JP2012028497A - Circuit module - Google Patents

Circuit module Download PDF

Info

Publication number
JP2012028497A
JP2012028497A JP2010164795A JP2010164795A JP2012028497A JP 2012028497 A JP2012028497 A JP 2012028497A JP 2010164795 A JP2010164795 A JP 2010164795A JP 2010164795 A JP2010164795 A JP 2010164795A JP 2012028497 A JP2012028497 A JP 2012028497A
Authority
JP
Japan
Prior art keywords
resin
thermal expansion
expansion coefficient
wiring board
bare chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010164795A
Other languages
Japanese (ja)
Other versions
JP5625578B2 (en
Inventor
Fumihiro Sano
文洋 佐野
Masato Nomiya
正人 野宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2010164795A priority Critical patent/JP5625578B2/en
Publication of JP2012028497A publication Critical patent/JP2012028497A/en
Application granted granted Critical
Publication of JP5625578B2 publication Critical patent/JP5625578B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/325Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Abstract

PROBLEM TO BE SOLVED: To provide a circuit module having high connection reliability between a bare chip IC and a wiring board by making a thermal expansion coefficient of a filling resin between the bare chip IC and the wiring board in the vicinity of a bare chip IC protection film different from that in the vicinity of the wiring board.SOLUTION: A circuit module reduces a peeling failure of a filling resin by making a thermal expansion coefficient of a filling resin in the vicinity of a wiring board similar to a thermal expansion coefficient of the wiring board and making a thermal expansion coefficient of filling resin in the vicinity of a bare chip IC protection film similar to a thermal expansion coefficient of the bare chip IC protection film.

Description

本発明は、回路モジュールに関し、特に配線基板とベアチップICとの間に樹脂が充填された回路モジュールに関する。   The present invention relates to a circuit module, and more particularly to a circuit module in which a resin is filled between a wiring board and a bare chip IC.

従来の回路モジュールは、例えば特許文献1に記載の構造が知られている。以下に、図5を参照しながら、特許文献1に記載の回路モジュールについて説明する。図5は回路モジュールを示す断面図である。   As a conventional circuit module, for example, a structure described in Patent Document 1 is known. The circuit module described in Patent Document 1 will be described below with reference to FIG. FIG. 5 is a cross-sectional view showing the circuit module.

ベアチップIC101は機能面に端子電極102を備えるとともに、機能面が保護膜108で覆われている。端子電極102は半田バンプ103によって、基板104の上に形成された配線パターン105と接続している。配線パターン105には半田の流出を防止するソルダーレジスト106が形成されている。前記ベアチップIC101と基板104の間には、アンダーフィル樹脂107が充填されている。   The bare chip IC 101 includes a terminal electrode 102 on a functional surface, and the functional surface is covered with a protective film 108. The terminal electrode 102 is connected to a wiring pattern 105 formed on the substrate 104 by solder bumps 103. A solder resist 106 for preventing the solder from flowing out is formed on the wiring pattern 105. An underfill resin 107 is filled between the bare chip IC 101 and the substrate 104.

特開2001−68584号公報JP 2001-65884 A

このようなベアチップICの機能面には保護膜層が形成されている。この保護膜層と配線基板との熱膨張係数が大きく異なっている場合、間に配置される充填樹脂との熱膨張係数差により、保護膜と充填樹脂間、充填樹脂と配線基板間で剥離が生じることがあった。充填樹脂の熱膨張係数を調整することは可能だが、保護膜と配線基板との熱膨張係数が大きく異なっている場合は不十分な調整となっていた。   A protective film layer is formed on the functional surface of such a bare chip IC. When the thermal expansion coefficients of the protective film layer and the wiring board are greatly different, peeling is caused between the protective film and the filling resin and between the filling resin and the wiring board due to the difference in the thermal expansion coefficient with the filling resin arranged therebetween. It sometimes occurred. Although it is possible to adjust the thermal expansion coefficient of the filling resin, the adjustment is insufficient when the thermal expansion coefficients of the protective film and the wiring board are greatly different.

本発明は、これらの状況を鑑み、ベアチップICと配線基板の間の充填樹脂の熱膨張係数をベアチップIC保護膜近傍と配線基板近傍とで異なる状態とすることで充填樹脂の剥離不良を削減し、その結果、ベアチップICと配線基板の接続信頼性の高い回路モジュールを提供しようとするものである。   In view of these situations, the present invention reduces the filling resin peeling failure by making the thermal expansion coefficient of the filling resin between the bare chip IC and the wiring board different between the bare chip IC protective film and the wiring board. As a result, an object of the present invention is to provide a circuit module having high connection reliability between a bare chip IC and a wiring board.

本発明に係る回路モジュールは、配線基板と、機能面を保護する保護膜を備え、配線基板の上に配置されたベアチップICと、前記配線基板と前記ベアチップICとを接続するバンプと、前記配線基板と前記ベアチップICの間に充填された樹脂とを有する回路モジュールにおいて、前記樹脂の熱膨張係数は、前記配線基板近傍では配線基板の熱膨張係数に近い状態となっており、前記ベアチップIC保護膜近傍では前記配線基板近傍の樹脂の熱膨張係数と異なり、かつベアチップIC保護膜の熱膨張係数に近い状態となっていることを特徴としている。   The circuit module according to the present invention includes a wiring board, a protective film that protects the functional surface, a bare chip IC disposed on the wiring board, a bump that connects the wiring board and the bare chip IC, and the wiring In a circuit module having a substrate and a resin filled between the bare chip IC, the thermal expansion coefficient of the resin is close to the thermal expansion coefficient of the wiring substrate in the vicinity of the wiring substrate, and the bare chip IC protection In the vicinity of the film, the thermal expansion coefficient is different from that of the resin in the vicinity of the wiring board and is close to the thermal expansion coefficient of the bare chip IC protective film.

樹脂の熱膨張係数を変化させることで、剥離が生じやすい異種接合間である、保護膜と樹脂間、樹脂と配線基板間の熱膨張係数差による熱応力を緩和でき、剥離不良を削減することができる。その結果、ベアチップICと配線基板の接続信頼性の向上が実現できる。   By changing the thermal expansion coefficient of the resin, it is possible to alleviate thermal stress due to the difference in thermal expansion coefficient between the protective film and the resin, between the resin and the wiring board, between different types of joints where peeling easily occurs, and to reduce peeling defects Can do. As a result, the connection reliability between the bare chip IC and the wiring board can be improved.

また、本発明に係る回路モジュールは、前記樹脂の前記配線基板近傍の熱膨張係数と、前記樹脂の前記ベアチップIC保護膜近傍の熱膨張係数の差は、樹脂内のフィラー分布の変化によるものであることを特徴としている。   In the circuit module according to the present invention, the difference between the thermal expansion coefficient of the resin in the vicinity of the wiring board and the thermal expansion coefficient of the resin in the vicinity of the bare chip IC protective film is due to a change in filler distribution in the resin. It is characterized by being.

この場合には、フィラーの分布状態が変化することで、保護膜と樹脂間、樹脂と配線基板間の熱膨張係数差による熱応力を緩和でき、剥離不良を削減することができる。その結果、ベアチップICと配線基板の接続信頼性の向上が実現できる。   In this case, by changing the filler distribution state, the thermal stress due to the difference in thermal expansion coefficient between the protective film and the resin, and between the resin and the wiring board can be relieved, and the separation failure can be reduced. As a result, the connection reliability between the bare chip IC and the wiring board can be improved.

また、本発明に係る回路モジュールは、前記樹脂内のフィラー分布は、前記配線基板近傍のフィラー密度がベアチップIC保護膜近傍のフィラーの密度より高くなっていることを特徴としている。   The circuit module according to the present invention is characterized in that the filler distribution in the resin is such that the filler density in the vicinity of the wiring board is higher than the density of the filler in the vicinity of the bare chip IC protective film.

この場合には、フィラーの分布状態が変化することで、保護膜と樹脂間、樹脂と配線基板間の熱膨張係数差による熱応力を緩和でき、剥離不良を削減することができる。その結果、ベアチップICと配線基板の接続信頼性の向上が実現できる。   In this case, by changing the filler distribution state, the thermal stress due to the difference in thermal expansion coefficient between the protective film and the resin, and between the resin and the wiring board can be relieved, and the separation failure can be reduced. As a result, the connection reliability between the bare chip IC and the wiring board can be improved.

また、本発明に係る回路モジュールは、前記樹脂は、熱膨張係数の異なる第1の樹脂層と第2の樹脂層を含むことを特徴としている。   The circuit module according to the present invention is characterized in that the resin includes a first resin layer and a second resin layer having different thermal expansion coefficients.

この場合には、保護膜と樹脂間、樹脂と配線基板間の熱膨張係数差による熱応力を緩和でき、剥離不良を削減することができる。その結果、ベアチップICと配線基板の接続信頼性の向上が実現できる。   In this case, the thermal stress due to the difference in thermal expansion coefficient between the protective film and the resin and between the resin and the wiring board can be alleviated, and defective peeling can be reduced. As a result, the connection reliability between the bare chip IC and the wiring board can be improved.

本発明によれば、樹脂の熱膨張係数を変化させることで、剥離が生じやすい異種接合間である、保護膜と樹脂間、樹脂と配線基板間の熱膨張係数差による熱応力を緩和でき、剥離不良を削減することができる。その結果、ベアチップICと配線基板の接続信頼性の向上が実現できる。   According to the present invention, by changing the thermal expansion coefficient of the resin, it is possible to relieve the thermal stress due to the difference in thermal expansion coefficient between the protective film and the resin, between the protective film and the resin, between the heterogeneous joints that are likely to peel off, Peeling defects can be reduced. As a result, the connection reliability between the bare chip IC and the wiring board can be improved.

本発明の回路モジュールの第1の実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of the circuit module of this invention. 本発明の回路モジュールの第2の実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the circuit module of this invention. 本発明の回路モジュールの第2の実施形態の変形例を示す断面図である。It is sectional drawing which shows the modification of 2nd Embodiment of the circuit module of this invention. 本発明の回路モジュールの第3の実施形態を示す断面図である。It is sectional drawing which shows 3rd Embodiment of the circuit module of this invention. 従来のフリップチップ実装構造を示す断面図である。It is sectional drawing which shows the conventional flip chip mounting structure.

以下に、本発明の第1〜第3の実施形態に係る回路モジュールについて、図1〜図4を参照して説明する。
(第1の実施形態)
本発明の第1の実施形態の回路モジュールは、図1に示すように、電極2を備えた配線基板1と、バンプ4を備えるとともに機能面を保護膜8で覆われ、配線基板1の上に配置されたベアチップIC3と、配線基板1とベアチップIC3の間に充填された樹脂5を備えている。
Below, the circuit module which concerns on the 1st-3rd embodiment of this invention is demonstrated with reference to FIGS. 1-4.
(First embodiment)
As shown in FIG. 1, the circuit module of the first embodiment of the present invention includes a wiring board 1 having electrodes 2 and bumps 4 and a functional surface covered with a protective film 8. And a resin 5 filled between the wiring substrate 1 and the bare chip IC3.

次に、第1の実施形態の回路モジュールの製造方法について説明する。まず、配線基板1を用意する。この配線基板1は低温焼成セラミック等からなるセラミック基板(熱膨張係数=7〜15ppm/℃)やガラス・エポキシ等からなるプリント基板(熱膨張係数=15〜50ppm/℃)で構成される。この配線基板1の上に金属箔を用いてまたは印刷等でCuやAg等からなる膜状電極2を形成する。   Next, a method for manufacturing the circuit module according to the first embodiment will be described. First, the wiring board 1 is prepared. The wiring substrate 1 is composed of a ceramic substrate (thermal expansion coefficient = 7 to 15 ppm / ° C.) made of low-temperature fired ceramic or the like, and a printed circuit board (thermal expansion coefficient = 15 to 50 ppm / ° C.) made of glass or epoxy. A film electrode 2 made of Cu, Ag, or the like is formed on the wiring substrate 1 using a metal foil or printing.

次に、バンプ4を備えたWLCSP等のベアチップIC3を用意する。このベアチップIC3の機能面は保護膜8で覆われている。この保護膜8はポリイミド樹脂膜等の有機膜やSiN等の無機膜で構成されている。この保護膜8の熱膨張係数は10〜64ppm/℃である。   Next, a bare chip IC 3 such as WLCSP provided with bumps 4 is prepared. The functional surface of the bare chip IC 3 is covered with a protective film 8. The protective film 8 is composed of an organic film such as a polyimide resin film or an inorganic film such as SiN. The thermal expansion coefficient of the protective film 8 is 10 to 64 ppm / ° C.

なお、配線基板1と保護膜8は、一般的に選定される材料については、熱膨張係数は基板の方が小さくなっている。本実施形態はこの前提に基づき、以下説明する。   Note that the wiring substrate 1 and the protective film 8 have a smaller coefficient of thermal expansion for the generally selected material. This embodiment will be described below based on this premise.

次に、ベアチップIC3を前記配線基板1の上に形成された電極2の上に配置し、加熱圧着等で接合する。   Next, the bare chip IC 3 is placed on the electrode 2 formed on the wiring substrate 1 and bonded by thermocompression bonding or the like.

次に、フラックス残渣を除去するため、ベアチップIC3を実装した配線基板1を準水系洗浄剤で洗浄する。その後、洗浄剤を除去するため、ベーキング処理を行う。   Next, in order to remove the flux residue, the wiring board 1 on which the bare chip IC 3 is mounted is cleaned with a semi-aqueous cleaning agent. Thereafter, a baking process is performed to remove the cleaning agent.

次に、前記配線基板1とベアチップIC3の間に、エポキシ樹脂等の熱硬化性樹脂からなる樹脂5を充填する。樹脂5を構成するエポキシ樹脂の樹脂成分単体での熱膨張係数は60ppm/℃である。この樹脂5にはSiO2からなるフィラーが、フィラーを含む樹脂5の重量に対して65重量%含有されている。このフィラーの熱膨張係数は0.5ppm/℃である。その後、ベアチップIC3が実装され樹脂5が充填された配線基板1を熱処理炉に投入し、樹脂5を熱硬化する。硬化条件は、温度が70℃〜150℃、時間が2時間〜8時間である。   Next, a resin 5 made of a thermosetting resin such as an epoxy resin is filled between the wiring board 1 and the bare chip IC 3. The thermal expansion coefficient of the resin component alone of the epoxy resin constituting the resin 5 is 60 ppm / ° C. This resin 5 contains 65% by weight of a filler made of SiO 2 with respect to the weight of the resin 5 containing the filler. The thermal expansion coefficient of this filler is 0.5 ppm / ° C. Thereafter, the wiring substrate 1 on which the bare chip IC 3 is mounted and filled with the resin 5 is put into a heat treatment furnace, and the resin 5 is thermoset. The curing conditions are a temperature of 70 ° C. to 150 ° C. and a time of 2 hours to 8 hours.

このような硬化条件で硬化すると、樹脂5に含有されているフィラーの移動により、前記配線基板1近傍の樹脂5は、前記ベアチップIC3の保護膜8近傍の樹脂5に比べてフィラーの密度が高くなる。フィラーの熱膨張係数は配線基板1の熱膨張係数と近いため、配線基板1近傍の樹脂5の熱膨張係数は、熱硬化する前に比べて配線基板1の熱膨張係数に近くなる。   When cured under such curing conditions, due to the movement of the filler contained in the resin 5, the resin 5 in the vicinity of the wiring board 1 has a higher filler density than the resin 5 in the vicinity of the protective film 8 of the bare chip IC3. Become. Since the thermal expansion coefficient of the filler is close to the thermal expansion coefficient of the wiring board 1, the thermal expansion coefficient of the resin 5 in the vicinity of the wiring board 1 is closer to the thermal expansion coefficient of the wiring board 1 than before thermal curing.

一方、ベアチップIC3の保護膜8近傍の樹脂5は、配線基板1近傍の樹脂5に比べてフィラーの密度が低くなる。つまり、樹脂成分であるエポキシ樹脂の割合が配線基板1近傍の樹脂5に比べて高くなる。樹脂5の主成分であるエポキシ樹脂の熱膨張係数はベアチップIC3の保護膜8の熱膨張係数と近いため、ベアチップIC3の保護膜8近傍の樹脂5の熱膨張係数は、熱硬化前に比べてベアチップIC3の保護膜8の熱膨張係数に近くなる。   On the other hand, the resin 5 near the protective film 8 of the bare chip IC 3 has a lower filler density than the resin 5 near the wiring substrate 1. That is, the ratio of the epoxy resin that is a resin component is higher than that of the resin 5 in the vicinity of the wiring board 1. Since the thermal expansion coefficient of the epoxy resin, which is the main component of the resin 5, is close to the thermal expansion coefficient of the protective film 8 of the bare chip IC3, the thermal expansion coefficient of the resin 5 in the vicinity of the protective film 8 of the bare chip IC3 is larger than that before thermosetting. It becomes close to the thermal expansion coefficient of the protective film 8 of the bare chip IC3.

なお、材料、硬化温度、硬化時間等を制御することにより、バンプ4の周囲で樹脂5に含有されるフィラーの密度を高めることが可能になる。この場合、樹脂5の熱膨張係数とバンプ4の熱膨張係数が近づくことになるため、樹脂5とバンプ4の剥離が抑制できる。その結果、バンプ4近傍の配線基板1と樹脂5のより確実な密着が可能となる。
(第2の実施形態)
本発明の第2の実施形態の回路モジュールは、図2に示すように、電極12を備えた配線基板11と、バンプ14を備えるとともに機能面を保護膜18で覆われ、配線基板11の上に配置されたベアチップIC13と、配線基板11とベアチップIC13の間に第1の樹脂層15と第2の樹脂層16を備えている。
Note that the density of the filler contained in the resin 5 around the bump 4 can be increased by controlling the material, the curing temperature, the curing time, and the like. In this case, since the thermal expansion coefficient of the resin 5 and the thermal expansion coefficient of the bump 4 are close to each other, peeling of the resin 5 and the bump 4 can be suppressed. As a result, the wiring substrate 1 in the vicinity of the bump 4 and the resin 5 can be more securely adhered.
(Second Embodiment)
As shown in FIG. 2, the circuit module according to the second embodiment of the present invention includes a wiring board 11 provided with electrodes 12, bumps 14 and a functional surface covered with a protective film 18. And a first resin layer 15 and a second resin layer 16 between the wiring substrate 11 and the bare chip IC 13.

次に、第2の実施形態の回路モジュールの製造方法について説明する。まず、配線基板11を用意する。この配線基板11は低温焼成セラミック等からなるセラミック基板(熱膨張係数=7〜15ppm/℃)やガラス・エポキシ等からなるプリント基板(熱膨張係数=15〜50ppm/℃)で構成される。この配線基板11の上に金属箔を用いてまたは印刷等でCuやAg等からなる膜状電極12を形成する。   Next, a method for manufacturing the circuit module according to the second embodiment will be described. First, the wiring board 11 is prepared. The wiring board 11 is composed of a ceramic substrate (thermal expansion coefficient = 7 to 15 ppm / ° C.) made of low-temperature fired ceramic or the like, or a printed board (thermal expansion coefficient = 15 to 50 ppm / ° C.) made of glass or epoxy. A film electrode 12 made of Cu, Ag, or the like is formed on the wiring substrate 11 by using a metal foil or printing.

次に、電極12が形成された配線基板11の上に、エポキシ樹脂からなる厚さ25〜75μmの非導電性フィルム15aを貼り付ける。この非導電性フィルム15aの熱膨張係数はエポキシ樹脂を用いているので一般的に10〜40ppm/℃である。次に、この非導電性フィルム15aの上に、エポキシ樹脂からなる厚さ25〜75μmの非導電性フィルム16aを貼り付ける。この非導電性フィルム16aの熱膨張係数はエポキシ樹脂を用いているので一般的に10〜40ppm/℃である。非導電性フィルム16aは、非導電性フィルム15aの熱膨張係数に比べて、ベアチップIC13の保護膜18の熱膨張係数に近い値となるようなエポキシ樹脂が選定されている。一方、非導電性フィルム15aは、非導電性フィルム16aの熱膨張係数に比べて、配線基板11の熱膨張係数の熱膨張係数に近い値となるようなエポキシ樹脂が選定されている。なお、非導電性フィルムは3枚以上配置することも可能である。   Next, a non-conductive film 15a made of an epoxy resin and having a thickness of 25 to 75 μm is pasted on the wiring substrate 11 on which the electrodes 12 are formed. The thermal expansion coefficient of the nonconductive film 15a is generally 10 to 40 ppm / ° C. because an epoxy resin is used. Next, a non-conductive film 16a made of an epoxy resin and having a thickness of 25 to 75 μm is pasted on the non-conductive film 15a. The non-conductive film 16a generally has a thermal expansion coefficient of 10 to 40 ppm / ° C. because an epoxy resin is used. The non-conductive film 16a is selected from an epoxy resin that has a value closer to the thermal expansion coefficient of the protective film 18 of the bare chip IC 13 than the thermal expansion coefficient of the non-conductive film 15a. On the other hand, the non-conductive film 15a is selected from an epoxy resin that has a value closer to the thermal expansion coefficient of the wiring substrate 11 than the thermal expansion coefficient of the non-conductive film 16a. Note that three or more non-conductive films can be arranged.

次に、バンプ14を備えたWLCSP等のベアチップIC13を用意する。このベアチップIC13の機能面は、保護膜18で覆われている。この保護膜18はポリイミド樹脂膜等の有機膜やSiN等の無機膜で構成されている。この保護膜18の熱膨張係数は10〜64ppm/℃である。このベアチップIC13を前記配線基板11の上に貼りつけられた非導電性フィルム15a及び非導電性フィルム16aの上に配置する。配置する位置は、配線基板11の上に形成された電極12の位置である。その後、加熱圧着にてバンプ14を電極12と接合させるとともに、非導電性フィルム15aおよび非導電性フィルム16aを硬化させることで、第1の樹脂層15と第2の樹脂層16を形成する。なお、バンプ14と電極12の間の非導電性フィルム15aおよび非導電性フィルム16aは、加熱圧着することで溶融するため、バンプ14と電極12の接続が可能となる。
(第2の実施形態の変形例1)
第2の実施形態の回路モジュールの変形例1について、第2の実施形態との相違点についてのみ説明する。配線基板11の上に貼り付けられたエポキシ樹脂からなる非導電性フィルム15aの上に、バンプ14を備えたWLCSP等のベアチップIC13を配置し、加熱圧着する。加熱することで非導電性フィルム15aが硬化し、第1の樹脂層15となる。この第1の樹脂層15と前記ベアチップIC13との間に、前記非導電性フィルム16aの代わりにエポキシ樹脂からなる液状樹脂16bを充填する。この液状樹脂16bの熱膨張係数はエポキシ樹脂を用いているので一般的に10〜40ppm/℃である。液状樹脂16bおよび非導電性フィムル15aは、第2の実施形態と同様に、それぞれ所望の熱膨張係数となるようなエポキシ樹脂が選定されている。
Next, a bare chip IC 13 such as WLCSP provided with bumps 14 is prepared. The functional surface of the bare chip IC 13 is covered with a protective film 18. The protective film 18 is composed of an organic film such as a polyimide resin film or an inorganic film such as SiN. The thermal expansion coefficient of the protective film 18 is 10 to 64 ppm / ° C. The bare chip IC 13 is disposed on a non-conductive film 15a and a non-conductive film 16a attached on the wiring substrate 11. The position to be arranged is the position of the electrode 12 formed on the wiring board 11. Thereafter, the bumps 14 are joined to the electrodes 12 by thermocompression bonding, and the first and second resin layers 15 and 16 are formed by curing the nonconductive film 15a and the nonconductive film 16a. Since the nonconductive film 15a and the nonconductive film 16a between the bump 14 and the electrode 12 are melted by thermocompression bonding, the bump 14 and the electrode 12 can be connected.
(Modification 1 of 2nd Embodiment)
Only a difference from the second embodiment will be described in the first modification of the circuit module of the second embodiment. A bare chip IC 13 such as a WLCSP provided with bumps 14 is placed on a non-conductive film 15a made of an epoxy resin attached on the wiring board 11, and is thermocompression bonded. By heating, the non-conductive film 15 a is cured and becomes the first resin layer 15. A liquid resin 16b made of an epoxy resin is filled between the first resin layer 15 and the bare chip IC 13 instead of the non-conductive film 16a. The thermal expansion coefficient of the liquid resin 16b is generally 10 to 40 ppm / ° C. because an epoxy resin is used. As for the liquid resin 16b and the non-conductive film 15a, as in the second embodiment, an epoxy resin having a desired thermal expansion coefficient is selected.

その後、加熱して液状樹脂16bを硬化させることで、第2の樹脂層16を形成する。
(第2の実施形態の変形例2)
第2の実施形態の回路モジュールの変形例2の製造方法について図3を用いて説明する。まず、配線基板11を用意する。この配線基板11は低温焼成セラミック等からなるセラミック基板(熱膨張係数=7〜15ppm/℃)やガラス・エポキシ等からなるプリント基板(熱膨張係数=15〜50ppm/℃)で構成される。この配線基板11の上に金属箔を用いてまたは印刷等でCuやAg等からなる膜状電極12を形成する。この電極12の上にハンダペーストを印刷、またはAuメッキする等で、柱状電極17を形成する。
Thereafter, the second resin layer 16 is formed by heating to cure the liquid resin 16b.
(Modification 2 of the second embodiment)
The manufacturing method of the modification 2 of the circuit module of 2nd Embodiment is demonstrated using FIG. First, the wiring board 11 is prepared. The wiring board 11 is composed of a ceramic substrate (thermal expansion coefficient = 7 to 15 ppm / ° C.) made of low-temperature fired ceramic or the like, or a printed board (thermal expansion coefficient = 15 to 50 ppm / ° C.) made of glass or epoxy. A film electrode 12 made of Cu, Ag, or the like is formed on the wiring substrate 11 by using a metal foil or printing. The columnar electrode 17 is formed on the electrode 12 by printing solder paste or Au plating.

次に、電極(図示せず)を備えたICウエハを用意する。ICウエハの保護膜18の上に、エポキシ樹脂からなる厚さ25〜75μmの非導電性フィルム16aを貼り付ける。この非導電性フィルム16aの熱膨張係数はエポキシ樹脂を用いているので一般的に10〜40ppm/℃である。次に、この非導電性フィルム16aの上に、エポキシ樹脂からなる厚さ25〜75μmの非導電性フィルム15aを貼り付ける。この非導電性フィルム15aの熱膨張係数はエポキシ樹脂を用いているので一般的に10〜40ppmである。非導電性フィルム15aおよび非導電性フィムル16aは、第2の実施形態と同様に、それぞれ所望の熱膨張係数となるようなエポキシ樹脂が選定されている。その後、ICウエハを位置合わせした状態でダイシングし、非導電性フィルム16aおよび非導電性フィルム15aが貼り付けられたベアチップIC13aを形成する。   Next, an IC wafer provided with electrodes (not shown) is prepared. On the protective film 18 of the IC wafer, a non-conductive film 16a made of epoxy resin and having a thickness of 25 to 75 μm is attached. The non-conductive film 16a generally has a thermal expansion coefficient of 10 to 40 ppm / ° C. because an epoxy resin is used. Next, a non-conductive film 15a made of epoxy resin and having a thickness of 25 to 75 μm is pasted on the non-conductive film 16a. The thermal expansion coefficient of the nonconductive film 15a is generally 10 to 40 ppm because an epoxy resin is used. For the non-conductive film 15a and the non-conductive film 16a, as in the second embodiment, an epoxy resin having a desired coefficient of thermal expansion is selected. Thereafter, dicing is performed in a state where the IC wafer is aligned to form a bare chip IC 13a to which the nonconductive film 16a and the nonconductive film 15a are attached.

次に、ベアチップIC13aを反転させ、前記配線基板11に形成された前記柱状電極17の上に配置する。その後、加熱圧着にてベアチップIC13aの電極を柱状電極17と接合させるとともに、非導電性フィルム15aおよび非導電性フィルム16aを硬化させることで、第1の樹脂層15および第2の樹脂層16を形成する。なお、ベアチップIC13aの電極と柱状電極17の間の非導電性フィルム15aおよび非導電性フィルム16aは、加熱圧着することで溶融するため、ベアチップIC13aの電極と柱状電極17の接続が可能となる。
(第3の実施形態)
本発明の第3の実施形態の回路モジュールは、図4に示すように、電極22および柱状電極27を備えた配線基板21と、バンプ24を備えるとともに機能面を保護膜28で覆われ、配線基板21の上に配置されたベアチップIC23と、配線基板21とベアチップIC23の間に第1の樹脂層25と第2の樹脂層26を備えている。
Next, the bare chip IC 13 a is inverted and placed on the columnar electrode 17 formed on the wiring substrate 11. Thereafter, the electrodes of the bare chip IC 13a are joined to the columnar electrodes 17 by thermocompression bonding, and the first and second resin layers 15 and 16 are cured by curing the nonconductive film 15a and the nonconductive film 16a. Form. Since the nonconductive film 15a and the nonconductive film 16a between the electrode of the bare chip IC 13a and the columnar electrode 17 are melted by thermocompression bonding, the electrode of the bare chip IC 13a and the columnar electrode 17 can be connected.
(Third embodiment)
As shown in FIG. 4, the circuit module according to the third embodiment of the present invention includes a wiring board 21 including electrodes 22 and columnar electrodes 27, bumps 24, and a functional surface covered with a protective film 28. A bare chip IC 23 disposed on the substrate 21, and a first resin layer 25 and a second resin layer 26 are provided between the wiring substrate 21 and the bare chip IC 23.

次に、第3の実施形態の回路モジュールの製造方法について説明する。まず、配線基板21を用意する。この配線基板21は低温焼成セラミック等からなるセラミック基板(熱膨張係数=7〜15ppm/℃)やガラス・エポキシ等からなるプリント基板(熱膨張係数=15〜50ppm/℃)で構成される。この配線基板21の上に金属箔を用いてまたは印刷等でCuやAg等からなる膜状電極22を形成する。この電極22の上に、ハンダペーストを印刷、またはAuメッキする等で、柱状電極27を形成する。   Next, a method for manufacturing the circuit module according to the third embodiment will be described. First, the wiring board 21 is prepared. The wiring board 21 is composed of a ceramic substrate (thermal expansion coefficient = 7 to 15 ppm / ° C.) made of low-temperature fired ceramic or the like, and a printed circuit board (thermal expansion coefficient = 15 to 50 ppm / ° C.) made of glass or epoxy. A film-like electrode 22 made of Cu, Ag, or the like is formed on the wiring substrate 21 using a metal foil or printing. A columnar electrode 27 is formed on the electrode 22 by printing a solder paste or Au plating.

次に、柱状電極27が形成された配線基板21の上に、エポキシ樹脂からなる非導電性ペースト25aを塗布し、半硬化させる。この非導電性ペースト25aの熱膨張係数はエポキシ樹脂を用いているので一般的に10〜40ppm/℃である。非導電性ペースト25aを塗布する際、配線基板21に形成された柱状電極27に対する濡れ上がりが生じるため、非導電性ペースト25aが柱状電極27の上部にまで配置されることになる。   Next, a non-conductive paste 25a made of an epoxy resin is applied on the wiring substrate 21 on which the columnar electrodes 27 are formed and semi-cured. The thermal expansion coefficient of the non-conductive paste 25a is generally 10 to 40 ppm / ° C. because an epoxy resin is used. When the nonconductive paste 25a is applied, the columnar electrode 27 formed on the wiring substrate 21 is wetted, so that the nonconductive paste 25a is disposed even above the columnar electrode 27.

次に、バンプ24を備えたWLCSP等のベアチップIC23を用意する。このベアチップIC23の機能面は、保護膜28で覆われている。この保護膜28はポリイミド樹脂膜等の有機膜やSiN等の無機膜で構成されている。この保護膜28の熱膨張係数は10〜64ppm/℃である。このベアチップIC23を前記非導電性ペースト25aの上に配置する。配置する位置は、配線基板21上の柱状電極27の位置である。その後、加熱圧着にてバンプ24を柱状電極27と接合させるとともに、非導電性ペースト25aを硬化させることで、第1の樹脂層25を形成する。なお、バンプ24と柱状電極27の間の半硬化状態の非導電性ペースト25aは、加熱圧着することで溶融するため、バンプ24と柱状電極27の接続が可能となる。   Next, a bare chip IC 23 such as a WLCSP provided with bumps 24 is prepared. The functional surface of the bare chip IC 23 is covered with a protective film 28. The protective film 28 is composed of an organic film such as a polyimide resin film or an inorganic film such as SiN. The thermal expansion coefficient of the protective film 28 is 10 to 64 ppm / ° C. The bare chip IC 23 is disposed on the non-conductive paste 25a. The position to be arranged is the position of the columnar electrode 27 on the wiring board 21. Thereafter, the bumps 24 are joined to the columnar electrodes 27 by thermocompression bonding, and the first conductive layer 25 is cured to form the first resin layer 25. The semi-cured non-conductive paste 25a between the bump 24 and the columnar electrode 27 is melted by thermocompression bonding, so that the bump 24 and the columnar electrode 27 can be connected.

次に、前記第1の樹脂層25と前記ベアチップIC23との間に、エポキシ樹脂からなる液状樹脂26aを充填する。この液状樹脂26aの熱膨張係数はエポキシ樹脂を用いているので一般的に10〜40ppm/℃である。液状樹脂26aおよび非導電性ペースト25aは、第2の実施形態と同様に、それぞれ所望の熱膨張係数となるようなエポキシ樹脂が選定されている。   Next, a liquid resin 26 a made of an epoxy resin is filled between the first resin layer 25 and the bare chip IC 23. The thermal expansion coefficient of the liquid resin 26a is generally 10 to 40 ppm / ° C. because an epoxy resin is used. As for the liquid resin 26a and the non-conductive paste 25a, an epoxy resin having a desired coefficient of thermal expansion is selected as in the second embodiment.

その後、加熱して液状樹脂26aを硬化させることで、第2の樹脂層26を形成する。   Thereafter, the second resin layer 26 is formed by heating to cure the liquid resin 26a.

前述の通り、非導電性ペースト25aを塗布する際、柱状電極27に対する濡れ上がりが生じる。その結果、柱状電極27の周囲では第1の樹脂層25が厚くなる。一方、柱状電極27の間中央付近では、第2の樹脂層26が厚くなる。   As described above, when the non-conductive paste 25a is applied, the columnar electrode 27 is wetted. As a result, the first resin layer 25 is thicker around the columnar electrode 27. On the other hand, in the vicinity of the center between the columnar electrodes 27, the second resin layer 26 is thick.

柱状電極27と第1の樹脂層25の熱膨張係数は近いため、第1の樹脂層25が厚くなり柱状電極27との接触面積が増えることで、柱状電極27と第1の樹脂層25の剥離不良が削減できる。
(第3の実施形態の変形例1)
第3の実施形態の回路モジュールの変形例1について、第3の実施形態との相違点についてのみ説明する。配線基板21の上に塗布し、半硬化させたエポキシ樹脂からなる非導電性ペースト25aの上に、前記液状樹脂26aの代わりにエポキシ樹脂からなる非導電性ペースト26bを塗布する。この非導電性ペースト26bの熱膨張係数はエポキシ樹脂を用いているので一般的に10〜40ppm/℃である。非導電性ペースト25aおよび非導電性ペースト26bは、第2の実施形態と同様に、それぞれ所望の熱膨張係数となるようなエポキシ樹脂が選定されている。
Since the thermal expansion coefficients of the columnar electrode 27 and the first resin layer 25 are close, the first resin layer 25 becomes thicker and the contact area with the columnar electrode 27 increases, so that the columnar electrode 27 and the first resin layer 25 Debonding failure can be reduced.
(Modification 1 of 3rd Embodiment)
Only a difference from the third embodiment will be described in Modification 1 of the circuit module according to the third embodiment. A non-conductive paste 26b made of an epoxy resin is applied instead of the liquid resin 26a on a non-conductive paste 25a made of an epoxy resin which is applied and semi-cured on the wiring board 21. The thermal expansion coefficient of the non-conductive paste 26b is generally 10 to 40 ppm / ° C. because an epoxy resin is used. As for the non-conductive paste 25a and the non-conductive paste 26b, an epoxy resin having a desired coefficient of thermal expansion is selected as in the second embodiment.

次に、バンプ24を備えたWLCSP等のベアチップIC23を非導電性ペースト26bの上に配置する。配置する位置は、柱状電極27の位置である。その後、加熱圧着にてバンプ24を柱状電極27と接合させるとともに、非導電性ペースト25aおよび非導電性ペースト26bを硬化させることで、第1の樹脂層25および第2の樹脂層26を形成する。なお、バンプ24と柱状電極27の間の半硬化状態の非導電性ペースト25aと非導電ペースト26bは、加熱圧着することで溶融するため、バンプ24と柱状電極27の接続が可能となる。
(実験例)
第1の実施形態から第3の実施形態(変形例1)のように、配線基板とベアチップICの間に樹脂充填された製品について、吸湿リフロー試験を行った。各実施形態の条件は次の通りである。
Next, the bare chip IC 23 such as WLCSP provided with the bumps 24 is disposed on the non-conductive paste 26b. The position to arrange is the position of the columnar electrode 27. Thereafter, the bumps 24 are joined to the columnar electrodes 27 by thermocompression bonding, and the first resin layer 25 and the second resin layer 26 are formed by curing the nonconductive paste 25a and the nonconductive paste 26b. . The semi-cured non-conductive paste 25a and non-conductive paste 26b between the bump 24 and the columnar electrode 27 are melted by thermocompression bonding, so that the bump 24 and the columnar electrode 27 can be connected.
(Experimental example)
As in the first to third embodiments (Modification 1), a moisture absorption reflow test was performed on a product filled with resin between the wiring board and the bare chip IC. The conditions of each embodiment are as follows.

第1の実施形態:配線基板=セラミック基板、配線基板の熱膨張係数=12ppm/℃、エポキシ樹脂=60ppm/℃、ベアチップIC保護膜の熱膨張係数=30ppm/℃
第2の実施形態:配線基板=プリント基板、配線基板の熱膨張係数=25ppm/℃、第1の樹脂層(非導電性フィルム)の厚さ=50μm、第1の樹脂層(非導電性フィルム)の熱膨張係数=25ppm/℃、第2の樹脂層(非導電性フィルム)の厚さ=50μm、第2の樹脂層(非導電性フィルム)の熱膨張係数=30ppm/℃、ベアチップIC保護膜の熱膨張係数=30ppm/℃
第2の実施形態の変形例1:配線基板=プリント基板、配線基板の熱膨張係数=25ppm/℃、第1の樹脂層(非導電性フィルム)の厚さ=50μm、第1の樹脂層(非導電性フィルム)の熱膨張係数=25ppm/℃、第2の樹脂層(液状樹脂)の熱膨張係数=30ppm/℃、ベアチップIC保護膜の熱膨張係数=30ppm/℃
第2の実施形態の変形例2:配線基板=プリント基板、配線基板の熱膨張係数=25ppm/℃、第1の樹脂層(非導電性フィルム)の厚さ=50μm、第1の樹脂層(非導電性フィルム)の熱膨張係数=25ppm/℃、第2の樹脂層(非導電性フィルム)の厚さ=50μm、第2の樹脂層(非導電性フィルム)の熱膨張係数=30ppm/℃、ベアチップIC保護膜の熱膨張係数=30ppm/℃
第3の実施形態:配線基板=プリント基板、配線基板の熱膨張係数=25ppm/℃、第1の樹脂層(非導電性ペースト)の熱膨張係数=25ppm/℃、第2の樹脂層(液状樹脂)の熱膨張係数=30ppm/℃、ベアチップIC保護膜の熱膨張係数=30ppm/℃
第3の実施形態の変形例1:配線基板=プリント基板、配線基板の熱膨張係数=25ppm/℃、第1の樹脂層(非導電性ペースト)の熱膨張係数=25ppm/℃、第2の樹脂層(非導電性ペースト)の熱膨張係数=30ppm/℃、ベアチップIC保護膜の熱膨張係数=30ppm/℃
試験の内容は次の通りである。125℃で24時間ベーキングした後、温度60℃、湿度60%の状態で120時間維持した。その後、260℃のピークリフローを5回通した。各実施形態の製品について、超音波探傷観察による不良数を調べた結果を表1に示す。
First embodiment: wiring board = ceramic substrate, thermal expansion coefficient of wiring board = 12 ppm / ° C., epoxy resin = 60 ppm / ° C., thermal expansion coefficient of bare chip IC protective film = 30 ppm / ° C.
Second embodiment: wiring board = printed board, thermal expansion coefficient of wiring board = 25 ppm / ° C., first resin layer (non-conductive film) thickness = 50 μm, first resin layer (non-conductive film) ) Thermal expansion coefficient = 25 ppm / ° C., second resin layer (non-conductive film) thickness = 50 μm, second resin layer (non-conductive film) thermal expansion coefficient = 30 ppm / ° C., bare chip IC protection Thermal expansion coefficient of membrane = 30 ppm / ° C.
Modification Example of Second Embodiment 1: Wiring Board = Print Board, Thermal Expansion Coefficient of Wiring Board = 25 ppm / ° C., First Resin Layer (Non-Conductive Film) Thickness = 50 μm, First Resin Layer ( Non-conductive film) thermal expansion coefficient = 25 ppm / ° C., second resin layer (liquid resin) thermal expansion coefficient = 30 ppm / ° C., bare chip IC protective film thermal expansion coefficient = 30 ppm / ° C.
Variation 2 of the second embodiment: Wiring board = printed board, thermal expansion coefficient of the wiring board = 25 ppm / ° C., first resin layer (non-conductive film) thickness = 50 μm, first resin layer ( Non-conductive film) thermal expansion coefficient = 25 ppm / ° C., second resin layer (non-conductive film) thickness = 50 μm, second resin layer (non-conductive film) thermal expansion coefficient = 30 ppm / ° C. Coefficient of thermal expansion of bare chip IC protective film = 30 ppm / ° C.
Third embodiment: wiring board = printed board, thermal expansion coefficient of wiring board = 25 ppm / ° C., thermal expansion coefficient of first resin layer (non-conductive paste) = 25 ppm / ° C., second resin layer (liquid Resin) = 30 ppm / ° C, bare chip IC protective film = 30 ppm / ° C
Modification Example of Third Embodiment 1: Wiring board = printed board, thermal expansion coefficient of wiring board = 25 ppm / ° C., thermal expansion coefficient of first resin layer (non-conductive paste) = 25 ppm / ° C., second Thermal expansion coefficient of resin layer (non-conductive paste) = 30 ppm / ° C. Thermal expansion coefficient of bare chip IC protective film = 30 ppm / ° C.
The contents of the test are as follows. After baking at 125 ° C. for 24 hours, the temperature was maintained at 60 ° C. and humidity 60% for 120 hours. Then, the peak reflow of 260 degreeC was passed 5 times. Table 1 shows the results of examining the number of defects by ultrasonic flaw detection for the products of each embodiment.

Figure 2012028497
Figure 2012028497

この表1から明らかなように、実施例は不良率が0%となっている。   As is apparent from Table 1, the defect rate in the example is 0%.

1、11、21:配線基板
2、12、22:電極
3、13、23:ベアチップIC
4、14、24:バンプ
5:樹脂
8、18、28:保護膜
15、25:第1の樹脂層
16、26:第2の樹脂層
17、27:柱状電極
101:ベアチップIC
102:端子電極
103:半田バンプ
104:基板
105:配線パターン
106:ソルダーレジスト
107:アンダーフィル樹脂
108:保護膜
1, 11, 21: Wiring board 2, 12, 22: Electrode 3, 13, 23: Bare chip IC
4, 14, 24: Bump 5: Resin 8, 18, 28: Protective film 15, 25: First resin layer 16, 26: Second resin layer 17, 27: Columnar electrode 101: Bare chip IC
102: Terminal electrode 103: Solder bump 104: Substrate 105: Wiring pattern 106: Solder resist 107: Underfill resin 108: Protective film

Claims (4)

配線基板と、機能面を保護する保護膜を備え、前記配線基板の上に配置されたベアチップICと、前記配線基板と前記ベアチップICとを接続するバンプと、前記配線基板と前記ベアチップICの間に充填された樹脂とを有する回路モジュールにおいて、
前記樹脂の熱膨張係数は、前記配線基板近傍では配線基板の熱膨張係数に近い状態となっており、前記ベアチップIC保護膜近傍では前記配線基板近傍の樹脂の熱膨張係数と異なり、かつベアチップIC保護膜の熱膨張係数に近い状態となっていることを特徴とする回路モジュール。
A wiring board, a protective film that protects the functional surface, a bare chip IC disposed on the wiring board, a bump that connects the wiring board and the bare chip IC, and between the wiring board and the bare chip IC In a circuit module having a resin filled in
The thermal expansion coefficient of the resin is close to the thermal expansion coefficient of the wiring board in the vicinity of the wiring board, is different from the thermal expansion coefficient of the resin in the vicinity of the wiring board near the bare chip IC protective film, and is bare chip IC. A circuit module having a state close to a thermal expansion coefficient of a protective film.
前記樹脂の前記配線基板近傍の熱膨張係数と、前記樹脂の前記ベアチップIC保護膜近傍の熱膨張係数の差は、樹脂内のフィラー分布の変化によるものであることを特徴とする請求項1に記載の回路モジュール。   The difference between the thermal expansion coefficient of the resin in the vicinity of the wiring board and the thermal expansion coefficient of the resin in the vicinity of the bare chip IC protective film is due to a change in filler distribution in the resin. The circuit module as described. 前記樹脂内のフィラー分布は、前記配線基板近傍のフィラー密度がベアチップIC保護膜近傍のフィラーの密度より高くなっていることを特徴とする請求項2に記載の回路モジュール。   3. The circuit module according to claim 2, wherein the filler distribution in the resin is such that the filler density in the vicinity of the wiring board is higher than the density of the filler in the vicinity of the bare chip IC protective film. 前記樹脂は、熱膨張係数の異なる第1の樹脂層と第2の樹脂層を含むことを特徴とする請求項1に記載の回路モジュール。   The circuit module according to claim 1, wherein the resin includes a first resin layer and a second resin layer having different thermal expansion coefficients.
JP2010164795A 2010-07-22 2010-07-22 Circuit module Active JP5625578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010164795A JP5625578B2 (en) 2010-07-22 2010-07-22 Circuit module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010164795A JP5625578B2 (en) 2010-07-22 2010-07-22 Circuit module

Publications (2)

Publication Number Publication Date
JP2012028497A true JP2012028497A (en) 2012-02-09
JP5625578B2 JP5625578B2 (en) 2014-11-19

Family

ID=45781092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010164795A Active JP5625578B2 (en) 2010-07-22 2010-07-22 Circuit module

Country Status (1)

Country Link
JP (1) JP5625578B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013135204A (en) * 2011-12-27 2013-07-08 Sumitomo Bakelite Co Ltd Semiconductor device
JP2013190354A (en) * 2012-03-14 2013-09-26 Nippon Soken Inc Joint member and manufacturing method of the same
JP2016048804A (en) * 2015-12-04 2016-04-07 住友ベークライト株式会社 Semiconductor device
JP2016182699A (en) * 2015-03-25 2016-10-20 パナソニックIpマネジメント株式会社 Film material and electronic component using the same, and method for manufacturing electronic component
KR20210002350A (en) * 2017-06-30 2021-01-07 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Semiconductor device and method of manufacture
US11121050B2 (en) 2017-06-30 2021-09-14 Taiwan Semiconductor Manufacturing Company, Ltd. Method of manufacture of a semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286297A (en) * 1999-01-29 2000-10-13 Matsushita Electric Ind Co Ltd Mounting method for electronic component and its device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286297A (en) * 1999-01-29 2000-10-13 Matsushita Electric Ind Co Ltd Mounting method for electronic component and its device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013135204A (en) * 2011-12-27 2013-07-08 Sumitomo Bakelite Co Ltd Semiconductor device
JP2013190354A (en) * 2012-03-14 2013-09-26 Nippon Soken Inc Joint member and manufacturing method of the same
JP2016182699A (en) * 2015-03-25 2016-10-20 パナソニックIpマネジメント株式会社 Film material and electronic component using the same, and method for manufacturing electronic component
JP2016048804A (en) * 2015-12-04 2016-04-07 住友ベークライト株式会社 Semiconductor device
KR20210002350A (en) * 2017-06-30 2021-01-07 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Semiconductor device and method of manufacture
US11121050B2 (en) 2017-06-30 2021-09-14 Taiwan Semiconductor Manufacturing Company, Ltd. Method of manufacture of a semiconductor device
US11201097B2 (en) 2017-06-30 2021-12-14 Taiwan Semiconductor Manufacturing Company, Ltd. Method of manufacture of a semiconductor device
KR102383909B1 (en) * 2017-06-30 2022-04-08 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Semiconductor device and method of manufacture

Also Published As

Publication number Publication date
JP5625578B2 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
JP5625578B2 (en) Circuit module
TWI377656B (en) Method for manufacturing packaging substrate
US8367539B2 (en) Semiconductor device and semiconductor device manufacturing method
JP2011222986A (en) Method of manufacturing semiconductor device
TWI517272B (en) Solder precoating method
KR100636364B1 (en) Bonding method for solder-pad in flip-chip package
JP2008218629A (en) Semiconductor package and electronic component
JP6444269B2 (en) Electronic component device and manufacturing method thereof
US10129980B2 (en) Circuit board and electronic component device
JP2000340712A (en) Polymer-reinforced column grid array
JP2009200067A (en) Semiconductor chip and semiconductor device
JP5919641B2 (en) Semiconductor device, method for manufacturing the same, and electronic device
TW201429328A (en) Printed circuit board and method for manufacturing the same
JP2018186121A (en) Semiconductor package substrate, semiconductor package, and semiconductor device
JP2012182350A (en) Module component and manufacturing method of the same
JP2010123676A (en) Manufacturing method of semiconductor device and semiconductor device
JP6464762B2 (en) Semiconductor package substrate, semiconductor package, semiconductor package substrate manufacturing method, and semiconductor package manufacturing method
JP6069960B2 (en) Manufacturing method of semiconductor package
JP2009188392A (en) Semiconductor device and method of manufacturing semiconductor device
US8952531B2 (en) Packaging method using solder coating ball and package having solder pattern including metal pattern
JP2013004648A (en) Manufacturing method of semiconductor package
TWI496250B (en) Package substrate and fabrication method thereof
JP2013062472A (en) Semiconductor package and manufacturing method of the same
WO2016098296A1 (en) Semiconductor device and method for manufacturing same
JP2012114276A (en) Resin sealed module and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

R150 Certificate of patent or registration of utility model

Ref document number: 5625578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150