JP2014120512A - Electrolyte for electrolytic capacitor - Google Patents

Electrolyte for electrolytic capacitor Download PDF

Info

Publication number
JP2014120512A
JP2014120512A JP2012272294A JP2012272294A JP2014120512A JP 2014120512 A JP2014120512 A JP 2014120512A JP 2012272294 A JP2012272294 A JP 2012272294A JP 2012272294 A JP2012272294 A JP 2012272294A JP 2014120512 A JP2014120512 A JP 2014120512A
Authority
JP
Japan
Prior art keywords
group
electrolyte
carbon atoms
generation voltage
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012272294A
Other languages
Japanese (ja)
Other versions
JP6036252B2 (en
Inventor
Yasuyuki Nakamura
康行 中村
Tetsushi Abe
哲志 阿部
Kazuteru Sunada
和輝 砂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Priority to JP2012272294A priority Critical patent/JP6036252B2/en
Publication of JP2014120512A publication Critical patent/JP2014120512A/en
Application granted granted Critical
Publication of JP6036252B2 publication Critical patent/JP6036252B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Secondary Cells (AREA)
  • Polyethers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolyte for an electrolytic capacitor having sufficient electrical conductivity and an extremely high spark generating voltage, in which crystal does not precipitate at low temperature.SOLUTION: An electrolyte for electrolytic capacitor contains (a), (b) and (c). (a) A compound represented by formula (1), (b) one or more than one kind of compound selected from a group consisting of ammonia and amine compound, and (c) a polar solvent. (Z is a residue of bivalent fatty alcohol of 6C-12C from which hydroxyl is removed, X is a residue of aliphatic dibasic acid of 5C-12C from which carboxyl group is removed, and AO is an oxyalkylene group of 2C-4C. n is average number of moles added of oxyalkylene group of 2C-4C, and 1-30).

Description

本発明は、電解コンデンサ用電解液に関する。   The present invention relates to an electrolytic solution for an electrolytic capacitor.

アルミ電解コンデンサは、高純度のアルミニウム箔からなる陽極に形成する酸化被膜を誘電体として利用するものであり、−40℃程度から100℃を超える温度までの幅広い温度領域において安定に使用できることが必須となる。近年のコンデンサのデジタル機器や車載機器用途での需要の拡大にともない、高電圧下でもショートパンクを引き起こすことなく使用できるよう、火花発生電圧の向上の要求はますます厳しくなっている。
アルミ電解コンデンサに用いられる電解液として、エチレングリコールやγ−ブチロラクトン等を主成分とする極性溶媒に、ホウ酸等の無機酸やアジピン酸、マレイン酸等の二塩基酸又はその塩を電解質とした電解液が知られている。しかしながら、電解質としてこれらの酸を使用した電解液は、電導性は高いものの火花発生電圧が低いことが問題となっていた。
電解液の火花発生電圧を向上させる方法として、電解質を含有する電解液にポリエチレングリコール等の非イオン性のポリアルキレングリコール誘導体を添加する方法が知られているが、このようなポリアルキレングリコール誘導体は電導性をほとんど示さないため、火花発生電圧の向上に効果を有するものの、電導性を低下させてしまう問題があった。
また、電導性を大きく低下させることなく火花発生電圧を向上させる方法として、火花発生電圧の高い電解質を用いる電解液が報告されている。ブチルオクタン二酸を使用する方法(例えば特許文献1)、5,6−デカンジカルボン酸を使用する方法(例えば特許文献2)等が報告されており、このようなカルボン酸を使用した電解液は、火花発生電圧の向上に効果を有するが、カルボン酸の極性溶媒への溶解性が低いために低温において結晶化して析出することがあり、火花発生電圧の低下や電導度の低下を引き起こすことがあった。ポリエチレングリコールとコハク酸とのジエステル化合物などを使用する方法(例えば特許文献3)、ポリエチレングリコールと分岐鎖を有する脂肪族二塩基酸とのジエステル化合物を使用する方法(例えば特許文献4)等が報告されており、これらのジエステル化合物を使用した電解液は、極性溶媒への溶解性が高いために低温での結晶化を抑制することができる。しかしながら、セバシン酸のような脂肪族二塩基酸と比べると火花発生電圧の向上効果は高いが、車載用途等に使用した場合には火花発生電圧の向上効果が十分ではなかった。
このように、低温で結晶を析出させることなく、十分な電導性を有し、火花発生電圧の極めて高い電解コンデンサ用電解液は未だ得られていない。
An aluminum electrolytic capacitor uses an oxide film formed on an anode made of high-purity aluminum foil as a dielectric, and must be able to be used stably in a wide temperature range from about −40 ° C. to over 100 ° C. It becomes. With the recent increase in demand for capacitors in digital devices and in-vehicle devices, there is an increasing demand for improvement in spark generation voltage so that it can be used without causing short puncture even under high voltage.
As an electrolytic solution used for an aluminum electrolytic capacitor, a polar solvent mainly composed of ethylene glycol or γ-butyrolactone, an inorganic acid such as boric acid, a dibasic acid such as adipic acid or maleic acid or a salt thereof as an electrolyte Electrolytic solutions are known. However, an electrolytic solution using these acids as an electrolyte has a problem of low spark generation voltage although it has high conductivity.
As a method for improving the spark generation voltage of an electrolytic solution, a method of adding a nonionic polyalkylene glycol derivative such as polyethylene glycol to an electrolytic solution containing an electrolyte is known. Since it exhibits little electrical conductivity, it has an effect of improving the spark generation voltage, but there is a problem of reducing electrical conductivity.
In addition, an electrolytic solution using an electrolyte having a high spark generation voltage has been reported as a method for improving the spark generation voltage without greatly reducing the electrical conductivity. A method using butyloctanedioic acid (for example, Patent Document 1), a method using 5,6-decanedicarboxylic acid (for example, Patent Document 2) and the like have been reported, and an electrolytic solution using such a carboxylic acid is described below. It has the effect of improving the spark generation voltage, but it may crystallize and precipitate at low temperatures due to the low solubility of carboxylic acid in polar solvents, which may cause a decrease in spark generation voltage and conductivity. there were. Reported are a method using a diester compound of polyethylene glycol and succinic acid (for example, Patent Document 3), a method using a diester compound of polyethylene glycol and an aliphatic dibasic acid having a branched chain (for example, Patent Document 4), etc. In addition, since electrolytes using these diester compounds have high solubility in polar solvents, crystallization at low temperatures can be suppressed. However, the effect of improving the spark generation voltage is higher than that of an aliphatic dibasic acid such as sebacic acid, but the effect of improving the spark generation voltage is not sufficient when used for in-vehicle applications.
As described above, an electrolytic solution for an electrolytic capacitor having sufficient conductivity without causing crystals to precipitate at a low temperature and an extremely high spark generation voltage has not yet been obtained.

特開昭56−45014号公報JP-A-56-45014 特開昭60−124814号公報JP 60-124814 A 特開2004−128275号公報JP 2004-128275 A 特開2007−126611号公報JP 2007-126611 A

本発明が解決しようとする課題は、低温で結晶が析出することなく、十分な電導性を有し、火花発生電圧の極めて高い電解コンデンサ用電解液を提供することである。   The problem to be solved by the present invention is to provide an electrolytic solution for an electrolytic capacitor that has sufficient conductivity without causing crystal precipitation at a low temperature and has an extremely high spark generation voltage.

本発明者らは、鋭意検討した結果、下記(a)、(b)、及び(c)成分を含有する電解コンデンサ用電解液が、前記課題の解決に有用であることを見出した。
すなわち、本発明は、以下のとおりである。
次の(a)、(b)及び(c)を含有する、電解コンデンサ用電解液。
(a)式(1)で示される化合物
(b)アンモニア及びアミン化合物からなる群から選択される1種又は2種以上の化合物
(c)極性溶媒

Figure 2014120512
(Zは炭素数6〜12の2価の脂肪族アルコールの水酸基を除いた残基である。Xは炭素数5〜12の脂肪族二塩基酸のカルボキシル基を除いた残基である。AOは炭素数2〜4のオキシアルキレン基である。nは炭素数2〜4のオキシアルキレン基の平均付加モル数であり、1〜30である。) As a result of intensive studies, the present inventors have found that an electrolytic solution for electrolytic capacitors containing the following components (a), (b), and (c) is useful for solving the above problems.
That is, the present invention is as follows.
An electrolytic solution for electrolytic capacitors containing the following (a), (b) and (c).
(A) Compound represented by formula (1) (b) One or more compounds selected from the group consisting of ammonia and amine compounds (c) Polar solvent
Figure 2014120512
(Z is a residue obtained by removing a hydroxyl group of a divalent aliphatic alcohol having 6 to 12 carbon atoms. X is a residue obtained by removing a carboxyl group of an aliphatic dibasic acid having 5 to 12 carbon atoms. AO. Is an oxyalkylene group having 2 to 4 carbon atoms, n is the average number of moles added of the oxyalkylene group having 2 to 4 carbon atoms, and is 1 to 30.)

本発明の電解コンデンサ用電解液は、優れた電導性と高い火花発生電圧を有するとともに、低温においての結晶析出がないため、幅広い温度域における安定性が求められる車載用機器や、各種デジタル機器用等のコンデンサの電解液として極めて有用である。   The electrolytic solution for electrolytic capacitors of the present invention has excellent electrical conductivity and high spark generation voltage, and has no crystal precipitation at low temperature. It is extremely useful as an electrolytic solution for capacitors such as.

以下、本発明の実施形態について説明する。
(a)式(1)で示される化合物
式(1)におけるZは、炭素数6〜12の2価の脂肪族アルコールの水酸基を除いた残基であり、1,6−ヘキサンジオール、1,10−デカンジオール、1,12−ドデカンジオール等の直鎖の脂肪族アルコールの水酸基を除いた残基や、2−エチル−1,3−ヘキサンジオール、2,4−ジエチル−1,5−ペンタンジオール、2−ブチル−2−エチル−1,3−プロパンジオール等の分岐鎖を有する脂肪族アルコールの水酸基を除いた残基が挙げられる。
Zが炭素数6より小さい2価の脂肪族アルコールの水酸基を除いた残基である場合は、火花発生電圧が不十分であり、12より大きい2価の脂肪族アルコールの水酸基を除いた残基である場合は、電解液溶媒への溶解性が低下する。Zは炭素数6〜10の2価の脂肪族アルコールの水酸基を除いた残基であることが好ましい。Zは、電導性に対する火花発生電圧の大きさの点から、直鎖の2価の脂肪族アルコールの水酸基を除いた残基であることが好ましい。
Hereinafter, embodiments of the present invention will be described.
(A) Compound represented by the formula (1) Z in the formula (1) is a residue excluding the hydroxyl group of a divalent aliphatic alcohol having 6 to 12 carbon atoms, 1,6-hexanediol, 1, Residues other than hydroxyl groups of linear aliphatic alcohols such as 10-decanediol and 1,12-dodecanediol, 2-ethyl-1,3-hexanediol, 2,4-diethyl-1,5-pentane Examples thereof include a residue obtained by removing a hydroxyl group of a branched aliphatic alcohol such as diol and 2-butyl-2-ethyl-1,3-propanediol.
When Z is a residue excluding the hydroxyl group of a divalent aliphatic alcohol having a carbon number of less than 6, the spark generation voltage is insufficient, and the residue excluding the hydroxyl group of a divalent aliphatic alcohol having a value of more than 12 In such a case, the solubility in the electrolytic solution solvent decreases. Z is preferably a residue excluding the hydroxyl group of a divalent aliphatic alcohol having 6 to 10 carbon atoms. Z is preferably a residue obtained by removing the hydroxyl group of a linear divalent aliphatic alcohol from the viewpoint of the magnitude of the spark generation voltage with respect to conductivity.

式(1)におけるXは、炭素数5〜12の脂肪族二塩基酸のカルボキシル基を除いた残基であり、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸等の直鎖の脂肪族二塩基酸のカルボキシル基を除いた残基や、分岐鎖を有する脂肪族二塩基酸の水酸基を除いた残基が挙げられる。
Xが、炭素数が5より小さい脂肪族二塩基酸のカルボキシル基を除いた残基である場合は、火花発生電圧が不十分であり、12より大きい脂肪族二塩基酸のカルボキシル基を除いた残基である場合は、電解液溶媒への溶解性が低下する。Xは、炭素数6〜10の脂肪族二塩基酸のカルボキシル基を除いた残基であることが好ましい。Xは、電導性に対する火花発生電圧の大きさの点から、直鎖の脂肪族二塩基酸のカルボキシル基を除いた残基であることが好ましい。
式(1)で示される化合物において、2価の脂肪族アルコール残基の炭素数と脂肪族二塩基酸残基の炭素数の総和は、好ましくは18〜32である。
X in Formula (1) is a residue obtained by removing a carboxyl group of an aliphatic dibasic acid having 5 to 12 carbon atoms, and is glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecane diacid. Examples thereof include a residue obtained by removing a carboxyl group of a linear aliphatic dibasic acid such as an acid, and a residue obtained by removing a hydroxyl group of an aliphatic dibasic acid having a branched chain.
When X is a residue obtained by removing a carboxyl group of an aliphatic dibasic acid having less than 5 carbon atoms, the spark generation voltage is insufficient and the carboxyl group of an aliphatic dibasic acid having a carbon number greater than 12 is removed. When it is a residue, the solubility in an electrolyte solution solvent decreases. X is preferably a residue excluding a carboxyl group of an aliphatic dibasic acid having 6 to 10 carbon atoms. X is preferably a residue obtained by removing the carboxyl group of a linear aliphatic dibasic acid from the viewpoint of the magnitude of the spark generation voltage with respect to conductivity.
In the compound represented by the formula (1), the total number of carbon atoms of the divalent aliphatic alcohol residue and the aliphatic dibasic acid residue is preferably 18 to 32.

式(1)において、AOは、炭素数2〜4の1種又は2種以上のオキシアルキレン基である。AOが2種以上である場合はブロック状に付加していてもランダム状に付加していてもよく、炭素数2〜3のオキシアルキレン基、次いで炭素数4のオキシアルキレン基の順に、炭素数6〜12の2価の脂肪族アルコールに付加したものであることが好ましい。
式(1)において、nは2価の脂肪族アルコールの水酸基1個あたりの炭素数2〜4のオキシアルキレン基の平均付加モル数であり、1〜30である。nが1より小さいと極性溶媒への溶解性が低下し、30より大きいと十分な電導性が得られない。nは好ましくは1〜20であり、より好ましくは2〜10である。
In the formula (1), AO is one or more oxyalkylene groups having 2 to 4 carbon atoms. When AO is 2 or more types, it may be added in a block shape or randomly, and the number of carbon atoms may be added in the order of an oxyalkylene group having 2 to 3 carbon atoms and then an oxyalkylene group having 4 carbon atoms. It is preferable that it is added to 6-12 divalent aliphatic alcohol.
In Formula (1), n is the average addition mole number of a C2-C4 oxyalkylene group per hydroxyl group of a bivalent aliphatic alcohol, and is 1-30. When n is smaller than 1, the solubility in a polar solvent is lowered, and when n is larger than 30, sufficient conductivity cannot be obtained. n is preferably 1 to 20, and more preferably 2 to 10.

式(1)で示される化合物の分子量は、好ましくは500〜3,000、より好ましくは600〜2,000である。分子量が500より小さいと火花発生電圧の向上に十分な効果が得られず、分子量が3,000より大きいと比抵抗が大きくなり十分な電導性が得られない。
式(1)で示される化合物は、公知の方法で製造することができる。例えば、アルカリ触媒の存在下において炭素数6〜12の2価の脂肪族アルコールに炭素数2〜4のアルキレンオキシドを付加重合させた後、アルカリ触媒を、酸による中和又は吸着剤を用いた吸着処理により除去し、次いで炭素数5〜12の脂肪族二塩基酸とエステル化反応させることにより得られる。
The molecular weight of the compound represented by the formula (1) is preferably 500 to 3,000, more preferably 600 to 2,000. If the molecular weight is smaller than 500, a sufficient effect for improving the spark generation voltage cannot be obtained, and if the molecular weight is larger than 3,000, the specific resistance increases and sufficient conductivity cannot be obtained.
The compound represented by the formula (1) can be produced by a known method. For example, after addition polymerization of a C2-C4 alkylene oxide to a C6-C12 divalent aliphatic alcohol in the presence of an alkali catalyst, the alkali catalyst was neutralized with an acid or using an adsorbent. It can be obtained by removing by adsorption treatment and then esterifying with an aliphatic dibasic acid having 5 to 12 carbon atoms.

式(1)で示される化合物は、ポリオキシアルキレン基と連続した炭化水素基を有することにより、極性溶媒への高い溶解性を示すとともに、高い火花発生電圧を発現する。また、オキシアルキレン基にオキシブチレン基を含有することでアルミ表面への吸着性が向上し、さらに炭素数6〜12の2価の脂肪族アルコールに炭素数2〜3のオキシアルキレン基、炭素数4のオキシアルキレン基の順に付加している場合は、分岐のエチル基の立体障害によりエステル結合の加水分解が抑制される。   Since the compound represented by the formula (1) has a hydrocarbon group that is continuous with the polyoxyalkylene group, it exhibits high solubility in a polar solvent and exhibits a high spark generation voltage. Further, by containing an oxybutylene group in the oxyalkylene group, the adsorptivity to the aluminum surface is improved. When the 4 oxyalkylene groups are added in this order, hydrolysis of the ester bond is suppressed by the steric hindrance of the branched ethyl group.

(b)アンモニア及びアミン化合物からなる群から選択される1種又は2種以上の化合物
アンモニアの他、アミン化合物としては、N−ブチルアミン、モノエタノールアミン等の1級アミン、ジエタノールアミン等の2級アミン、トリエチルアミン、トリエタノールアミン、ジメチルアミノエタノール、N−メチルジエタノールアミン等の3級アミン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン等のポリアルキレンポリアミン、ポリアルキレンポリアミンのアルキレンオキシド付加物等が挙げられ、単独で使用しても2種以上を混合して使用してもよい。好ましくはアンモニアである。
(B) One or more compounds selected from the group consisting of ammonia and amine compounds In addition to ammonia, amine compounds include primary amines such as N-butylamine and monoethanolamine, and secondary amines such as diethanolamine. , Tertiary amines such as triethylamine, triethanolamine, dimethylaminoethanol, N-methyldiethanolamine, polyalkylene polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and alkylene oxide adducts of polyalkylenepolyamine These may be used alone or in combination of two or more. Ammonia is preferred.

(c)極性溶媒
本発明で使用する極性溶媒としては、エタノール、プロパノール等の1価アルコール、エチレングリコール、プロピレングリコール、ジエチレングリコール、1,3−ブタンジオール、1,4−ブタンジオール等の2価アルコール、グリセリン等の3価アルコール、エチレングリコールモノメチルエーテル、ジエチレングリコールジエチルエーテル等のエーテル系溶媒、γ−ブチロラクトン等のラクトン系溶媒、N−メチルホルムアミド等のアミド系溶媒、水等が挙げられ、単独で使用してもよく2種類以上を混合して使用してもよい。エチレングリコールと水を混合して用いることが好ましい。
(C) Polar solvent The polar solvent used in the present invention includes monohydric alcohols such as ethanol and propanol, and dihydric alcohols such as ethylene glycol, propylene glycol, diethylene glycol, 1,3-butanediol, and 1,4-butanediol. , Trivalent alcohols such as glycerin, ether solvents such as ethylene glycol monomethyl ether and diethylene glycol diethyl ether, lactone solvents such as γ-butyrolactone, amide solvents such as N-methylformamide, water, etc. Or two or more types may be mixed and used. It is preferable to use a mixture of ethylene glycol and water.

本発明の電解液における(a)の含有率は0.1〜50質量%、好ましくは1〜40質量%、より好ましくは5〜30質量%である。含有率が0.1質量%より小さいと電導性が不十分であり、50質量%より大きいと、電解液の粘度が上昇して取扱い性が低下する。
本発明の電解液における(b)の含有率は、0.1〜30質量%である。
(a)におけるカルボキシル基に対し、(b)におけるアミノ基のモル比は、好ましくは0.5〜1.5である。カルボキシル基に対するアミノ基のモル比が0.5より小さいと(a)の極性溶媒への溶解性が不十分となり、1.5より大きいと、使用量に見合った効果が得られない。
The content rate of (a) in the electrolyte solution of this invention is 0.1-50 mass%, Preferably it is 1-40 mass%, More preferably, it is 5-30 mass%. When the content is less than 0.1% by mass, the electrical conductivity is insufficient. When the content is greater than 50% by mass, the viscosity of the electrolytic solution increases and the handleability decreases.
The content rate of (b) in the electrolyte solution of this invention is 0.1-30 mass%.
The molar ratio of the amino group in (b) to the carboxyl group in (a) is preferably 0.5 to 1.5. If the molar ratio of the amino group to the carboxyl group is smaller than 0.5, the solubility of the (a) in the polar solvent becomes insufficient, and if it is larger than 1.5, an effect commensurate with the amount used cannot be obtained.

以下、実施例によって更に具体的に説明するが、本発明はこれに限定されるものではない。
[実施例1]
<合成例1>
1,6−ヘキサンジオール236.4g(2.0モル)と、触媒として水酸化カリウム5.8gを5L容量オートクレーブに仕込み、オートクレーブ内の空気を窒素で置換した後、撹拌しながら120℃にて触媒を完全に溶解させた。次に滴下装置よりエチレンオキシド2646.0g(60.0モル)を滴下し、1時間撹拌した。その後、オートクレーブより生成物を取り出し、リン酸で中和してpH6〜7とし、含有する水分を除去するために、減圧−0.095Mpa(ゲージ圧、50mmHg)、100℃で1時間処理した。さらに処理後生成した塩を除去するためにろ過を行い、1,6−ヘキサンジオール−エチレンオキシド30モル付加物を得た。この1,6−ヘキサンジオール−エチレンオキシド30モル付加物の水酸基価は78.6であった。 この1,6−ヘキサンジオール−エチレンオキシド30モル付加物1427.5g(1.0モル)とセバシン酸404.6g(2.0モル)を3L容量四つ口フラスコに仕込み、窒素の導入と撹拌を行いながら140℃で8時間エステル化反応を行い、表1のエステル化合物Aを得た。このエステル化合物Aの酸価は61.3であった。
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
[Example 1]
<Synthesis Example 1>
236.4 g (2.0 mol) of 1,6-hexanediol and 5.8 g of potassium hydroxide as a catalyst were charged into a 5 L-volume autoclave, and the air in the autoclave was replaced with nitrogen, and then stirred at 120 ° C. The catalyst was completely dissolved. Next, 2646.0 g (60.0 mol) of ethylene oxide was added dropwise from the dropping device and stirred for 1 hour. Thereafter, the product was taken out from the autoclave, neutralized with phosphoric acid to pH 6 to 7, and treated at 100 ° C. for 1 hour under reduced pressure—0.095 Mpa (gauge pressure, 50 mmHg) in order to remove the contained water. Further, filtration was performed to remove the salt produced after the treatment, and a 1,6-hexanediol-ethylene oxide 30 mol adduct was obtained. The 1,6-hexanediol-ethylene oxide 30 mol adduct had a hydroxyl value of 78.6. This 1,6-hexanediol-ethylene oxide 30 mol adduct 1427.5 g (1.0 mol) and sebacic acid 404.6 g (2.0 mol) were charged into a 3 L four-necked flask, and nitrogen was introduced and stirred. The esterification reaction was carried out at 140 ° C. for 8 hours while carrying out to obtain the ester compound A shown in Table 1. The acid value of this ester compound A was 61.3.

<電解液の調製>
表2に示す組成で混合し、60℃で均一になるまで撹拌して電解液を得た。
<結晶の析出の有無の評価>
電解液50gをガラス瓶に入れ、−40℃の恒温槽で1時間静置したときの結晶の析出の有無を、外観から、以下の基準で評価した。
○:結晶が析出せず均一である
×:結晶が析出している
結果を表2に示す。
<比抵抗の測定>
電導性の指標として比抵抗の測定を行った。比抵抗が大きいほど電導性が低いことを意味する。電気伝導度計(東亜電波工業(株)製CM−60S)により、電解液の30℃での比抵抗を測定し、以下の基準で評価した。結果を表2に示す。
○:比抵抗が2000Ω・cm未満
×:比抵抗が2000Ω・cm以上
<火花発生電圧の測定>
1L容量ステンレス製容器に電解液700gを入れ、60mm×10mmに切断した純度99.99%以上のアルミ箔を浸漬し、直流電源を繋げて25℃における電解液の火花発生電圧を測定し、以下の基準で評価した。結果を表2に示す。
○:火花発生電圧向上度が450V以上
×:火花発生電圧向上度が450V未満
<Preparation of electrolyte>
It mixed by the composition shown in Table 2, and it stirred until it became uniform at 60 degreeC, and obtained electrolyte solution.
<Evaluation of Presence of Crystal Precipitation>
The presence or absence of crystal precipitation when the electrolyte solution 50 g was put in a glass bottle and allowed to stand for 1 hour in a -40 ° C. constant temperature bath was evaluated from the appearance according to the following criteria.
○: Crystal is not precipitated and is uniform ×: Crystal is precipitated Table 2 shows the results.
<Measurement of specific resistance>
Specific resistance was measured as an index of electrical conductivity. It means that electrical conductivity is so low that a specific resistance is large. The specific resistance at 30 ° C. of the electrolyte was measured with an electric conductivity meter (CM-60S manufactured by Toa Denpa Kogyo Co., Ltd.) and evaluated according to the following criteria. The results are shown in Table 2.
○: Specific resistance is less than 2000Ω · cm ×: Specific resistance is 2000Ω · cm or more <Measurement of spark generation voltage>
Put 700 g of electrolyte in a 1 L capacity stainless steel container, immerse aluminum foil with a purity of 99.99% or more cut into 60 mm × 10 mm, connect a DC power supply, and measure the spark generation voltage of the electrolyte at 25 ° C. Evaluation based on the criteria. The results are shown in Table 2.
○: Spark generation voltage improvement degree is 450V or more ×: Spark generation voltage improvement degree is less than 450V

[実施例2]
実施例1と同様の方法で、表1に示す化合物Bを合成し、表2に示す電解液を調製した。電解液の結晶の析出の有無の評価、比抵抗の測定及び火花発生電圧の測定を行い、実施例1と同様の基準で評価を行った。結果を表2に示す。
[Example 2]
In the same manner as in Example 1, compound B shown in Table 1 was synthesized, and an electrolyte solution shown in Table 2 was prepared. Evaluation of the presence or absence of crystal precipitation of the electrolyte, measurement of specific resistance, and measurement of spark generation voltage were performed, and evaluation was performed according to the same criteria as in Example 1. The results are shown in Table 2.

[実施例3]
<合成例3>
1,6−ヘキサンジオール236.4g(2.0モル)と、触媒として水酸化カリウム3.0gを5L容量オートクレーブに仕込み、オートクレーブ内の空気を窒素で置換した後、撹拌しながら120℃にて触媒を完全に溶解させた。次に滴下装置よりエチレンオキシド529.2g(12.0モル)及びプロピレンオキシド464.8g(8.0モル)を滴下し、2時間撹拌した。さらに、滴下装置よりブチレンオキシド288.4g(4.0モル)を滴下し、3時間撹拌した。その後、オートクレーブより生成物を取り出し、リン酸で中和してpH6〜7とし、含有する水分を除去するために、減圧−0.095Mpa(ゲージ圧、50mmHg)、100℃で1時間処理した。さらに処理後生成した塩を除去するためにろ過を行い、1,6−ヘキサンジオール−(エチレンオキシド6モル/プロピレンオキシド4モル)−ブチレンオキシド2モル付加物を得た。この付加物の水酸基価は152.2であった。 この1,6−ヘキサンジオール−(エチレンオキシド6モル/プロピレンオキシド4モル)−ブチレンオキシド2モル付加物737.2g(1.0モル)とセバシン酸404.6g(2.0モル)を1L容量四つ口フラスコに仕込み、窒素の導入と撹拌を行いながら140℃で8時間エステル化反応を行い、表1のエステル化合物Cを得た。このエステル化合物Cの酸価は106.6であった。
[Example 3]
<Synthesis Example 3>
236.4 g (2.0 mol) of 1,6-hexanediol and 3.0 g of potassium hydroxide as a catalyst were charged into a 5 L autoclave, and the air in the autoclave was replaced with nitrogen, and then stirred at 120 ° C. The catalyst was completely dissolved. Next, 529.2 g (12.0 mol) of ethylene oxide and 464.8 g (8.0 mol) of propylene oxide were added dropwise from a dropping device, and the mixture was stirred for 2 hours. Further, 288.4 g (4.0 mol) of butylene oxide was dropped from the dropping device, and the mixture was stirred for 3 hours. Thereafter, the product was taken out from the autoclave, neutralized with phosphoric acid to pH 6 to 7, and treated at 100 ° C. for 1 hour under reduced pressure—0.095 Mpa (gauge pressure, 50 mmHg) in order to remove the contained water. Further, filtration was performed to remove the salt produced after the treatment, and 1,6-hexanediol- (ethylene oxide 6 mol / propylene oxide 4 mol) -butylene oxide 2 mol adduct was obtained. The hydroxyl value of this adduct was 152.2. The 1,6-hexanediol- (ethylene oxide 6 mol / propylene oxide 4 mol) -butylene oxide 2 mol adduct 737.2 g (1.0 mol) and sebacic acid 404.6 g (2.0 mol) An esterification reaction was carried out at 140 ° C. for 8 hours while introducing and stirring nitrogen, and an ester compound C shown in Table 1 was obtained. The acid value of this ester compound C was 106.6.

[実施例4〜6]
実施例3と同様の方法で、表1に示す化合物D〜Fを合成し、表2に示す電解液を調製した。電解液の結晶の析出の有無の評価、比抵抗の測定及び火花発生電圧の測定を行い、実施例1と同様の基準で評価を行った。結果を表2に示す。
[Examples 4 to 6]
In the same manner as in Example 3, the compounds D to F shown in Table 1 were synthesized, and the electrolyte solutions shown in Table 2 were prepared. Evaluation of the presence or absence of crystal precipitation of the electrolyte, measurement of specific resistance, and measurement of spark generation voltage were performed, and evaluation was performed according to the same criteria as in Example 1. The results are shown in Table 2.

[比較例1〜5]
実施例と同様の方法で、表1に示す化合物G〜Jを合成し、表2に示す電解液を調製して、結晶析出の有無の評価を行った。また、比抵抗及び火花発生電圧を測定して評価を行った。結果を表2に示す。なお、結晶析出の有無の評価において結晶の析出が見られた場合には、比抵抗の測定、火花発生電圧の測定は行わなかった。
[Comparative Examples 1-5]
Compounds G to J shown in Table 1 were synthesized in the same manner as in Examples, and electrolyte solutions shown in Table 2 were prepared to evaluate the presence or absence of crystal precipitation. The specific resistance and spark generation voltage were measured and evaluated. The results are shown in Table 2. In addition, when precipitation of a crystal | crystallization was seen in evaluation of the presence or absence of crystal precipitation, the measurement of specific resistance and the measurement of spark generation voltage were not performed.

Figure 2014120512
Figure 2014120512

Figure 2014120512
Figure 2014120512

表2の結果から、実施例1〜6の電解液は、低温において結晶が析出することがなく均一であることがわかる。また、実施例1〜6の電解液は、十分な電導性を示しながら、高い火花発生電圧向上を示すことがわかる。
これに対し、比較例1は本発明の式(1)で示される化合物を用いていないために、低温で電解液に結晶が析出した。
比較例2は、式(1)の化合物に代えて、オキシアルキレン基の付加されていない化合物Gを用いたため、低温で電解液に結晶が析出した。
比較例3は、式(1)の化合物に代えて、炭素数が本発明の範囲より小さい2価脂肪族アルコールから得られた化合物Hを使用したため、火花発生電圧が不十分であった。
比較例4は、オキシアルキレン基の付加モル数が本発明の範囲より大きい化合物Iを使用したために、比抵抗が高かった。
比較例5は、脂肪族二塩基酸の炭素数が本発明の範囲より小さい化合物Jを使用したために、火花発生電圧が不十分であった。
From the results in Table 2, it can be seen that the electrolytes of Examples 1 to 6 are uniform without crystals being precipitated at low temperatures. Moreover, it turns out that the electrolyte solution of Examples 1-6 shows a high spark generation voltage improvement, showing sufficient electroconductivity.
On the other hand, since Comparative Example 1 did not use the compound represented by the formula (1) of the present invention, crystals were precipitated in the electrolyte at a low temperature.
In Comparative Example 2, since the compound G to which no oxyalkylene group was added was used in place of the compound of the formula (1), crystals were precipitated in the electrolytic solution at a low temperature.
In Comparative Example 3, since the compound H obtained from a divalent aliphatic alcohol having a carbon number smaller than the range of the present invention was used in place of the compound of the formula (1), the spark generation voltage was insufficient.
In Comparative Example 4, since the compound I in which the number of added oxyalkylene groups added was larger than the range of the present invention, the specific resistance was high.
Since the comparative example 5 used the compound J whose carbon number of an aliphatic dibasic acid is smaller than the range of this invention, the spark generation voltage was inadequate.

Claims (1)

次の(a)、(b)及び(c)を含有する、電解コンデンサ用電解液。
(a)式(1)で示される化合物
(b)アンモニア及びアミン化合物からなる群から選択される1種又は2種以上の化合物
(c)極性溶媒
Figure 2014120512
(Zは炭素数6〜12の2価の脂肪族アルコールの水酸基を除いた残基、Xは炭素数5〜12の脂肪族二塩基酸のカルボキシル基を除いた残基、AOは炭素数2〜4のオキシアルキレン基である。nは炭素数2〜4のオキシアルキレン基の平均付加モル数で、1〜30である。)





An electrolytic solution for electrolytic capacitors containing the following (a), (b) and (c).
(A) Compound represented by formula (1) (b) One or more compounds selected from the group consisting of ammonia and amine compounds (c) Polar solvent
Figure 2014120512
(Z is a residue obtained by removing a hydroxyl group of a divalent aliphatic alcohol having 6 to 12 carbon atoms, X is a residue obtained by removing a carboxyl group of an aliphatic dibasic acid having 5 to 12 carbon atoms, and AO is 2 carbon atoms. -4 is an oxyalkylene group, and n is an average added mole number of an oxyalkylene group having 2 to 4 carbon atoms, and is 1 to 30.)





JP2012272294A 2012-12-13 2012-12-13 Electrolytic solution for electrolytic capacitors Active JP6036252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012272294A JP6036252B2 (en) 2012-12-13 2012-12-13 Electrolytic solution for electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012272294A JP6036252B2 (en) 2012-12-13 2012-12-13 Electrolytic solution for electrolytic capacitors

Publications (2)

Publication Number Publication Date
JP2014120512A true JP2014120512A (en) 2014-06-30
JP6036252B2 JP6036252B2 (en) 2016-11-30

Family

ID=51175132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012272294A Active JP6036252B2 (en) 2012-12-13 2012-12-13 Electrolytic solution for electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP6036252B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019134179A (en) * 2015-03-11 2019-08-08 三洋化成工業株式会社 Electrolytic solution for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same
WO2024010063A1 (en) * 2022-07-06 2024-01-11 パナソニックIpマネジメント株式会社 Electrolytic capacitor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257810A (en) * 1990-03-07 1991-11-18 Rubycon Corp Electrolyte for driving electrolytic capacitor
JP2001155771A (en) * 1999-11-24 2001-06-08 Nof Corp Electrolyte for the secondary battery and secondary battery
JP2004071727A (en) * 2002-08-05 2004-03-04 Nof Corp Electrolytic capacitor and electrolyte therefor
JP2004128275A (en) * 2002-10-03 2004-04-22 Nichicon Corp Electrolytic solution for driving electrolytic capacitor and the electrolytic capacitor
JP2004193308A (en) * 2002-12-11 2004-07-08 Matsushita Electric Ind Co Ltd Electrolytic capacitor and its manufacturing method
JP2007126611A (en) * 2005-11-07 2007-05-24 Okamura Seiyu Kk Long chain dibasic acid
JP2010021036A (en) * 2008-07-11 2010-01-28 Nof Corp Negative electrode for secondary battery and secondary battery having same
JP2012028752A (en) * 2010-06-24 2012-02-09 Nof Corp Electrolyte for electrolytic capacitor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257810A (en) * 1990-03-07 1991-11-18 Rubycon Corp Electrolyte for driving electrolytic capacitor
JP2001155771A (en) * 1999-11-24 2001-06-08 Nof Corp Electrolyte for the secondary battery and secondary battery
JP2004071727A (en) * 2002-08-05 2004-03-04 Nof Corp Electrolytic capacitor and electrolyte therefor
JP2004128275A (en) * 2002-10-03 2004-04-22 Nichicon Corp Electrolytic solution for driving electrolytic capacitor and the electrolytic capacitor
JP2004193308A (en) * 2002-12-11 2004-07-08 Matsushita Electric Ind Co Ltd Electrolytic capacitor and its manufacturing method
JP2007126611A (en) * 2005-11-07 2007-05-24 Okamura Seiyu Kk Long chain dibasic acid
JP2010021036A (en) * 2008-07-11 2010-01-28 Nof Corp Negative electrode for secondary battery and secondary battery having same
JP2012028752A (en) * 2010-06-24 2012-02-09 Nof Corp Electrolyte for electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019134179A (en) * 2015-03-11 2019-08-08 三洋化成工業株式会社 Electrolytic solution for aluminum electrolytic capacitor and aluminum electrolytic capacitor using the same
WO2024010063A1 (en) * 2022-07-06 2024-01-11 パナソニックIpマネジメント株式会社 Electrolytic capacitor

Also Published As

Publication number Publication date
JP6036252B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
JP5466256B2 (en) Aluminum electrolytic capacitor electrolyte and method for producing core solute thereof
JP5936099B2 (en) Electrolytic solution for electrolytic capacitors
JP5936095B2 (en) Electrolytic solution for electrolytic capacitors
JP5401644B2 (en) Novel organogelator
JP6036252B2 (en) Electrolytic solution for electrolytic capacitors
JPS62235487A (en) Corrosion inhibitor
US9598628B2 (en) Method for inhibiting the plugging of conduits by gas hydrates
TW200406440A (en) Oil soluble hyperbranched polyesteramides
JP2016134406A (en) Carboxylic acid compound useful as solute for electrolyte for power storage device and method for producing the same
JP2007126611A (en) Long chain dibasic acid
JP2005535755A5 (en)
CN101083170B (en) Long chain ester mixture containing end carboxyl prepared electrolysing solution and process for producing the same
JP4787558B2 (en) Long chain polybasic acid mixture
JP5936096B2 (en) Electrolytic solution for electrolytic capacitors
US20150024977A1 (en) Method for inhibiting the plugging of conduits by gas hydrates
JP6454905B2 (en) Hyperbranched polymer
JP6241715B2 (en) Electrolytic solution for electrolytic capacitors
JP2015198178A (en) Ion fluid
JP7107777B2 (en) Electrolyte for electrolytic capacitor and electrolytic capacitor
JP4529258B2 (en) Electrolytic solution for electrolytic capacitor driving and electrolytic capacitor
CN108884504B (en) Water-soluble quenching oil composition
JP2004128275A (en) Electrolytic solution for driving electrolytic capacitor and the electrolytic capacitor
JPH0718577A (en) Liquid softening agent composition
JP2003031442A (en) Electrolyte for electrolytic capacitor and electrolytic capacitor using it
JPH08291217A (en) Carboxyl group-containing polyxyalkylene compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R150 Certificate of patent or registration of utility model

Ref document number: 6036252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250