JP2012025925A - Low dielectric constant resin varnish composition for laminated substrate and method for producing the same - Google Patents

Low dielectric constant resin varnish composition for laminated substrate and method for producing the same Download PDF

Info

Publication number
JP2012025925A
JP2012025925A JP2010168937A JP2010168937A JP2012025925A JP 2012025925 A JP2012025925 A JP 2012025925A JP 2010168937 A JP2010168937 A JP 2010168937A JP 2010168937 A JP2010168937 A JP 2010168937A JP 2012025925 A JP2012025925 A JP 2012025925A
Authority
JP
Japan
Prior art keywords
resin
dcpd
dicyclopentadiene
varnish composition
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010168937A
Other languages
Japanese (ja)
Other versions
JP5323780B2 (en
Inventor
Ming-Jen Tzou
ミン−ジェン,ツォウ
June-Che Lu
ジュン−チェ,ルー
Yi-Cheng Lin
イ−チェン,リン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nan Ya Plastics Corp
Original Assignee
Nan Ya Plastics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nan Ya Plastics Corp filed Critical Nan Ya Plastics Corp
Priority to JP2010168937A priority Critical patent/JP5323780B2/en
Publication of JP2012025925A publication Critical patent/JP2012025925A/en
Application granted granted Critical
Publication of JP5323780B2 publication Critical patent/JP5323780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lower dielectric constant resin varnish composition for a laminated substrate in which a resin material to be used is lightweight, thin, small-sized, subjected to elaboration and used for preventing the loss and interference of data in a transmission process has excellent electrical properties.SOLUTION: The low dielectric constant resin varnish composition for a laminated substrate is obtained by mixing (A) a dicyclopentadiene-novolak type phenol resin (DCPD-PN) or (B) one or many kinds of epoxy resins occupying 13 to 60 wt.% of the total resin content or a dicyclopentadiene epoxy resin having a DCPD component (DCPD-PNE) or (C) a dicyclopentadiene-dihydrobenzoxaine resin (DCPD-BX) occupying 30 to 50 wt.% of the total resin content or a resin obtained by mixing the (B) and (C) with (D) a flame retardant and a curing agent or an accelerator and a solvent at fixed proportions.

Description

本発明は、低誘電率、高熱安定性及び低吸湿特性のある耐燃UL94 V-0テストを達成することができる高性能電気回路基板材として使用することに適した新しい積層板用樹脂ワニス組成物に関する。   The present invention is a new resin varnish composition for laminates suitable for use as a high-performance electric circuit board material capable of achieving a flame-resistant UL94 V-0 test having low dielectric constant, high thermal stability and low moisture absorption characteristics. About.

科学技術の日進月歩に伴い、多くのコンピュータ情報産業、情報通信業及びコンシューマ電子製品は、急速な変化をなしとげている。総合的に電子産業を見ると、その発展の特色は以下のとおりである。
1.使用頻度が次第に高くなっている。
2.製造技術レベルも次第に高くなっている。
With the progress of science and technology, many computer information industries, information communication industries, and consumer electronic products are changing rapidly. Looking at the electronics industry as a whole, the characteristics of its development are as follows.
1. Frequency of use is gradually increasing.
2. Manufacturing technology level is also getting higher.

プリント回路基板では、低誘電、低熱膨張化、多層化、高耐熱化などに向かって発展すると同時に、環境にやさしくなければならないという要求がある。そのため、電子、情報通信製品は軽く、薄く、コンパクトで、信頼性が高く、多機能であると同時に、環境保護要求をも満たさなければいけない傾向にある。そのうち、無線インターネット、情報通信器材の使用頻度が高まるに伴い、今後、高周波基板のニーズは高まる一方である。簡単に言うと、高周波情報通信基板に使用される材料は、スピードの速いデータ伝送にも耐えられ、伝送の過程で資料の損失がなく、妨害を受けないものでなければならず、そのためには、高周波情報通信器材を選ぶ時、以下幾つかの基本的特性を考慮する必要がある。
(1)誘電率が小さく安定している。
(2)誘電消耗因子が小さい。
(3)吸水率が低い。
(4)抗化学性がよい。
(5)耐熱性が良好である。
There is a demand for printed circuit boards that must be environmentally friendly while developing toward low dielectrics, low thermal expansion, multiple layers, and high heat resistance. For this reason, electronic and information communication products tend to be light, thin, compact, highly reliable, multifunctional and satisfy environmental protection requirements. As the frequency of use of wireless Internet and information communication equipment increases, the need for high-frequency substrates is increasing in the future. Simply put, the materials used for high-frequency information communication boards must be able to withstand high-speed data transmission, be free of material loss during the transmission process, and not be disturbed. When selecting high-frequency information communication equipment, it is necessary to consider several basic characteristics.
(1) The dielectric constant is small and stable.
(2) Dielectric consumption factor is small.
(3) Low water absorption.
(4) Good anti-chemical properties.
(5) Good heat resistance.

プリント回路基板の材料であるその電気特性は、3つの主な組み合わせ主材i)樹脂、(ii)充填材、(iii)補強材により決まる。樹脂として現在汎用されているエポキシ樹脂(例:ナン ヤ プラスティクス コーポレーションのNPEB454A80)とガラス(E glass)を組み合わせたFR-4(Tg140℃)の基板規格は、その誘電率(Dk)値はわずか4.6で、高周波伝送分野の要求を満たす事ができない。ビスマレイミドトリアジン樹脂(Bismaleimide Triazine resin, BT)、シアン酸エステル樹脂(Cyanate ester resin)、ポリテトラフルオロエチレン樹脂(Polytetrafluoroethylene;PTFE)などの樹脂が次々と開発されているが、この新しく開発された樹脂の製造過程及び加工の条件等が、現行の基板加工、製造過程との差が大きく、現行設備そのままでは使用することができないため、広く使用されていない。   The electrical characteristics of the printed circuit board material are determined by the three main combination main materials i) resin, (ii) filler, and (iii) reinforcing material. The FR-4 (Tg140 ° C) board standard that combines epoxy resin (eg, NPEB454A80 from Nanya Plastics Corporation) and glass (E glass), which is currently widely used as a resin, has a low dielectric constant (Dk) value. 4.6 cannot meet the requirements of the high-frequency transmission field. Resins such as bismaleimide triazine resin (BT), cyanate ester resin, and polytetrafluoroethylene (PTFE) are being developed one after another. The manufacturing process, processing conditions, and the like are not widely used because they have a large difference from the current substrate processing and manufacturing process and cannot be used as they are.

プリント回路積層基板の発展は、軽く、薄く、小型で、精密化及び高周波化の傾向にあり、伝送過程においては資料の損失や妨害がないよう使用する樹脂材料は優れた電気特性を持つ必要がある。また、新開発の低誘電樹脂ワニス組成物は、現在使用されている加工、製造過程の操作及び設備で操作が可能であり、かつ環境保護の要求に符合することが、この技術分野の技術者が克服しなければならない重要な課題となっている。   The development of printed circuit board is light, thin, small, precise and high frequency, and the resin material to be used must have excellent electrical characteristics so that there is no loss or interference of data in the transmission process. is there. In addition, the newly developed low dielectric resin varnish composition can be operated with currently used processing, manufacturing process operations and equipment, and meets the environmental protection requirements. Has become an important issue that must be overcome.

上記の課題から、当技術の発明者は長年の研究及び試験で化学構造上、飽和環状構造の骨組みを持つ飽和環状結構の樹脂を発見した。これらは、有効的に基板の熱膨張係数、誘電率及び誘電損失因素を下げる事ができ、優れた低誘電率Dk及び低誘電損失係数Df 電気特性をもつ樹脂ワニス組成物である。また、現行の設備、加工製造過程にて各種の硬化剤を配合して異なるニーズにあった基板を製造することができる。   From the above problems, the inventors of the present technology have discovered a saturated ring-shaped resin having a framework of a saturated ring structure in chemical structure through many years of research and testing. These are resin varnish compositions that can effectively lower the thermal expansion coefficient, dielectric constant and dielectric loss factor of the substrate, and have excellent low dielectric constant Dk and low dielectric loss coefficient Df electrical characteristics. In addition, it is possible to manufacture substrates that meet different needs by blending various curing agents in current equipment and processing and manufacturing processes.

本発明の主な目的は、低誘電率、低誘電損失、低吸湿及び高熱安定性の電路基板を提供するもので、この基板は値段が安いナフサ分解の副産品ジシクロペンタジエン(Dicyclopentadiene,DCPD)を原料とし、原料自体が持つ剛硬性脂肪族環状の骨格立体構造で、フェノール類化合物と反応合成してDCPD構造を含むノボラック型フェノール樹脂(Dicyclopentadiene- Phenolic Novolac,DCPD-PN)を得る。又、このDCPD樹脂をジヒドロベンゾキサジン(Dihydrobenzoxazine,BX)樹脂又はエポキシ樹脂と反応させれば、ジシクロペンタジエン-ジヒドロベンゾキサジン樹脂(Dicyclopentadiene-Dihydrobenzoxazine,DCPD-BX)、又はDCPDエポキシ樹脂(Phenol Novolac Epoxy,DCPD-PNE)を生成し、低誘電、高熱安定性、低吸湿性の電路基板を作り、現在一般に使用されている設備、加工条件で簡単に銅箔基板を製造加工することができる。   The main object of the present invention is to provide a circuit board with low dielectric constant, low dielectric loss, low moisture absorption and high thermal stability, which is a low-cost naphtha decomposition by-product dicyclopentadiene (DCPD). As a raw material, a novolac-type phenol resin (DCPD-PN) containing a DCPD structure is obtained by reaction synthesis with a phenol compound, which is a rigid, aliphatic, cyclic skeletal three-dimensional structure of the raw material itself. Also, if this DCPD resin is reacted with a dihydrobenzoxazine (BX) resin or an epoxy resin, a dicyclopentadiene-dihydrobenzoxazine resin (Dicyclopentadiene-Dihydrobenzoxazine, DCPD-BX) or a DCPD epoxy resin (Phenol) Novolac Epoxy, DCPD-PNE) to create a low dielectric, high thermal stability, low hygroscopic circuit board, and easily manufacture and process copper foil substrates with currently used equipment and processing conditions .

上記新低誘電樹脂から製成されるワニス組合物は:(A)DCPDを持つノボラック型フェノール樹脂(DCPD-PN); (B)一或いは多種以上のエポキシ樹脂或いはDCPDを持つエポキシ樹脂(DCPD-PNE);(C)DCPDを持つDCPD-BX樹脂;(D)難燃剤、硬化剤及び促進剤、溶剤からなるもので即本発明の積層板用樹脂ワニス組成物配合は(A)、(B)、(C)或いは(B)+(C)と(D)を一定比例で溶剤を加えて混ぜ合わせたものである。その;
主 剤:DCPDエポキシ樹脂(DCPD-PNE)はDCPD-PN原料を一定の当量比NaOHの存在下で、エピクロルヒドリン(Epichlorohydrin,ECH)を加え反応して合成する。DCPD-BX樹脂はDCPD-PNの原料に、一定当量比のポリアセタールとアニリンを加えて反応合成する。
硬化剤:ナン ヤ プラスティクス コーポレーションの硬化剤NPEH-710S或いは710Hを主とし、DCPD含量を増加するため、DCPD-PNを硬化剤として使用することができる。
難燃剤:現在、慣用の難燃剤は三種類に分けられ、一、伝統的な臭素系難燃剤は、テトラビスフェノールA(TBBA)などがある。二、リン系難燃剤は、リン酸エステル化合物(DOPO)などで、三、は無機添加型難燃剤Al2O3、ATH等ではあるが加えなくてもよい。
The varnish combination made from the above-mentioned new low dielectric resin is: (A) Novolac type phenol resin with DCPD (DCPD-PN); (B) One or more types of epoxy resin or epoxy resin with DCPD (DCPD-PNE) ); (C) DCPD-BX resin with DCPD; (D) Resin varnish composition for laminates according to the present invention comprising (A), (B) , (C) or (B) + (C) and (D) are mixed by adding a solvent in a certain proportion. That;
Main agent: DCPD epoxy resin (DCPD-PNE) is synthesized by reacting DCPD-PN raw material with Epichlorohydrin (ECH) in the presence of a certain equivalent ratio of NaOH. DCPD-BX resin is synthesized by adding a certain equivalent ratio of polyacetal and aniline to the raw material of DCPD-PN.
Hardener: Hardener NPEH-710S or 710H from Nanya Plastics Corporation, and DCPD-PN can be used as a hardener to increase DCPD content.
Flame retardants: At present, conventional flame retardants are classified into three types. One traditional brominated flame retardant is tetrabisphenol A (TBBA). Second, the phosphoric flame retardant is a phosphoric acid ester compound (DOPO), and the third is an inorganic additive type flame retardant Al 2 O 3 , ATH, or the like, but it may not be added.

本発明の新積層板用樹脂組成物は以下の手順にて作製される。
1. まず硬化性脂肪族環状立体骨格を持つナフサ分解物ジシクロペンタジエンとフェノール類化合物を反応させて(A) ジシクロペンタジエンノボラック型フェノール樹脂(DCPD-PN)を生成する。
2. DCPD成分を持つDCPD-PNをエピクロルヒドリン(ECH)にエポキシ化反応を起こして、ジシクロペンタジエンフェノールエポキシ樹脂(DCPD-PNE,別称樹脂1)を形成する。或いは、
3. DCPD-PNを、単官能基を有する一級アミン類と二官能基を有する一級アミン類の混合物及びホルムアルデヒド或いはポリアセタール化合物と反応させて、ジシクロペンタジエン-ジヒドロベンゾキサジン樹脂(DCPD-BX) 、別称樹脂2を生成する。
The resin composition for new laminates of the present invention is produced by the following procedure.
1. First, (A) dicyclopentadiene novolac phenol resin (DCPD-PN) is produced by reacting a naphtha decomposition product dicyclopentadiene having a curable aliphatic cyclic stereoskeleton with a phenol compound.
2. DCPD-PN with DCPD component is epoxidized to epichlorohydrin (ECH) to form dicyclopentadienephenol epoxy resin (DCPD-PNE, also called Resin 1). Or
3. DCPD-PN is reacted with a mixture of primary amines with monofunctional groups and primary amines with bifunctional groups and formaldehyde or polyacetal compounds to form dicyclopentadiene-dihydrobenzoxazine resin (DCPD-BX) Then, another name resin 2 is produced.

本発明の新積層板用樹脂組成物は、飽和多環状の骨格構造を持つため、一般のエポキシ樹脂と比べて、より優れた化学と物理性質を持つ。この樹脂ワニス組成物中にガラス繊維布を浸し、熱圧硬化した後、優れた電気性質、高熱安定性及び低吸湿性などの特性を持つ電気回路基板が得られ、一般電気回路基板或いは高周波、高機能の電気回路基板に適用される。   Since the resin composition for a new laminate of the present invention has a saturated polycyclic skeleton structure, it has better chemical and physical properties than general epoxy resins. After immersing the glass fiber cloth in this resin varnish composition and heat-pressure curing, an electric circuit board having excellent electrical properties, high thermal stability and low hygroscopic properties can be obtained. Applied to high-performance electric circuit boards.

本発明は一種の積層基板用の低誘電樹脂ワニス(Varnish)組成物で、その樹脂組成は:(A)ジシクロペンタジエン-ノボラック型フェノール樹脂(DCPD-PN);或いは(B)一つ或いは多種のエポキシ樹脂又はジシクロペンタジエン-フェノールエポキシ樹脂(DCPD-PNE);或いは(C)ジシクロペンタジエン-ジヒドロベンゾキサジン(DCPD-BX)樹脂;或いは(B)+(C)樹脂とが(D)難燃剤、硬化剤、硬化促進剤、溶剤とを一定比例での混合してなるもので、
そのうち、DCPD成分を持つ(A)ジシクロペンタジエン-ノボラック型フェノール樹脂(DCPD-PN)は、(a)ジシクロペンタジエンと(b)フェノール類化合物を反応して得られ、その構造式は下式(I)のとおりである:

Figure 2012025925
The present invention is a kind of low dielectric resin varnish composition for laminated substrates, the resin composition of which is: (A) dicyclopentadiene-novolak type phenolic resin (DCPD-PN); or (B) one or various kinds Epoxy resin or dicyclopentadiene-phenol epoxy resin (DCPD-PNE); or (C) dicyclopentadiene-dihydrobenzoxazine (DCPD-BX) resin; or (B) + (C) resin and (D) It is made by mixing a flame retardant, curing agent, curing accelerator and solvent in a certain proportion.
Among them, (A) dicyclopentadiene-novolak type phenol resin (DCPD-PN) having a DCPD component is obtained by reacting (a) dicyclopentadiene with (b) a phenol compound, and the structural formula thereof is As in (I):
Figure 2012025925

改質或いは変換反応後、多種型式となり、合成の詳細は下記のとおりである。
DCPD-PNの合成:
加熱パック、温度自動調節器、電動ミキサー及び冷却管を備えた5L4つ首ガラス反応槽の中に、940gのフェノール化合物とフェノール重量の2wt%を占めるルイス酸触媒(AlCl3)を入れ、温度が110℃になる迄混ぜ合わせ、更に温度を120℃に上げて反応させた後、滴加方式で132gのDCPDを加え、温度はそのまま4時間反応させる。それから、水酸化ナトリウム中和溶液を加え、清水にて反応溶液から塩類と触媒を取り除き、最後に180℃、70torrsの圧力下で、過量の反応物を取り除くと、DCPD-PN産物が得られる。
After the reforming or conversion reaction, various types are obtained, and the details of the synthesis are as follows.
Synthesis of DCPD-PN:
Heating pack, thermostat, in 5L4-neck glass reaction vessel equipped with an electric mixer and a cooling tube were placed a Lewis acid catalyst (AlCl 3), which accounts for 2 wt% of phenolic compounds and phenol weight of 940 g, the temperature is Mix until 110 ° C and further raise the temperature to 120 ° C, then add 132 g of DCPD in a drop-wise manner and let the temperature react for 4 hours. Then, neutralization solution of sodium hydroxide is added, salts and catalyst are removed from the reaction solution with fresh water, and finally, excess reactant is removed at 180 ° C. under a pressure of 70 torr to obtain a DCPD-PN product.

上記DCPD-PNを作る(a)ジシクロペンタジエンはナフサ分解の副産品で、その(b)フェノール類化合物は、一般的にフェノール、Oクレゾール、ビスフェノールA(Bisphenol-A)、ビスフェノールF(Bisphenol-F)、ビスフェノールS(Bisphenol-S)或いはフェノール樹脂など、最も良いのはビスフェノールA或いはフェノール樹脂である。   (A) Dicyclopentadiene that makes DCPD-PN is a by-product of naphtha decomposition, and (b) phenolic compounds are generally phenol, O cresol, bisphenol A (Bisphenol-A), bisphenol F (Bisphenol-F) ), Bisphenol S (Bisphenol-S) or phenol resin, etc., bisphenol A or phenol resin is the best.

DCPD-PNを合成するのに用いる溶剤は特に制限はなく、各反応物を溶解できるものであればよいが、トルエン、キシレンなどの炭化水素系溶剤が最適である。
本発明はDCPD含量を高めるため、DCPD-PNを硬化剤として添加使用することができる故、次のようなフェノール樹脂硬化剤をも使用することができる。:多価アミン(Polyvalent amines)、多価カルボン酸(Polyvalent carboxylic acids)、ジシアンジアミド(Dicyanodiamide)、無水物(Anhydrides)、ノボラック型フェノール樹脂(Phenol Novolac,略称PN)、Oクレゾールノボラック樹脂(Cresol Novolac,略称CN)、メラミンノボラック型フェノール樹脂(Melamine Phenol Novolac,略称MPN)、ビスフェノールAノボラック樹脂 (BPA Phenol Novolac,略称BPA-PN)、テトラフェノールノボラック樹脂(Tetra-Phenol Novolac,略称TPN)など。
The solvent used for synthesizing DCPD-PN is not particularly limited and may be any solvent that can dissolve each reactant. However, hydrocarbon solvents such as toluene and xylene are optimal.
In the present invention, in order to increase the DCPD content, DCPD-PN can be added and used as a curing agent. Therefore, the following phenol resin curing agent can also be used. : Polyvalent amines, Polyvalent carboxylic acids, Dicyanodiamide, Anhydrides, Novolac-type phenolic resin (Phenol Novolac, abbreviated as PN), O Cresol Novolac, Abbreviation CN), melamine novolac type phenol resin (Melamine Phenol Novolac, abbreviation MPN), bisphenol A novolac resin (BPA Phenol Novolac, abbreviation BPA-PN), tetraphenol novolac resin (Tetra-Phenol Novolac, abbreviation TPN) and the like.

本発明の樹脂ワニス組成物中の成分(B)一つ或いは多種のエポキシ樹脂又は、DCPD成分を含むジシクロペンタジエンエポキシ樹脂(DCPD-PNE)、別称樹脂1は、(DCPD-PN)をエピクロロヒドリンと反応させて作ったエポキシ樹脂である。その構造式は下式(II)のとおりである:

Figure 2012025925
Component (B) in the resin varnish composition of the present invention or one or more types of epoxy resin or dicyclopentadiene epoxy resin (DCPD-PNE) containing a DCPD component; It is an epoxy resin made by reacting with hydrin. Its structural formula is as follows:
Figure 2012025925

DCPD-PNE(樹脂1)の合成:
加熱パック、温度自動調節器、電動ミキサー、冷却管を備えている5L4つ首ガラス反応槽中に、500gのDCPD-PN、2927.2gのエピクロロヒドリンを入れ、温度を55℃迄に上げて溶解させ、281gの水酸化ナトリウムを滴加方式で4〜6時間満加する。それから、温度を78℃に上げ、110Torrs圧力下で1時間反応させ、最後に180℃、70torrsの圧力下で過量の反応物を除去すると、DCPD-PNE産物が得られる。
Synthesis of DCPD-PNE (Resin 1):
Put 500g of DCPD-PN and 2927.2g of epichlorohydrin in a 5L 4-neck glass reactor equipped with a heating pack, automatic temperature controller, electric mixer and cooling tube, and raise the temperature to 55 ° C. Dissolve and 281 g of sodium hydroxide is added dropwise for 4-6 hours. The temperature is then raised to 78 ° C. and allowed to react for 1 hour under 110 Torrs pressure, and finally the excess reactant is removed under 180 ° C. and 70 torr pressure to obtain the DCPD-PNE product.

ここで言うエポキシ樹脂とは、ビスフェノールA(BPA)型エポキシ樹脂a、臭化BPA型エポキシ樹脂、フェノール型エポキシ樹脂及a.リン酸エステル型エポキシ樹脂である。   The epoxy resin mentioned here is bisphenol A (BPA) type epoxy resin a, brominated BPA type epoxy resin, phenol type epoxy resin and a. Phosphate ester type epoxy resin.

DCPD成分を持つ(C)ジシクロペンタジエン-ジヒドロベンゾキサジン樹脂(DCPD-BX)、別称樹脂2は、(1)のジシクロペンタジエン-ノボラック型フェノール樹脂(DCPD-PN)上記A成分;(2) 単官能基を有する一級アミン類と二官能基を有する一級アミン類の混合物;(3)ホルムアルデヒド或いはポリアセタール等の三種の化合物を反応させてなるもので、その構造式は下式(III)のとおりである:

Figure 2012025925
(C) dicyclopentadiene-dihydrobenzoxazine resin (DCPD-BX) having a DCPD component, another resin 2 is (1) dicyclopentadiene-novolak type phenol resin (DCPD-PN) component A above; (2 ) A mixture of primary amines having a monofunctional group and primary amines having a bifunctional group; (3) A mixture of three types of compounds such as formaldehyde or polyacetal, the structural formula of which is represented by the following formula (III) Is as follows:
Figure 2012025925

改質後は多種型式となり、合成の詳細は下記のとおりである。
DCPD-BX(樹脂2)の合成:
加熱パック、温度自動調節器、電動ミキサー及び冷却管を備えた5L4つ首ガラス反応槽の中に、480gのDCPD-PN、486gのポリアセタールを入れ、500gのトルエンを加えて混ぜ合わせて溶解し、279gのアニリン(Aniline)をゆっくり上記溶液に滴入し、温度は60〜110℃に調節し、4〜6時間反応させ、180℃、70torrsの圧力下で、溶剤及び未反応物を取り除くと、固態ジシクロペンタジエン-ジヒドロベンゾキサジン樹脂が得られる。
After the modification, it will be of various types, and the details of the synthesis are as follows.
Synthesis of DCPD-BX (Resin 2):
In a 5L 4-neck glass reactor equipped with a heating pack, automatic temperature controller, electric mixer and cooling tube, put 480g of DCPD-PN, 486g of polyacetal, add 500g of toluene, mix and dissolve, When 279 g of aniline was slowly added dropwise to the above solution, the temperature was adjusted to 60-110 ° C., reacted for 4-6 hours, and the solvent and unreacted substances were removed at 180 ° C. under 70 torr pressure. A solid dicyclopentadiene-dihydrobenzoxazine resin is obtained.

DCPD-BX樹脂2を合成するのに使われた化合物は(1)、DCPD成分を持つ(A)ジシクロペンタジエンノボラック型フェノール樹脂(DCPD-PN)である。
(2) 単官能基を有する一級アミン類と二官能基を有する一級アミン類の混合物は、一般的にメチルアミン、ジメチルアミン、アニリン、トルイジン(Toluidine)、アニシジン(Anisidine)を使用するが、脂肪族或いは芳香族アミン類化合物でもよい。最適なのはアニリン或いはジアミドジフェニルメタンである。
The compound used to synthesize DCPD-BX resin (1) is (A) dicyclopentadiene novolac type phenol resin (DCPD-PN) having a DCPD component.
(2) A mixture of primary amines having a monofunctional group and primary amines having a bifunctional group generally uses methylamine, dimethylamine, aniline, toluidine, anisidine, An aromatic amine compound may be used. Optimum is aniline or diamidodiphenylmethane.

(3)ホルムアルデヒド或いはポリアセタール化合物は、一般的にホルムアルデヒド、ポリアセタール或いはホルムアルデヒド蒸気を使用するが、ポリアセタールが最適である。   (3) As formaldehyde or polyacetal compound, formaldehyde, polyacetal or formaldehyde vapor is generally used, but polyacetal is most suitable.

溶剤は特に制限はしないが、各反応物を溶解できるものであればよい。トルエン、キシレンなどの炭化水素系溶剤が最適である。   The solvent is not particularly limited as long as it can dissolve each reactant. Hydrocarbon solvents such as toluene and xylene are optimal.

本発明の樹脂ワニス組成物成分(D)には難燃剤及び硬化促進剤が含まれている。難燃剤は臭素系及びリン系樹脂を主とし、無機充填材難燃剤をも使用することができる。臭素系難燃剤には:テトラビスフェノールA(TBBA)、NPEB-485A80(商品名、ナン ヤ プラスティクス コーポレーションの生産、臭素含量18〜21%)、NPEB-454A80(商品名、ナン ヤ プラスティクス コーポレーションの生産、臭素含量18〜21%)がある。   The resin varnish composition component (D) of the present invention contains a flame retardant and a curing accelerator. The flame retardant is mainly bromine-based and phosphorus-based resins, and inorganic filler flame retardants can also be used. Brominated flame retardants: Tetrabisphenol A (TBBA), NPEB-485A80 (trade name, produced by Nanya Plastics Corporation, bromine content 18-21%), NPEB-454A80 (trade name, produced by Nanya Plastics Corporation) Production, bromine content 18-21%).

リン系難燃剤は、DOPO(9,10-Dihydro-9-Oxa-10-Phosphaphenanthrene -10-Oxide)、DOPO-HQ、DOPO-Phenol Novolac Epoxy Resin(DOPO-PNE)、DOPO-Hydroquinone-Phenol Novolac Epoxy Resin (DOPO-HQ-PNE)などである。無機充填材難燃剤は主に、水酸化アルミニウム、二酸化ケイ素、硫酸バリウム、酸化アルミニウム、窒化ホウ素などである。   Phosphorus flame retardants are DOPO (9,10-Dihydro-9-Oxa-10-Phosphaphenanthrene -10-Oxide), DOPO-HQ, DOPO-Phenol Novolac Epoxy Resin (DOPO-PNE), DOPO-Hydroquinone-Phenol Novolac Epoxy Resin (DOPO-HQ-PNE). Inorganic filler flame retardants are mainly aluminum hydroxide, silicon dioxide, barium sulfate, aluminum oxide, boron nitride and the like.

他に、本発明にも使用できる硬化促進剤は、三級ホスフィン、三級アミン、第四級ホスフォニウム塩、第四級アンモニウム塩及びイミダゾール(Imidazole)化合物がある。そのうち、三級ホスフィンには、トリフェニルフオスフィンなどが含まれる。三級アミンには、トリメチルアニリン、トリエチルアミン、トリブチルアミン、ジメチルエタノールアミンなど;第四級ホスフォニウム塩には、テトラブチル臭化ホスフォニウム、テトラフエニル臭化ホスフォニウム、エチルトリフェニル臭化ホスフォニウム、プロピルトリフェニル基塩化ホスフォニウム、ブチルトリフェニル基臭化ホスフォニウムなどハロゲン化合物を含むホスフォニウム塩がある。;第四級アンモニウム塩にはテトラメチル臭化アンモニウム、テトラエチル臭化アンモニウム、テトラブチル臭化アンモニウム、トリエチルベンジンメチル臭化アンモニウム、トリエチルベンジンエチル臭化アンモニウムなどハロゲン化合物を含む第四級アンモニウム塩がある。;イミダゾール化合物には2-メチルイミダゾール、2-エチルイミダゾール、2-ドデシルイミダゾール、2-フェニルイミダゾール、4-メチルイミダゾール、4-エチルイミダゾール、4-ドデシルイミダゾール、2-エチル-4-メチルイミダゾール、2-エチル-4-カルボン基メチルイミダゾールなどで、最適なのは2-メチルイミダゾール或いは2-エチル-4-メチルイミダゾールである。上記硬化促進剤は単独使用或いは同時に2種以上を混合使用することができ、その使用量は樹脂総量の0.01〜1 PHRで、最適量は0.04〜0.15PHRである。   Other curing accelerators that can also be used in the present invention include tertiary phosphines, tertiary amines, quaternary phosphonium salts, quaternary ammonium salts and imidazole compounds. Among them, the tertiary phosphine includes triphenyl phosphine and the like. For tertiary amines, trimethylaniline, triethylamine, tributylamine, dimethylethanolamine, etc .; for quaternary phosphonium salts, tetrabutylphosphonium bromide, tetraphenylphosphonium bromide, ethyltriphenylphosphonium bromide, propyltriphenyl group phosphonium chloride And phosphonium salts containing halogen compounds such as butyltriphenyl group phosphonium bromide. Quaternary ammonium salts include quaternary ammonium salts containing halogen compounds such as tetramethylammonium bromide, tetraethylammonium bromide, tetrabutylammonium bromide, triethylbenzidinemethylammonium bromide, triethylbenzineethylammonium bromide; Imidazole compounds include 2-methylimidazole, 2-ethylimidazole, 2-dodecylimidazole, 2-phenylimidazole, 4-methylimidazole, 4-ethylimidazole, 4-dodecylimidazole, 2-ethyl-4-methylimidazole, 2 Among them, 2-methylimidazole or 2-ethyl-4-methylimidazole is most suitable, such as -ethyl-4-carboxylic group methylimidazole. These curing accelerators can be used alone or in combination of two or more at the same time. The amount used is 0.01 to 1 PHR of the total resin amount, and the optimum amount is 0.04 to 0.15 PHR.

本発明は、環状構造を持つ樹脂を合成して組成した新規低誘電樹脂組成物で、(A) DCPD-PN含量は樹脂総量の0〜50wt%;(B) DCPD-PNE(樹脂1)含量は樹脂総量の13〜60wt%;(C) DCPD-BX(樹脂2)含量は樹脂総量の30〜50wt%;(D) 難燃剤含量は樹脂総量の22〜32wt%;硬化促進剤は樹脂総量の0.01〜1PHR;溶剤を使用してワニスの粘度を調整し混合してなるものである。樹脂総量とは、積層基板用低誘導電率樹脂ワニス組成物の樹脂総量である。溶剤には、有機芳香族類溶剤、プロトン性溶剤、ケトン類溶剤、エーテル類溶剤及びエステル類溶剤(適当な溶剤はトルエン、N,N-ジメチルホルムアミド、アセトン、メチルエチルエステル、1-メトキシ-2-プロピルアルコール、酢酸エチルなどがよい。上記樹脂1、樹脂2は単独使用ができると同時に混合或いはその他のエポキシ樹脂と混合して使用することもできる。プリント回路積層基板を製造する時は、ガラス繊維布を上記配合組成物に浸け、再び加熱した後、浸漬したガラス繊維布を取り出して乾燥させプリプレグ(Prepreg)にし、そのプリプレグの片面或いは両面に銅箔をのせ、一つ又は多くのプリプレグを重ね合わせ加熱加圧すれば銅箔基板ができる。この樹脂ワニス組成物の硬化温度範囲は30℃〜300℃で、150℃〜210℃が好ましい。   The present invention is a novel low dielectric resin composition synthesized by synthesizing a resin having a cyclic structure, and (A) DCPD-PN content is 0 to 50 wt% of the total resin amount; (B) DCPD-PNE (resin 1) content Is 13 to 60 wt% of the total amount of resin; (C) DCPD-BX (resin 2) content is 30 to 50 wt% of the total amount of resin; (D) The flame retardant content is 22 to 32 wt% of the total amount of resin; 0.01 to 1 PHR; the viscosity of the varnish is adjusted using a solvent and mixed. The total resin amount is the total resin amount of the low induction electric power resin varnish composition for laminated substrates. Solvents include organic aromatic solvents, protic solvents, ketone solvents, ether solvents and ester solvents (suitable solvents are toluene, N, N-dimethylformamide, acetone, methyl ethyl ester, 1-methoxy-2 -Propyl alcohol, ethyl acetate, etc. Resin 1 and Resin 2 can be used alone or at the same time mixed or mixed with other epoxy resins. After soaking the fiber cloth in the above composition and heating again, the soaked glass fiber cloth is taken out and dried to a prepreg, and copper foil is placed on one or both sides of the prepreg, and one or many prepregs are added. A copper foil substrate can be formed by overlapping heating and pressing, and the curing temperature range of the resin varnish composition is 30 ° C. to 300 ° C., preferably 150 ° C. to 210 ° C.

以下、実施例により本発明を詳しく説明する。実施例及び比較例の各コードと成分は以下のとおりである:
樹脂1:本発明の(B)DCPD-PNE樹脂、エポキシ当量は270〜230g/eq。
樹脂2:本発明の(C)DCPD-BX樹脂、窒素含量6.2wt%
樹脂3:ナン ヤ プラスティクス コーポレーションの生産の臭化樹脂、商品名はNPEB-485A80。
樹脂4:ナン ヤ プラスティクス コーポレーションの生産のリン系樹脂(DOPO-638)、商品名は210A70。
樹脂5:ナン ヤ プラスティクス コーポレーションの生産のリン系樹脂(DOPO-HQ-638)、商品名は220A70。
硬化剤1:ナン ヤ プラスティクス コーポレーションの生産のフェノール樹脂、商品名は710HA65。
硬化剤2:ナン ヤ プラスティクス コーポレーションの生産のフェノール樹脂、商品名は710SA65。
硬化剤3:本発明のDCPD-PN。
耐燃剤1:臭素含有耐燃剤、テトラビスフェノールA(TBBA)。
耐燃剤2:日本大八化学会社生産のリン含有耐燃剤、商品名はPX-200。
耐燃剤3:水酸化アルミニウム(ATH)充填剤。
耐燃剤4:二酸化ケイ素(SiO2)充填剤。
硬化促進剤2MI:2-メチルイミダゾール,14.2wt%がDMFに溶ける。
ガラス繊維布7628:ナン ヤ プラスティクス コーポレーションの生産のガラス繊維布。
Hereinafter, the present invention will be described in detail by way of examples. The codes and components of the examples and comparative examples are as follows:
Resin 1: (B) DCPD-PNE resin of the present invention, epoxy equivalent is 270 to 230 g / eq.
Resin 2: (C) DCPD-BX resin of the present invention, nitrogen content 6.2 wt%
Resin 3: Brominated resin produced by Nanya Plastics Corporation, trade name is NPEB-485A80.
Resin 4: Phosphorus resin (DOPO-638) produced by Nanya Plastics Corporation, product name is 210A70.
Resin 5: Phosphorous resin (DOPO-HQ-638) produced by Nanya Plastics Corporation, product name is 220A70.
Hardener 1: Phenolic resin produced by Nanya Plastics Corporation, trade name is 710HA65.
Hardener 2: Phenolic resin produced by Nanya Plastics Corporation, trade name is 710SA65.
Curing agent 3: DCPD-PN of the present invention.
Flame retardant 1: Bromine-containing flame retardant, tetrabisphenol A (TBBA).
Flame Retardant 2: Phosphorus containing flame retardant produced by Nippon Daihachi Chemical Company, trade name is PX-200.
Flame retardant 3: Aluminum hydroxide (ATH) filler.
Flame retardant 4: Silicon dioxide (SiO 2 ) filler.
Curing accelerator 2MI: 2-methylimidazole, 14.2 wt% is soluble in DMF.
Glass fiber cloth 7628: Glass fiber cloth produced by Nanya Plastics Corporation.

実施例1
DCPD-PNEを主樹脂として、硬化剤710HA65と耐燃剤TBBAを配合して使用、配合組成の詳細は表1のとおりである。アセトン溶剤で固形分65%のワニス樹脂組成物になるように調整し、7628ガラス繊維布を上記ワニス樹脂液に浸け、含浸機の温度が170℃になったとき、取り出して数分乾燥させ、乾燥後のプリプレグ溶融粘度は4000〜10000poiseになるようにし、最後にプリプレグ8枚を厚さ35-μmの銅箔間に入れ重ね、25kg/cm2の圧力をかけ、温度は下記のとおり調整:

Figure 2012025925
Example 1
DCPD-PNE is used as the main resin, and the curing agent 710HA65 and the flame retardant TBBA are blended and used. Details of the blending composition are shown in Table 1. Adjust to a varnish resin composition with a solid content of 65% with an acetone solvent, immerse the 7628 glass fiber cloth in the varnish resin liquid, and when the temperature of the impregnation machine reaches 170 ° C., take it out and dry it for several minutes, The prepreg melt viscosity after drying is 4000 to 10000 poise. Finally, 8 sheets of prepreg are put between 35-μm thick copper foil, pressure of 25 kg / cm 2 is applied, and the temperature is adjusted as follows:
Figure 2012025925

熱圧後、厚さ1.6mmの銅箔基板ができる。この組成物の詳細機能は表1のとおりである。 After hot pressing, a copper foil substrate with a thickness of 1.6 mm is produced. The detailed functions of this composition are shown in Table 1.

実施例2
実施例1と同じだが、硬化剤は710SA65に替え、できた組成物の詳細機能は表1のとおりである。
Example 2
Although the same as Example 1, the curing agent is changed to 710SA65, and the detailed functions of the resulting composition are shown in Table 1.

実施例3
実施例1と同じだが、硬化剤はDCPD-PNに替え、できた組成物の詳細機能は表1のとおりである。
Example 3
Although the same as Example 1, the curing agent is replaced with DCPD-PN, and the detailed functions of the resulting composition are shown in Table 1.

実施例4
DCPD-PNEを主剤樹脂として使用、硬化剤710HA65を配合し、耐燃剤はPX-200リン系耐燃剤に替え、その配合組成の詳細は表1のとおりである。製造手順は実施例1の銅箔基板と同じで、できた組成物の詳細機能は表1のとおりである。
Example 4
DCPD-PNE is used as the main resin, curing agent 710HA65 is blended, the flame retardant is changed to PX-200 phosphorus flame retardant, and the details of the blend composition are as shown in Table 1. The production procedure is the same as that of the copper foil substrate of Example 1, and the detailed functions of the resulting composition are shown in Table 1.

実施例5
実施例4と同じだが、硬化剤は710SA65に替え、できた組成物の詳細機能は表1のとおりである。
Example 5
Although the same as in Example 4, the curing agent is changed to 710SA65, and the detailed functions of the resulting composition are shown in Table 1.

実施例6
実施例4と同じだが、硬化剤はDCPD-PNに替え、できた組成物の詳細機能は表1のとおりである。
Example 6
Although the same as Example 4, the curing agent is replaced with DCPD-PN, and the detailed functions of the resulting composition are as shown in Table 1.

実施例7
DCPD-BXを主剤樹脂として使用し、DCPD-PNE樹脂を適量に調整して加え、硬化剤710HA65を配合、耐燃剤は水酸化アルミニウム及び二酸化ケイ素を使用、その配合組成の詳細は表1のとおりである。製造手順は実施例1の銅箔基板と同じだが、できた組成物の詳細機能は表1のとおりである。
Example 7
DCPD-BX is used as the main resin, DCPD-PNE resin is adjusted to an appropriate amount, curing agent 710HA65 is added, flame retardant is aluminum hydroxide and silicon dioxide, and the details of the composition are as shown in Table 1. It is. The manufacturing procedure is the same as that of the copper foil substrate of Example 1, but the detailed functions of the resulting composition are shown in Table 1.

実施例8
実施例7と同じだが、硬化剤は710SA65に替え、できた組成物の詳細機能は表1のとおりである。
Example 8
Although the same as in Example 7, the curing agent is changed to 710SA65, and the detailed functions of the resulting composition are shown in Table 1.

実施例9
実施例7と同じだが、硬化剤はDCPD-PNに替え、できた組成物の詳細機能は表1のとおりである。
Example 9
Although the same as in Example 7, the curing agent is replaced with DCPD-PN, and the detailed functions of the resulting composition are shown in Table 1.

実施例10
DCPD-BXを主剤樹脂として使用し、リン系樹脂210A70を配合、硬化剤710HA65を配合してハロゲンフリー基板を作製、その配合組成の詳細は表2のとおりである。製造手順は実施例1の銅箔基板と同じだが、できた組成物の詳細機能は表2のとおりである。
Example 10
DCPD-BX is used as the main resin, phosphorous resin 210A70 is blended, and curing agent 710HA65 is blended to produce a halogen-free substrate. The details of the blending composition are shown in Table 2. The manufacturing procedure is the same as that of the copper foil substrate of Example 1, but the detailed functions of the resulting composition are shown in Table 2.

実施例11
実施例10と同じだが、硬化剤は710SA65に替え、できた組成物の詳細機能は表1のとおりである。
Example 11
Although the same as in Example 10, the curing agent is changed to 710SA65, and the detailed functions of the resulting composition are shown in Table 1.

実施例12
実施例10と同じだが、硬化剤はDCPD-PNに替え、できた組成物の詳細機能は表1のとおりである。
Example 12
Although the same as Example 10, the curing agent is replaced with DCPD-PN, and the detailed functions of the resulting composition are shown in Table 1.

実施例13
DCPD-BXを主剤樹脂として使用、リン系樹脂220A70を配合、硬化剤710HA65を配合してハロゲンフリー基板を作製、その配合組成の詳細は表2のとおりである。製造手順は実施例1の銅箔基板と同じだが、できた組成物の詳細機能は表2のとおりである。
Example 13
DCPD-BX is used as the main resin, phosphorous resin 220A70 is blended, and curing agent 710HA65 is blended to produce a halogen-free substrate. The details of the blending composition are shown in Table 2. The manufacturing procedure is the same as that of the copper foil substrate of Example 1, but the detailed functions of the resulting composition are shown in Table 2.

実施例14
実施例13と同じだが、硬化剤を710SA65に替え、できた組成物の詳細機能は表1のとおりである。
Example 14
Table 1 shows the same detailed function of the resulting composition except that the curing agent is changed to 710SA65.

実施例15
実施例13と同じだが、硬化剤をDCPD-PNに替え、できた組成物の詳細機能は表1のとおりである。
Example 15
Table 1 shows the detailed functions of the composition obtained by replacing DCPD-PN with the curing agent, as in Example 13.

比較例1
臭化エポキシ樹脂(ナン ヤ プラスティクス コーポレーションの臭化エポキシ樹脂,商品名NPEB-485A80)を主材樹脂として使用、硬化剤710HA65を配合し、その配合組成の詳細は表2のとおりである。製造手順は実施例1の銅箔基板と同じく、できた組成物の詳細機能は表2のとおりである。
Comparative Example 1
A brominated epoxy resin (Nippon Plastics Corporation brominated epoxy resin, trade name NPEB-485A80) is used as a main material resin, a curing agent 710HA65 is blended, and the details of the blended composition are shown in Table 2. The production procedure is the same as that of the copper foil substrate of Example 1, and the detailed functions of the resulting composition are shown in Table 2.

比較例2
比較例1と同じだが、硬化剤を710SA65に替え、できた組成物の詳細機能は表1のとおりである。
Comparative Example 2
Table 1 shows the detailed functions of the resulting composition except that the curing agent is changed to 710SA65.

比較例3
比較例1と同じだが、硬化剤をDCPD-PNに替え、できた組成物の詳細機能は表1のとおりである。
Comparative Example 3
Table 1 shows the detailed functions of the composition obtained by replacing DCPD-PN with the curing agent, as in Comparative Example 1.

測量説明
1.ワニス膠化(ゲル化)時間(sec):
0.3ml樹脂ワニスを170℃加熱板上に取り、その膠化時間を計る。
2.ガラス転移温度(℃):
昇温速率=20℃/minの示差走査熱量計(DSC)を使用してテスト。
3.耐燃性:
サンプルを0.5in ×4.7inの長方形に切り、高さが2cmの青い炎で10秒燃焼した後取り出し、2回焼いた後、炎から取り出した後から自然に消えるまでの時間を記録する。
4.吸水率(%):
サンプルを120℃及び2atmの圧力鍋で30分間加熱する。
5.誘導電損失(1GHz):
蝕刻した後の基板から25cm2正方形のサンプルを取り、105℃で2時間焼いた後、測定器にてサンプルの三ヶ所の厚さを測る。再びサンプルを誘電測量器で挟み、三点の数値を測って平均値を取る。
6.誘導電率(1GHz):
蝕刻した後の基板から25cm2正方形のサンプルを取り、105℃で2時間焼いた後、測定器にてサンプルの三ヶ所の厚さを測る。再びサンプルを誘電測量器で挟み、三点の数値を測って平均値を取る。
Survey explanation
1. Varnish gelation time (sec):
Take 0.3ml resin varnish on a 170 ° C heating plate and measure the time of gelatinization.
2. Glass transition temperature (℃):
Tested using a differential scanning calorimeter (DSC) with a heating rate of 20 ° C / min.
3. Flame resistance:
Cut the sample into 0.5in x 4.7in rectangles, burn with a blue flame of 2cm in height for 10 seconds, remove it, bake it twice, record the time from removal from the flame until it disappears naturally.
4. Water absorption rate (%):
The sample is heated in a pressure cooker at 120 ° C. and 2 atm for 30 minutes.
5. Induction power loss (1GHz):
Take a 25cm 2 square sample from the etched substrate, bake at 105 ° C for 2 hours, and then measure the thickness of the sample at three locations using a measuring instrument. Again, sandwich the sample with a dielectric surveying instrument, measure the three points, and take the average value.
6. Inductive power (1GHz):
Take a 25cm 2 square sample from the etched substrate, bake at 105 ° C for 2 hours, and then measure the thickness of the sample at three locations using a measuring instrument. Again, sandwich the sample with a dielectric surveying instrument, measure the three points, and take the average value.

Figure 2012025925
Figure 2012025925

Figure 2012025925
Figure 2012025925

実施例1〜6の配合で、DCPD-PNEを使用して作られた基板は、誘導電率係数4.18〜4.21及び誘導電損失因素0.012〜0.016の特性を持つ。実施例10〜15の配合では、DCPD-BXを使用して作った基板は、誘導電率係数4.15〜4.32及び誘導電損失因素0.012〜0.016の特性を持つ。実施例7〜9の配合では、同時にDCPD-PNEとDCPD-BXを使用しており、作った基板は低誘導電率係数3.89〜3.92及び低誘導電損失因素0.008〜0.009の特性を有する。これは、他のDCPD構造を持たない樹脂の配合で製作した基板の誘導電率係数4.4〜4.7及び誘導電損失因素0.025〜0.03と比べ、明らかに優れている。   Substrates made using DCPD-PNE with the formulations of Examples 1-6 have characteristics of inductive power coefficients of 4.18-4.21 and inductive loss factors of 0.012-0.016. In the formulations of Examples 10-15, the substrates made using DCPD-BX have the characteristics of inductive conductivity coefficients 4.15-4.32 and inductive loss factors 0.012-0.016. In the formulations of Examples 7 to 9, DCPD-PNE and DCPD-BX are used at the same time, and the produced substrate has characteristics of a low induction electric power coefficient of 3.89 to 3.92 and a low induction electric loss factor of 0.008 to 0.009. This is clearly superior to the inductive conductivity coefficients of 4.4 to 4.7 and the inductive loss factor of 0.025 to 0.03 for substrates made with other resin blends that do not have a DCPD structure.

実施例、表1及び表2から、DCPD構造を含むワニス樹脂にガラス繊維布を浸して硬化させた後は、確実に低吸湿、低誘導電率係数及び低誘導電損失因子を持っていることが分かる。樹脂の中に硬化剤としてDCPD-PNを配合し圧合した基板は、誘導電率係数及び誘導電損失因子を有効的に下げられる。さらにDCPD-BX樹脂を加えると、DCPD結構の樹脂含量が増加したことにより、樹脂ワニス組成物中の難燃剤充填材は、更に誘導電率を低くし、94V-0の耐燃標準に達し良好な熱安定性を持つものである。
From Examples, Table 1 and Table 2, after immersing and curing the glass fiber cloth in the varnish resin containing DCPD structure, it must have low moisture absorption, low induction electric power coefficient and low induction electric loss factor. I understand. A substrate obtained by compounding DCPD-PN as a curing agent in a resin and compressing it can effectively lower the induction electric power coefficient and the induction electric loss factor. Furthermore, when DCPD-BX resin was added, the resin content of DCPD structure increased, so the flame retardant filler in the resin varnish composition further reduced the induction electric power and reached the 94V-0 flame resistance standard. It has thermal stability.

Claims (17)

樹脂総量の0〜50重量%を占める(A)ジシクロペンタジエン-ノボラック型フェノール樹脂(DCPD-PN)、
又は樹脂総量の13〜60重量%を占める(B)一種或いは多種のエポキシ樹脂、又はDCPD成分を持つジシクロペンタジエンエポキシ樹脂(DCPD-PNE)、
又は樹脂総量の30〜50重量%を占める(C)ジシクロペンタジエン-ジヒドロベンゾキサジン樹脂(DCPD-BX)、
あるいは(B)及び(C)を混合した樹脂と、
(D)難燃剤、硬化剤或いは促進剤及び溶剤と一定の比例にて混合してなることを特徴とする積層基板用低誘導電率樹脂ワニス組成物。
(A) dicyclopentadiene-novolak type phenolic resin (DCPD-PN) occupying 0 to 50% by weight of the total resin amount,
Or (B) one or many types of epoxy resins, or dicyclopentadiene epoxy resin having a DCPD component (DCPD-PNE), which occupies 13 to 60% by weight of the total resin amount,
Or (C) dicyclopentadiene-dihydrobenzoxazine resin (DCPD-BX) occupying 30-50% by weight of the total resin amount,
Or (B) and (C) mixed resin;
(D) A low-induction-electric-resin varnish composition for laminated substrates, which is mixed with a flame retardant, a curing agent or an accelerator and a solvent in a certain proportion.
前記(A)ジシクロペンタジエン-ノボラック型フェノール樹脂(DCPD-PN)は、ジシクロペンタジエンとフェノール類化合物を反応してなるもので、その構造式は下記式(I)のとおりであることを特徴とする請求項1に記載の積層基板用低誘導電率樹脂ワニス組成物。
Figure 2012025925
The (A) dicyclopentadiene-novolak type phenol resin (DCPD-PN) is obtained by reacting dicyclopentadiene with a phenol compound, and its structural formula is as shown in the following formula (I). The low induction electric power resin varnish composition for laminated substrates according to claim 1.
Figure 2012025925
前記(B)一種或いは多種以上のエポキシ樹脂、又はジシクロペンタジエン成分を持つジシクロペンタジエンエポキシ樹脂(DCPD-PNE)は、ジシクロペンタジエン−ノボラック型フェノール樹脂とエピクロロヒドリンを反応させてなるもので、その構造式は下記式(II)のとおりであることを特徴とする請求項1に記載の積層基板用低誘導電率樹脂ワニス組成物。
Figure 2012025925
(B) One or more epoxy resins or dicyclopentadiene epoxy resin having a dicyclopentadiene component (DCPD-PNE) is obtained by reacting a dicyclopentadiene-novolak type phenol resin with epichlorohydrin. And the structural formula is as following formula (II), The low induction electric power resin varnish composition for laminated substrates of Claim 1 characterized by the above-mentioned.
Figure 2012025925
前記(C)ジシクロペンタジエン-ジヒドロベンゾキサジン樹脂(DCPD-BX)は、(1)ジシクロペンタジエン-ノボラック型フェノール樹脂と、(2) 単官能基を有する一級アミン類と二官能基を有する一級アミン類の混合物、及び(3)ホルムアルデヒド或いはポリアセタール化合物とを混合し反応してなるもので、その構造式は下記式(III)のとおりであることを特徴とする請求項1に記載の積層基板用低誘導電率樹脂ワニス組成物。
Figure 2012025925
The (C) dicyclopentadiene-dihydrobenzoxazine resin (DCPD-BX) has (1) a dicyclopentadiene-novolak type phenol resin, and (2) a primary amine having a monofunctional group and a bifunctional group. The laminate according to claim 1, wherein the mixture is obtained by mixing and reacting a mixture of primary amines and (3) formaldehyde or a polyacetal compound, and the structural formula thereof is as shown in the following formula (III). Low inductive resin varnish composition for substrates.
Figure 2012025925
前記フェノール類化合物は、フェノール、Oクレゾール、ビスフェノールA(Bisphenol-A)、ビスフェノールF(Bisphenol-F)、ビスフェノールS(Bisphenol-S)或いはフェノール樹脂であることを特徴とする請求項1に記載の積層基板用低誘導電率樹脂ワニス組成物。   The phenol compound is phenol, O-cresol, bisphenol A (Bisphenol-A), bisphenol F (Bisphenol-F), bisphenol S (Bisphenol-S), or a phenol resin. Low induction electric power resin varnish composition for laminated substrates. 前記ジシクロペンタジエンの含量を増やすため(A)ジシクロペンタジエン-ノボラック型フェノール樹脂(DCPD-PN)は硬化剤として使用することができることを特徴とする請求項1に記載の積層基板用低誘導電率樹脂ワニス組成物。   The low induction voltage for a multilayer substrate according to claim 1, wherein (A) dicyclopentadiene-novolak type phenol resin (DCPD-PN) can be used as a curing agent in order to increase the content of the dicyclopentadiene. Rate resin varnish composition. 前記硬化剤はフェノール樹脂、アミン類、有機酸及び無水物類の多価アミン(Polyvalent amines)、多価カルボン酸(Polyvalent carboxylic acids)、ジシアンジアミド(Dicyanodiamide)、無水物(Anhydrides)、ノボラック型フェノール樹脂(Phenol Novolac,略してPN)、Oクレゾールノボラック樹脂(Cresol Novolac,略してCN)メラミンノボラック型フェノール樹脂(Melamine Phenol Novolac,MPN)、ビスフェノールAノボラック樹脂 (BPA Phenol Novolac,BPA-PN)、テトラフェノールノボラック樹脂(TetraPhenol Novolac,TPN)又はジシクロペンタジエン-ノボラック型フェノール樹脂(Dicyclopentadiene- Phenolic Novolac,DCPD-PN)であることを特徴とする請求項1に記載の積層基板用低誘導電率樹脂ワニス組成物。   The curing agent is a phenol resin, amines, polyvalent amines of organic acids and anhydrides, polyvalent carboxylic acids, dicyanodiamide, anhydrides, novolac type phenol resins (Phenol Novolac, abbreviated as PN), O cresol novolac resin (Cresol Novolac, abbreviated as CN), melamine novolac type phenol resin (Melamine Phenol Novolac, MPN), bisphenol A novolac resin (BPA Phenol Novolac, BPA-PN), tetraphenol The low-inductive-electric-resin varnish composition for laminated substrates according to claim 1, which is a novolak resin (TetraPhenol Novolac, TPN) or a dicyclopentadiene-Penolic Novolac (DCPD-PN). object. 前記(B)一種或いは多種のエポキシ樹脂、又はジシクロペンタジエン成分を持つジシクロペンタジエンエポキシ樹脂(DCPD-PNE)、又は前記(C)ジシクロペンタジエンジヒドロベンゾキサジン(DCPD-BX)は、単独或いは混合されていること、或いはその他のエポキシ樹脂と混合されていることを特徴とする請求項1に記載の積層基板用低誘導電率樹脂ワニス組成物。   The (B) one or various epoxy resins, or a dicyclopentadiene epoxy resin having a dicyclopentadiene component (DCPD-PNE), or the (C) dicyclopentadiene dihydrobenzoxazine (DCPD-BX) may be used alone or The low-inductive-electricity resin varnish composition for laminated substrates according to claim 1, wherein the composition is mixed or mixed with other epoxy resins. 前記(C)ジシクロペンタジエン-ジヒドロベンゾキサジン樹脂(DCPD-BX)合成用の、単官能基を有する一級アミン類と二官能基を有する一級アミン類の混合物は、エチルアミン、メチルアミン、アニリン、トルイジン(toluidine)、アニシジン(anisidine)と脂肪族或いは芳香族とのアミン類化合物であることを特徴とする請求項1に記載の積層基板用低誘導電率樹脂ワニス組成物。   For the synthesis of the (C) dicyclopentadiene-dihydrobenzoxazine resin (DCPD-BX), a mixture of primary amines having a monofunctional group and primary amines having a bifunctional group is ethylamine, methylamine, aniline, The low-inductive-electric-resin varnish composition for a laminated substrate according to claim 1, which is an amine compound of toluidine or anisidine and aliphatic or aromatic. 前記(C)ジシクロペンタジエン-ジヒドロベンゾキサジン樹脂(DCPD-BX)合成用のホルムアルデヒド或いはポリアセタール化合物は、ホルムアルデヒド、ポリアセタール或いはホルムアルデヒド蒸気であることを特徴とする請求項1又は8項に記載の積層基板用低誘導電率樹脂ワニス組成物。   The laminate according to claim 1 or 8, wherein the formaldehyde or polyacetal compound for synthesis of the (C) dicyclopentadiene-dihydrobenzoxazine resin (DCPD-BX) is formaldehyde, polyacetal or formaldehyde vapor. Low inductive resin varnish composition for substrates. 前記エポキシ樹脂は臭化エポキシ樹脂或いはリン系エポキシ樹脂であることを特徴とする請求項1又は8に記載の積層基板用低誘導電率樹脂ワニス組成物。 9. The low-inductive-electricity resin varnish composition for laminated substrates according to claim 1, wherein the epoxy resin is a brominated epoxy resin or a phosphorus epoxy resin. 前記(D)難燃剤は臭素或いはリンを含む樹脂、或いは無機充填材難燃剤であることを特徴とする請求項1に記載の積層基板用低誘導電率樹脂ワニス組成物。 2. The low induction electric power resin varnish composition for a laminated substrate according to claim 1, wherein the flame retardant (D) is a resin containing bromine or phosphorus, or an inorganic filler flame retardant. 前記臭素系難燃剤は主にテトラビスフェノールA(TBBA)或いはテトラビスフェノールA型のエポキシ樹脂であることを特徴とする請求項1に記載の積層基板用低誘導電率樹脂ワニス組成物。 2. The low induction electric power resin varnish composition for a laminated substrate according to claim 1, wherein the brominated flame retardant is mainly a tetrabisphenol A (TBBA) or a tetrabisphenol A type epoxy resin. 前記リン系難燃剤は、DOPO、DOPO-HQ及びそのフェノールエポキシ樹脂であることを特徴とする請求項1又は9に記載の積層基板用低誘導電率樹脂ワニス組成物。 10. The low induction electric power resin varnish composition for a laminated substrate according to claim 1, wherein the phosphorus-based flame retardant is DOPO, DOPO-HQ, or a phenol epoxy resin thereof. 前記無機充填材難燃剤は、主に水酸化アルミニウム、二酸化ケイ素、硫酸バリウム、酸化アルミニウム、窒化ホウ素を使用することを特徴とする請求項1又は9に記載の積層基板用低誘導電率樹脂ワニス組成物。 The low-inductive-electricity resin varnish for a multilayer substrate according to claim 1 or 9, wherein the inorganic filler flame retardant mainly uses aluminum hydroxide, silicon dioxide, barium sulfate, aluminum oxide, or boron nitride. Composition. 前記(D)の硬化促進剤は単独或いは同時に2種以上混合して使用でき、その使用量は樹脂総量に対し0.04〜0.15PHRであることを特徴とする請求項1に記載の積層基板用低誘導電率樹脂ワニス組成物。 2. The multilayer substrate low-layer according to claim 1, wherein the curing accelerator (D) can be used alone or in combination of two or more at the same time, and the amount used thereof is 0.04 to 0.15 PHR with respect to the total amount of the resin. Induction electric power resin varnish composition. 前記硬化促進剤は、イミダゾール(Imidazole)化合物の2-メチルイミダゾール(2-methyl imidazole,2MI)又は2-エチル-4メチルイミダゾール(2E4MZ)であることを特徴とする請求項1に記載の積層基板用低誘導電率樹脂ワニス組成物。
2. The multilayer substrate according to claim 1, wherein the curing accelerator is 2-methylimidazole (2MI) or 2-ethyl-4methylimidazole (2E4MZ) of an imidazole (Imidazole) compound. Low induction electric power resin varnish composition.
JP2010168937A 2010-07-28 2010-07-28 Low-inductive-electricity resin varnish composition for laminated substrate and process for producing the same Active JP5323780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010168937A JP5323780B2 (en) 2010-07-28 2010-07-28 Low-inductive-electricity resin varnish composition for laminated substrate and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010168937A JP5323780B2 (en) 2010-07-28 2010-07-28 Low-inductive-electricity resin varnish composition for laminated substrate and process for producing the same

Publications (2)

Publication Number Publication Date
JP2012025925A true JP2012025925A (en) 2012-02-09
JP5323780B2 JP5323780B2 (en) 2013-10-23

Family

ID=45779231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010168937A Active JP5323780B2 (en) 2010-07-28 2010-07-28 Low-inductive-electricity resin varnish composition for laminated substrate and process for producing the same

Country Status (1)

Country Link
JP (1) JP5323780B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012171971A (en) * 2011-02-17 2012-09-10 Jfe Chemical Corp Thermosetting resin composition and cured product thereof
JP2013184985A (en) * 2012-03-05 2013-09-19 Fujikura Rubber Ltd Flame retardant and method of manufacturing the same
KR20150137588A (en) * 2014-05-30 2015-12-09 엘지이노텍 주식회사 Epoxy resin composite and printed circuit board comprising the same
JP2015535865A (en) * 2013-08-23 2015-12-17 台光電子材料(昆山)有限公司Elite Electronic Material (Kunshan) Co. Ltd Resin composition and copper-clad laminate and printed circuit board using the same
JP2016080921A (en) * 2014-10-17 2016-05-16 太陽インキ製造株式会社 Dry film
JP2018538391A (en) * 2016-03-25 2018-12-27 廣東生益科技股▲ふん▼有限公司Shengyi Technology Co.,Ltd. Non-halogen-based thermosetting resin composition and prepreg, laminate and printed circuit board containing the same
CN114530629A (en) * 2022-01-25 2022-05-24 湘潭大学 Solid electrolyte and preparation and application of additive thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108039512B (en) * 2017-11-27 2021-02-02 中南大学 Lithium and sodium ion battery flame retardant and preparation and application methods thereof
JP7472451B2 (en) 2019-09-30 2024-04-23 コニカミノルタ株式会社 Developing device, image forming apparatus, and forced ejection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286390A (en) * 2002-03-28 2003-10-10 Nippon Steel Chem Co Ltd Epoxy resin composition, varnish, film adhesive made by using epoxy resin composition, and its cured material
JP2007197723A (en) * 2005-12-28 2007-08-09 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device
JP2009046591A (en) * 2007-08-20 2009-03-05 Sekisui Chem Co Ltd Thermosetting resin composition and manufacturing method therefor
WO2009028170A1 (en) * 2007-08-27 2009-03-05 Nippon Kayaku Kabushiki Kaisha Thermosetting resin composition and cured product thereof
JP2009046590A (en) * 2007-08-20 2009-03-05 Sekisui Chem Co Ltd Thermosetting resin composition and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286390A (en) * 2002-03-28 2003-10-10 Nippon Steel Chem Co Ltd Epoxy resin composition, varnish, film adhesive made by using epoxy resin composition, and its cured material
JP2007197723A (en) * 2005-12-28 2007-08-09 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device
JP2009046591A (en) * 2007-08-20 2009-03-05 Sekisui Chem Co Ltd Thermosetting resin composition and manufacturing method therefor
JP2009046590A (en) * 2007-08-20 2009-03-05 Sekisui Chem Co Ltd Thermosetting resin composition and manufacturing method therefor
WO2009028170A1 (en) * 2007-08-27 2009-03-05 Nippon Kayaku Kabushiki Kaisha Thermosetting resin composition and cured product thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012171971A (en) * 2011-02-17 2012-09-10 Jfe Chemical Corp Thermosetting resin composition and cured product thereof
JP2013184985A (en) * 2012-03-05 2013-09-19 Fujikura Rubber Ltd Flame retardant and method of manufacturing the same
JP2015535865A (en) * 2013-08-23 2015-12-17 台光電子材料(昆山)有限公司Elite Electronic Material (Kunshan) Co. Ltd Resin composition and copper-clad laminate and printed circuit board using the same
KR20150137588A (en) * 2014-05-30 2015-12-09 엘지이노텍 주식회사 Epoxy resin composite and printed circuit board comprising the same
KR102172294B1 (en) * 2014-05-30 2020-10-30 엘지이노텍 주식회사 Epoxy resin composite and printed circuit board comprising the same
JP2016080921A (en) * 2014-10-17 2016-05-16 太陽インキ製造株式会社 Dry film
JP2018538391A (en) * 2016-03-25 2018-12-27 廣東生益科技股▲ふん▼有限公司Shengyi Technology Co.,Ltd. Non-halogen-based thermosetting resin composition and prepreg, laminate and printed circuit board containing the same
CN114530629A (en) * 2022-01-25 2022-05-24 湘潭大学 Solid electrolyte and preparation and application of additive thereof

Also Published As

Publication number Publication date
JP5323780B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
JP5323780B2 (en) Low-inductive-electricity resin varnish composition for laminated substrate and process for producing the same
JP5969133B2 (en) Resin composition and copper-clad laminate and printed circuit board using the same
EP1268665B1 (en) Flame retardant phosphorus element-containing epoxy resin compositions
US6646064B2 (en) Reacting epoxy resin with p-containing dihydric phenol or naphthol
KR101141305B1 (en) Phosphorus containing phenol novolac resin, hardener comprising the same and epoxy resin composition
KR20170022874A (en) Flame retardant epoxy resin composition and cured product thereof
US8362116B2 (en) Low dielectric resin varnish composition for laminates and the preparation thereof
JP6195650B2 (en) Resin composition and copper-clad laminate and printed circuit board using the same
TW201617380A (en) Low dielectric polyester composite having phosphorous and method of manufacturing the same
KR102268344B1 (en) Active ester composition and cured product thereof
KR20210046039A (en) Phenolic compound, active ester resin and its manufacturing method, and thermosetting resin composition and cured product thereof
EP2368930B1 (en) Novel low dielectric resin varnish composition for laminates and the preparation thereof
JP2015052070A (en) Phosphorus-containing epoxy resin and composition and hardened product
JP5240516B2 (en) Epoxy resin composition, cured product thereof, and build-up film insulating material
KR20170095141A (en) Oxazine resin composition and cured product thereof
JPWO2011078372A1 (en) Epoxy resin, epoxy resin composition and cured product thereof
TW201516070A (en) Epoxy resin composition and cured product thereof
JP5441477B2 (en) Flame retardant phosphorus-containing epoxy resin composition and cured product thereof
JP3484403B2 (en) Phosphorus-containing flame-retardant epoxy resin and method for producing the same
JP2020045421A (en) Epoxy resin composition and cured product thereof
WO2018008409A1 (en) Active ester resin and cured product thereof
CN102134431B (en) Low dielectric resin varnish composition for laminated board and preparation method thereof
JP5880921B2 (en) Curable resin composition, cured product thereof, printed wiring board
JP7290205B2 (en) Epoxy resins, curable compositions, cured products, semiconductor sealing materials, semiconductor devices, prepregs, circuit boards, and build-up films
JP2014108976A (en) Epoxy resin composition and cured article

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120809

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120814

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120830

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130717

R150 Certificate of patent or registration of utility model

Ref document number: 5323780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250