JP5936096B2 - Electrolytic solution for electrolytic capacitors - Google Patents

Electrolytic solution for electrolytic capacitors Download PDF

Info

Publication number
JP5936096B2
JP5936096B2 JP2011135922A JP2011135922A JP5936096B2 JP 5936096 B2 JP5936096 B2 JP 5936096B2 JP 2011135922 A JP2011135922 A JP 2011135922A JP 2011135922 A JP2011135922 A JP 2011135922A JP 5936096 B2 JP5936096 B2 JP 5936096B2
Authority
JP
Japan
Prior art keywords
group
acid
formula
generation voltage
spark generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011135922A
Other languages
Japanese (ja)
Other versions
JP2012028753A (en
Inventor
中村康行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Priority to JP2011135922A priority Critical patent/JP5936096B2/en
Publication of JP2012028753A publication Critical patent/JP2012028753A/en
Application granted granted Critical
Publication of JP5936096B2 publication Critical patent/JP5936096B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、電解コンデンサ用電解液に関する。   The present invention relates to an electrolytic solution for an electrolytic capacitor.

アルミ電解コンデンサは、高純度のアルミニウム箔からなる陽極に形成する酸化被膜を誘電体として利用するものであり、−40℃程度から100℃を超える温度までの幅広い温度領域において安定に使用できることが必須となる。近年のデジタル家電の普及や自動車の電装化にともないデジタル機器や車載機器用途での需要が拡がっているが、高電圧下で使用した場合にショート等の不具合を発生することがあり、火花発生電圧の向上が要求されている。
アルミ電解コンデンサに用いられる駆動用電解液としては、エチレングリコールやγ−ブチロラクトン等を主成分とする極性溶媒に、ホウ酸等の無機酸やアジピン酸、マレイン酸等の二塩基酸及びその塩を溶質とした駆動用電解液が知られている。しかしながら、溶質としてこれらのカルボン酸を使用した電解液は、電導性は高いものの火花発生電圧が低いことが問題となっていた。
An aluminum electrolytic capacitor uses an oxide film formed on an anode made of high-purity aluminum foil as a dielectric, and must be able to be used stably in a wide temperature range from about −40 ° C. to over 100 ° C. It becomes. With the recent spread of digital home appliances and the electrification of automobiles, the demand for digital devices and in-vehicle devices is expanding, but when used under high voltage, problems such as short-circuits may occur, and spark generation voltage Improvement is demanded.
As a driving electrolyte used for an aluminum electrolytic capacitor, a polar solvent mainly composed of ethylene glycol or γ-butyrolactone, an inorganic acid such as boric acid, a dibasic acid such as adipic acid or maleic acid, and a salt thereof. Solvent driving electrolytes are known. However, electrolytes using these carboxylic acids as solutes have a problem of low electrical spark generation voltage although they are highly conductive.

火花発生電圧を向上させる方法としては、ブチルオクタン二酸を使用する方法(例えば特許文献1)、5,6−デカンジカルボン酸を使用する方法(例えば特許文献2)等が報告されているが、このようなアルキル鎖長の長いカルボン酸を使用した電解液は、火花発生電圧の向上に有効であるものの、長鎖カルボン酸の極性溶媒への溶解性が低いために低温において結晶化して析出することがあり、その結果、火花発生電圧の低下や電導度の低下を引き起こすことがあった。   As a method for improving the spark generation voltage, a method using butyloctanedioic acid (for example, Patent Document 1), a method using 5,6-decanedicarboxylic acid (for example, Patent Document 2), and the like have been reported. Although an electrolyte using such a carboxylic acid having a long alkyl chain length is effective in improving the spark generation voltage, it is crystallized and precipitated at a low temperature because the solubility of the long chain carboxylic acid in a polar solvent is low. As a result, the spark generation voltage and electrical conductivity may be reduced.

火花発生電圧を向上させる方法としては、他に、電解液にポリアルキレングリコール系化合物を添加する方法が知られている。例えば、低級アルコールにエチレンオキシドと他のアルキレンオキシドをランダム状に付加した化合物(例えば特許文献3)が報告されている。この化合物は、アルミ電解コンデンサの陽極の化成性を高めることにより火花発生電圧の向上効果を奏する。しかしながら、この化合物はランダム状の共重合体であるために界面活性能が低く、低温における長鎖カルボン酸の分散性を向上させて結晶の析出を抑制するような効果は見られない。また、アルコールにエチレンオキシドとプロピレンオキシドを順にブロック状に付加した化合物(例えば特許文献4)等が報告されているが、このような化合物は火花発生電圧の向上に効果を有するものの、アルキル基−親水基−親油基のトリブロック型共重合体であり、溶媒への溶解に必要な親水基のブロック部位を末端にもたないために溶媒に配向しにくく、低温において長鎖カルボン酸を分散させて結晶の析出を抑制するような効果は見られなかった。   As another method for improving the spark generation voltage, a method of adding a polyalkylene glycol compound to the electrolytic solution is known. For example, a compound (for example, Patent Document 3) in which ethylene oxide and other alkylene oxides are randomly added to a lower alcohol has been reported. This compound has an effect of improving the spark generation voltage by enhancing the chemical conversion of the anode of the aluminum electrolytic capacitor. However, since this compound is a random copolymer, its surface activity is low, and the effect of suppressing the precipitation of crystals by improving the dispersibility of long-chain carboxylic acids at low temperatures is not observed. In addition, a compound in which ethylene oxide and propylene oxide are sequentially added to alcohol in a block form (for example, Patent Document 4) has been reported. Although such a compound has an effect in improving the spark generation voltage, an alkyl group-hydrophilic property It is a triblock type copolymer of group-lipophilic group, and since it does not have a block site of a hydrophilic group necessary for dissolution in a solvent at the end, it is difficult to orient in a solvent, and long chain carboxylic acid is dispersed at a low temperature. Thus, no effect of suppressing crystal precipitation was observed.

特公昭60−13293号公報Japanese Patent Publication No. 60-13293 特公昭63−15738号公報Japanese Patent Publication No. 63-15738 特開平10−106892号公報Japanese Patent Application Laid-Open No. 10-106882 特開平3−257810号公報JP-A-3-257810

本発明が解決しようとする課題は、火花発生電圧の向上に十分な効果を有するとともに、比抵抗の上昇度に比べて火花発生電圧の向上度が高く、さらに低温におけるカルボン酸の結晶の析出を抑制することのできる電解コンデンサ用電解液を提供することにある。   The problem to be solved by the present invention has a sufficient effect for improving the spark generation voltage, has a high degree of improvement in the spark generation voltage compared to the increase in specific resistance, and further precipitates carboxylic acid crystals at low temperatures. An object of the present invention is to provide an electrolytic solution for an electrolytic capacitor that can be suppressed.

本発明者は、鋭意研究の結果、炭素数1〜4のアルコールのブチレンオキシド−アルキレンオキシドブロック付加物を、電解コンデンサ用電解液に添加すれば、火花発生電圧を向上させるとともに、低温条件下でも、当該添加剤が分離することなく、カルボン酸結晶の析出も回避されることを見出し、本発明を完成するに至った。
すなわち、本発明は、以下のとおりである。
[1]次の(a)、(b)、及び(c)成分を含有する、電解コンデンサ用電解液、
(a)式(1)で示される化合物
(b)極性溶媒
(c)有機酸、無機酸又はそれらの塩からなる群から選択される1種以上の電解質
R−O−(BO)−(EO)/(PO)−H (1)
(式中、Rは炭素数1〜4の炭化水素基である。BOはオキシブチレン基であり、EOはオキシエチレン基であり、POはオキシプロピレン基である。aはオキシブチレン基の平均付加モル数であって3〜15を示す。bはオキシエチレン基の平均付加モル数であって45を示す。cはオキシプロピレン基の平均付加モル数であって23を示す。a/(a+b+c)は0.150.4であり、b/(b+c)は0.650.9である。(EO)/(PO)は、EOとPOのランダム状付加を表す。)
]電解質が、総炭素数10〜14のジカルボン酸又はその塩を含有する電解質である、[1]記載の電解コンデンサ用電解液。
As a result of earnest research, the present inventor has improved the spark generation voltage and added the butylene oxide-alkylene oxide block adduct of an alcohol having 1 to 4 carbon atoms to the electrolytic solution for electrolytic capacitors, even under low temperature conditions. The inventors have found that precipitation of carboxylic acid crystals can be avoided without separating the additive, and the present invention has been completed.
That is, the present invention is as follows.
[1] An electrolytic solution for electrolytic capacitors containing the following components (a), (b), and (c):
(A) Compound represented by formula (1) (b) Polar solvent (c) One or more electrolytes selected from the group consisting of organic acids, inorganic acids or salts thereof R—O— (BO) a — ( EO) b / (PO) c- H (1)
(In the formula, R is a hydrocarbon group having 1 to 4 carbon atoms. BO is an oxybutylene group, EO is an oxyethylene group, PO is an oxypropylene group. A is an average addition of oxybutylene groups. The number of moles is 3 to 15. b is the average number of moles added of oxyethylene groups and is 4 to 45. c is the average number of moles added of oxypropylene groups and is 2 to 23. a / (A + b + c) is 0.15 to 0.4 and b / (b + c) is 0.65 to 0.9 (EO) b / (PO) c is a random addition of EO and PO. Represents.)
[2] The electrolyte is a dicarboxylic acid or an electrolyte containing a salt having a total carbon number of 10 to 14, [1] Symbol mounting electrolyte for the electrolytic capacitor.

本発明に係る式(1)で示される化合物は、それ自体、電解コンデンサ用電解液の火花発生電圧の向上効果を有し、低温領域で分離することもない耐電圧向上剤として有用である。また、比抵抗の上昇度に比べて火花発生電圧の向上度が高く、火花発生電圧向上剤として知られる長鎖カルボン酸の低温領域における結晶析出を抑制することができるため、当該耐電圧向上剤を含有する本発明の電解液は、幅広い温度域における安定性が求められる車載用コンデンサなど、各種用途に実用上極めて有用である。   The compound represented by the formula (1) according to the present invention itself has an effect of improving the spark generation voltage of the electrolytic solution for electrolytic capacitors, and is useful as a withstand voltage improver that does not separate in a low temperature region. Further, since the degree of improvement of the spark generation voltage is higher than the degree of increase in the specific resistance, it is possible to suppress the precipitation of crystals in the low temperature region of a long-chain carboxylic acid known as a spark generation voltage improver, so that the withstand voltage improver The electrolytic solution of the present invention containing s is extremely useful in various applications such as a vehicle-mounted capacitor that requires stability in a wide temperature range.

(a)式(1)で示される化合物
式(1)において、Rは炭素数1〜4の炭化水素基であり、直鎖であっても分岐であってもよく、具体的にはメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基が挙げられる。Rは好ましくはメチル基又はエチル基であり、より好ましくはメチル基である。Rの炭素数が4より大きいと、式(1)で示される化合物の溶媒への溶解性が低下する。
式(1)において、aはオキシブチレン基の平均付加モル数で、3〜25、好ましくは3〜20、より好ましくは3〜15である。aが3より小さいとカルボン酸の分散性が低下して低温で電解液にカルボン酸の結晶が析出し、25より大きいと式(1)で示される化合物の溶媒への溶解性が低下する。
式(1)において、bはオキシエチレン基の平均付加モル数で、3〜60、好ましくは4〜50、より好ましくは4〜45である。bが3より小さいと式(1)で示される化合物の溶媒への溶解性が低下し、60より大きいと低温で電解液に式(1)で示される化合物自身の結晶が析出しやすくなる。
式(1)において、cはオキシプロピレン基の平均付加モル数で、0〜30、好ましくは1〜25、より好ましくは2〜23である。cが30より大きいと式(1)で示される化合物の溶媒への溶解性が低下する。
(A) Compound represented by the formula (1) In the formula (1), R is a hydrocarbon group having 1 to 4 carbon atoms, which may be linear or branched, specifically a methyl group. , Ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, and tert-butyl group. R is preferably a methyl group or an ethyl group, and more preferably a methyl group. When the carbon number of R is larger than 4, the solubility of the compound represented by formula (1) in the solvent is lowered.
In Formula (1), a is the average added mole number of an oxybutylene group, and is 3-25, Preferably it is 3-20, More preferably, it is 3-15. When a is less than 3, the dispersibility of the carboxylic acid is lowered and carboxylic acid crystals are precipitated in the electrolytic solution at a low temperature, and when it is more than 25, the solubility of the compound represented by the formula (1) in the solvent is lowered.
In Formula (1), b is an average addition mole number of an oxyethylene group, and is 3-60, Preferably it is 4-50, More preferably, it is 4-45. If b is smaller than 3, the solubility of the compound represented by formula (1) in the solvent is lowered, and if it is larger than 60, crystals of the compound itself represented by formula (1) are likely to precipitate in the electrolyte at a low temperature.
In Formula (1), c is an average addition mole number of an oxypropylene group, and is 0-30, Preferably it is 1-25, More preferably, it is 2-23. When c is larger than 30, the solubility of the compound represented by formula (1) in the solvent is lowered.

式(1)において、a/(a+b+c)は0.1〜0.5であり、好ましくは0.1〜0.4、より好ましくは0.15〜0.4である。a/(a+b+c)が0.1より小さいとカルボン酸の分散性が低下して低温で電解液にカルボン酸の結晶が析出し、0.5より大きいと式(1)で示される化合物の溶媒への溶解性が低下する。
式(1)において、b/(b+c)は0.6〜1であり、より好ましくは0.6〜0.95、より好ましくは0.65〜0.9である。b/(b+c)が0.6より小さいと式(1)で示される化合物の溶媒への溶解性が低下する。
式(1)において、(EO)/(PO)は、EOとPOのランダム状付加を表す。ブロック状付加であると、親油基−親水基−親油基のトリブロック型構造を形成する場合があり、カルボン酸の分散性が低下して低温で電解液中にカルボン酸の結晶が析出することがあるため好ましくない。
式(1)で示される化合物の分子量は、好ましくは500〜10,000であり、より好ましくは800〜4,000である。分子量が500より小さいと酸の分散に十分な効果が得られず、分子量が10,000より大きいと電解液の粘度が高くなり、泡立ちが高くなる傾向がある。
In the formula (1), a / (a + b + c) is 0.1 to 0.5, preferably 0.1 to 0.4, and more preferably 0.15 to 0.4. If a / (a + b + c) is less than 0.1, the dispersibility of the carboxylic acid is lowered, and carboxylic acid crystals are precipitated in the electrolyte at a low temperature. If a / (a + b + c) is more than 0.5, the solvent of the compound represented by the formula (1) Solubility is reduced.
In the formula (1), b / (b + c) is 0.6 to 1, more preferably 0.6 to 0.95, and more preferably 0.65 to 0.9. When b / (b + c) is smaller than 0.6, the solubility of the compound represented by the formula (1) in the solvent decreases.
In the formula (1), (EO) b / (PO) c represents random addition of EO and PO. If it is a block-like addition, a triblock type structure of lipophilic group-hydrophilic group-lipophilic group may be formed, and the dispersibility of the carboxylic acid is lowered, so that crystals of carboxylic acid are precipitated in the electrolyte at low temperature. This is not preferable.
The molecular weight of the compound represented by the formula (1) is preferably 500 to 10,000, more preferably 800 to 4,000. If the molecular weight is less than 500, a sufficient effect for dispersing the acid cannot be obtained, and if the molecular weight is more than 10,000, the viscosity of the electrolytic solution tends to increase and foaming tends to increase.

式(1)で示される化合物は、親油基であるオキシブチレン基と、親水基であるオキシエチレン基、又はオキシエチレン基とオキシプロピレン基のランダム共重合体とのジブロック型界面活性剤である。式(1)で示される化合物を、極性溶媒、及び有機酸、無機酸又はそれらの塩とともに配合して電解コンデンサ用電解液として用いた場合、ポリオキシブチレン鎖により酸の親油性部位に吸着するとともに、オキシエチレン鎖、又はオキシエチレン基とオキシプロピレン基のランダム共重合鎖を極性溶媒側に配向して、カルボン酸の電解液中での分散性を向上させる。オキシブチレン基は分岐のエチル基を有するために分子間の立体斥力が大きく、高い分散効果を有する。これにより、低温でも電導度や火花発生電圧を低下させることなく、幅広い温度域で安定にコンデンサを使用することができる。
式(1)で示される化合物は、公知の方法で製造することができる。例えば、アルカリ触媒の存在下、炭素数1〜4のアルコールにブチレンオキシド、炭素数2及び3のアルキレンオキシドを順に付加重合させることによりアルコールのブチレンオキシド−アルキレンオキシドブロック付加物が得られる。
The compound represented by the formula (1) is a diblock surfactant comprising a lipophilic oxybutylene group and a hydrophilic oxyethylene group, or a random copolymer of an oxyethylene group and an oxypropylene group. is there. When the compound represented by the formula (1) is blended with a polar solvent and an organic acid, an inorganic acid or a salt thereof and used as an electrolytic solution for an electrolytic capacitor, it is adsorbed to the lipophilic part of the acid by a polyoxybutylene chain. At the same time, the oxyethylene chain or the random copolymer chain of the oxyethylene group and the oxypropylene group is oriented toward the polar solvent to improve the dispersibility of the carboxylic acid in the electrolytic solution. Since the oxybutylene group has a branched ethyl group, the steric repulsion between the molecules is large and has a high dispersion effect. As a result, the capacitor can be stably used in a wide temperature range without lowering the conductivity and spark generation voltage even at low temperatures.
The compound represented by the formula (1) can be produced by a known method. For example, a butylene oxide-alkylene oxide block adduct of alcohol is obtained by addition-polymerizing butylene oxide and alkylene oxides having 2 and 3 carbon atoms in order to an alcohol having 1 to 4 carbon atoms in the presence of an alkali catalyst.

(b)極性溶媒
本発明で使用する極性溶媒としては、エタノール、プロパノール等の1価アルコール、エチレングリコール、プロピレングリコール、ジエチレングリコール、1,3−ブタンジオール、1,4−ブタンジオール等の2価アルコール、グリセリン等の3価アルコール、エチレングリコールモノメチルエーテル、ジエチレングリコールジエチルエーテル等のエーテル系溶媒、γ−ブチロラクトン等のラクトン系溶媒、N−メチルホルムアミド等のアミド系溶媒、水等が挙げられ、単独で使用してもよく2種類以上を混合して使用してもよい。後者の例としては、エチレングリコールと水又はγ−ブチロラクトンと水の混合溶媒が好ましい。
(B) Polar solvent The polar solvent used in the present invention includes monohydric alcohols such as ethanol and propanol, and dihydric alcohols such as ethylene glycol, propylene glycol, diethylene glycol, 1,3-butanediol, and 1,4-butanediol. , Trivalent alcohols such as glycerin, ether solvents such as ethylene glycol monomethyl ether and diethylene glycol diethyl ether, lactone solvents such as γ-butyrolactone, amide solvents such as N-methylformamide, water, etc. Or two or more types may be mixed and used. As the latter example, a mixed solvent of ethylene glycol and water or γ-butyrolactone and water is preferable.

(c)有機酸、無機酸又はそれらの塩からなる群から選択される1種以上の電解質
本発明で使用する無機酸としてはホウ酸等が挙げられ、有機酸としてはマレイン酸、アジピン酸、アゼライン酸、セバシン酸、1,10−デカンジカルボン酸、ブチルオクタン二酸、5,6−デカンジカルボン酸、1,11−ウンデカンジカルボン酸、1,12−ドデカンジカルボン酸等の脂肪族カルボン酸、安息香酸、サリチル酸、フタル酸、トリメリット酸等の芳香族カルボン酸が挙げられる。これらは単体で使用しても2種類以上を混合して使用してもよく、塩基性化合物との中和塩として使用してもよい。有機酸は、好ましくは総炭素数10〜14のジカルボン酸であり、具体的にはセバシン酸、1,10−デカンジカルボン酸、ブチルオクタン二酸、5,6−デカンジカルボン酸、1,11−ウンデカンジカルボン酸、1,12−ドデカンジカルボン酸等が挙げられる。塩基性化合物としては、アンモニア、アンモニア水、トリエチルアミン、トリエタノールアミン等の3級アミン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン等のポリアルキレンポリアミン、ポリアルキレンポリアミンのアルキレンオキシド付加物等が挙げられる。好ましくはアンモニア及びアンモニア水である。
(C) One or more electrolytes selected from the group consisting of organic acids, inorganic acids or salts thereof Examples of inorganic acids used in the present invention include boric acid, and examples of organic acids include maleic acid, adipic acid, Aliphatic carboxylic acids such as azelaic acid, sebacic acid, 1,10-decanedicarboxylic acid, butyloctanedioic acid, 5,6-decanedicarboxylic acid, 1,11-undecanedicarboxylic acid, 1,12-dodecanedicarboxylic acid, benzoic acid Examples thereof include aromatic carboxylic acids such as acid, salicylic acid, phthalic acid, and trimellitic acid. These may be used alone or in combination of two or more, or may be used as a neutralized salt with a basic compound. The organic acid is preferably a dicarboxylic acid having a total carbon number of 10 to 14, and specifically, sebacic acid, 1,10-decanedicarboxylic acid, butyloctanedioic acid, 5,6-decanedicarboxylic acid, 1,11- Examples include undecanedicarboxylic acid and 1,12-dodecanedicarboxylic acid. Examples of basic compounds include tertiary amines such as ammonia, aqueous ammonia, triethylamine, and triethanolamine, polyalkylene polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine, and tetraethylenepentamine, and alkylene oxide adducts of polyalkylenepolyamine. Can be mentioned. Ammonia and aqueous ammonia are preferred.

本発明の電解液において、式(1)で示される化合物の添加量は、0.1〜50質量%である。添加量が0.1質量%より少ないと火花発生電圧の向上効果が不十分であり、50質量%より大きいと、電解液の粘度が上昇する傾向にあるため適切でない。
以下、実施例により本発明をさらに詳しく説明するが、本発明はこれに限定されるものではない。
In the electrolytic solution of the present invention, the amount of the compound represented by the formula (1) is 0.1 to 50% by mass. If the addition amount is less than 0.1% by mass, the effect of improving the spark generation voltage is insufficient, and if it is more than 50% by mass, the viscosity of the electrolytic solution tends to increase.
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to this.

[実施例1]
<合成例1>
メタノール32.0g(1.0モル)と触媒として水酸化カリウム3.5gを5L容量オートクレーブ中に仕込み、オートクレーブ内の空気を窒素で置換した後、撹拌しながら120℃にて触媒を完全に溶解させた。次に滴下装置よりブチレンオキシド360.5g(5.0モル)を滴下し、4時間撹拌した。その後、さらに滴下装置よりエチレンオキシド882.0g(20.0モル)とプロピレンオキシド232.4g(4.0モル)の混合物を滴下し、4時間撹拌した。その後、オートクレーブより生成物を取り出し、塩酸で中和してpH6〜7とし、含有する水分を除去するために、減圧−0.095Mpa(ゲージ圧、50mmHg)、100℃で1時間処理した。さらに処理後生成した塩を除去するためにろ過を行い、表1の化合物Aを得た。
[Example 1]
<Synthesis Example 1>
32.0 g (1.0 mol) of methanol and 3.5 g of potassium hydroxide as a catalyst were charged into a 5 L autoclave, the air in the autoclave was replaced with nitrogen, and the catalyst was completely dissolved at 120 ° C. with stirring. I let you. Next, 360.5 g (5.0 mol) of butylene oxide was added dropwise from the dropping device and stirred for 4 hours. Thereafter, a mixture of 882.0 g (20.0 mol) of ethylene oxide and 232.4 g (4.0 mol) of propylene oxide was further added dropwise from a dropping device and stirred for 4 hours. Thereafter, the product was taken out from the autoclave, neutralized with hydrochloric acid to pH 6 to 7, and treated at 100 ° C. for 1 hour at a reduced pressure of −0.095 MPa (gauge pressure, 50 mmHg) in order to remove the contained water. Further, filtration was carried out to remove the salt produced after the treatment, and compound A in Table 1 was obtained.

<電解液の調製>
表2に示す組成で混合し、60℃で均一になるまで撹拌して電解液を得た。
<外観の評価>
電解液50gをガラス瓶に入れ、25℃及び−40℃の恒温槽で1時間静置したときの分離の有無及び結晶の析出の有無を以下の基準で評価した。
○:分離、結晶の析出がなく均一である
×:式(1)で示される化合物が分離している、又は酸や式(1)で示される化合物の結晶が析出している
結果を表2に示す。
<Preparation of electrolyte>
It mixed by the composition shown in Table 2, and it stirred until it became uniform at 60 degreeC, and obtained electrolyte solution.
<Appearance evaluation>
The following criteria evaluated the presence or absence of isolation | separation when the electrolyte solution 50g was put into the glass bottle, and left still for 1 hour with a 25 degreeC and -40 degreeC thermostat.
○: No separation or precipitation of crystals is uniform ×: Results of separation of compounds represented by formula (1) or precipitation of crystals of acids and compounds represented by formula (1) are shown in Table 2. Shown in

<比抵抗の測定>
電気伝導度計(東亜電波工業(株)製CM−60S)により、電解液の30℃での比抵抗を測定した。結果を表2に示す。
<火花発生電圧の測定>
1L容量ステンレス製容器に電解液700gを入れ、60mm×10mmに切断した純度99.99%以上のアルミ箔を浸漬し、直流電源を繋げて25℃における電解液の火花発生電圧を測定した。火花発生電圧向上効果を次式にしたがって算出し、以下の基準で評価した。結果を表2に示す。

[火花発生電圧向上度(V)=(a)の化合物を添加した電解液の火花発生電圧
−(a)の化合物を添加していない電解液の火花発生電圧]

○:火花発生電圧向上度が30V以上
×:火花発生電圧向上度が30V未満
また、比抵抗上昇度に対する火花発生電圧向上度を次式にしたがって算出し、以下の基準で評価した。結果を表2に示す。

[火花発生電圧向上度/比抵抗上昇度=((a)の化合物を添加した電解液の火花発生電圧−(a)の化合物を添加していない電解液の火花発生電圧)/((a)の化合物を添加した電解液の比抵抗−(a)の化合物を添加していない電解液の比抵抗)]

○:火花発生電圧向上度/比抵抗上昇度が1.20以上
×:火花発生電圧向上度/比抵抗上昇度が1.20未満
<Measurement of specific resistance>
The specific resistance at 30 ° C. of the electrolytic solution was measured with an electric conductivity meter (CM-60S manufactured by Toa Radio Industry Co., Ltd.). The results are shown in Table 2.
<Measurement of spark generation voltage>
700 g of the electrolytic solution was put into a 1 L capacity stainless steel container, aluminum foil having a purity of 99.99% or more cut to 60 mm × 10 mm was immersed, and a spark generation voltage of the electrolytic solution at 25 ° C. was measured by connecting a DC power source. The spark generation voltage improvement effect was calculated according to the following equation and evaluated according to the following criteria. The results are shown in Table 2.

[Spark Generation Voltage Improvement Level (V) = Spark Generation Voltage of Electrolyte Solution Added with Compound (a) −Spark Generation Voltage of Electrolyte Solution Not Added with Compound (a)]

○: Spark generation voltage improvement degree is 30 V or more ×: Spark generation voltage improvement degree is less than 30 V Further, the spark generation voltage improvement degree with respect to the specific resistance increase degree is calculated according to the following formula and evaluated according to the following criteria. The results are shown in Table 2.

[Spark generation voltage improvement degree / specific resistance increase degree = (spark generation voltage of electrolyte solution added with compound (a) −spark generation voltage of electrolyte solution not added with compound (a)) / ((a) Specific Resistance of Electrolyte Solution Added with Compound No.-Specific Resistance of Electrolyte Solution Not Added with Compound (a))]

○: Spark generation voltage improvement / specific resistance increase is 1.20 or more ×: Spark generation voltage improvement / specific resistance increase is less than 1.20

[実施例2〜9]
実施例1と同様の方法で、表1に示す化合物B〜Gを合成し、表2に示す配合組成の電解液を調製して、外観及び電気特性の評価、を行った。結果を表2に示す。
[比較例1〜9]
実施例1と同様の方法で、表1に示す化合物H〜Nを合成し、下記の方法で化合物O及びPを合成して、表2に示す配合組成の電解液を調製し、分離の有無及び結晶析出の有無の評価を行った。また、比抵抗及び火花発生電圧を測定し、火花発生電圧向上度を算出して、火花発生電圧向上度の評価及び比抵抗上昇度に対する火花発生電圧向上度の評価を行った。結果を表2に示す。なお、電解液の外観の評価において、25℃で均一でなかった場合には、−40℃での評価は行わなかった。
[Examples 2 to 9]
In the same manner as in Example 1, compounds B to G shown in Table 1 were synthesized, and an electrolytic solution having a blending composition shown in Table 2 was prepared, and the appearance and electrical characteristics were evaluated. The results are shown in Table 2.
[Comparative Examples 1 to 9]
The compounds H to N shown in Table 1 were synthesized by the same method as in Example 1, and the compounds O and P were synthesized by the following method to prepare an electrolytic solution having the composition shown in Table 2, with or without separation. In addition, the presence or absence of crystal precipitation was evaluated. Moreover, the specific resistance and the spark generation voltage were measured, the spark generation voltage improvement degree was calculated, and the spark generation voltage improvement degree was evaluated and the spark generation voltage improvement degree was evaluated with respect to the specific resistance increase degree. The results are shown in Table 2. In addition, in the evaluation of the appearance of the electrolytic solution, when it was not uniform at 25 ° C., the evaluation at −40 ° C. was not performed.

<化合物Oの合成>
エタノール46.1g(1.0モル)と触媒として水酸化カリウム5.0gを5L容量オートクレーブ中に仕込み、オートクレーブ内の空気を窒素で置換した後、撹拌しながら120℃にて触媒を完全に溶解させた。次に滴下装置よりエチレンオキシド970.2g(22.0モル)とブチレンオキシド1009.4g(14.0モル)の混合物を滴下し、4時間撹拌した。その後、オートクレーブより生成物を取り出し、塩酸で中和してpH6〜7とし、含有する水分を除去するために、減圧−0.095Mpa(ゲージ圧、50mmHg)、100℃で1時間処理した。さらに処理後生成した塩を除去するためにろ過を行い、化合物Oを得た。化合物Oは、エタノール−EO22モル/BO14モルランダム付加物(分子量2000)である。
<化合物Pの合成>
メタノール32.0g(1.0モル)と触媒として水酸化カリウム6.0gを5L容量オートクレーブ中に仕込み、オートクレーブ内の空気を窒素で置換した後、撹拌しながら120℃にて触媒を完全に溶解させた。次に滴下装置よりエチレンオキシド1764.0g(40.0モル)を滴下し、4時間撹拌した。その後、さらに滴下装置よりプロピレンオキシド581.0g(10.0モル)を滴下し、4時間撹拌した。その後、オートクレーブより生成物を取り出し、塩酸で中和してpH6〜7とし、含有する水分を除去するために、減圧−0.095Mpa(ゲージ圧、50mmHg)、100℃で1時間処理した。さらに処理後生成した塩を除去するためにろ過を行い、化合物Pを得た。化合物Pは、メタノール−EO40モル−PO10モルブロック付加物(分子量2400)である。
<Synthesis of Compound O>
46.1 g (1.0 mol) of ethanol and 5.0 g of potassium hydroxide as a catalyst were charged into a 5 L autoclave, the air in the autoclave was replaced with nitrogen, and the catalyst was completely dissolved at 120 ° C. with stirring. I let you. Next, a mixture of 970.2 g (22.0 mol) of ethylene oxide and 1009.4 g (14.0 mol) of butylene oxide was added dropwise from a dropping device, and the mixture was stirred for 4 hours. Thereafter, the product was taken out from the autoclave, neutralized with hydrochloric acid to pH 6 to 7, and treated at 100 ° C. for 1 hour at a reduced pressure of −0.095 MPa (gauge pressure, 50 mmHg) in order to remove the contained water. Further, filtration was carried out to remove the salt produced after the treatment, whereby Compound O was obtained. Compound O is an ethanol-EO22 mol / BO14 mol random adduct (molecular weight 2000).
<Synthesis of Compound P>
32.0 g (1.0 mol) of methanol and 6.0 g of potassium hydroxide as a catalyst were charged into a 5 L autoclave, the air in the autoclave was replaced with nitrogen, and the catalyst was completely dissolved at 120 ° C. with stirring. I let you. Next, 1764.0 g (40.0 mol) of ethylene oxide was dropped from the dropping device, and the mixture was stirred for 4 hours. Thereafter, 581.0 g (10.0 mol) of propylene oxide was further dropped from the dropping device, and the mixture was stirred for 4 hours. Thereafter, the product was taken out from the autoclave, neutralized with hydrochloric acid to pH 6 to 7, and treated at 100 ° C. for 1 hour at a reduced pressure of −0.095 MPa (gauge pressure, 50 mmHg) in order to remove the contained water. Further, filtration was carried out to remove the salt produced after the treatment, whereby Compound P was obtained. Compound P is methanol-EO 40 mol-PO 10 mol block adduct (molecular weight 2400).

表2から明かなとおり、実施例1〜9の電解液は、分離することがなく、かつ低温において結晶が析出することがなく均一であった。また、火花発生電圧向上度が高く、さらに比抵抗上昇度に対する火花発生電圧向上度が高いことが明らかとなった。この電解液をアルミ電解コンデンサに使用した場合、高い電導度を示すとともに、高い火花電圧向上効果を示すことが確認された。   As is apparent from Table 2, the electrolyte solutions of Examples 1 to 9 were uniform without separation and without precipitation of crystals at low temperatures. Further, it has been clarified that the spark generation voltage improvement degree is high and the spark generation voltage improvement degree is high with respect to the specific resistance increase degree. When this electrolytic solution was used for an aluminum electrolytic capacitor, it was confirmed that it showed high conductivity and high spark voltage improvement effect.

これに対し、比較例1の電解液はRの炭素数が本発明の範囲より大きいために、式(1)で示される化合物の溶媒への溶解性が低下し、電解液が分離する結果となった。
比較例2は、a/(a+b+c)が本発明の範囲より大きいために、式(1)で示される化合物の溶媒への溶解性が低下し、電解液が分離した。
比較例3は、aが本発明の範囲より大きいために、式(1)で示される化合物の溶媒への溶解性が低下し、電解液が分離した。
比較例4は、a及びa/(a+b+c)が本発明の範囲より小さいために、酸の分散性が低下し、低温で電解液に酸の結晶が析出した。また、火花発生電圧向上度が十分でなく、比抵抗上昇度に対する火花発生電圧向上度も不十分であった。
比較例5は、bが本発明の範囲より大きいために、低温で電解液に式(1)で示される化合物及び酸の結晶が析出し、また、比抵抗上昇度に対する火花発生電圧向上度が不十分であった。
比較例6は、a/(a+b+c)が本発明の範囲より大きいために、式(1)で示される化合物の溶媒への溶解性が低下し、電解液が分離した。
比較例7は、cが本発明の範囲より大きく、b/(b+c)が本発明の範囲より小さいために、式(1)で示される化合物の溶媒への溶解性が低下し、電解液が分離した。
比較例8は、(a)成分が本発明の式(1)で示される化合物とは異なり、EOとBOがランダム付加であるため、式(1)で示される化合物の溶媒への溶解性が低下し、電解液が分離した。
比較例9は、(a)成分が本発明の式(1)で示される化合物とは異なり、BOが含まれていないため、酸の分散性が低下し、低温で電解液に酸の結晶が析出した。また、火花発生電圧向上度が十分でなく、比抵抗上昇度に対する火花発生電圧向上度も不十分であった。
On the other hand, since the electrolyte solution of Comparative Example 1 has a carbon number of R larger than the range of the present invention, the solubility of the compound represented by the formula (1) in the solvent is reduced and the electrolyte solution is separated. became.
In Comparative Example 2, since a / (a + b + c) was larger than the range of the present invention, the solubility of the compound represented by formula (1) in the solvent was lowered, and the electrolytic solution was separated.
In Comparative Example 3, since a was larger than the range of the present invention, the solubility of the compound represented by the formula (1) in the solvent was lowered, and the electrolytic solution was separated.
In Comparative Example 4, since a and a / (a + b + c) were smaller than the range of the present invention, acid dispersibility was lowered, and acid crystals were precipitated in the electrolytic solution at a low temperature. Moreover, the spark generation voltage improvement degree was not sufficient, and the spark generation voltage improvement degree with respect to the specific resistance increase degree was also insufficient.
In Comparative Example 5, since b is larger than the range of the present invention, the crystal of the compound represented by the formula (1) and the acid are precipitated in the electrolytic solution at a low temperature, and the spark generation voltage improvement degree with respect to the specific resistance increase degree is high. It was insufficient.
In Comparative Example 6, since a / (a + b + c) was larger than the range of the present invention, the solubility of the compound represented by the formula (1) in the solvent was lowered, and the electrolytic solution was separated.
In Comparative Example 7, since c is larger than the range of the present invention and b / (b + c) is smaller than the range of the present invention, the solubility of the compound represented by the formula (1) in the solvent is lowered, and the electrolytic solution is reduced. separated.
In Comparative Example 8, since the component (a) is different from the compound represented by the formula (1) of the present invention and EO and BO are random addition, the solubility of the compound represented by the formula (1) in the solvent is low. The electrolyte solution separated.
In Comparative Example 9, since the component (a) is different from the compound represented by the formula (1) of the present invention and does not contain BO, the dispersibility of the acid is lowered, and the crystal of the acid is present in the electrolyte at a low temperature. Precipitated. Moreover, the spark generation voltage improvement degree was not sufficient, and the spark generation voltage improvement degree with respect to the specific resistance increase degree was also insufficient.

Figure 0005936096
Figure 0005936096

Figure 0005936096
Figure 0005936096

Claims (2)

次の(a)、(b)、及び(c)成分を含有する、電解コンデンサ用電解液。
(a)式(1)で示される化合物
(b)極性溶媒
(c)有機酸、無機酸又はそれらの塩からなる群から選択される1種以上の電解質
R−O−(BO)−(EO)/(PO)−H (1)
(式中、Rは炭素数1〜4の炭化水素基である。BOはオキシブチレン基であり、EOはオキシエチレン基であり、POはオキシプロピレン基である。aはオキシブチレン基の平均付加モル数であって3〜15を示す。bはオキシエチレン基の平均付加モル数であって45を示す。cはオキシプロピレン基の平均付加モル数であって23を示す。a/(a+b+c)は0.150.4であり、b/(b+c)は0.650.9である。(EO)/(PO)は、EOとPOのランダム状付加を表す。)
An electrolytic solution for an electrolytic capacitor containing the following components (a), (b), and (c):
(A) Compound represented by formula (1) (b) Polar solvent (c) One or more electrolytes selected from the group consisting of organic acids, inorganic acids or salts thereof R—O— (BO) a — ( EO) b / (PO) c- H (1)
(In the formula, R is a hydrocarbon group having 1 to 4 carbon atoms. BO is an oxybutylene group, EO is an oxyethylene group, PO is an oxypropylene group. A is an average addition of oxybutylene groups. The number of moles is 3 to 15. b is the average number of moles added of oxyethylene groups and is 4 to 45. c is the average number of moles added of oxypropylene groups and is 2 to 23. a / (A + b + c) is 0.15 to 0.4 and b / (b + c) is 0.65 to 0.9 (EO) b / (PO) c is a random addition of EO and PO. Represents.)
電解質が、総炭素数10〜14のジカルボン酸又はその塩を含有する電解質である、請求項1記載の電解コンデンサ用電解液。
Electrolyte, an electrolyte containing a dicarboxylic acid or a salt thereof having a total carbon number of 10 to 14, the electrolytic solution for electrolytic capacitor according to claim 1 Symbol placement.
JP2011135922A 2010-06-24 2011-06-20 Electrolytic solution for electrolytic capacitors Active JP5936096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011135922A JP5936096B2 (en) 2010-06-24 2011-06-20 Electrolytic solution for electrolytic capacitors

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010144139 2010-06-24
JP2010144139 2010-06-24
JP2011135922A JP5936096B2 (en) 2010-06-24 2011-06-20 Electrolytic solution for electrolytic capacitors

Publications (2)

Publication Number Publication Date
JP2012028753A JP2012028753A (en) 2012-02-09
JP5936096B2 true JP5936096B2 (en) 2016-06-15

Family

ID=45781269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011135922A Active JP5936096B2 (en) 2010-06-24 2011-06-20 Electrolytic solution for electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP5936096B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124814A (en) * 1983-12-08 1985-07-03 日本ケミコン株式会社 Electrolyte for electrolytic condenser
JPH03257810A (en) * 1990-03-07 1991-11-18 Rubycon Corp Electrolyte for driving electrolytic capacitor
JP3070813B2 (en) * 1992-09-29 2000-07-31 松下電器産業株式会社 Electrolyte for driving electrolytic capacitors
JP3473288B2 (en) * 1996-08-27 2003-12-02 松下電器産業株式会社 Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same
JP2002265989A (en) * 2001-03-12 2002-09-18 Asahi Denka Kogyo Kk Nonionic surface active agent

Also Published As

Publication number Publication date
JP2012028753A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
JP5936095B2 (en) Electrolytic solution for electrolytic capacitors
JP5936099B2 (en) Electrolytic solution for electrolytic capacitors
KR101544225B1 (en) Ionic liquids comprising polyethercarboxylates as anions production and use thereof
JP6214795B2 (en) Ionic liquid
JP7013653B2 (en) Electrolytes
JP5936096B2 (en) Electrolytic solution for electrolytic capacitors
JP6036252B2 (en) Electrolytic solution for electrolytic capacitors
JP2007126611A (en) Long chain dibasic acid
JPWO2015114931A1 (en) Electrolytic solution for electrolytic capacitor drive
JP2004071727A (en) Electrolytic capacitor and electrolyte therefor
JP6194721B2 (en) Electrolytic solution for electrolytic capacitors
JP2014147926A (en) Nonaqueous dispersant and nonaqueous dispersant composition
JP4529258B2 (en) Electrolytic solution for electrolytic capacitor driving and electrolytic capacitor
JP6241715B2 (en) Electrolytic solution for electrolytic capacitors
US20040069342A1 (en) Drag reduction of a heat-distributing water-based liquid contaning large amounts of anti-freeze
JP4637374B2 (en) Electrolytic solution for electrolytic capacitor drive
JP3979992B2 (en) Electrolytic solution for electrolytic capacitor driving and electrolytic capacitor
JP6167710B2 (en) Electrolytic solution for electrolytic capacitors
CN108884505B (en) Water-soluble quenching oil composition
JP6814711B2 (en) Electrolytic solution for electrolytic capacitors and electrolytic capacitors
JP3922994B2 (en) Electrolytic solution for electrolytic capacitor driving and electrolytic capacitor
JP6239994B2 (en) Flame retardant hydraulic fluid composition
JP6744048B2 (en) Water-soluble quenching oil composition
JP2008163177A (en) Antifreezing agent for sulfuric ester salt type anionic surfactant aqueous solution
JP2021040087A (en) Modifier of capacitor electrolyte solution, electrolytic solution for aluminum electrolytic capacitor, which is arranged by use thereof, and aluminum electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160428

R150 Certificate of patent or registration of utility model

Ref document number: 5936096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250