JP2012028752A - Electrolyte for electrolytic capacitor - Google Patents

Electrolyte for electrolytic capacitor Download PDF

Info

Publication number
JP2012028752A
JP2012028752A JP2011135921A JP2011135921A JP2012028752A JP 2012028752 A JP2012028752 A JP 2012028752A JP 2011135921 A JP2011135921 A JP 2011135921A JP 2011135921 A JP2011135921 A JP 2011135921A JP 2012028752 A JP2012028752 A JP 2012028752A
Authority
JP
Japan
Prior art keywords
group
generation voltage
formula
spark generation
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011135921A
Other languages
Japanese (ja)
Other versions
JP5936095B2 (en
Inventor
Yasuyuki Nakamura
中村康行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Priority to JP2011135921A priority Critical patent/JP5936095B2/en
Publication of JP2012028752A publication Critical patent/JP2012028752A/en
Application granted granted Critical
Publication of JP5936095B2 publication Critical patent/JP5936095B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide electrolyte for electrolytic capacitor which exhibits excellent effect of improving spark generation voltage, and in which the degree of improvement in spark generation voltage is higher than the degree of increase in resistivity, and crystal deposition is minimized at low temperatures.SOLUTION: The electrolyte for electrolytic capacitor contains the following components of (a), (b), and (c). (a) a compound represented by formula (1). (b) a polar solvent, (c) one or more kinds of electrolyte selected from a group consisting of an organic acid, an inorganic acid or a salt thereof. X-[O-(EO)/(PO)-(BO)-(EO)/(PO)-R](1) (In the formula, X is a residue of divalent to hexavalent alcohol from which a hydroxyl group is removed, EO is an oxyethylene group, PO is an oxypropylene group, BO is an oxybutylene group, R is a hydrogen atom or a hydrocarbon group of 1-4C. a and d are 0-40, b and e are 0-20, c is 1-12, k is 2-6. (EO)/(PO)and (EO)/(PO)represent random addition of EO and PO).

Description

本発明は、電解コンデンサ用電解液に関する。   The present invention relates to an electrolytic solution for an electrolytic capacitor.

アルミ電解コンデンサは、高純度のアルミニウム箔からなる陽極に形成する酸化被膜を誘電体として利用するものであり、−40℃程度から100℃を超える温度までの幅広い温度領域において安定に使用できることが必須となる。近年のデジタル家電の普及や自動車の電装化にともないデジタル機器や車載機器用途での需要が拡がっているが、高電圧下で使用した場合にショート等の不具合を発生することがあり、火花発生電圧の向上が要求されている。
アルミ電解コンデンサ用電解液としては、エチレングリコールやγ−ブチロラクトン等を主成分とする極性溶媒に、ホウ酸等の無機酸やアジピン酸、マレイン酸、フタル酸、安息香酸等の二塩基酸及びその塩を溶質とした駆動用電解液が知られている。しかしながら、溶質としてこれらのカルボン酸を使用した電解液は、電導性は高いものの火花発生電圧が低いことが問題となっていた。
この問題を解決するため、添加剤の添加により火花発生電圧を向上させる種々の検討がなされており、ポリエチレングリコールを添加する方法、オキシエチレンオキシプロピレンランダム共重合体を添加する方法(例えば特許文献1)、グリセリンのオキシプロピレンオキシエチレンランダム共重合体を添加する方法(例えば特許文献2)が報告されている。このような化合物を添加した電解液は火花発生電圧の向上に効果を有するが、車載用コンデンサに要望される−40℃付近の低温領域では、経時的に凝固して結晶が析出することがあり、酸化皮膜の化成性が低下して火花発生電圧の向上に十分な効果を発現しないことがあった。
An aluminum electrolytic capacitor uses an oxide film formed on an anode made of high-purity aluminum foil as a dielectric, and must be able to be used stably in a wide temperature range from about −40 ° C. to over 100 ° C. It becomes. With the recent spread of digital home appliances and the electrification of automobiles, the demand for digital devices and in-vehicle devices is expanding, but when used under high voltage, problems such as short-circuits may occur, and spark generation voltage Improvement is demanded.
As electrolytic solutions for aluminum electrolytic capacitors, polar solvents mainly composed of ethylene glycol, γ-butyrolactone, inorganic acids such as boric acid, dibasic acids such as adipic acid, maleic acid, phthalic acid, benzoic acid, and the like A driving electrolyte using a salt as a solute is known. However, electrolytes using these carboxylic acids as solutes have a problem of low electrical spark generation voltage although they are highly conductive.
In order to solve this problem, various studies have been made to improve the spark generation voltage by the addition of an additive. A method of adding polyethylene glycol, a method of adding an oxyethyleneoxypropylene random copolymer (for example, Patent Document 1). ), And a method of adding an oxypropyleneoxyethylene random copolymer of glycerin (for example, Patent Document 2) has been reported. An electrolyte containing such a compound is effective in improving the spark generation voltage. However, in the low temperature region around −40 ° C., which is required for an on-vehicle capacitor, it may solidify over time and crystals may precipitate. In some cases, the chemical conversion of the oxide film is lowered, and the effect sufficient for improving the spark generation voltage is not exhibited.

また、エチレンオキシド及び他のアルキレンオキシドのランダム共重合体を添加する方法(例えば特許文献3)が報告されており、具体例としてエチレンオキシドブチレンオキシドランダム共重合体が記載されている。このようなエチレンオキシドとブチレンオキシドをランダム状に付加した化合物は、エチレンオキシド及びプロピレンオキシドからなる化合物と比べて火花発生電圧の向上効果は高いが、分子量中のブチレンオキシドの含有率が高くなると溶媒への溶解性が低下して電解液中で分離してしまうことがあった。したがって、親水基であるオキシエチレン基の含有率を高める必要があるが、この場合は低温で凝固して電解液に結晶が析出し、火花発生電圧の向上に十分な効果を発現しないことがあった。
このように、火花発生電圧の向上に十分な効果を有するとともに、電解液の分離及び低温での結晶の析出を抑制することのできる電解コンデンサ用電解液は未だ得られていない。
In addition, a method of adding a random copolymer of ethylene oxide and other alkylene oxide has been reported (for example, Patent Document 3), and an ethylene oxide butylene oxide random copolymer is described as a specific example. Such a compound in which ethylene oxide and butylene oxide are randomly added has a higher effect of improving the spark generation voltage than a compound composed of ethylene oxide and propylene oxide, but if the content of butylene oxide in the molecular weight increases, In some cases, the solubility was lowered and the electrolyte was separated in the electrolytic solution. Therefore, it is necessary to increase the content of the oxyethylene group, which is a hydrophilic group, but in this case, it may solidify at a low temperature and crystals may precipitate in the electrolyte, which may not produce a sufficient effect for improving the spark generation voltage. It was.
Thus, an electrolytic solution for an electrolytic capacitor that has a sufficient effect for improving the spark generation voltage and that can suppress separation of the electrolytic solution and precipitation of crystals at a low temperature has not yet been obtained.

特開昭63−268224号公報JP 63-268224 A 特開平5−144679号公報JP-A-5-144679 特開平10−106892号公報Japanese Patent Application Laid-Open No. 10-106882

本発明が解決しようとする課題は、火花発生電圧の向上に十分な効果を有するとともに、比抵抗の上昇度に比べて火花発生電圧の向上度が高く、さらに電解液の分離及び低温での結晶の析出を抑制することのできる電解コンデンサ用電解液を提供することにある。   The problem to be solved by the present invention has a sufficient effect for improving the spark generation voltage, and has a higher degree of improvement of the spark generation voltage than the increase of the specific resistance. It is in providing the electrolyte solution for electrolytic capacitors which can suppress precipitation of this.

本発明者は、鋭意研究の結果、多価アルコールのブチレンオキシド−アルキレンオキシドブロック付加物、又はアルキレンオキシド−ブチレンオキシド−アルキレンオキシドブロック付加物、又はそれらの末端アルキルエーテル化物を、電解コンデンサ用電解液の火花発生電圧向上剤として使用すれば、電解液の分離が生じず、低温での結晶の析出も回避されることを見出し、本発明を完成するに至った。   As a result of diligent research, the present inventor obtained polybutyl alcohol butylene oxide-alkylene oxide block adducts, alkylene oxide-butylene oxide-alkylene oxide block adducts, or terminal alkyl etherified products thereof as electrolytic solutions for electrolytic capacitors. When used as a spark generating voltage improver, it has been found that separation of the electrolytic solution does not occur and precipitation of crystals at a low temperature is avoided, and the present invention has been completed.

すなわち、本発明は、
[1]次の(a)、(b)、及び(c)成分を含有する、電解コンデンサ用電解液、
(a)式(1)で示される化合物
(b)極性溶媒
(c)有機酸、無機酸又はそれらの塩からなる群から選択される1種以上の電解質

X−[O−(EO)/(PO)−(BO)−(EO)/(PO)−R] (1)
(式中、Xは、2〜6価のアルコールの水酸基を除いた残基を表す。EOはオキシエチレン基、POはオキシプロピレン基、BOはオキシブチレン基、Rは水素原子又は炭素数1〜4の炭化水素基を示す。a及びdはオキシエチレン基の平均付加モル数であって0〜40を示し、(a+d)は2〜40である。b及びeはオキシプロピレン基の平均付加モル数であって0〜20を示し、(b+e)は1〜20である。cはオキシブチレン基の平均付加モル数であって1〜12を示す。(a+d)/(a+b+d+e)は0.6〜0.95であり、c/(a+b+c+d+e)は0.1〜0.35である。kは2〜6であり、(EO)/(PO)及び(EO)/(PO)は、EOとPOのランダム状付加を表す。)
[2]式(1)で示される化合物のRが水素原子である、[1]記載の電解コンデンサ用電解液、
[3]式(1)で示される化合物のXが2又は3価のアルコールの水酸基を除いた残基である、[1]又は[2]記載の電解コンデンサ用電解液、
に関する。
That is, the present invention
[1] An electrolytic solution for electrolytic capacitors containing the following components (a), (b), and (c):
(A) Compound represented by formula (1) (b) Polar solvent (c) One or more electrolytes selected from the group consisting of organic acids, inorganic acids or salts thereof

X- [O- (EO) a / (PO) b- (BO) c- (EO) d / (PO) e- R] k (1)
(In the formula, X represents a residue excluding a hydroxyl group of a divalent to hexavalent alcohol. EO is an oxyethylene group, PO is an oxypropylene group, BO is an oxybutylene group, and R is a hydrogen atom or a carbon number of 1 to 1. 4 represents a hydrocarbon group of 4. a and d are average addition moles of an oxyethylene group and represent 0 to 40, and (a + d) is 2 to 40. b and e are average addition moles of an oxypropylene group. The number is 0 to 20, and (b + e) is 1 to 20. c is the average added mole number of the oxybutylene group and is 1 to 12. (a + d) / (a + b + d + e) is 0.6. C / (a + b + c + d + e) is 0.1 to 0.35, k is 2 to 6, (EO) a / (PO) b and (EO) d / (PO) e Represents a random addition of EO and PO.)
[2] The electrolytic solution for electrolytic capacitors according to [1], wherein R of the compound represented by the formula (1) is a hydrogen atom,
[3] The electrolytic solution for electrolytic capacitors according to [1] or [2], wherein X of the compound represented by the formula (1) is a residue obtained by removing a hydroxyl group of a divalent or trivalent alcohol,
About.

本発明に係る式(1)で示される化合物は、ポリエーテル系化合物でありながら、電解コンデンサ用電解液に添加しても電解液の分離を生じにくく、火花発生電圧を向上させ、低温における結晶の析出も抑制することができるため、耐電圧向上剤として有用である。当該化合物を含有する本発明に係る電解コンデンサ用電解液は、火花発生電圧の向上効果に優れるとともに、比抵抗の上昇度に比べて火花発生電圧の向上度が高く、さらに電解液の分離が生じにくく、低温における結晶の析出をも回避することができ、幅広い温度域における安定性が求められる車載用コンデンサなど、各種用途に実用上極めて有用である。   Although the compound represented by the formula (1) according to the present invention is a polyether compound, it is difficult to cause separation of the electrolytic solution even when added to the electrolytic solution for an electrolytic capacitor, improves spark generation voltage, and crystal at low temperature. Is also useful as a withstand voltage improver. The electrolytic solution for an electrolytic capacitor according to the present invention containing the compound is excellent in the effect of improving the spark generation voltage, has a high degree of improvement in the spark generation voltage compared to the increase in specific resistance, and further causes separation of the electrolytic solution. It is difficult to prevent precipitation of crystals at low temperatures, and is extremely useful in various applications such as an in-vehicle capacitor that requires stability in a wide temperature range.

(a)式(1)で示される化合物
式(1)において、Xは2〜6価のアルコールから水酸基を除いた残基を表し、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、グリセリン、ジグリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスルトール、ジペンタエリスリトール、キシロース、アルキルグルコシド、キシリトール、ガラクトース、グルコース、ソルビトール、ソルビタン等が挙げられる。
そのうち、2〜4価のアルコールの水酸基を除いた残基が好ましく、より好ましくは2〜3価のアルコールの水酸基を除いた残基であり、具体的には、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、グリセリン、トリメチロールエタン、トリメチロールプロパン等が挙げられる。アルコールの水酸基の価数が2より小さいと、親油基−親水基のジブロック型界面活性剤となるために、電解液の泡立ちが高くなる。
(A) Compound represented by formula (1) In formula (1), X represents a residue obtained by removing a hydroxyl group from a divalent to hexavalent alcohol, and ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, glycerin, Examples include diglycerin, trimethylolethane, trimethylolpropane, pentaerythritol, dipentaerythritol, xylose, alkylglucoside, xylitol, galactose, glucose, sorbitol, sorbitan and the like.
Among them, a residue from which a hydroxyl group of a divalent to tetravalent alcohol is removed is preferable, and a residue from which a hydroxyl group of a divalent to trivalent alcohol is removed is more preferable. Specific examples include ethylene glycol, propylene glycol, butylene glycol. , Neopentyl glycol, glycerin, trimethylol ethane, trimethylol propane and the like. When the valence of the hydroxyl group of the alcohol is less than 2, since it becomes a lipophilic group-hydrophilic diblock type surfactant, the foaming of the electrolyte is increased.

式(1)において、Rは水素原子又は炭素数1〜4の炭化水素基であり、炭素数1〜4の炭化水素基である場合は直鎖であっても分岐であってもよく、具体的にはメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基が挙げられる。Rは好ましくは水素原子である。Rの炭素数が4より大きくなると溶媒への溶解性が低下する。
式(1)において、a及びdはオキシエチレン基の平均付加モル数を表し、0〜40である。(a+d)は2〜40であり、好ましくは3〜30、より好ましくは3〜25である。(a+d)が2より小さいと溶媒への溶解性が低下し、40より大きくなると低温で電解液に結晶が析出しやすくなる。
In the formula (1), R is a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, and when it is a hydrocarbon group having 1 to 4 carbon atoms, it may be linear or branched. Specific examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a tert-butyl group. R is preferably a hydrogen atom. When the carbon number of R is larger than 4, the solubility in a solvent is lowered.
In Formula (1), a and d represent the average addition mole number of an oxyethylene group, and are 0-40. (A + d) is 2-40, preferably 3-30, more preferably 3-25. When (a + d) is smaller than 2, the solubility in a solvent is lowered, and when it is larger than 40, crystals are likely to precipitate in the electrolyte at a low temperature.

式(1)において、b及びeはオキシプロピレン基の平均付加モル数を表し、0〜20である。(b+e)は1〜20であり、好ましくは2〜15、より好ましくは2〜10である。(b+e)が1より小さいと低温で電解液に結晶が析出し、20より大きくなると溶媒への溶解性が低下する傾向がある。
式(1)において、cはオキシブチレン基の平均付加モル数を表し、1〜12であり、好ましくは1〜10、より好ましくは1〜8である。
式(1)において、(a+d)/(a+b+d+e)は、0.6〜0.95であり、好ましくは0.6〜0.9、より好ましくは0.6〜0.85である。(a+d)/(a+b+d+e)が0.6より小さいと溶媒への溶解性が低下し、0.95より大きくなると低温で電解液に結晶が析出しやすくなる。
式(1)において、c/(a+b+c+d+e)は0.1〜0.35であり、好ましくは0.1〜0.3である。c/(a+b+c+d+e)が0.1より小さいと低温で電解液に結晶が析出し、0.35より大きい場合は溶媒への溶解性が低下する傾向がある。
式(1)において、kは2〜6であり、好ましくは2〜4、より好ましくは2〜3である。
式(1)において、EO及びPOの付加形態はランダム状である。ブロック状の場合は低温で電解液に結晶が析出する。
式(1)で示される化合物の分子量は、好ましくは500〜10,000であり、より好ましくは800〜5,000である。分子量が500より小さいと火花発生電圧の向上に十分な効果が得られず、分子量が10,000より大きくなると電解液の粘度が高くなり、泡立ちが強くなりやすい。
In Formula (1), b and e represent the average addition mole number of an oxypropylene group, and are 0-20. (B + e) is 1-20, preferably 2-15, more preferably 2-10. When (b + e) is smaller than 1, crystals are precipitated in the electrolyte at a low temperature, and when it is larger than 20, the solubility in a solvent tends to decrease.
In formula (1), c represents the average number of added moles of the oxybutylene group, and is 1 to 12, preferably 1 to 10, and more preferably 1 to 8.
In the formula (1), (a + d) / (a + b + d + e) is 0.6 to 0.95, preferably 0.6 to 0.9, and more preferably 0.6 to 0.85. When (a + d) / (a + b + d + e) is less than 0.6, the solubility in a solvent is lowered, and when it is more than 0.95, crystals tend to precipitate in the electrolyte at a low temperature.
In the formula (1), c / (a + b + c + d + e) is 0.1 to 0.35, preferably 0.1 to 0.3. When c / (a + b + c + d + e) is smaller than 0.1, crystals are precipitated in the electrolyte at a low temperature, and when it is larger than 0.35, the solubility in a solvent tends to decrease.
In Formula (1), k is 2-6, Preferably it is 2-4, More preferably, it is 2-3.
In Formula (1), the addition form of EO and PO is random. In the case of the block shape, crystals are precipitated in the electrolyte at a low temperature.
The molecular weight of the compound represented by the formula (1) is preferably 500 to 10,000, more preferably 800 to 5,000. When the molecular weight is less than 500, a sufficient effect for improving the spark generation voltage cannot be obtained, and when the molecular weight is greater than 10,000, the viscosity of the electrolytic solution increases and foaming tends to be strong.

式(1)で示される化合物は、公知の方法で製造することができる。例えば、アルカリ触媒の存在下、2〜6価のアルコールにブチレンオキシド、炭素数2及び3のアルキレンオキシドを順に付加重合させることにより多価アルコールのブチレンオキシド−炭素数2及び3のアルキレンオキシド−ブロック付加物が得られる。さらに、この多価アルコールのブチレンオキシド−炭素数2及び3のアルキレンオキシド−ブロック付加物をアルカリ触媒の存在下においてハロゲン化アルキルと反応させることにより、末端アルキルエーテル化物が得られる。
また、アルカリ触媒の存在下、2〜6価のアルコールに 炭素数2及び3のアルキレンオキシド、ブチレンオキシドを順に付加重合させることにより多価アルコールのアルキレンオキシド−ブチレンオキシド−ブロック付加物が得られる。さらに、この多価アルコールのアルキレンオキシド−ブチレンオキシド−ブロック付加物をアルカリ触媒の存在下において炭素数2及び3のアルキレンオキシドと反応させることにより、多価アルコールのアルキレンオキシド−ブチレンオキシド−アルキレンオキシド−ブロック付加物が得られる。さらに、この多価アルコールのアルキレンオキシド−ブチレンオキシド−アルキレンオキシド−ブロック付加物をアルカリ触媒の存在下においてハロゲン化アルキルと反応させることにより、末端アルキルエーテル化物が得られる。
The compound represented by the formula (1) can be produced by a known method. For example, in the presence of an alkali catalyst, butylene oxide and alkylene oxides having 2 and 3 carbon atoms are sequentially added to a 2 to 6 valent alcohol to polymerize butylene oxide of a polyhydric alcohol-alkylene oxide blocks having 2 and 3 carbon atoms. An adduct is obtained. Furthermore, a terminal alkyl etherified product is obtained by reacting this polyhydric alcohol butylene oxide-C2 and C3 alkylene oxide block adduct with an alkyl halide in the presence of an alkali catalyst.
Further, an alkylene oxide-butylene oxide-block adduct of a polyhydric alcohol can be obtained by addition polymerization of a C2-C3 alkylene oxide and a butylene oxide to a divalent to hexavalent alcohol in the presence of an alkali catalyst. Furthermore, by reacting the alkylene oxide-butylene oxide-block adduct of the polyhydric alcohol with an alkylene oxide having 2 and 3 carbon atoms in the presence of an alkali catalyst, the polyhydric alcohol alkylene oxide-butylene oxide-alkylene oxide- A block adduct is obtained. Furthermore, a terminal alkyl etherified product is obtained by reacting the alkylene oxide-butylene oxide-alkylene oxide-block adduct of this polyhydric alcohol with an alkyl halide in the presence of an alkali catalyst.

上記のとおり、式(1)で示される化合物において、多価アルコールへのオキシブチレン基と(オキシエチレン基/オキシプロピレン基)の付加順序はいずれが先でもよく、また(オキシエチレン基/オキシプロピレン基)−オキシブチレン基−(オキシエチレン基/オキシプロピレン基)のように付加してもよい。付加順序がオキシブチレン基−(オキシエチレン基/オキシプロピレン基)である場合及び(オキシエチレン基/オキシプロピレン基)−オキシブチレン基−(オキシエチレン基/オキシプロピレン基)である場合は、極性溶媒への溶解性が向上する。また、付加順序が(オキシエチレン基/オキシプロピレン基)−オキシブチレン基である場合は、電解液の泡立ちが低減する。   As described above, in the compound represented by the formula (1), any order of addition of the oxybutylene group and (oxyethylene group / oxypropylene group) to the polyhydric alcohol may be first, and (oxyethylene group / oxypropylene group). Group) -oxybutylene group- (oxyethylene group / oxypropylene group). When the addition order is oxybutylene group- (oxyethylene group / oxypropylene group) and (oxyethylene group / oxypropylene group) -oxybutylene group- (oxyethylene group / oxypropylene group), a polar solvent Solubility is improved. Further, when the addition order is (oxyethylene group / oxypropylene group) -oxybutylene group, foaming of the electrolytic solution is reduced.

(b)極性溶媒
本発明における極性溶媒としては、エタノール、プロパノール等の1価アルコール、エチレングリコール、プロピレングリコール、ジエチレングリコール、1,3−ブタンジオール、1,4−ブタンジオール等の2価アルコール、グリセリン等の3価アルコール、エチレングリコールモノメチルエーテル、ジエチレングリコールジエチルエーテル等のエーテル系溶媒、γ−ブチロラクトン等のラクトン系溶媒、N−メチルホルムアミド等のアミド系溶媒、水等が挙げられ、単独で使用してもよく2種類以上を混合して使用してもよく、好ましくはエチレングリコール及びγ−ブチロラクトンである。
(B) Polar solvent The polar solvent in the present invention includes monohydric alcohols such as ethanol and propanol, dihydric alcohols such as ethylene glycol, propylene glycol, diethylene glycol, 1,3-butanediol, and 1,4-butanediol, and glycerin. Examples include trihydric alcohols such as ethylene glycol monomethyl ether and diethylene glycol diethyl ether, lactone solvents such as γ-butyrolactone, amide solvents such as N-methylformamide, water, and the like. Alternatively, two or more types may be used in combination, and ethylene glycol and γ-butyrolactone are preferred.

(c)有機酸、無機酸又はそれらの塩からなる群から選択される1種以上の電解質
本発明における無機酸としては、ホウ酸等が挙げられ、有機酸としては、アジピン酸、アゼライン酸、セバシン酸、ブチルオクタン二酸、5,6−デカンジカルボン酸、マレイン酸等の脂肪族カルボン酸、安息香酸、サリチル酸、フタル酸、トリメリット酸等の芳香族カルボン酸が挙げられる。これらは1種でも2種以上を混合して使用してもよく、塩基性化合物との中和塩として使用してもよい。塩基性化合物としては、アンモニア、アンモニア水、トリエチルアミン、トリエタノールアミン等の3級アミン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン等のポリアルキレンポリアミン、ポリアルキレンポリアミンのアルキレンオキシド付加物等が挙げられる。好ましくはアンモニア及びアンモニア水である。
(C) One or more electrolytes selected from the group consisting of organic acids, inorganic acids or salts thereof Examples of inorganic acids in the present invention include boric acid, and examples of organic acids include adipic acid, azelaic acid, Examples thereof include aliphatic carboxylic acids such as sebacic acid, butyloctanedioic acid, 5,6-decanedicarboxylic acid and maleic acid, and aromatic carboxylic acids such as benzoic acid, salicylic acid, phthalic acid and trimellitic acid. These may be used alone or in combination of two or more, and may be used as a neutralized salt with a basic compound. Examples of basic compounds include tertiary amines such as ammonia, aqueous ammonia, triethylamine, and triethanolamine, polyalkylene polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine, and tetraethylenepentamine, and alkylene oxide adducts of polyalkylenepolyamine. Can be mentioned. Ammonia and aqueous ammonia are preferred.

式(1)で示される化合物は、オキシブチレン基を含有しているため、アルミ電解コンデンサの陽極上の保護皮膜としては、オキシエチレン基やオキシプロピレン基のみからなる化合物と比べて電気絶縁性が高く、さらにオキシブチレン基の分岐のエチル基により嵩高い立体構造を形成することから、酸化皮膜の化成性を向上させることができる。これにより、オキシブチレン基を含有する化合物は火花発生電圧の向上に優れた効果を有する。
式(1)で示される化合物において、オキシブチレン基と(オキシエチレン基/オキシプロピレン基)の付加形態はブロック型であり、親油基であるポリオキシブチレン鎖と酸化皮膜を形成する酸との親和性により、酸化皮膜の化成性が向上して優れた火花発生電圧向上効果が得られる。
また、式(1)で示される化合物は、オキシブチレン基の分岐のエチル基を有し、さらにオキシエチレン基とオキシプロピレン基のランダム状の共重合体を有することにより、結晶性が低下し、低温における式(1)で示される化合物自体の結晶の析出を抑制することができる。これにより、低温においても性能を低下させることがなく、幅広い温度領域で安定にコンデンサを使用することができる。
Since the compound represented by the formula (1) contains an oxybutylene group, the protective film on the anode of the aluminum electrolytic capacitor is more electrically insulating than a compound consisting of only an oxyethylene group or an oxypropylene group. Further, since a bulky steric structure is formed by the branched ethyl group of the oxybutylene group, the chemical conversion property of the oxide film can be improved. Thereby, the compound containing an oxybutylene group has the effect excellent in the improvement of a spark generation voltage.
In the compound represented by the formula (1), the addition form of an oxybutylene group and (oxyethylene group / oxypropylene group) is a block type, and a polyoxybutylene chain that is a lipophilic group and an acid that forms an oxide film. Due to the affinity, the chemical conversion property of the oxide film is improved, and an excellent spark generation voltage improvement effect is obtained.
Further, the compound represented by the formula (1) has a branched ethyl group of an oxybutylene group, and further has a random copolymer of an oxyethylene group and an oxypropylene group, so that the crystallinity is lowered. Precipitation of crystals of the compound itself represented by formula (1) at a low temperature can be suppressed. As a result, the capacitor can be stably used in a wide temperature range without degrading the performance even at a low temperature.

本発明の電解液において、式(1)で示される化合物の添加量は、0.1〜50質量%である。添加量が0.1質量%より少ないと火花発生電圧の向上効果が不十分であり、50質量%より多いと、電解液の粘度が上昇する傾向にあるため適切でない。
以下、実施例により本発明をさらに詳しく説明するが、本発明はこれに限定されるものではない。
In the electrolytic solution of the present invention, the amount of the compound represented by the formula (1) is 0.1 to 50% by mass. When the addition amount is less than 0.1% by mass, the effect of improving the spark generation voltage is insufficient, and when it is more than 50% by mass, the viscosity of the electrolytic solution tends to increase.
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to this.

[実施例1]
<合成例1>
プロピレングリコール76.1g(1.0モル)と触媒として水酸化カリウム4.5gを5L容量オートクレーブ中に仕込み、オートクレーブ内の空気を窒素で置換した後、撹拌しながら120℃にて触媒を完全に溶解させた。次に滴下装置よりブチレンオキシド288.4g(4.0モル)を滴下し、4時間撹拌した。その後、さらに滴下装置よりエチレンオキシド882.0g(20.0モル)とプロピレンオキシド232.4g(4.0モル)の混合物を滴下し、4時間撹拌した。その後、オートクレーブより生成物を取り出し、塩酸で中和してpH6〜7とし、含有する水分を除去するために、減圧−0.095Mpa(ゲージ圧、50mmHg)、100℃で1時間処理した。さらに処理後生成した塩を除去するためにろ過を行い、表1の化合物Aを得た。
[Example 1]
<Synthesis Example 1>
76.1 g (1.0 mol) of propylene glycol and 4.5 g of potassium hydroxide as a catalyst were charged into a 5 L autoclave, the air in the autoclave was replaced with nitrogen, and the catalyst was completely removed at 120 ° C. with stirring. Dissolved. Next, 288.4 g (4.0 mol) of butylene oxide was added dropwise from the dropping device, followed by stirring for 4 hours. Thereafter, a mixture of 882.0 g (20.0 mol) of ethylene oxide and 232.4 g (4.0 mol) of propylene oxide was further added dropwise from a dropping device and stirred for 4 hours. Thereafter, the product was taken out from the autoclave, neutralized with hydrochloric acid to pH 6 to 7, and treated at 100 ° C. for 1 hour at a reduced pressure of −0.095 MPa (gauge pressure, 50 mmHg) in order to remove the contained water. Further, filtration was carried out to remove the salt produced after the treatment, and compound A in Table 1 was obtained.

<電解液の調製>
表2に示す組成で混合し、60℃で均一になるまで撹拌して電解液を得た。
<分離の有無の評価>
電解液50gをガラス瓶に入れ、25℃の恒温槽で1時間静置したときの分離の有無を以下の基準で評価した。
○:分離することなく均一である
×:分離している
結果を表2に示す。
<結晶の析出の有無の評価>
電解液50gをガラス瓶に入れ、25℃及び−40℃の恒温槽で1時間静置したときの結晶の析出の有無を以下の基準で評価した。
○:結晶が析出せず均一である
×:結晶が析出している
結果を表2に示す。
<Preparation of electrolyte>
It mixed by the composition shown in Table 2, and it stirred until it became uniform at 60 degreeC, and obtained electrolyte solution.
<Evaluation of presence / absence of separation>
The presence or absence of separation was evaluated according to the following criteria when 50 g of the electrolytic solution was put in a glass bottle and allowed to stand in a thermostatic bath at 25 ° C. for 1 hour.
○: Uniform without separation ×: Separation The results are shown in Table 2.
<Evaluation of Presence of Crystal Precipitation>
The following criteria evaluated the presence or absence of crystal precipitation when 50 g of the electrolytic solution was put in a glass bottle and allowed to stand for 1 hour in a thermostatic bath at 25 ° C. and −40 ° C.
○: Crystal is not precipitated and is uniform ×: Crystal is precipitated Table 2 shows the results.

<比抵抗の測定>
電気伝導度計(東亜電波工業(株)製CM−60S)により、電解液の30℃での比抵抗を測定した。結果を表2に示す。
<火花発生電圧の測定>
1L容量ステンレス製容器に電解液700gを入れ、60mm×10mmに切断した純度99.99%以上のアルミ箔を浸漬し、直流電源を繋げて25℃における電解液の火花発生電圧を測定した。火花発生電圧向上効果を次式にしたがって算出し、以下の基準で評価した。結果を表2に示す。

[火花発生電圧向上度(V)=(a)の化合物を添加した電解液の火花発生電圧−
(a)の化合物を添加していない電解液の火花発生電圧]

○:火花発生電圧向上度が30V以上
×:火花発生電圧向上度が30V未満
また、比抵抗上昇度に対する火花発生電圧向上度を次式にしたがって算出し、以下の基準で評価した。結果を表2に示す。

[火花発生電圧向上度/比抵抗上昇度=((a)の化合物を添加した電解液の火花発生電圧−(a)の化合物を添加していない電解液の火花発生電圧)/((a)の化合物を添加した電解液の比抵抗−(a)の化合物を添加していない電解液の比抵抗)]

○:火花発生電圧向上度/比抵抗上昇度が1.20以上
×:火花発生電圧向上度/比抵抗上昇度が1.20未満
<Measurement of specific resistance>
The specific resistance at 30 ° C. of the electrolytic solution was measured with an electric conductivity meter (CM-60S manufactured by Toa Radio Industry Co., Ltd.). The results are shown in Table 2.
<Measurement of spark generation voltage>
700 g of the electrolytic solution was put into a 1 L capacity stainless steel container, aluminum foil having a purity of 99.99% or more cut to 60 mm × 10 mm was immersed, and a spark generation voltage of the electrolytic solution at 25 ° C. was measured by connecting a DC power source. The spark generation voltage improvement effect was calculated according to the following equation and evaluated according to the following criteria. The results are shown in Table 2.

[Spark generation voltage improvement degree (V) = Spark generation voltage of electrolyte added with compound of (a) −
Spark generation voltage of electrolyte without adding compound (a)]

○: Spark generation voltage improvement degree is 30 V or more ×: Spark generation voltage improvement degree is less than 30 V Further, the spark generation voltage improvement degree with respect to the specific resistance increase degree is calculated according to the following formula and evaluated according to the following criteria. The results are shown in Table 2.

[Spark generation voltage improvement / specific resistance increase = (spark generation voltage of electrolyte added with compound (a) −spark generation voltage of electrolyte not added compound (a)) / ((a) Specific Resistance of Electrolytic Solution with Addition of Compound-Specific Resistance of Electrolytic Solution without Addition of Compound (a))]

○: Spark generation voltage improvement / specific resistance increase is 1.20 or more ×: Spark generation voltage improvement / specific resistance increase is less than 1.20

[実施例2〜9]
実施例1の方法に準じて、表1に示す化合物B〜Gを合成し、表2に示す電解液を調製して、分離の有無及び結晶析出の有無の評価を行った。また、比抵抗及び火花発生電圧を測定し、火花発生電圧向上度を算出し、火花発生電圧向上度の評価及び比抵抗上昇度に対する火花発生電圧向上度の評価を行った。結果を表2に示す。
[比較例1〜10]
実施例1と同様の方法で、表1に示す化合物H〜Qを合成し、表2に示す電解液を調製して、分離の有無及び結晶析出の有無の評価を行った。また、比抵抗及び火花発生電圧を測定し、火花発生電圧向上度を算出し、火花発生電圧向上度の評価及び比抵抗上昇度に対する火花発生電圧向上度の評価を行った。結果を表2に示す。なお、電解液の分離の評価において、25℃で分離が見られた場合には、結晶の析出の有無の評価、比抵抗の測定、火花発生電圧の測定は行わなかった。
[Examples 2 to 9]
According to the method of Example 1, compounds B to G shown in Table 1 were synthesized, and an electrolyte solution shown in Table 2 was prepared, and the presence or absence of separation and the presence or absence of crystal precipitation were evaluated. Moreover, the specific resistance and the spark generation voltage were measured, the spark generation voltage improvement degree was calculated, the spark generation voltage improvement degree was evaluated, and the spark generation voltage improvement degree with respect to the specific resistance increase degree was evaluated. The results are shown in Table 2.
[Comparative Examples 1 to 10]
In the same manner as in Example 1, the compounds H to Q shown in Table 1 were synthesized and the electrolyte solutions shown in Table 2 were prepared, and the presence or absence of separation and the presence or absence of crystal precipitation were evaluated. Moreover, the specific resistance and the spark generation voltage were measured, the spark generation voltage improvement degree was calculated, the spark generation voltage improvement degree was evaluated, and the spark generation voltage improvement degree with respect to the specific resistance increase degree was evaluated. The results are shown in Table 2. In the evaluation of the separation of the electrolytic solution, when separation was observed at 25 ° C., the evaluation of the presence or absence of crystal precipitation, the measurement of the specific resistance, and the measurement of the spark generation voltage were not performed.

表2から明らかなとおり、実施例1〜9の電解液は、分離することがなく、かつ低温において結晶が析出することもなく均一であった。また、実施例1〜9の電解液は火花発生電圧向上度が高く、さらに比抵抗上昇度に対する火花発生電圧向上度も高いことがわかった。すなわち、これらの電解液をアルミ電解コンデンサに使用した場合、高い電導度を示すとともに、高い火花発生電圧向上効果を示すことが確認された。   As is clear from Table 2, the electrolyte solutions of Examples 1 to 9 were uniform without separation and without precipitation of crystals at low temperatures. Moreover, it turned out that the electrolyte solution of Examples 1-9 has a high spark generation voltage improvement degree, and also has a high spark generation voltage improvement degree with respect to a specific resistance increase degree. That is, when these electrolytic solutions were used for aluminum electrolytic capacitors, it was confirmed that they showed high conductivity and a high spark generation voltage improvement effect.

これに対し、比較例1の電解液はcが本発明の範囲より大きく、c/(a+b+c+d+e)が本発明の範囲より大きいために、電解液が分離する結果となった。
比較例2は、c/(a+b+c+d+e)が本発明の範囲より大きいために、電解液が分離した。
比較例3は、a及び(a+d)が本発明の範囲より大きいために、低温で電解液に結晶が析出した。また、比抵抗上昇度に対する火花発生電圧向上度が不十分であった。
比較例4は、(a+d)が本発明の範囲より小さく、(a+d)/(a+b+d+e)が本発明の範囲より小さいために、電解液が分離した。
比較例5は、e及び(b+e)が本発明の範囲より大きく、(a+d)/(a+b+d+e)が本発明の範囲より小さいために、電解液が分離した。
比較例6は、cが本発明の範囲より小さく、c/(a+b+c+d+e)が本発明の範囲より小さいために、電解液が分離した。
比較例7は、cが本発明の範囲より小さく、(b+e)が本発明の範囲より小さく、(a+d)/(a+b+d+e)が本発明の範囲より大きく、c/(a+b+c+d+e)が本発明の範囲より小さいために、低温で電解液に結晶が析出した。また、火花発生電圧向上度が不十分であり、比抵抗上昇度に対する火花発生電圧向上度が不十分であった。
比較例8は、cが本発明の範囲より小さく、d及び(a+d)が本発明の範囲より大きく、c/(a+b+c+d+e)が本発明の範囲より小さいために、電解液に低温で結晶が析出した。また、火花発生電圧向上度が不十分であり、比抵抗上昇度に対する火花発生電圧向上度が不十分であった。
比較例9は、cが本発明の範囲より小さく、c/(a+b+c+d+e)が本発明の範囲より小さいために、低温で電解液に結晶が析出した。また、火花発生電圧向上度が不十分であり、比抵抗上昇度に対する火花発生電圧向上度が不十分であった。
比較例10は、cが本発明の範囲より大きく、(b+e)が本発明の範囲より小さく、(a+d)/(a+b+d+e)が本発明の範囲より大きく、c/(a+b+c+d+e)が本発明の範囲より大きく、kが本発明の範囲より小さいことにより、電解液が分離した。
On the other hand, the electrolytic solution of Comparative Example 1 was separated from the electrolytic solution because c was larger than the range of the present invention and c / (a + b + c + d + e) was larger than the range of the present invention.
In Comparative Example 2, since c / (a + b + c + d + e) was larger than the range of the present invention, the electrolytic solution was separated.
In Comparative Example 3, since a and (a + d) were larger than the range of the present invention, crystals were precipitated in the electrolytic solution at a low temperature. Moreover, the spark generation voltage improvement degree with respect to the specific resistance increase degree was insufficient.
In Comparative Example 4, since (a + d) was smaller than the range of the present invention and (a + d) / (a + b + d + e) was smaller than the range of the present invention, the electrolytic solution was separated.
In Comparative Example 5, since e and (b + e) were larger than the range of the present invention and (a + d) / (a + b + d + e) was smaller than the range of the present invention, the electrolytic solution was separated.
In Comparative Example 6, since c was smaller than the range of the present invention and c / (a + b + c + d + e) was smaller than the range of the present invention, the electrolytic solution was separated.
In Comparative Example 7, c is smaller than the range of the present invention, (b + e) is smaller than the range of the present invention, (a + d) / (a + b + d + e) is larger than the range of the present invention, and c / (a + b + c + d + e) is within the range of the present invention. Because it was smaller, crystals precipitated in the electrolyte at low temperatures. Moreover, the spark generation voltage improvement degree was insufficient, and the spark generation voltage improvement degree with respect to the specific resistance increase degree was insufficient.
In Comparative Example 8, c is smaller than the range of the present invention, d and (a + d) are larger than the range of the present invention, and c / (a + b + c + d + e) is smaller than the range of the present invention. did. Moreover, the spark generation voltage improvement degree was insufficient, and the spark generation voltage improvement degree with respect to the specific resistance increase degree was insufficient.
In Comparative Example 9, since c was smaller than the range of the present invention and c / (a + b + c + d + e) was smaller than the range of the present invention, crystals were precipitated in the electrolytic solution at a low temperature. Moreover, the spark generation voltage improvement degree was insufficient, and the spark generation voltage improvement degree with respect to the specific resistance increase degree was insufficient.
In Comparative Example 10, c is larger than the range of the present invention, (b + e) is smaller than the range of the present invention, (a + d) / (a + b + d + e) is larger than the range of the present invention, and c / (a + b + c + d + e) is within the range of the present invention. The electrolyte was separated because it was larger and k was smaller than the range of the present invention.

Figure 2012028752
Figure 2012028752

Figure 2012028752
Figure 2012028752

Claims (3)

次の(a)、(b)、及び(c)成分を含有する、電解コンデンサ用電解液。
(a)式(1)で示される化合物
(b)極性溶媒
(c)有機酸、無機酸又はそれらの塩からなる群から選択される1種以上の電解質

X−[O−(EO)/(PO)−(BO)−(EO)/(PO)−R] (1)
(式中、Xは2〜6価のアルコールの水酸基を除いた残基である。EOはオキシエチレン基であり、POはオキシプロピレン基であり、BOはオキシブチレン基である。Rは水素原子又は炭素数1〜4の炭化水素基である。a及びdはオキシエチレン基の平均付加モル数であって0〜40を示し、(a+d)は2〜40である。b及びeはオキシプロピレン基の平均付加モル数であって0〜20を示し、(b+e)は1〜20である。cはオキシブチレン基の平均付加モル数であって1〜12を示す。(a+d)/(a+b+d+e)は0.6〜0.95である。c/(a+b+c+d+e)は0.1〜0.35である。kは2〜6であり、(EO)/(PO)及び(EO)/(PO)は、EOとPOのランダム状付加を表す。)
An electrolytic solution for an electrolytic capacitor containing the following components (a), (b), and (c):
(A) Compound represented by formula (1) (b) Polar solvent (c) One or more electrolytes selected from the group consisting of organic acids, inorganic acids or salts thereof

X- [O- (EO) a / (PO) b- (BO) c- (EO) d / (PO) e- R] k (1)
(In the formula, X is a residue obtained by removing a hydroxyl group of a divalent to hexavalent alcohol. EO is an oxyethylene group, PO is an oxypropylene group, BO is an oxybutylene group. R is a hydrogen atom. Or it is a C1-C4 hydrocarbon group, a and d are the average addition mole numbers of an oxyethylene group, 0-40 are shown, (a + d) is 2-40, b and e are oxypropylene. The average added mole number of the group is from 0 to 20, and (b + e) is from 1 to 20. c is the average added mole number of the oxybutylene group and is from 1 to 12. (a + d) / (a + b + d + e ) Is 0.6 to 0.95, c / (a + b + c + d + e) is 0.1 to 0.35, k is 2 to 6, and (EO) a / (PO) b and (EO) d / (PO) e represents random addition of EO and PO.)
式(1)で示される化合物のRが水素原子である、請求項1記載の電解コンデンサ用電解液。   The electrolytic solution for electrolytic capacitors according to claim 1, wherein R of the compound represented by formula (1) is a hydrogen atom. 式(1)で示される化合物のXが2又は3価のアルコールの水酸基を除いた残基である、請求項1又は2記載の電解コンデンサ用電解液。   The electrolytic solution for electrolytic capacitors according to claim 1 or 2, wherein X of the compound represented by the formula (1) is a residue obtained by removing a hydroxyl group of a divalent or trivalent alcohol.
JP2011135921A 2010-06-24 2011-06-20 Electrolytic solution for electrolytic capacitors Active JP5936095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011135921A JP5936095B2 (en) 2010-06-24 2011-06-20 Electrolytic solution for electrolytic capacitors

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010144138 2010-06-24
JP2010144138 2010-06-24
JP2011135921A JP5936095B2 (en) 2010-06-24 2011-06-20 Electrolytic solution for electrolytic capacitors

Publications (2)

Publication Number Publication Date
JP2012028752A true JP2012028752A (en) 2012-02-09
JP5936095B2 JP5936095B2 (en) 2016-06-15

Family

ID=45781268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011135921A Active JP5936095B2 (en) 2010-06-24 2011-06-20 Electrolytic solution for electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP5936095B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014120512A (en) * 2012-12-13 2014-06-30 Nof Corp Electrolyte for electrolytic capacitor
JP2015065369A (en) * 2013-09-26 2015-04-09 日油株式会社 Electrolytic solution for electrolyte capacitors
JP2019134179A (en) * 2015-03-11 2019-08-08 三洋化成工業株式会社 Electrolytic solution for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same
JP2021022753A (en) * 2020-11-06 2021-02-18 日本ケミコン株式会社 Solid electrolytic capacitor and method of manufacturing the same
JP2022100375A (en) * 2020-11-06 2022-07-05 日本ケミコン株式会社 Solid electrolytic capacitor and method of manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7056923B2 (en) 2018-05-31 2022-04-19 大東電材株式会社 Wire peeling tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257810A (en) * 1990-03-07 1991-11-18 Rubycon Corp Electrolyte for driving electrolytic capacitor
JPH05144679A (en) * 1991-11-21 1993-06-11 Matsushita Electric Ind Co Ltd Electrolytic capacitor and its manufacture
JP2005191337A (en) * 2003-12-26 2005-07-14 Nichicon Corp Electrolytic capacitor and electrolyte for driving the same
JP2006206494A (en) * 2005-01-27 2006-08-10 Nof Corp Hair cosmetic

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257810A (en) * 1990-03-07 1991-11-18 Rubycon Corp Electrolyte for driving electrolytic capacitor
JPH05144679A (en) * 1991-11-21 1993-06-11 Matsushita Electric Ind Co Ltd Electrolytic capacitor and its manufacture
JP2005191337A (en) * 2003-12-26 2005-07-14 Nichicon Corp Electrolytic capacitor and electrolyte for driving the same
JP2006206494A (en) * 2005-01-27 2006-08-10 Nof Corp Hair cosmetic

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014120512A (en) * 2012-12-13 2014-06-30 Nof Corp Electrolyte for electrolytic capacitor
JP2015065369A (en) * 2013-09-26 2015-04-09 日油株式会社 Electrolytic solution for electrolyte capacitors
JP2019134179A (en) * 2015-03-11 2019-08-08 三洋化成工業株式会社 Electrolytic solution for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same
US10607786B2 (en) 2015-03-11 2020-03-31 Sanyo Chemical Industries, Ltd. Electrolytic solution for aluminum electrolytic capacitor and aluminum electrolytic capacitor using same
JP2022002341A (en) * 2015-03-11 2022-01-06 三洋化成工業株式会社 Electrolyte for aluminum electrolytic capacitor and aluminum electrolytic capacitors using the same
JP7181366B2 (en) 2015-03-11 2022-11-30 三洋化成工業株式会社 Electrolyte for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same
JP2021022753A (en) * 2020-11-06 2021-02-18 日本ケミコン株式会社 Solid electrolytic capacitor and method of manufacturing the same
JP7067598B2 (en) 2020-11-06 2022-05-16 日本ケミコン株式会社 Solid electrolytic capacitors and their manufacturing methods
JP2022100375A (en) * 2020-11-06 2022-07-05 日本ケミコン株式会社 Solid electrolytic capacitor and method of manufacturing the same
JP7294494B2 (en) 2020-11-06 2023-06-20 日本ケミコン株式会社 Solid electrolytic capacitor and its manufacturing method

Also Published As

Publication number Publication date
JP5936095B2 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP5936095B2 (en) Electrolytic solution for electrolytic capacitors
JP5936099B2 (en) Electrolytic solution for electrolytic capacitors
JP6485074B2 (en) Copolymer, production method thereof, conductive polymer aqueous solution, and use thereof
JP6214795B2 (en) Ionic liquid
KR20100017606A (en) Ionic liquids comprising polyethercarboxylates as anions, production and use thereof
WO2000025323A1 (en) Curable composition for solid polymer electrolyte
JP7013653B2 (en) Electrolytes
JP2007126611A (en) Long chain dibasic acid
JPH11306857A (en) Polymer solid electrolyte
JP6036252B2 (en) Electrolytic solution for electrolytic capacitors
JP4304242B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor
JP5936096B2 (en) Electrolytic solution for electrolytic capacitors
JP6194721B2 (en) Electrolytic solution for electrolytic capacitors
WO2002056324A1 (en) Electrolysis solution for electrolytic capacitors
JP2017085092A (en) Electrolytic solution for aluminum electrolytic capacitor
JP2015198178A (en) Ion fluid
JP6241715B2 (en) Electrolytic solution for electrolytic capacitors
JP6724526B2 (en) Water-soluble conductive polymer, method for producing the same, aqueous solution of the conductive polymer, and use thereof
JP2012051962A (en) Copolymer and polymer solid electrolyte
JP3979992B2 (en) Electrolytic solution for electrolytic capacitor driving and electrolytic capacitor
JP4529258B2 (en) Electrolytic solution for electrolytic capacitor driving and electrolytic capacitor
JPH03257810A (en) Electrolyte for driving electrolytic capacitor
JPH0246038B2 (en)
JP4637374B2 (en) Electrolytic solution for electrolytic capacitor drive
JP2021040087A (en) Modifier of capacitor electrolyte solution, electrolytic solution for aluminum electrolytic capacitor, which is arranged by use thereof, and aluminum electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160428

R150 Certificate of patent or registration of utility model

Ref document number: 5936095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250