection container 20.

ここで、ポスト形の絶縁スペーサ3の構造について説明する。図2、図3に示すように、ポスト形の絶縁スペーサ3は、エポキシ樹脂製のスペーサ本体部5と金属製の埋込部材である一組の埋込金物7、8とが一体成形された注形品で構成されている。電気絶縁性を有するスペーサ本体部5は、円柱の中央部分を膨出させた樽型形状に形成されている。   Here, the structure of the post-shaped insulating spacer 3 will be described. As shown in FIGS. 2 and 3, the post-shaped insulating spacer 3 is formed by integrally molding a spacer main body 5 made of epoxy resin and a set of embedded fittings 7 and 8 which are metallic embedded members. It consists of cast products. The spacer main body 5 having electrical insulation is formed in a barrel shape in which a central portion of a cylinder is expanded.

図2、図3に示すように、一組の埋込金物7、8は、スペーサ本体部5の各端部にそれぞれ設けられている。図2に示すように、一方の埋込金物7が高電圧導体22に、また、他方の埋込金物8が接続容器20の内側部分に、それぞれ機械的に連結されている。これにより、絶縁スペーサ3は、自身の軸方向を起立させた姿勢で高電圧導体22を底部側から接続容器20の内壁面上に支持している。   As shown in FIGS. 2 and 3, a set of embedded metal fixtures 7 and 8 is provided at each end of the spacer body 5. As shown in FIG. 2, one embedded metal 7 is mechanically connected to the high voltage conductor 22, and the other embedded metal 8 is mechanically connected to the inner portion of the connection container 20. Thus, the insulating spacer 3 supports the high voltage conductor 22 on the inner wall surface of the connection container 20 from the bottom side in a posture in which the axial direction of the insulating spacer 3 is raised.

スペーサ本体部5の材料には、熱硬化性の注形材料であるエポキシ樹脂が適用されている。詳述すると、このエポキシ樹脂としては、酸無水物系硬化剤と無機充填材としてのアルミナとを液状のビスフェノールA系エポキシ樹脂に配合したものが使用される。   An epoxy resin, which is a thermosetting casting material, is applied to the material of the spacer body 5. More specifically, as this epoxy resin, an acid anhydride curing agent and alumina as an inorganic filler blended in a liquid bisphenol A epoxy resin are used.

なお、スペーサ本体部5の膨出している周面には、絶縁スペーサ3の軸方向において、中央部分から各端部側へ向けて階段状に複数段の段差を構成する凹凸部分が形成されている。この凹凸部分は、例えば数ミクロンオーダでスペーサ本体部5の表面を荒らすために形成されている。これにより、この凹凸部分が電子の運動を阻害するように機能し、スペーサ本体部5自体の帯電を抑制する。   In addition, on the bulging peripheral surface of the spacer body 5, there are formed concavo-convex portions constituting a plurality of steps in a stepped manner from the central portion toward each end in the axial direction of the insulating spacer 3. Yes. The uneven portion is formed to roughen the surface of the spacer main body 5 on the order of several microns, for example. Thereby, this uneven | corrugated | grooved part functions so that the movement of an electron may be inhibited, and charging of spacer main-body part 5 itself is suppressed.

次に、ポスト形の絶縁スペーサ3を製造(注形)するための注形用金型25の構造について説明する。図4、図5に示すように、注形用金型25は、固定側金型部30と矢印X1−X2方向に移動可能な可動側金型部29とを有する金型本体26と、可動側金型部29及び固定側金型部30が各々固定された金型固定板37、38と、可動側金型部29及び固定側金型部30の各々の内部に装着される入れ子27、28と、を備えている。   Next, the structure of the casting mold 25 for manufacturing (casting) the post-shaped insulating spacer 3 will be described. As shown in FIGS. 4 and 5, the casting mold 25 includes a mold body 26 having a fixed mold part 30 and a movable mold part 29 movable in the direction of the arrow X1-X2, and a movable mold part 26. Mold fixing plates 37 and 38 to which the side mold part 29 and the fixed mold part 30 are fixed, respectively, and a nesting 27 mounted inside each of the movable mold part 29 and the fixed mold part 30; 28.

ここで、本実施形態の注形用金型25は、いわゆる加圧ゲル化法を適用しつつ、注形品としての絶縁スペーサ3を複数個取り(本実施形態では6個取り)する仕様の金型である。すなわち、注形用金型25の可動側金型部29と固定側金型部30とで構成される金型本体26には、材料注入口32、複数のキャビティ部(金型キャビティ)31、ランナ部40、材料溜まり46などが形成されている。   Here, the casting mold 25 of the present embodiment is of a specification that takes a plurality of insulating spacers 3 as cast products (six in this embodiment) while applying a so-called pressure gelation method. It is a mold. That is, a material injection port 32, a plurality of cavities (mold cavities) 31, a mold body 26 composed of the movable mold part 29 and the fixed mold part 30 of the casting mold 25, A runner 40, a material reservoir 46, and the like are formed.

材料注入口32は、金型本体26の底部に設けられており、金型本体26の外部より熱硬化性の注形材料を加圧しながら金型本体26内へ注入するためのスプルー(湯口)である。各キャビティ部31は、製品の形状にそれぞれ対応した凹部(窪み部)で構成されている。ランナ部40は、材料注入口32から個々のキャビティ部31へ通じる注形材料の移送経路をそれぞれ構成する。   The material injection port 32 is provided at the bottom of the mold body 26, and a sprue (pouring gate) for injecting a thermosetting casting material into the mold body 26 while applying pressure from the outside of the mold body 26. It is. Each cavity part 31 is comprised by the recessed part (dent part) each corresponding to the shape of a product. The runner portion 40 constitutes a casting material transfer path that leads from the material injection port 32 to the individual cavity portions 31.

材料溜まり46は、各キャビティ部31の上部側にそれぞれ形成されており、各キャビティ部31内への注形材料の充填時に、キャビティ部31側から押し出された注形材料を収容する。さらに、この材料溜まり46は、注形材料と共にキャビティ部31内から押し出される当該キャビティ部31内に残存しているエア(ボイド発生の要因となるエア)を収容する。また、金型本体26内には、材料溜まり46と各キャビティ部31とをつなぐ中継路45などが設けられている。   The material reservoir 46 is formed on the upper side of each cavity part 31 and accommodates the casting material extruded from the cavity part 31 side when the casting material is filled in each cavity part 31. Further, the material reservoir 46 accommodates air remaining in the cavity portion 31 that is pushed out from the cavity portion 31 together with the casting material (air causing void generation). In the mold body 26, a relay path 45 that connects the material reservoir 46 and each cavity 31 is provided.

なお、各キャビティ部31は、それぞれの内部に充填された注形材料を熱硬化させることにより、例えば体積が7000cc(cm3)を超えかつ最大肉厚が170mmを超えるサイズのスペーサ本体部5を、注形品として得ることができる形状に構成されている。 In addition, each cavity part 31 carries out the thermosetting of the casting material with which each inside was filled, for example, the spacer main-body part 5 of the size which exceeds 7000 cc (cm < 3 >) and exceeds the maximum thickness exceeds 170 mm. The shape can be obtained as a cast product.

図4、図5に示すように、可動側金型部29を固定する金型固定板37には、例えば油圧式のシリンダ39が連結されている。このシリンダ39は、固定側金型部30に対して、可動側金型部29を金型固定板37と共に前進及び後退させることで、注形用金型25を開閉する。また、注形用金型25における金型本体26の底部には、材料移送管34を介して移送されてきた注形材料を、金型本体26のキャビティ部31内に、材料注入口32を介して注入(充填)するための材料注入ノズル33が配置されている。   As shown in FIGS. 4 and 5, for example, a hydraulic cylinder 39 is connected to a mold fixing plate 37 that fixes the movable mold part 29. The cylinder 39 opens and closes the casting mold 25 by moving the movable mold part 29 forward and backward with the mold fixing plate 37 with respect to the fixed mold part 30. Further, the casting material transferred via the material transfer pipe 34 is provided at the bottom of the mold body 26 in the casting mold 25, and the material injection port 32 is provided in the cavity portion 31 of the mold body 26. A material injection nozzle 33 for injecting (filling) is disposed.

上記した材料移送管34の基端部側には、金型本体26のキャビティ部31内に対し、熱硬化性の注形材料である液状のエポキシ樹脂を材料注入ノズル33及び材料注入口32を介して加圧補給するためのピストンを備えたシリンダ機構などが接続されている。   On the base end side of the material transfer pipe 34, a liquid injection resin, which is a thermosetting casting material, is injected into the cavity 31 of the mold body 26 with a material injection nozzle 33 and a material injection port 32. A cylinder mechanism or the like having a piston for replenishing pressure is connected through the cylinder.

また、本実施形態の注形用金型25には、キャビティ部31の近傍に配置された温度センサや、温度制御可能な複数本の棒状の加熱ヒータ35などを含む加熱機構36が設けられている。上記した加熱ヒータ35は、可動側金型部29と固定側金型部30とで構成される金型本体26内に格子状に配置されるかたちで内蔵されている。この加熱機構36は、金型本体26の底部から上部へ向かうにつれて加熱温度が高くなるように当該金型本体26を加熱(加熱制御)する。   Further, the casting mold 25 of the present embodiment is provided with a heating mechanism 36 including a temperature sensor disposed in the vicinity of the cavity portion 31 and a plurality of rod-shaped heaters 35 that can be controlled in temperature. Yes. The heater 35 described above is built in a mold body 26 configured by a movable mold part 29 and a fixed mold part 30 in a grid pattern. The heating mechanism 36 heats (heats control) the mold body 26 so that the heating temperature increases from the bottom to the top of the mold body 26.

具体的には、加熱機構36は、絶縁スペーサ3の注形時に、図4、図5に示す金型本体26内の各キャビティ部31よりも下方側の材料注入口32の近傍を、例えば110℃〜120℃程度に加熱し、一方、図4、図5に示す金型本体26内の各キャビティ部31の形成部分を含む上方側の部位を、例えば130℃〜140℃程度に加熱する。   Specifically, when the insulating spacer 3 is cast, the heating mechanism 36 is disposed in the vicinity of the material injection port 32 below the respective cavity portions 31 in the mold body 26 shown in FIGS. The upper part including the formation part of each cavity part 31 in the mold body 26 shown in FIGS. 4 and 5 is heated to about 130 ° C. to 140 ° C., for example.

つまり、加熱機構36は、絶縁スペーサ3の注形時においては、注形の過渡期に材料注入口32付近の注形材料が先に熱硬化してしまうことを抑制するために、金型本体26内のキャビティ部31の形成部分を含む例えば上方側の部位などに比べて、材料注入口32付近の温度が、例えば10℃〜20℃程度、低くなるように温度勾配をつけて金型本体26内を温度制御する。   In other words, when the insulating spacer 3 is cast, the heating mechanism 36 is used to prevent the casting material near the material inlet 32 from being first thermally cured during the casting transition period. The mold main body is provided with a temperature gradient so that the temperature near the material injection port 32 is, for example, about 10 ° C. to 20 ° C. lower than, for example, the upper portion including the formation portion of the cavity portion 31 in 26. The inside 26 is temperature controlled.

さらに、本実施形態の注形用金型25が有する特徴的な構造について説明する。図5に示すように、ランナ部40は、材料注入口32の上端部から二手に分岐して水平方向(矢印Y1−Y2方向)にそれぞれ延びる一次ランナ41と、一次ランナ41の途中からキャビティ部31に向けてそれぞれ上昇する方向(矢印Z1方向)に延びる二次ランナ42と、を備えている。各二次ランナ42のそれぞれの終端(上端)部分は、ゲート43として構成されており、各キャビティ部31内にそれぞれ開口している。   Furthermore, the characteristic structure which the casting mold 25 of this embodiment has will be described. As shown in FIG. 5, the runner portion 40 includes a primary runner 41 that bifurcates from the upper end portion of the material injection port 32 and extends in the horizontal direction (arrow Y1-Y2 direction), and a cavity portion from the middle of the primary runner 41. And a secondary runner 42 extending in the direction of rising toward 31 (in the direction of arrow Z1). Each end (upper end) portion of each secondary runner 42 is configured as a gate 43 and opens in each cavity portion 31.

ここで、個々のキャビティ部31は、図5に示すように、金型本体26内での互いの高さ方向(矢印Z1方向)の位置を揃えて各々形成されている。つまり、各キャビティ部31は、金型本体26内において、水平方向(矢印Y1−Y2方向)に沿って規則的に並んだ状態で配列されている。したがって、材料注入口32を通って一次ランナ41に供給される注形材料は、一次ランナ41内全体に充填された後、自重に抗しつつ二次ランナ42内を矢印Z1方向に上昇して行き、個々のキャビティ部31内に各々ほぼ同時期に充填される。これにより、個々のキャビティ部31内での注形材料に対する加熱時間のばらつきを抑えることができるので、それぞれ熱硬化された複数個取りの注形品(絶縁スペーサ3)の電気絶縁性や機械的特性を含む諸特性の均一化を図ることができる。   Here, as shown in FIG. 5, the individual cavity portions 31 are formed so as to be aligned with each other in the height direction (arrow Z <b> 1 direction) in the mold body 26. That is, the cavities 31 are arranged in a state of being regularly arranged in the mold body 26 along the horizontal direction (arrow Y1-Y2 direction). Therefore, the casting material supplied to the primary runner 41 through the material injection port 32 is filled in the entire primary runner 41 and then rises in the secondary runner 42 in the direction of the arrow Z1 while resisting its own weight. The individual cavities 31 are filled almost simultaneously. As a result, it is possible to suppress variations in the heating time for the casting material in the individual cavities 31, so that the electrical insulation properties and mechanical properties of each of the thermosetting casting products (insulating spacers 3) can be reduced. Various characteristics including the characteristics can be made uniform.

また、金型本体26内における材料注入口32の位置を基準として、ランナ部40及び各キャビティ部31は、(図5中の右側と左側とで)ほぼ対称のレイアウトになるように構成されている。これにより、材料注入口32の右側と左側とで、ランナ部40の一次ランナ41、二次ランナ42を移送される注形材料の移送時間(または、キャビティ部31に充填された後の加熱時間)を同様にすることが可能となり、図5中の右側で注形された(3つの)注形品と、図5中の左側で注形された(3つの)注形品と、の諸特性のばらつきを抑制することができる。   The runner portion 40 and each cavity portion 31 are configured so as to have a substantially symmetrical layout (on the right side and the left side in FIG. 5) with the position of the material injection port 32 in the mold body 26 as a reference. Yes. Thereby, on the right side and the left side of the material injection port 32, the transfer time of the casting material transferred to the primary runner 41 and the secondary runner 42 of the runner 40 (or the heating time after filling the cavity 31) ) In the same manner, and various types of (three) cast products cast on the right side in FIG. 5 and (three) cast products cast on the left side in FIG. Variations in characteristics can be suppressed.

なお、各キャビティ部31は、図5に示すように、注形品が各々傾いた状態で注形されるように構成されている。この構造は、キャビティ部31内に装着される埋込金物7、8の物理的干渉などによって注形材料の流れが阻害されないようにするための構成である。これにより、キャビティ部31内への注形材料の充填時において、余分な注形材料と共にキャビティ部31内に残存するエアが押し出されやすくなり、ボイドの発生を抑制することが可能となる。   In addition, as shown in FIG. 5, each cavity part 31 is comprised so that a cast may be cast in the state which each inclined. This structure is a configuration for preventing the flow of the casting material from being hindered by physical interference between the embedded metal fittings 7 and 8 mounted in the cavity portion 31. As a result, when the casting material is filled into the cavity portion 31, the air remaining in the cavity portion 31 together with the excess casting material is easily pushed out, and generation of voids can be suppressed.

次に、このような構造の注形用金型を用いた絶縁スペーサ3の製造方法を、上述した図3〜図5に加え、図6A〜図6Dに基づき説明する。図5などに例示するように、まず、Oリングなどを介在させつつ、埋込金物7、8を入れ子27、28に装着する。次に、埋込金物7、8の取り付けられた入れ子27、28を、金型本体26の予め決められた側の金型部、つまり、可動側金型部29及び固定側金型部30のうちの一方にセット(装着)する。   Next, a manufacturing method of the insulating spacer 3 using the casting mold having such a structure will be described based on FIGS. 6A to 6D in addition to FIGS. 3 to 5 described above. As illustrated in FIG. 5 and the like, first, the embedded metal objects 7 and 8 are attached to the inserts 27 and 28 with an O-ring interposed therebetween. Next, the inserts 27 and 28 to which the embedded metal fixtures 7 and 8 are attached are connected to the mold parts on the predetermined side of the mold body 26, that is, the movable mold part 29 and the fixed mold part 30. Set (install) one of them.

続いて、図4に示すように、可動側金型部29と固定側金型部30とのパーティング面26aが接するように、上記入れ子27、28のセットされた注形用金型25をシリンダ39を介して閉じた後、注形用金型25における金型本体26内を加熱する。この際、図4に示す金型本体26内において材料注入口32の近傍(周辺)を除いた部位が135℃に加熱され、かつ、材料注入口32の近傍が10℃低い125℃に加熱されるように、加熱機構36を通じて温度調整を行う。このような温度調整は、材料注入口32での注形材料48の熱硬化を抑制するために行われる。   Subsequently, as shown in FIG. 4, the casting mold 25 in which the inserts 27 and 28 are set is placed so that the parting surfaces 26a of the movable mold part 29 and the fixed mold part 30 are in contact with each other. After closing through the cylinder 39, the inside of the mold body 26 in the casting mold 25 is heated. At this time, the portion excluding the vicinity (periphery) of the material injection port 32 in the mold body 26 shown in FIG. 4 is heated to 135 ° C., and the vicinity of the material injection port 32 is heated to 125 ° C., which is 10 ° C. lower. As described above, the temperature is adjusted through the heating mechanism 36. Such temperature adjustment is performed in order to suppress thermosetting of the casting material 48 at the material inlet 32.

次いで、金型本体26内が例えば真空引きされ、さらに金型本体26内が上記加熱温度に調整された後、材料注入ノズル33から注入速度50cc(cm3)/secで、図6Aに示すように、材料注入口32内への熱硬化性の注形材料48(液状のエポキシ樹脂)の注入を開始する。 Next, after the inside of the mold body 26 is evacuated, for example, and the inside of the mold body 26 is adjusted to the above heating temperature, as shown in FIG. 6A at an injection speed of 50 cc (cm 3 ) / sec from the material injection nozzle 33. Then, injection of the thermosetting casting material 48 (liquid epoxy resin) into the material injection port 32 is started.

この後、図6Aに示すように、注形材料48は、材料注入口32の上端部から、水平方向(矢印Y1−Y2方向)に延びる一次ランナ41に沿って二手に分岐する。続いて、図6Bに示すように、注形材料48は、この一次ランナ41内全体に充填される。さらに、この後、注形材料48は、図6Cに示すように、垂直方向に延びる二次ランナ42内を、自重に抗しつつ矢印Z1方向に上昇する。さらに、注形材料48は、図6Dに示すように、ゲート43を介して個々のキャビティ部31内に各々ほぼ同時期に充填される。   Thereafter, as shown in FIG. 6A, the casting material 48 branches from the upper end of the material injection port 32 along the primary runner 41 extending in the horizontal direction (arrow Y1-Y2 direction). Subsequently, as shown in FIG. 6B, the casting material 48 is filled in the entire primary runner 41. Further, thereafter, as shown in FIG. 6C, the casting material 48 rises in the direction of the arrow Z1 while resisting its own weight in the secondary runner 42 extending in the vertical direction. Further, as shown in FIG. 6D, the casting material 48 is filled into the individual cavity portions 31 through the gates 43 at approximately the same time.

この際、材料移送管34の基端側にあるピストンを含むシリンダ機構などが制御されることで、加熱された金型本体26の各キャビティ部31内へは、架橋反応による樹脂硬化時の体積収縮分を補填するように注形材料48が加圧補給される。このような注形材料48の加圧補給(加圧しながらの補充)によって、図6Dに示すように、金型本体26の各キャビティ部31内における注形材料48の外周部分が熱硬化して半硬化物が得られる。さらに、注形材料48のこの加圧補給を継続することにより、金型本体26内で得られた半硬化物についての熱硬化がその中心部側へ進行するときに生じる架橋反応時の反応熱で、半硬化物を中心部から内部発熱させる。   At this time, by controlling a cylinder mechanism including a piston on the proximal end side of the material transfer pipe 34, the volume at the time of resin curing by a crosslinking reaction is introduced into each cavity portion 31 of the heated mold body 26. The casting material 48 is pressurized and replenished to compensate for the shrinkage. By pressurizing and replenishing the casting material 48 (replenishment while pressurizing), as shown in FIG. 6D, the outer peripheral portion of the casting material 48 in each cavity portion 31 of the mold body 26 is thermally cured. A semi-cured product is obtained. Furthermore, by continuing this pressurization of the casting material 48, the heat of reaction during the crosslinking reaction that occurs when the thermosetting of the semi-cured product obtained in the mold body 26 proceeds to the center side. Then, the semi-cured product is internally heated from the center.

次に、注形材料48の加圧補給を停止させた後、金型本体26のキャビティ部31内から、半硬化物を取り出(離型)し、その半硬化物から入れ子27、28の取り外しを行う。次いで、金型本体26内から取り出したこの半硬化物を例えば約30分程度放置し、半硬化物の内部発熱を継続させることによって、中心部を含む半硬化物全体を熱硬化させ、これにより、図3に示すように、高耐熱性などの固体絶縁物としての最終的な物性が付与されたポスト形の絶縁スペーサ(注形品)3を得る。   Next, after the pressurization of the casting material 48 is stopped, the semi-cured material is taken out (released) from the cavity 31 of the mold body 26, and the inserts 27 and 28 are removed from the semi-cured material. Remove. Next, the semi-cured product taken out from the mold body 26 is left, for example, for about 30 minutes, and the internal heat generation of the semi-cured product is continued to thermally cure the entire semi-cured product including the central portion. As shown in FIG. 3, a post-type insulating spacer (cast product) 3 having final physical properties as a solid insulating material such as high heat resistance is obtained.

既述したように、本実施形態の注形用金型25では、図5及び図6B〜図6Dに示すように、個々のキャビティ部31が、金型本体26内での互いの高さ方向(矢印Z1方向)の位置を揃えて各々形成されているので、各キャビティ部31内に対し各々ほぼ同時期に注形材料48を充填することが可能となる。したがって、注形用金型25によれば、各キャビティ部31内の注形材料の加熱期間をほぼ同様にすることが可能となり、熱硬化された複数個取りの注形品(絶縁スペーサ3)それぞれの機械的強度、耐熱性、電気絶縁性など、を含む諸特性の均一化を図ることができる。これにより、絶縁スペーサ3を安定した品質で製造できることに加え、生産性を向上させることができる。   As described above, in the casting mold 25 of the present embodiment, as shown in FIGS. 5 and 6B to 6D, the individual cavity portions 31 are arranged in the height direction within the mold body 26. Since the respective positions in the direction of the arrow Z1 are aligned, it is possible to fill the casting material 48 into the respective cavity portions 31 almost at the same time. Therefore, according to the casting mold 25, the heating period of the casting material in each cavity portion 31 can be made substantially the same, and a plurality of cast parts (insulating spacer 3) that are thermally cured are obtained. Various characteristics including mechanical strength, heat resistance, electrical insulation and the like can be made uniform. Thereby, in addition to being able to manufacture the insulating spacer 3 with stable quality, productivity can be improved.

また、注形用金型25では、上述したように、金型本体26内での高さ方向の位置を揃えて各キャビティ部31をそれぞれ配置しているので、金型本体26の上下方向についてのみ加熱温度を制御するといった比較的簡単な温度制御で注形品の諸特性の安定化を図ることが可能となる。さらに、このように固体絶縁物としての品質の安定化を図ったポスト形の絶縁スペーサ3を、図1、図2に示すように、高電圧導体22の支持部分に適用することで、ガス絶縁開閉装置1の絶縁性についての信頼性を高めることができる。   Further, in the casting mold 25, as described above, the cavity portions 31 are arranged with their positions in the mold body 26 aligned in the height direction. It is possible to stabilize the characteristics of the cast product with relatively simple temperature control such as controlling the heating temperature only. Further, the post-type insulating spacer 3 that stabilizes the quality as a solid insulator is applied to the supporting portion of the high-voltage conductor 22 as shown in FIGS. The reliability of the insulation of the switchgear 1 can be improved.

[第2の実施の形態]
次に、本発明の第2の実施形態を図7に基づき説明する。なお、この図7において、第1の実施形態で説明した図5中の構成要素と同一の構成要素については、同一の符号を付与しその説明を省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG. In FIG. 7, the same components as those in FIG. 5 described in the first embodiment are given the same reference numerals, and the description thereof is omitted.

図7に示すように、この実施形態の注形用金型58は、注形品を8個取りすることの可能な金型であって、第1の実施形態の注形品6個取りの注形用金型25に設けられていたランナ部40に代えて、ランナ部50を備えている。このランナ部50は、材料注入口32から個々のキャビティ部31へ通じる注形材料の各移送経路をそれぞれ構成すると共にこれらの移送経路の長さを各々揃えるように形成されている。   As shown in FIG. 7, the casting mold 58 of this embodiment is a mold capable of taking eight castings, and has six castings of the first embodiment. Instead of the runner 40 provided in the casting mold 25, a runner 50 is provided. The runner portion 50 is formed so as to constitute the respective transfer paths of the casting material that lead from the material injection port 32 to the individual cavities 31 and to align the lengths of these transfer paths.

すなわち、ランナ部50は、一次〜六次ランナ51〜56を備えている。一次ランナ51は、材料注入口32の上端部から二手に分岐して水平方向(矢印Y1−Y2方向)にそれぞれ延びている。二次ランナ52は、一次ランナ51の各端部からそれぞれ注形用金型58の上部側方向(矢印Z1方向)に延びている。三次ランナ53は、2つの二次ランナ52の各上端部からそれぞれ二手に分岐して水平方向に各々延びている。   That is, the runner unit 50 includes primary to sixth runners 51 to 56. The primary runner 51 is bifurcated from the upper end of the material injection port 32 and extends in the horizontal direction (arrow Y1-Y2 direction). The secondary runner 52 extends from each end of the primary runner 51 in the upper side direction of the casting mold 58 (in the direction of the arrow Z1). The tertiary runners 53 are bifurcated from the upper ends of the two secondary runners 52 and extend in the horizontal direction.

さらに、四次ランナ54は、三次ランナ53の各端部からそれぞれ注形用金型58の上部側方向に延び、五次ランナ55は、4つの四次ランナ54の各上端部からそれぞれ二手に分岐して水平方向に各々延びている。六次ランナ56は、第1の実施形態の二次ランナ42と同様の構造を有する。   Further, the fourth runner 54 extends from each end of the tertiary runner 53 toward the upper side of the casting mold 58, and the fifth runner 55 extends from each upper end of the four fourth runners 54 to the second hand. It branches and each extends horizontally. The sixth runner 56 has the same structure as the secondary runner 42 of the first embodiment.

詳述すると、金型本体26内における材料注入口32の位置を基準として、ランナ部50及び各キャビティ部31は、(図7中の右側と左側とで)ほぼ対称のレイアウトになるように構成されている。上記のように、二本、四本、八本と段階的に分岐するランナ部50は、材料注入口32から個々のキャビティ部31へ通じる注形材料の各移送経路は、互いの経路長が等しくなるように形成されている。   More specifically, the runner portion 50 and each cavity portion 31 are configured so as to have a substantially symmetrical layout (on the right side and the left side in FIG. 7) with the position of the material injection port 32 in the mold body 26 as a reference. Has been. As described above, the runner portion 50 that branches in stages, such as two, four, and eight, is such that each transfer path of the casting material leading from the material injection port 32 to each cavity portion 31 has a mutual path length. It is formed to be equal.

したがって、本実施形態の注形用金型58では、第1の実施形態と同様、各キャビティ部31内での注形材料の加熱期間の均一化を図れることに加え、材料注入口32から各キャビティ部31へそれぞれ到達するまでの注形材料の移送時間(加熱時間)を均等にすることが可能となる。これにより、注形用金型58によれば、熱硬化された複数個取りの注形品それぞれの諸特性のばらつきを抑えることができる。   Therefore, in the casting mold 58 of the present embodiment, in addition to being able to equalize the heating period of the casting material in each cavity portion 31 as in the first embodiment, It becomes possible to equalize the transfer time (heating time) of the casting material until it reaches each of the cavities 31. Thereby, according to the casting mold 58, it is possible to suppress variations in various characteristics of each of the thermosetting cast products.

[第3の実施の形態]
次に、本発明の第3の実施形態を図8〜図10に基づき説明する。なお、図8〜図10において、第1、第2の実施形態で説明した図5及び図7中の構成要素と同一の構成要素については、同一の符号を付与しその説明を省略する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described with reference to FIGS. 8 to 10, the same reference numerals are given to the same components as those in FIGS. 5 and 7 described in the first and second embodiments, and the description thereof is omitted.

図8、図9A及び図9Bに示すように、この実施形態の注形用金型60は、第1の実施形態に係る注形用金型25の構成に加え、エア排出機構61をさらに備えている。このエア排出機構61は、個々のキャビティ部31から金型本体26の外部へそれぞれ通じる複数のエア排出穴62と、各キャビティ部31内への注形材料の充填に伴い複数のエア排出穴62をそれぞれ閉塞する弁部材としての複数のストップ弁63と、を有している。   As shown in FIGS. 8, 9A, and 9B, the casting mold 60 of this embodiment further includes an air discharge mechanism 61 in addition to the configuration of the casting mold 25 according to the first embodiment. ing. The air discharge mechanism 61 includes a plurality of air discharge holes 62 communicating from the individual cavity portions 31 to the outside of the mold body 26, and a plurality of air discharge holes 62 as the casting material is filled into the respective cavity portions 31. And a plurality of stop valves 63 as valve members that respectively close the valve.

具体的には、エア排出穴62は、図8、図9A及び図9Bに示すように、個々の材料溜まり46から金型本体26の外部へそれぞれ開口する段差穴として構成されており、傾斜面64を中央部分に備えている。エア排出穴62は、図9A及び図9Bに示すように、材料溜まり46側(底部側)が太径穴部65で構成され、金型本体26の外部へ開口する上部側は細径穴部66で構成されている。一方、ストップ弁63は、垂直方向(矢印Z1−Z2方向)に延びるシャフト部67とこのシャフト部67の下端に設けられた円錐部68とを備えている。   Specifically, as shown in FIGS. 8, 9A and 9B, the air discharge holes 62 are configured as stepped holes that open from the individual material reservoirs 46 to the outside of the mold body 26, and are inclined surfaces. 64 is provided in the central portion. As shown in FIGS. 9A and 9B, the air discharge hole 62 is configured with a large-diameter hole portion 65 on the material reservoir 46 side (bottom side), and a small-diameter hole portion on the upper side that opens to the outside of the mold body 26. 66. On the other hand, the stop valve 63 includes a shaft portion 67 extending in the vertical direction (arrow Z1-Z2 direction) and a conical portion 68 provided at the lower end of the shaft portion 67.

図9A、図9Bに示すように、ストップ弁63のシャフト部67は、エア排出穴62の細径穴部66よりも細い径で形成されており、この細径穴部66内に挿入されている。つまり、細径穴部66とシャフト部67との間には、所定の間隙(クリアランス)が形成されている。一方、ストップ弁63の円錐部68は、エア排出穴62の太径穴部65内に配置されている。   As shown in FIGS. 9A and 9B, the shaft portion 67 of the stop valve 63 is formed with a diameter smaller than that of the small-diameter hole portion 66 of the air discharge hole 62, and is inserted into the small-diameter hole portion 66. Yes. That is, a predetermined gap (clearance) is formed between the narrow hole portion 66 and the shaft portion 67. On the other hand, the conical portion 68 of the stop valve 63 is disposed in the large-diameter hole portion 65 of the air discharge hole 62.

このような構造のエア排出機構61は、図9Bに示すように、ストップ弁63の円錐部68が、エア排出穴62の傾斜面64と接触するストップ弁63の閉塞状態では、金型本体26の外部に対して、材料溜まり46及びキャビティ部31側が閉塞された状態となる。一方、図9Aに示すように、ストップ弁63の円錐部68が、エア排出穴62の傾斜面64と離間するストップ弁63の開放状態では、金型本体26の外部に対して、材料溜まり46及びキャビティ部31側が開放された状態となる。   As shown in FIG. 9B, the air discharge mechanism 61 having such a structure has a mold body 26 in a closed state where the conical portion 68 of the stop valve 63 contacts the inclined surface 64 of the air discharge hole 62. The material reservoir 46 and the cavity 31 side are closed with respect to the outside. On the other hand, as shown in FIG. 9A, when the stop valve 63 is in an open state in which the conical portion 68 of the stop valve 63 is separated from the inclined surface 64 of the air discharge hole 62, the material reservoir 46 is located outside the mold body 26. And the cavity part 31 side will be in the open state.

すなわち、キャビティ部31内及び材料溜まり46内に注形材料48が充填される直前の状態までは、図9Aに示すように、ストップ弁63が自重で矢印Z2方向に押し下げられ、ストップ弁63が開放状態となる。これにより、キャビティ部31内及び材料溜まり46内に残存するエアをエア排出穴62を介して金型本体26の外部へ容易に放出させることが可能となる。   That is, until the state immediately before the casting material 48 is filled in the cavity 31 and the material reservoir 46, as shown in FIG. 9A, the stop valve 63 is pushed down by its own weight in the direction of the arrow Z2, and the stop valve 63 is It becomes an open state. As a result, the air remaining in the cavity 31 and the material reservoir 46 can be easily released to the outside of the mold body 26 through the air discharge hole 62.

一方、キャビティ部31内及び材料溜まり46内へ注形材料48の充填が行われた状態では、図9Bに示すように、注形材料48の充填時の加圧力によってストップ弁63が矢印Z1方向に押し上げられ、ストップ弁63が閉塞状態となる。この場合、エア排出穴62が閉じられるため、注形材料48の漏れなどが防止される。また、ここで、図10に示すように、上記した第2の実施形態の注形用金型58に、このようなエア排出機構61を追加した注形用金型69を構成することも可能である。   On the other hand, in the state where the casting material 48 is filled into the cavity 31 and the material reservoir 46, as shown in FIG. 9B, the stop valve 63 is moved in the direction of the arrow Z1 by the applied pressure when filling the casting material 48. The stop valve 63 is closed. In this case, since the air discharge hole 62 is closed, the casting material 48 is prevented from leaking. Further, as shown in FIG. 10, a casting mold 69 in which such an air discharge mechanism 61 is added to the casting mold 58 of the above-described second embodiment can also be configured. It is.

したがって、本実施形態の注形用金型60、69では、注形材料48の充填漏れを抑えつつ、キャビティ部31内のエア抜きを効果的に行うことができる。これにより、絶縁スペーサ3(注形品)の電気絶縁性能の低下の要因となるボイドの発生を抑制できることに加え、キャビティ部31内への注形材料48の充填性が高まることから、諸特性の安定した注形品を得ることができる。   Therefore, in the casting molds 60 and 69 of the present embodiment, the air in the cavity portion 31 can be effectively removed while suppressing the filling leakage of the casting material 48. Thereby, in addition to suppressing the generation of voids that cause a decrease in the electrical insulation performance of the insulating spacer 3 (casting product), the filling property of the casting material 48 into the cavity portion 31 is enhanced. Stable castings can be obtained.

[第4の実施の形態]
次に、本発明の第4の実施形態を図11〜図13に基づき説明する。なお、図11〜図13において、第1、第3の実施形態で説明した図5及び図8中の構成要素と同一の構成要素については、同一の符号を付与しその説明を省略する。
[Fourth Embodiment]
Next, the 4th Embodiment of this invention is described based on FIGS. 11 to 13, the same reference numerals are given to the same components as those in FIGS. 5 and 8 described in the first and third embodiments, and the description thereof is omitted.

この実施形態の注形用金型70は、第1の実施形態の注形用金型25により埋込金物7、8と共に一体注形されるポスト形の絶縁スペーサ3に代えて、図11及び図12に示すように、埋込金物がなく注形材料だけで全体が構成されるポール形の絶縁スペーサ73を注形可能な金型である。絶縁スペーサ73は、断付きのシャフト形状を有しており、スペーサ本体部72と、このスペーサ本体部72よりも細い径で、このスペーサ本体部72の両端部分に形成された細径部74とを備える。このポール形の絶縁スペーサ73も図1に示したガス絶縁開閉装置1の内部に固体絶縁物として配置されている。   The casting mold 70 according to this embodiment is replaced with the post-shaped insulating spacer 3 integrally cast together with the embedded molds 7 and 8 by the casting mold 25 according to the first embodiment, as shown in FIGS. As shown in FIG. 12, it is a mold capable of casting a pole-shaped insulating spacer 73 which is entirely composed of only a casting material without an embedded metal. The insulating spacer 73 has a cut-off shaft shape, and has a spacer main body 72, a diameter smaller than that of the spacer main body 72, and a narrow diameter portion 74 formed at both ends of the spacer main body 72. Is provided. This pole-shaped insulating spacer 73 is also disposed as a solid insulator inside the gas-insulated switchgear 1 shown in FIG.

具体的には、この実施形態の注形用金型70は、第1の実施形態で説明した注形用金型25が備える金型本体26及び入れ子27、28に代えて、金型本体75及び4つの入れ子77を有すると共に、さらに入れ子固定機構80を備えている。金型本体75は、固定側金型部75bと矢印X1−X2方向に移動可能な可動側金型部75aとを有している。また、金型本体75には、当該金型本体75内での互いの高さ方向の位置を揃えるようにして複数のキャビティ部71が各々形成されている。   Specifically, the casting mold 70 of this embodiment is a mold body 75 in place of the mold body 26 and the inserts 27 and 28 included in the casting mold 25 described in the first embodiment. And four nestings 77 and a nesting fixing mechanism 80. The mold body 75 has a fixed mold part 75b and a movable mold part 75a that can move in the directions of arrows X1-X2. In addition, a plurality of cavity portions 71 are formed in the mold body 75 so as to align the positions in the height direction within the mold body 75.

個々の入れ子77は、各キャビティ部71でそれぞれ注形された複数の絶縁スペーサ73(注形品)を一体的にかつ着脱自在に保持する。つまり、各入れ子77は、可動側金型部75aに着脱自在に装着される可動側入れ子部78と、固定側金型部75bに隙間を空けた状態で挿入される固定側入れ子部79と、を備えたいわゆるツーピース構造で構成されている。   Each insert 77 holds a plurality of insulating spacers 73 (cast products) cast in each cavity portion 71 integrally and detachably. That is, each nesting 77 includes a movable nesting portion 78 that is detachably attached to the movable mold portion 75a, a fixed nesting portion 79 that is inserted in a state where there is a gap in the fixed mold portion 75b, So-called two-piece structure.

可動側入れ子部78及び固定側入れ子部79は、半円柱状に窪ませた複数の凹部78a、79aをそれぞれ備えており、各キャビティ部71内にて各々注形された複数の絶縁スペーサ73の両端の個々の細径部74を、これら凹部78a、79aで、挟み込むようにして保持する。つまり、固定側入れ子部79に挿入されたねじ79bを可動側入れ子部78に設けられたねじ穴78bに締め込むことによって、固定側入れ子部79と可動側入れ子部78とが一体的に締結された入れ子77が構成される。   The movable-side nesting part 78 and the fixed-side nesting part 79 are provided with a plurality of recesses 78a and 79a recessed in a semi-cylindrical shape, respectively. The individual small diameter portions 74 at both ends are held by these concave portions 78a and 79a so as to be sandwiched. That is, the fixed side nesting part 79 and the movable side nesting part 78 are integrally fastened by tightening the screw 79b inserted into the fixed side nesting part 79 into the screw hole 78b provided in the movable side nesting part 78. A nest 77 is formed.

また、注形用金型70には、入れ子77を固定側金型部75b及び可動側金型部75aのうちのいずれか一方に着脱自在に固定する入れ子固定機構80が設けられている。本実施形態では、入れ子77を可動側金型部75aに着脱自在に固定する構造を例示する。   The casting mold 70 is provided with a nesting fixing mechanism 80 that detachably fixes the nesting 77 to either one of the fixed-side mold part 75b and the movable-side mold part 75a. In the present embodiment, a structure in which the insert 77 is detachably fixed to the movable mold part 75a is illustrated.

すなわち、可動側入れ子部78には、複数の圧入ピン78cが突出するように設けられており、これらの圧入ピン78cは、可動側金型部75aに予め穿孔されたピン圧入穴75cに対しOリングなどを介して圧入(着脱自在に固定)される。一方、固定側金型部75bには、固定側入れ子部79の外形よりも僅かに大きいサイズの凹部が構成されており、この凹部に対して固定側入れ子部79が非圧入状態で挿入される。   That is, the movable side insert part 78 is provided with a plurality of press-fit pins 78c so as to protrude, and these press-fit pins 78c are O to the pin press-fit holes 75c previously drilled in the movable side mold part 75a. It is press-fitted (fixed detachably) through a ring or the like. On the other hand, a concave portion having a size slightly larger than the outer shape of the fixed nesting portion 79 is formed in the fixed mold portion 75b, and the fixed nesting portion 79 is inserted into the concave portion in a non-press-fit state. .

したがって、この実施形態の注形用金型70では、絶縁スペーサ73の注形を開始する前に、固定側入れ子部79と可動側入れ子部78とを一体的に締結した入れ子77を可動側金型部75aにセット(着脱自在に固定)し、金型本体75を閉じる。絶縁スペーサ73の注形後、可動側入れ子部78を矢印X2方向に後退させて、金型本体75を開く。この際、凹部78a、79aで絶縁スペーサ73の細径部74が挟み込まれるようにして保持され、かつ入れ子77の可動側入れ子部78が可動側金型部75aに固定されていることから、全ての注形品(絶縁スペーサ73)は、可動側金型部75aに固定された状態で金型本体75が開放される。   Therefore, in the casting mold 70 of this embodiment, before the casting of the insulating spacer 73 is started, the nesting 77 in which the fixed side nesting portion 79 and the movable side nesting portion 78 are integrally fastened is used as the movable side die. The mold body 75a is set (removably fixed), and the mold body 75 is closed. After casting the insulating spacer 73, the movable side nest part 78 is retracted in the direction of the arrow X2, and the mold body 75 is opened. At this time, since the narrow diameter portion 74 of the insulating spacer 73 is held between the concave portions 78a and 79a, and the movable side nested portion 78 of the insert 77 is fixed to the movable mold portion 75a, all In the cast product (insulating spacer 73), the mold body 75 is opened while being fixed to the movable mold part 75a.

この後、可動側金型部75aから抜脱した入れ子77における固定側入れ子部79と可動側入れ子部78とをねじ79bを外して二つに分離することで、注形品としての複数の絶縁スペーサ73それぞれを、金型本体75及び入れ子77から取り外すことが可能となる。   Thereafter, the fixed-side nesting portion 79 and the movable-side nesting portion 78 in the nesting 77 removed from the movable-side mold portion 75a are separated into two by removing the screw 79b, so that a plurality of insulations as cast products are obtained. Each of the spacers 73 can be removed from the mold body 75 and the insert 77.

このように、本実施形態の注形用金型70では、注形後、金型本体75を開いた際に、固定側金型部75b及び可動側金型部75aのうちのいずれか一方(本実施形態では可動側金型部75a側)に、注形品である絶縁スペーサ73を固定させておくことができると共に、注形された個々の絶縁スペーサ73を、ツーピース構造の入れ子77を介して効率良く取り外すことができる。すなわち、注形用金型70によれば、埋込金物がなく注形材料だけで全体が構成される絶縁スペーサ73を、例えば傷付けることなく、容易に離型することが可能となる。なお、図13に示すように、本実施形態の注形用金型70に対し第3の実施形態のエア排出機構61を追加した注形用金型81を構成することなども可能である。   Thus, in the casting mold 70 of the present embodiment, when the mold body 75 is opened after casting, either one of the fixed mold part 75b and the movable mold part 75a ( In this embodiment, the insulating spacer 73 that is a cast product can be fixed to the movable mold part 75 a side), and the individual insulating spacers 73 that are cast are inserted through the insert 77 having a two-piece structure. Can be removed efficiently. That is, according to the casting mold 70, it is possible to easily release the insulating spacer 73 that is entirely composed of only the casting material without any embedded metal, for example, without being damaged. As shown in FIG. 13, it is possible to configure a casting mold 81 in which the air discharge mechanism 61 of the third embodiment is added to the casting mold 70 of the present embodiment.

以上、本発明を実施の形態により具体的に説明したが、本発明はこの実施形態にのみ限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば、上述した実施形態では、熱硬化性の注形材料としてエポキシ樹脂を例示したが、これに代えて、所定の硬化剤及び充填剤を配合した例えばシリコーン樹脂などを適用することも可能である。   Although the present invention has been specifically described above with reference to the embodiment, the present invention is not limited to this embodiment, and various modifications can be made without departing from the scope of the invention. For example, in the above-described embodiment, the epoxy resin is exemplified as the thermosetting casting material. However, instead of this, for example, a silicone resin blended with a predetermined curing agent and a filler may be applied. .

1…ガス絶縁開閉装置、3,73…絶縁スペーサ(注形品)、25,58,60,69,70,81…注形用金型、26,75…金型本体、27,28,77…入れ子、29,75a…可動側金型部、30,75b…固定側金型部、35…加熱ヒータ、36…加熱機構、31,71…キャビティ部、32…材料注入口、40,50…ランナ部、46…樹脂溜まり、48…注形材料、61…エア排出機構、62…エア排出穴、63…ストップ弁(弁部材)、80…入れ子固定機構。   DESCRIPTION OF SYMBOLS 1 ... Gas insulation switchgear, 3, 73 ... Insulation spacer (casting product), 25, 58, 60, 69, 70, 81 ... Mold for casting, 26, 75 ... Mold main body, 27, 28, 77 ... Nest, 29, 75a ... Movable mold part, 30, 75b ... Fixed mold part, 35 ... Heater, 36 ... Heating mechanism, 31, 71 ... Cavity part, 32 ... Material injection port, 40, 50 ... Runner portion, 46 ... resin reservoir, 48 ... casting material, 61 ... air discharge mechanism, 62 ... air discharge hole, 63 ... stop valve (valve member), 80 ... nesting fixing mechanism.

Claims (6)

熱硬化性の注形材料を加圧しながら注入するための材料注入口を底部に備えた金型本体と、
前記金型本体内での高さ方向の位置を揃えて各々形成され、前記金型本体の底部の前記材料注入口から注入された前記注形材料がそれぞれ充填される複数のキャビティ部と、
を具備することを特徴とする注形用金型。
A mold body provided with a material inlet at the bottom for injecting a thermosetting casting material while applying pressure;
A plurality of cavities each formed by aligning the positions in the height direction in the mold body and filled with the casting material injected from the material injection port at the bottom of the mold body; and
A casting mold characterized by comprising:
前記金型本体の底部から上部へ向かうにつれて加熱温度が高くなるように当該金型本体を加熱する加熱機構、
をさらに具備することを特徴とする請求項1記載の注形用金型。
A heating mechanism that heats the mold body so that the heating temperature increases from the bottom to the top of the mold body;
The casting mold according to claim 1, further comprising:
前記材料注入口から個々の前記キャビティ部へ通じる前記注形材料の各移送経路をそれぞれ構成すると共にこれらの移送経路の長さを各々揃えるように形成されたランナ部、
をさらに具備することを特徴とする請求項1又は2記載の注形用金型。
A runner portion formed so as to constitute each transfer path of the casting material that leads from the material injection port to each of the cavity portions and to align the lengths of these transfer paths, respectively.
The casting mold according to claim 1, further comprising:
前記個々のキャビティ部から前記金型本体の外部へそれぞれ通じる複数のエア排出穴と、各キャビティ部内への前記注形材料の充填に伴い前記複数のエア排出穴をそれぞれ閉塞する複数の弁部材と、を有するエア排出機構、
をさらに具備することを特徴とする請求項1ないし3のいずれか1項に記載の注形用金型。
A plurality of air discharge holes respectively communicating from the individual cavity portions to the outside of the mold body, and a plurality of valve members respectively closing the plurality of air discharge holes as the casting material is filled into the cavity portions. An air discharge mechanism,
The casting mold according to any one of claims 1 to 3, further comprising:
前記金型本体は、固定側金型部と移動可能な可動側金型部とを有し、
前記個々のキャビティ部でそれぞれ注形された複数の注形品を一体的にかつ着脱自在に保持する入れ子と、
前記入れ子を前記固定側金型部及び前記可動側金型部のうちのいずれか一方に着脱自在に固定する入れ子固定機構と、
をさらに具備することを特徴とする請求項1ないし4のいずれか1項に記載の注形用金型。
The mold body has a fixed mold part and a movable mold part movable,
A nest that holds a plurality of cast products cast in each of the individual cavity portions integrally and detachably,
A nesting fixing mechanism for detachably fixing the nesting to either one of the fixed mold part and the movable mold part;
The casting mold according to any one of claims 1 to 4, further comprising:
請求項1ないし5のいずれか1項に記載の金型を用いて製造された注形品を備えていることを特徴とするガス絶縁開閉装置。   A gas-insulated switchgear comprising a cast product manufactured using the mold according to any one of claims 1 to 5.
JP2010173140A 2010-07-30 2010-07-30 Casting mold and gas-insulated switchgear Pending JP2012030536A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010173140A JP2012030536A (en) 2010-07-30 2010-07-30 Casting mold and gas-insulated switchgear
CN201110219235.6A CN102343650B (en) 2010-07-30 2011-07-27 Casting mold and gas insulated switchgear
EP20110175768 EP2412504A3 (en) 2010-07-30 2011-07-28 Casting mold and gas insulated switchgear
EP12186218.9A EP2540468B1 (en) 2010-07-30 2011-07-28 Casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010173140A JP2012030536A (en) 2010-07-30 2010-07-30 Casting mold and gas-insulated switchgear

Publications (1)

Publication Number Publication Date
JP2012030536A true JP2012030536A (en) 2012-02-16

Family

ID=44512691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010173140A Pending JP2012030536A (en) 2010-07-30 2010-07-30 Casting mold and gas-insulated switchgear

Country Status (3)

Country Link
EP (2) EP2540468B1 (en)
JP (1) JP2012030536A (en)
CN (1) CN102343650B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3208065B1 (en) * 2016-02-19 2021-09-15 General Electric Technology GmbH Mould and method for flexibly holding inserts in the mold during molding
CN107068307A (en) * 2017-04-14 2017-08-18 保定冀开电力器材有限公司 A kind of composite insulator production method of short time limit efficiency high
CN109605677B (en) * 2018-11-13 2021-06-08 广州市鸿益塑料有限公司 Processing device for blending synthetic plastic products

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127112A (en) * 1983-12-14 1985-07-06 Matsushita Electric Works Ltd Air venting device of molding die
JPH0564820A (en) * 1991-09-06 1993-03-19 Toshiba Corp Casting mold
JP2003300217A (en) * 2002-04-11 2003-10-21 Toshiba Corp Casting device and method for manufacturing cast product
JP2005246981A (en) * 2005-06-02 2005-09-15 Toshiba Corp Casting device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2672653A (en) * 1952-03-26 1954-03-23 Essex Wire Corp Injection mold
US4370511A (en) * 1981-03-17 1983-01-25 Westinghouse Electric Corp. Flexible gas insulated transmission line having regions of reduced electric field
JPS57203532A (en) * 1981-06-10 1982-12-13 Toshiba Chem Corp Mold for molding thermosetting resin
DE3338783C1 (en) * 1983-10-26 1985-03-21 Werner & Pfleiderer, 7000 Stuttgart Injection mould for the production of moulded articles from heat-curable materials
DE3345133A1 (en) * 1983-12-14 1985-09-26 Bopp & Reuther Gmbh, 6800 Mannheim LOCKING WEDGE FOR LOCKING VALVES
US4662307A (en) * 1985-05-31 1987-05-05 Corning Glass Works Method and apparatus for recoating optical waveguide fibers
JPH03225930A (en) * 1990-01-31 1991-10-04 Nec Corp Apparatus for resin-sealing semiconductor device
TW208759B (en) * 1991-10-24 1993-07-01 American Telephone & Telegraph
US6002085A (en) * 1991-11-18 1999-12-14 Hitachi, Ltd. Gas insulated switchgear
IT239392Y1 (en) * 1995-04-07 2001-02-26 Valex Spa PROTECTIVE SHEATH IN PLASTIC MATERIAL, ESPECIALLY FOR HEDGE SHEARS
JPH09180561A (en) * 1995-12-26 1997-07-11 Hitachi Ltd Gas insulation equipment
JP3792420B2 (en) * 1998-12-09 2006-07-05 株式会社小糸製作所 Mold device for molding resin products for vehicle lamps
JP4768401B2 (en) * 2005-11-02 2011-09-07 株式会社東芝 Resin casting mold
US7651644B2 (en) * 2006-05-31 2010-01-26 Graham Packaging Company, Lp Controlling delivery of polymer material in a sequential injection molding process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127112A (en) * 1983-12-14 1985-07-06 Matsushita Electric Works Ltd Air venting device of molding die
JPH0564820A (en) * 1991-09-06 1993-03-19 Toshiba Corp Casting mold
JP2003300217A (en) * 2002-04-11 2003-10-21 Toshiba Corp Casting device and method for manufacturing cast product
JP2005246981A (en) * 2005-06-02 2005-09-15 Toshiba Corp Casting device

Also Published As

Publication number Publication date
CN102343650A (en) 2012-02-08
EP2540468A1 (en) 2013-01-02
CN102343650B (en) 2014-09-03
EP2412504A3 (en) 2012-03-28
EP2540468B1 (en) 2016-04-20
EP2412504A2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
RU2355063C1 (en) Method of preparing polar components of switch for low-voltage distributor, distributor of medium voltage and high-voltage distributor as well as polar component
EP1107409B1 (en) Switchgear and method of manufacturing thereof
JP2012030536A (en) Casting mold and gas-insulated switchgear
CN102163510B (en) Production process of solid-packaged polar pole
EP2075803A1 (en) Apparatus for controlled molding and demolding of composite insulators
US9601242B2 (en) Mold for impregnating a prefabricated condenser core of a high-voltage bushing and device for forming a condenser core of a high-voltage bushing
CN105513723A (en) Basin-type insulator and manufacturing process thereof
CN102576623B (en) Method of manufacturing a current terminal for embedded pole part and pole part itself
CN103400686A (en) Combined cushion block of 20-35 KV dry-type transformer and manufacturing method of combined cushion block
JP5646247B2 (en) Casting product manufacturing method and mold
JP3699865B2 (en) Casting device, mold release device, and protective jig
CN111463732A (en) Technological method of integrated bus duct connector
CN110103376B (en) Rubber wall bushing mold processing
CN102360647B (en) Dual-capacitor insulator and production method thereof
JPH03248809A (en) Manufacture of cast insulator and casting mold for cast insulator used therefor
CN204640646U (en) A kind of mould making wall bushing fuse
CN203134489U (en) Correction tool for parallelism of high-voltage disk insulators
US3490731A (en) Bushing insulator molding device
CN101345401A (en) High pressure self-locking type wall bushing
JP4046319B2 (en) Casting equipment
KR20030042938A (en) meter transformer for construction multi contactor from input terminal and plastic operation method thereof
CN220331802U (en) Injection mold, insulator spacer and insulator for switchgear
CN109791858A (en) The manufacturing method of high-tension switch gear and switchgear and high-tension switch gear with high-tension switch gear
JP2023511494A (en) permeable wall encapsulation mold
KR200463800Y1 (en) Sheath heater for manifold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140422