JP2012024700A - Microorganism carrier for sewage treatments, and sewage treatment tool - Google Patents

Microorganism carrier for sewage treatments, and sewage treatment tool Download PDF

Info

Publication number
JP2012024700A
JP2012024700A JP2010166094A JP2010166094A JP2012024700A JP 2012024700 A JP2012024700 A JP 2012024700A JP 2010166094 A JP2010166094 A JP 2010166094A JP 2010166094 A JP2010166094 A JP 2010166094A JP 2012024700 A JP2012024700 A JP 2012024700A
Authority
JP
Japan
Prior art keywords
ball
sewage treatment
fiber
shaped
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010166094A
Other languages
Japanese (ja)
Other versions
JP5599668B2 (en
Inventor
Genichi Uemoto
元一 上本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2010166094A priority Critical patent/JP5599668B2/en
Priority to TW100212963U priority patent/TWM425869U/en
Priority to CN2011202594006U priority patent/CN202246233U/en
Publication of JP2012024700A publication Critical patent/JP2012024700A/en
Application granted granted Critical
Publication of JP5599668B2 publication Critical patent/JP5599668B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a new high-performance microorganism carrier which is used by making it flow under the water flowing condition in a sewage treatment tank and solves various drawbacks of the conventional microorganism carrier.SOLUTION: The microorganism carrier 1 for sewage treatment is a fiber aggregate having a ball-like portion 3 and a convergent portion 5 of the edge parts thereof. The void ratio of the ball-like portion 3 to the apparent volume of the portion 3 is 90-99 vol.%, and the average interval of the fiber composing the ball-like portion 3 is 0.01 to 0.5 in the formula: average interval=[apparent volume of the ball-like portion (cm)]×[void ratio of the ball-like portion (vol.%)]/[total length of fibers composing the ball-like portion (cm)].

Description

本発明は、汚水処理用微生物担持体及び汚水処理用具に関するものであり、特に、活性汚泥槽等の汚水処理槽内に収容され且つ流水条件下に微生物が着床した担持体を流動接触させて、排水中の汚染物質を処理することに好適に用いられる汚水処理用微生物担持体及び汚水処理用具に関するものである。   The present invention relates to a microorganism carrier for sewage treatment and a sewage treatment tool, and in particular, fluidly contact a carrier that is accommodated in a sewage treatment tank such as an activated sludge tank and has microorganisms settled under flowing water conditions. The present invention relates to a microorganism carrier for sewage treatment and a sewage treatment tool that are preferably used for treating pollutants in waste water.

従来より、汚水処理槽内の流水条件下で使用される汚水処理用微生物担持体、いわゆる流動担体としては、種々の形状のものが提案されている。例えば、特許文献1には、捲縮を付与した細い繊維集合体により形成されたボール状(マリモ形態)の汚水処理用微生物担持体が提案されている。また、これらのボール状繊維集合体を保護容器に入れた汚水処理用微生物担持体の提案もなされており、例えば特許文献2には、保形性網状容器と複数個の保水性団塊物とから成り、複数個の保水性団塊物が、汚水処理槽内の流水条件下、保形性網状容器内で流動可能に収容されていることを特徴とする汚水処理用微生物担持体が提案されている。   2. Description of the Related Art Conventionally, sewage treatment microorganism carriers used under running water conditions in a sewage treatment tank, so-called fluid carriers, have been proposed in various shapes. For example, Patent Document 1 proposes a microbial support for treating sewage in a ball shape (marimo form) formed by a thin fiber assembly imparted with crimps. In addition, a microorganism-supporting body for sewage treatment in which these ball-shaped fiber assemblies are put in a protective container has also been proposed. For example, Patent Document 2 discloses a shape-retaining mesh container and a plurality of water-retentive nodules. A microbial carrier for sewage treatment has been proposed, characterized in that a plurality of water-retentive nodules are accommodated in a shape-retaining mesh container so as to be flowable under flowing water conditions in a sewage treatment tank. .

実開昭62−24997号公報Japanese Utility Model Publication No. 62-24997 特開平7−290079号公報JP-A-7-290079

前記のボール状繊維集合体を流動担体として用いた場合は、既存の流動担体として広く用いられているスポンジ状や中空円筒状と比較した場合、体積に比べ比表面積が大きく、バクテリアなどの小さい微生物群の着床は有利であると考えられるが、実際には比表面積の割にはバクテリアの付着が不均一となり水処理効果が上がらない。   When the above-mentioned ball-shaped fiber assembly is used as a fluid carrier, the specific surface area is large compared to the volume and small microorganisms such as bacteria when compared with a sponge or hollow cylinder widely used as an existing fluid carrier. Although it is considered that the implantation of the group is advantageous, in reality, the adhesion of bacteria is not uniform for the specific surface area, and the water treatment effect is not improved.

これは、例えば曝気式汚水処理槽の場合、エアーレーションによる酸素が繊維集合体内部まで入り込めず、バクテリアが着床出来ない、あるいはミミズなどの比較的大きい原生動物群がボール状繊維集合体の内部に入り込めず、系内の食物連鎖が不完全となっている事が原因と推定され、汚泥減少も含めた汚水処理能力が向上しないという問題があり、現在までボール状繊維集合体を用いた汚水処理用微生物担持体は普及していないのが実情である。特にボール状繊維集合体を形成する繊維が細く密に詰まった状態や、繊維をラテックスなどの接着剤で固めた場合等は、この欠点は特に顕著となる。   This is because, for example, in the case of an aeration-type sewage treatment tank, oxygen due to aeration cannot enter the fiber assembly, bacteria cannot be implanted, or relatively large protozoa such as earthworms are present in the ball-shaped fiber assembly. It is presumed that the food chain in the system is incomplete due to inability to enter the interior, and there is a problem that the sewage treatment capacity including sludge reduction will not be improved. Actually, the microbial support for sewage treatment has not been widely used. This defect is particularly noticeable particularly when the fibers forming the ball-like fiber aggregate are thin and densely packed, or when the fibers are hardened with an adhesive such as latex.

さらにボール状繊維集合体を、汚水処理槽内の流水条件下で流動する流動担体として用いた場合は、水流の作用、ボール状繊維集合体同志の衝突、あるいはボール状繊維集合体と処理槽壁との衝突等による衝撃や変形により、せっかくボール状繊維集合体に着床した活性微生物群や、ミミズなどの原生動物群が脱落し、汚水処理能力が落ちてしまうといった欠点もある場合がある。この種の汚水処理用微生物担持体においては、上記のような従来の汚水処理微生物担持体が有する種々の欠点を解決した、新規な高性能の担持体が望まれていた。   Furthermore, when the ball-shaped fiber assembly is used as a fluid carrier that flows under flowing water conditions in the sewage treatment tank, the action of the water flow, the collision of the ball-shaped fiber aggregates, or the ball-shaped fiber aggregate and the treatment tank wall There may be a drawback in that the active microorganism group and the protozoan group such as earthworms dropped on the ball-like fiber assembly drop off due to the impact or deformation caused by the collision with the sewage, and the sewage treatment ability is reduced. In this type of sewage treatment microorganism carrier, there has been a demand for a novel high-performance carrier that solves the various disadvantages of the conventional sewage treatment microorganism carrier as described above.

本発明は、上記実情に鑑みなされたものであり、その目的は、汚水処理槽内の流水条件下に流動させて使用される場合に、高い汚水処理効果を発揮する汚水処理用微生物担持体及びこれを用いた汚水処理用具を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to provide a sewage treatment microorganism carrier that exhibits a high sewage treatment effect when used under flowing water conditions in a sewage treatment tank, and It is in providing the sewage treatment tool using this.

本発明者等は、鋭意検討を重ねた結果、汚水処理槽内の流水条件下で流動し得る汚水処理用微生物担持体として、ボール状繊維集合体を用いた場合、ボール状繊維集合体の見掛けの体積と空隙率を乗じた数値を繊維の総長さで除した数式により求められる繊維間平均間隔について、ある特定の範囲において、極めて高い汚水浄化能力を発揮する事を見出し、ついに本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that when a ball-shaped fiber assembly is used as a microorganism support for sewage treatment that can flow under running water conditions in a sewage treatment tank, the appearance of the ball-shaped fiber assembly is apparent. The average inter-fiber distance obtained by the formula obtained by dividing the volume multiplied by the void volume and the total length of the fiber was found to exhibit extremely high sewage purification capability in a specific range, and finally the present invention was completed. It came to do.

具体的には、本発明の汚水処理用微生物担持体は、繊維を集合させた繊維集合体からなる汚水処理用微生物担持体であって、前記繊維集合体は、ボール状をなすボール状部と当該ボール状部の端部に形成され前記繊維を集束する集束部とを備え、前記ボール状部の空隙率は、前記ボール状部の見掛けの体積に対して90〜99容積%であり、前記ボール状部を構成する繊維の、下式(1)で表される平均間隔が0.01〜0.5である汚水処理用微生物担持体である。
平均間隔=ボール状部の見掛けの体積(立方cm)×ボール状部の空隙率(容積%)/ボール状部を構成する繊維の総長さ(cm) …(1)
Specifically, the sewage treatment microorganism carrier of the present invention is a sewage treatment microorganism carrier composed of a fiber assembly in which fibers are aggregated, and the fiber assembly includes a ball-shaped portion that forms a ball shape. A converging portion that is formed at an end of the ball-shaped portion to converge the fibers, and the void ratio of the ball-shaped portion is 90 to 99% by volume with respect to the apparent volume of the ball-shaped portion, It is the microorganisms carrier for sewage treatment whose average space | interval represented by the following Formula (1) of the fiber which comprises a ball-shaped part is 0.01-0.5.
Average interval = apparent volume of ball-shaped part (cubic cm) × porosity of ball-shaped part (volume%) / total length of fibers constituting ball-shaped part (cm) (1)

上記の条件を満たす汚水処理用微生物担持体は、驚くべき事にバクテリアなどの小さい微生物分がボール状部の内部まで均一に生息し、それに加えてさらにミミズなどの比較的大きい原生動物群も大量に生息し、系内の微生物の食物連鎖システムが機能し、汚泥減少も含めた汚水処理能力が飛躍的に向上する。   Surprisingly, the microorganism carrier for sewage treatment that satisfies the above conditions has a small amount of microbes such as bacteria uniformly living inside the ball-shaped part, and in addition, a large number of relatively large protozoa such as earthworms are also present. The food chain system of microorganisms in the system functions and the sewage treatment capacity including sludge reduction is dramatically improved.

また前記繊維集合体を構成する繊維が、塩化ビニリデン樹脂を80〜99重量%含有するポリ塩化ビニリデン系繊維であることが好ましい。この構成によれば、理由は不明であるが、微生物や原生動物群の着床が、ポリプロピレンやポリエステル等の他の樹脂に比べて非常に早くなり、さらに汚水処理能力が高くなる。   Moreover, it is preferable that the fiber which comprises the said fiber assembly is a polyvinylidene chloride type fiber containing 80 to 99 weight% of vinylidene chloride resin. According to this configuration, although the reason is unknown, the implantation of microorganisms and protozoan groups is much faster than other resins such as polypropylene and polyester, and the sewage treatment capacity is further increased.

また、前記繊維集合体が、複数の前記ボール状部を備え、複数の前記ボール状部が前記集束部を介して数珠繋ぎに連結された数珠状繊維集合体であると好ましい。例えば、繊維集合体をカプセル等に収納する場合を考えると、ボール状の繊維集合体を複数カプセル等に収納する場合に比べ、数珠状繊維集合体を収納する方が、カプセル等から離脱しにくくなるので好ましい。   Moreover, it is preferable that the fiber assembly includes a plurality of ball-shaped portions, and the plurality of ball-shaped portions are connected in a daisy chain via the converging portion. For example, considering the case where the fiber assembly is stored in a capsule or the like, it is easier to store the bead-like fiber assembly than the case where the ball-shaped fiber assembly is stored in a plurality of capsules or the like. This is preferable.

また、本発明の汚水処理用具は、上記いずれかの汚水処理用微生物担持体と、当該汚水処理用微生物担持体を収納する球形格子形状のカプセル収納具と、を備え、前記カプセル収納具の見掛けの体積に対して、収納する前記汚水処理用微生物担持体の見掛けの総体積が10〜50容積%である、汚水処理用具である。前記汚水処理用微生物担持体が、球形格子形状のカプセル収納具に収納されると、汚水処理槽内の流水条件下において、外部からの衝撃から守られたり、槽外への担持体の流出や槽内のポンプ等設備への担持体の詰まりを防止したり、繊維集合体同士が絡まりあって流動性が低下するなどといった問題を防止する事が出来る。   Further, a sewage treatment tool of the present invention comprises any one of the above sewage treatment microorganism carriers and a spherical lattice-shaped capsule container that accommodates the sewage treatment microorganism carrier, and the appearance of the capsule container The sewage treatment tool has a total apparent volume of 10 to 50% by volume of the sewage treatment microorganism carrier to be housed. When the sewage treatment microorganism carrier is stored in a spherical lattice-shaped capsule container, it can be protected from impact from the outside under flowing water conditions in the sewage treatment tank, or the carrier can flow out of the tank. It is possible to prevent problems such as clogging of the carrier with equipment such as a pump in the tank, and problems such as entanglement of fiber aggregates and decrease in fluidity.

特に、カプセル収納具の見掛けの体積に対して、収納する汚水処理用微生物担持体の見掛けの総体積が10〜50容積%である汚水処理用具は、カプセル収納具内部での繊維集合体の適度な動きと、適度な汚水との接触性、微生物の保持性が得られて、汚水処理能力が向上する為により好ましい。   In particular, the sewage treatment tool in which the total volume of the sewage treatment microorganism carrier to be stored is 10 to 50% by volume with respect to the apparent volume of the capsule storage tool is suitable for the fiber assembly inside the capsule storage tool. It is more preferable because it provides a good movement, moderate contact with sewage, and retention of microorganisms, and improves sewage treatment capacity.

球形格子形状カプセル収納具の形状については、球形格子を構成するフレームの内側の少なくとも一部にフィンを有すると好ましい。この構成によれば、上記フィンが水流コントロールの為に機能し、汚水処理槽内の流水条件下において、カプセル収納具内部へ一定方向の水流が流れ込む。その結果、カプセル収納具内部の繊維状集合体と汚水との接触性が向上し、汚水処理能力が向上する。   As for the shape of the spherical lattice-shaped capsule container, it is preferable that fins are provided at least at a part of the inside of the frame constituting the spherical lattice. According to this configuration, the fin functions for water flow control, and a water flow in a certain direction flows into the capsule container under the water flow condition in the sewage treatment tank. As a result, the contact between the fibrous aggregate inside the capsule container and the sewage is improved, and the sewage treatment capacity is improved.

本発明の汚水処理用微生物担持体及びこれを用いた汚水処理用具によれば、汚水処理槽内の流水条件下で流動する汚水処理用微生物担持体として用いた場合、バクテリアなどの小さい微生物分がボール状繊維集合体の内部まで均一に生息するだけでなく、さらにミミズなどの比較的大きい原生動物群も大量に生息できるため、系内の微生物の食物連鎖システムが機能し、極めて高い汚水処理効果を発揮する。   According to the sewage treatment microorganism carrier of the present invention and the sewage treatment tool using the same, when used as a sewage treatment microorganism carrier that flows under flowing water conditions in a sewage treatment tank, small microorganisms such as bacteria are present. In addition to living uniformly inside the ball-shaped fiber assembly, a large number of relatively large protozoa such as earthworms can also inhabit, so the food chain system of microorganisms in the system functions and extremely high sewage treatment effect Demonstrate.

本発明の汚水処理用微生物担持体の一例を示す図である。It is a figure which shows an example of the microorganisms support body for wastewater treatment of this invention. 本発明の汚水処理用具の一例を示す図である。It is a figure which shows an example of the sewage treatment tool of this invention. 本発明の球形格子形状カプセル収納具の分解斜視図である。It is a disassembled perspective view of the spherical lattice-shaped capsule storage device of the present invention. 本発明の球形格子形状カプセル収納具の正面図である。It is a front view of the spherical lattice-shaped capsule storage device of the present invention. 本発明の球形格子形状カプセル収納具のフィンを含むフレームの断面図である。It is sectional drawing of the flame | frame containing the fin of the spherical lattice-shaped capsule storage tool of this invention. 本発明の球形格子形状カプセル収納具内部を示す図である。It is a figure which shows the inside of the spherical lattice shape capsule storage tool of this invention.

以下、本発明の汚水処理用微生物担持体及び汚水処理用具の一実施形態について説明する。   Hereinafter, one embodiment of a microorganism carrier for wastewater treatment and a wastewater treatment tool of the present invention will be described.

図1には、本発明の汚水処理用微生物担持体の好適な一例である汚水処理用微生物担持体1の外観を示している。微生物担持体1は、捲縮繊維束を束ねて形成される繊維集合体からなる。微生物担持体1をなす繊維集合体は、束ねた捲縮繊維束を両端で集束し、両方の集束部分に挟まれた中央部分がボール状(略球状)に形成された構造をなす。以下、中央のボール状の部分を「ボール状部」と称し符号”3”を付して表す、また、ボール状部3の両端に形成される集束部分を「集束部」と称し符号”5”を付して表す。ボール状部3の直径は、概ね3cm程度とされる。捲縮繊維束を収束する構造により、槽内の流水条件下において、繊維がばらけたり、絡みついたりすることがなくなる為、好ましい。   FIG. 1 shows the appearance of a sewage treatment microorganism carrier 1 which is a preferred example of the sewage treatment microorganism carrier of the present invention. The microorganism carrier 1 is composed of a fiber assembly formed by bundling crimped fiber bundles. The fiber assembly constituting the microorganism carrier 1 has a structure in which a bundle of crimped fiber bundles is converged at both ends, and a central portion sandwiched between both converging portions is formed in a ball shape (substantially spherical). Hereinafter, the central ball-shaped portion is referred to as a “ball-shaped portion” and denoted by reference numeral “3”, and the converging portions formed at both ends of the ball-shaped portion 3 are referred to as “converging portions” and denoted by reference numeral “5”. " The diameter of the ball-shaped portion 3 is approximately 3 cm. The structure that converges the crimped fiber bundle is preferable because the fibers are not scattered or entangled under running water in the tank.

上記捲縮繊維における捲縮の程度は5〜40回/10cmが好ましく、繊維の太さは、直径0.03〜0.2mmが好ましく、繊維の断面形状は円形が好ましいが、円形に限らず、楕円形、長方形、三角形、中空形状などを用いても良い。繊維の比重は制限される事はないが、0.9〜1.7が好ましい。また繊度については比重により異なるが、例えば比重が1.7の繊維の場合10d〜200dが好ましい。   The degree of crimp in the crimped fiber is preferably 5 to 40 times / 10 cm, the thickness of the fiber is preferably 0.03 to 0.2 mm in diameter, and the cross-sectional shape of the fiber is preferably circular, but is not limited to circular. Alternatively, an elliptical shape, a rectangular shape, a triangular shape, a hollow shape, or the like may be used. The specific gravity of the fiber is not limited, but 0.9 to 1.7 is preferable. The fineness varies depending on the specific gravity. For example, in the case of a fiber having a specific gravity of 1.7, 10d to 200d are preferable.

また、繊維集合体のボール状部3の空隙率は、ボール状部3の見掛けの体積に対して90〜99容積%である。空隙率が90容積%未満では、担持体重量あたりの浄化効率が低下し、逆に99容積%を超えるとボール状部3のこしがなく、変形しやすくなり、実用に不向きである。また、ボール状部3の見掛けの体積とは、ボール状部の外形をなす球の体積である。   Further, the porosity of the ball-shaped portion 3 of the fiber assembly is 90 to 99% by volume with respect to the apparent volume of the ball-shaped portion 3. If the porosity is less than 90% by volume, the purification efficiency per weight of the carrier decreases, and conversely if it exceeds 99% by volume, the ball-shaped portion 3 is not distorted and easily deforms, which is not suitable for practical use. Further, the apparent volume of the ball-shaped part 3 is the volume of a sphere that forms the outer shape of the ball-shaped part.

さらに収束部を除いたボール状部の各々の繊維同士の平均間隔は、0.01〜0.5である。ここで言う繊維同士の平均間隔とは下記計算式(1)から求められる数値である。
平均間隔=ボール状部3の見掛けの体積(立方cm)×ボール状部3の空隙率(%)/ボール状部3を構成する繊維の総長さ(cm) …(1)
Furthermore, the average space | interval of each fiber of a ball-shaped part except a convergence part is 0.01-0.5. The average space | interval of fibers said here is a numerical value calculated | required from following formula (1).
Average interval = apparent volume of the ball-shaped portion 3 (cubic cm) × void ratio (%) of the ball-shaped portion 3 / total length of the fibers constituting the ball-shaped portion 3 (cm) (1)

ここでいう繊維の総長さとは、ボール状部3を構成するすべての繊維の長さを足したものである。繊維の長さは、ボール状部3を構成する繊維の重量を測定する事で、下記式から計算できる。
繊維の長さ(cm)=繊維の重量(g)/繊度(デニール)×900000cm
なお、繊度(デニール)900000cmあたりの重量(g)を表している。あるいは、繊維の断面が円状の場合は、繊維の直径、比重から計算してもよい。
The total fiber length referred to here is the sum of the lengths of all the fibers constituting the ball-shaped portion 3. The length of the fiber can be calculated from the following formula by measuring the weight of the fiber constituting the ball-shaped portion 3.
Fiber length (cm) = fiber weight (g) / fineness (denier) × 900000 cm
The fineness (denier) represents the weight (g) per 900,000 cm. Or when the cross section of a fiber is circular, you may calculate from the diameter and specific gravity of a fiber.

空隙率が90〜99容積%のボール状部3において、上記平均間隔が、0.01未満であると繊維が密になりすぎ、ボール状部3内部にまでミミズ等の大型の原生動物が入り込めず、系内の食物連鎖システムが成り立たず、汚泥減少も含めた汚水処理能力が発揮されない。また曝気槽では、曝気による空気がボール状部3の中心部に行きわたらず、汚水処理能力が低下する。   In the ball-shaped part 3 having a porosity of 90 to 99% by volume, if the average interval is less than 0.01, the fibers become too dense, and large protozoa such as earthworms enter the ball-shaped part 3. The food chain system in the system cannot be established, and the sewage treatment capacity including sludge reduction cannot be demonstrated. Further, in the aeration tank, air generated by aeration does not reach the center of the ball-shaped portion 3, and the sewage treatment capacity is reduced.

逆に、上記平均間隔が0.5を超えると、繊維間の間隔が開きすぎ、汚水処理槽内の流水条件下での水流の作用や衝撃により、せっかく繊維集合体に着床した活性微生物群や、ミミズなどの原生動物群が脱落し、汚水処理能力が発揮されない。   On the contrary, when the average interval exceeds 0.5, the interval between the fibers is excessively widened, and the active microorganism group that has settled on the fiber assembly due to the action and impact of the water flow under running water conditions in the sewage treatment tank Or protozoan groups such as earthworms fall out and the sewage treatment capacity is not demonstrated.

上記平均間隔が0.01以上0.5以内であるとバクテリア等微生物だけではなく、ミミズなどの原生動物も発生し、かつ汚水処理槽内の流水条件下での水流の作用、処理槽壁との衝突等による衝撃でも、ボール状部3に着床した活性微生物群や、ミミズなどの原生動物群の脱落が起こらず、さらにボール状部3の表面にまとわりついた汚泥も適度にふるい落とされ、水との接触性が向上し、また曝気槽では、曝気による空気がボール状部3の中心部に行きわたり、汚水処理能力が飛躍的に向上する。   When the average interval is 0.01 or more and 0.5 or less, not only microorganisms such as bacteria but also protozoa such as earthworms are generated, and the action of water flow under running water conditions in the sewage treatment tank, Even in the impact caused by the impact of the ball, the active microorganisms that have landed on the ball-shaped part 3 and the protozoan group such as earthworms do not fall off, and the sludge clinging to the surface of the ball-shaped part 3 is also appropriately screened, The contact property with water is improved, and in the aeration tank, air generated by aeration reaches the center of the ball-shaped portion 3 and the sewage treatment capability is dramatically improved.

特に上記平均間隔が0.1〜0.3であるとさらにバクテリア等の微生物とミミズ等の大型の原生動物がさらにバランスよく存在しやすくなるため、より好ましい。上記平均間隔が0.20〜0.25であると、さらに好ましい。   In particular, the average interval of 0.1 to 0.3 is more preferable because microorganisms such as bacteria and large protozoa such as earthworms are more likely to exist in a balanced manner. The average interval is more preferably 0.20 to 0.25.

捲縮繊維束を収束する方法は、超音波や高周波により熱融着する方法、プラスチック製
バンドや金属性クリップの緊迫により収束する方法等がある。その中でも、図1に例示されるように、ソーセージ等で見られるようなアルミニウムワイヤ7による緊縛は、収束が容易である事、収束が強く糸が抜け落ちにくい事、安価である事から好ましい。また繊維集合体を収束する場合、集束する位置は、中央部、或いは両端のどちらでも良い。
As a method for converging the crimped fiber bundle, there are a method of heat-sealing by ultrasonic waves or high frequency, a method of converging by tightness of a plastic band or a metallic clip, and the like. Among them, as exemplified in FIG. 1, the binding with the aluminum wire 7 as seen in sausage or the like is preferable because it is easy to converge, has a strong convergence, and does not easily fall off the yarn, and is inexpensive. When the fiber assembly is converged, the convergence position may be at the center or at both ends.

一つのボール状部3を構成する繊維の本数は、特に限定されるものではないが通常100〜10,000本の捲縮繊維から構成される。繊維の種類としては、いずれの合成繊維であってもよく、塩化ビニル、塩化ビニリデン、ポリアミド、ポリエステル、ポリプロピレン系繊維等が挙げられる。特に、塩化ビニリデン系樹脂繊維がより好ましい。ここで言う塩化ビニリデン系樹脂繊維とは、塩化ビニリデン系樹脂を80〜99重量%含有するポリ塩化ビニリデン系繊維であるが、この繊維を用いた場合、理由は不明であるが、バクテリア等の微生物の着床やミミズ等の原生動物の着床に優れているのでより好ましい。   The number of fibers constituting one ball-shaped portion 3 is not particularly limited, but is usually composed of 100 to 10,000 crimped fibers. The type of fiber may be any synthetic fiber, and examples thereof include vinyl chloride, vinylidene chloride, polyamide, polyester, and polypropylene fiber. In particular, vinylidene chloride resin fibers are more preferable. The vinylidene chloride resin fiber referred to here is a polyvinylidene chloride fiber containing 80 to 99% by weight of a vinylidene chloride resin. When this fiber is used, the reason is unknown, but microorganisms such as bacteria It is more preferable because it is excellent in the implantation of protozoa such as earthworms and earthworms.

塩化ビニリデン系樹脂とは、塩化ビニリデンモノマーを主体とし、塩化ビニリデンモノマーと共重合可能な少なくとも1種類のエチレン誘導体モノマーを含めたモノマー混合物を重合して得たものである。ここで主体とするとは、塩化ビニリデンモノマーがモノマー混合物全体の70重量%以上を占めることを言う。   The vinylidene chloride-based resin is obtained by polymerizing a monomer mixture including a vinylidene chloride monomer as a main component and at least one ethylene derivative monomer copolymerizable with the vinylidene chloride monomer. Here, “mainly” means that the vinylidene chloride monomer accounts for 70% by weight or more of the entire monomer mixture.

モノマー混合物に含めても良いエチレン誘導体モノマーとしては、アクリルニトリルやメタクリロニトリルのごときエチレン性不飽和カルボン酸のニトリル、メチルアクリレートやメチルメタクリレートのごときアクリル酸やメタクリル酸のアルキルエステル、ヒドロキシプロピルアクリレートやヒドロキシエチルアクリレートやヒドロキシブチルアクリレートのごときヒドロキシアルキルエステル、酢酸ビニルのごとき飽和カルボン酸のビニルエステル、アクリルアミドのごときエチレン性不飽和カルボン酸のアミド、アクリル酸のごときエチレン性不飽和カルボン酸、アリルアルコールのごときエチレン性不飽和アルコール、塩化ビニルのごときハロゲン化ビニルなどが例示される。これらの中で塩化ビニルを共重合体としたものが、繊維のしなやかさと耐久性の面で優れており、さらにより好ましい。   Ethylene derivative monomers that may be included in the monomer mixture include nitriles of ethylenically unsaturated carboxylic acids such as acrylonitrile and methacrylonitrile, alkyl esters of acrylic acid and methacrylic acid such as methyl acrylate and methyl methacrylate, hydroxypropyl acrylate, Of hydroxyalkyl esters such as hydroxyethyl acrylate and hydroxybutyl acrylate, vinyl esters of saturated carboxylic acids such as vinyl acetate, amides of ethylenically unsaturated carboxylic acids such as acrylamide, ethylenically unsaturated carboxylic acids such as acrylic acid, allyl alcohol Examples thereof include ethylenically unsaturated alcohols and vinyl halides such as vinyl chloride. Among these, a vinyl chloride copolymer is superior in terms of fiber flexibility and durability, and is more preferable.

モノマー組成物における塩化ビニリデンモノマーとエチレン誘導体モノマーの好ましい重量比は、使用されるエチレン誘導体モノマーによって異なるものの、例えば、エチレン誘導体モノマーが塩化ビニルの場合には、塩化ビニリデンモノマー/塩化ビニルモノマーの好ましい重量比は70/30以上98/2以下である。塩化ビニリデンモノマーを70重量%以上とすることで得られる塩化ビニリデン系樹脂として結晶化が促進し、繊維の収縮が小さくなり、寸法安定性が維持されて好ましい。逆に塩化ビニリデンモノマーを98重量%以下とすることで塩化ビニリデン系樹脂の脆さがなくなり強度が維持されて、繊維集合体の耐久性がより向上するため好ましい。より好ましくは、塩化ビニリデンモノマー/塩化ビニルモノマーの重量比が80/20以上95/5以下である。   Although the preferred weight ratio of vinylidene chloride monomer to ethylene derivative monomer in the monomer composition varies depending on the ethylene derivative monomer used, for example, when the ethylene derivative monomer is vinyl chloride, the preferred weight of vinylidene chloride monomer / vinyl chloride monomer The ratio is 70/30 or more and 98/2 or less. As the vinylidene chloride monomer obtained by setting the vinylidene chloride monomer to 70% by weight or more, crystallization is promoted, shrinkage of fibers is reduced, and dimensional stability is maintained, which is preferable. Conversely, the vinylidene chloride monomer content is preferably 98% by weight or less because the vinylidene chloride resin is not brittle and the strength is maintained, and the durability of the fiber assembly is further improved. More preferably, the weight ratio of vinylidene chloride monomer / vinyl chloride monomer is 80/20 or more and 95/5 or less.

本発明の汚水処理用微生物担持体は、カプセル収納具に収納されることが好ましい。よって、本発明の汚水処理用具は、カプセル収納具と、当該カプセル収納具に収納された微生物担持体とを備えるものである。本発明の汚水処理用具の一例として、汚水処理用具200を、図2に示す。汚水処理用具200は、カプセル収納具100と、当該カプセル収納具100の内部に収納された多数の微生物担持体1とを備える。   The sewage treatment microorganism carrier of the present invention is preferably stored in a capsule storage device. Therefore, the sewage treatment tool of the present invention comprises a capsule storage device and a microorganism carrier housed in the capsule storage device. As an example of the sewage treatment tool of the present invention, a sewage treatment tool 200 is shown in FIG. The sewage treatment tool 200 includes a capsule storage device 100 and a large number of microorganism carriers 1 stored in the capsule storage device 100.

カプセル収納具100は、球形格子形状をなし、この収納具の大きさは特に制限はないが、通常、直径(外径)が100〜300mmの範囲にあるものが用いられる。また、カプセル収納具100の格子の隙間は、微生物担持体1のボール状部3の直径よりも小さい。また、詳細は後述するが、多数の微生物担持体1を収納する代わりに、図6に示されるように、数珠状繊維集合体をなす微生物担持体107をカプセル収納具100内に収納してもよい。微生物担持体107は、複数の微生物担持体1を、集束部5を介して数珠繋ぎにしたものである。   The capsule storage device 100 has a spherical lattice shape, and the size of the storage device is not particularly limited, but those having a diameter (outer diameter) in the range of 100 to 300 mm are usually used. Further, the gap of the lattice of the capsule container 100 is smaller than the diameter of the ball-shaped portion 3 of the microorganism carrier 1. Although details will be described later, instead of storing a large number of microorganism carriers 1, a microorganism carrier 107 forming a bead-like fiber aggregate may be stored in the capsule storage device 100 as shown in FIG. Good. The microorganism carrier 107 is obtained by connecting a plurality of microorganism carriers 1 in a daisy chain via the converging unit 5.

例えば図3及び図4に示すように、2つの半球状部材100a同士を、上下一対組み合わせて構成することにより、容易にカプセル収納具100が得られる。すなわち、微生物担持体を内部に収納した後に、2つの半球状部材100aを結合すれば、カプセル収納具100内に微生物担持体を脱落不可能に収納することができる。半球状部材100a同士を結合する方法は嵌合、バンド絞め、接着剤、或いは超音波融着や熱融着等がある。   For example, as shown in FIGS. 3 and 4, the capsule container 100 can be easily obtained by configuring the two hemispherical members 100 a by combining a pair of upper and lower parts. That is, if the two hemispherical members 100a are joined after the microorganism carrier is stored inside, the microorganism carrier can be stored in the capsule storage device 100 so as not to fall off. Methods for joining the hemispherical members 100a include fitting, banding, adhesive, ultrasonic fusion, thermal fusion, and the like.

カプセル収納具100は、一例としては、図4に示すように、環状フレーム101,102,103と、放射状フレーム104からなる。各フレーム同士の間隔は、収納具の大きさ,材質、内部に収納される繊維集合体の大きさ等を考慮して決定すればよいが、通常はカプセル収納具100として、環状フレーム101〜103は4〜8本程度であり、放射状フレーム104は20〜50本程度であり、放射状フレーム104の間隔は10〜20mm程度である。また、放射状フレーム104の形状は、強度の面からは内側にリブ状を有するものがよい。また各フレームの厚さや幅は特に制限はないが、各フレームの厚さは、通常2〜5mmが好ましい。カプセル収納具の材質は、特に限定されるものではないが、ポリプロピレン、ポリエチレン、ナイロン、ポリエチレンテレフタレートが強度の面から好ましい。中でも、ポリプロピレンとポリエチレンは、安価である事から、より好ましい。特に、内部に収納される微生物担持体に比重の重いポリ塩化ビニリデン系繊維を用いる場合は、全体の比重を適度に調整する事が容易である事から、カプセル収納具の材料として、軽比重のポリプロピレンを用いる事はさらにより好ましい。   As an example, the capsule container 100 includes annular frames 101, 102, and 103 and a radial frame 104 as shown in FIG. The interval between the frames may be determined in consideration of the size and material of the storage tool, the size of the fiber assembly stored inside, and the like. Is about 4 to 8, the radial frames 104 are about 20 to 50, and the distance between the radial frames 104 is about 10 to 20 mm. Further, the shape of the radial frame 104 preferably has a rib shape on the inner side in terms of strength. The thickness and width of each frame are not particularly limited, but the thickness of each frame is usually preferably 2 to 5 mm. The material of the capsule container is not particularly limited, but polypropylene, polyethylene, nylon, and polyethylene terephthalate are preferable from the viewpoint of strength. Among these, polypropylene and polyethylene are more preferable because they are inexpensive. In particular, when using a polyvinylidene chloride fiber having a high specific gravity for the microorganism carrier housed inside, it is easy to appropriately adjust the overall specific gravity. It is even more preferable to use polypropylene.

さらに、カプセル収納具においては、球形格子を構成するフレームの内側の少なくとも一部に水流コントロールの為のフィンを有するものが、さらにより好ましい。フィンの形状や大きさは特に限定されるものではないが、例えば図3及び図5に例示する様に、球形格子を構成する放射状フレーム104から一体成型品として形成され、中心部に向かって径方向に1〜2cm程度延びる板状のフィン105などが例としてあげられる。   Furthermore, it is even more preferable that the capsule container has fins for water flow control at least at a part of the inside of the frame constituting the spherical lattice. The shape and size of the fin are not particularly limited. For example, as illustrated in FIGS. 3 and 5, the fin is formed as an integrally molded product from the radial frame 104 constituting the spherical lattice, and has a diameter toward the center. An example is a plate-like fin 105 extending about 1 to 2 cm in the direction.

カプセル収納具に収納する微生物担持体の収納量としては、カプセル収納具の見掛けの体積(例えばカプセル収納具100の外形をなす球の体積)に対して、収納する微生物担持体の見掛けの総体積が10〜50容積%であることが好ましい。上記の値が10容積%以上であれば、カプセルあたりの微生物担持性能が良くコストパフォーマンスに優れ好ましい。また50容積%以内であるとカプセル収納具内部で繊維集合体が動きやすくなり、汚泥を抱え込んで団塊状になりにくく、好ましい。より好ましくは、15〜30%である。   As the storage amount of the microorganism carrier to be stored in the capsule storage device, the apparent total volume of the microorganism support to be stored with respect to the apparent volume of the capsule storage device (for example, the volume of the sphere forming the outer shape of the capsule storage device 100). Is preferably 10 to 50% by volume. If the above value is 10% by volume or more, the microorganism-supporting performance per capsule is good and the cost performance is excellent. Moreover, when it is within 50% by volume, the fiber aggregate is easy to move inside the capsule container, and it is preferable that sludge is contained and hardly forms a nodule. More preferably, it is 15 to 30%.

また、カプセル収納具に収納される繊維集合体は、複数のボール状部を備え、複数のボール状部が集束部を介して数珠繋ぎに連結された数珠状繊維集合体であることが好ましい。例えば、図6に例示するように、複数の微生物担持体1(図1参照)を、集束部5を介し数珠繋ぎにして数珠状繊維集合体107を形成し、数珠状繊維集合体107をカプセル収納具100の内部に収納すればよい。このような数珠状繊維集合体であれば、汚水処理槽内の流水条件下の激しい水流下でも、カプセル収納具からの脱落が起こり難くなり、好ましい。カプセル収納具内には、1本の長鎖状に繋がっている数珠状繊維集合体を収納しても良く、或いは短鎖の数珠状繊維集合体を複数個収納しても良い。   Moreover, it is preferable that the fiber assembly accommodated in the capsule storage device is a bead-like fiber assembly that includes a plurality of ball-shaped portions, and the plurality of ball-shaped portions are connected to each other via a converging portion. For example, as illustrated in FIG. 6, a plurality of microbial carriers 1 (see FIG. 1) are connected together via a converging unit 5 to form a rosary fiber aggregate 107, and the rosary fiber aggregate 107 is encapsulated. What is necessary is just to accommodate in the inside of the tool 100. FIG. Such a bead-like fiber assembly is preferable because it is difficult for the capsule storage device to fall off even under intense water flow under running water conditions in the sewage treatment tank. In the capsule storage device, one long chain of beaded fiber aggregates may be stored, or a plurality of short chain beaded fiber aggregates may be stored.

更に、これら数珠状繊維集合体の一部が、カプセル収納具に固定されている場合、カプセル収納具からの数珠状繊維集合体の脱落がさらに起こり難くなるのでより好ましい。さらに、例えば図6に示すように、複数個の数珠状繊維集合体107の両端108をカプセル収納具100のフレームに固定することが好ましい。この場合、長期間の流動によって数珠状繊維集合体107がお互いに絡まりあい団塊状になる事を防止でき、水処理性能が向上する。   Furthermore, it is more preferable that a part of these bead-like fiber aggregates is fixed to the capsule container because the bead-like fiber aggregates are more unlikely to fall out of the capsule container. Furthermore, for example, as shown in FIG. 6, it is preferable to fix both ends 108 of a plurality of bead-like fiber assemblies 107 to the frame of the capsule container 100. In this case, it is possible to prevent the bead-like fiber aggregates 107 from being entangled with each other due to a long-term flow, and the water treatment performance is improved.

数珠状繊維集合体をカプセル収納具に固定する方法としては、例えば、図5に示すように、カプセル収納具の内側フィン105に開口部106を設け、その開口部106に数珠状繊維集合体の末端を差込んで固定する方法などがある。   As a method for fixing the bead-like fiber aggregate to the capsule container, for example, as shown in FIG. 5, an opening 106 is provided in the inner fin 105 of the capsule container, and the bead-like fiber aggregate is formed in the opening 106. There is a method of fixing by inserting the end.

本発明の汚水処理用微生物担持体及び汚水処理用具は、主に活性汚泥法等の好気性の排液処理装置の曝気槽に投入して使用され、汚泥を減少させ放流水水質浄化能力を向上させる。もちろん嫌気性の排液処理装置の嫌気槽に用いる事も可能である。   The microorganism carrier for sewage treatment and the sewage treatment tool of the present invention are mainly used by being put into an aeration tank of an aerobic drainage treatment apparatus such as an activated sludge method to reduce sludge and improve the effluent water quality purification capability. Let Of course, it can also be used in an anaerobic tank of an anaerobic drainage treatment apparatus.

特に汚水の再生水システムにおいては、活性汚泥槽と中空糸膜や逆浸透膜等を用いた膜分離槽を組み合わせた汚水処理装置があるが、活性汚泥槽、あるいは膜分離槽に本発明の汚水処理用微生物担持体及び汚水処理用具を用いる事で、汚泥が減少し、膜分離における負荷が減少し、膜の能力が向上し、消費電力の減少や膜の耐用年数の向上が図られるのである。   In particular, in the sewage reclaimed water system, there is a sewage treatment device that combines an activated sludge tank and a membrane separation tank using a hollow fiber membrane, a reverse osmosis membrane, etc., and the sewage treatment of the present invention is applied to the activated sludge tank or the membrane separation tank. By using the microorganism carrier and the sewage treatment tool, the sludge is reduced, the load in membrane separation is reduced, the membrane performance is improved, the power consumption is reduced, and the membrane life is improved.

本発明を実施例に基づいて説明する。   The present invention will be described based on examples.

以下の実施例で用いられる物性の測定方法及び条件は以下の通りである。
1)空隙率(容積%)
ノギス等でボール状部の直径を測定し、見掛けの体積Aを計算する。ボール状部の重量を測定し、比重で除する事で繊維のみの体積Bを出す。
下記式より、空隙率を計算する。
空隙率=(A−B)/A
The measurement methods and conditions of physical properties used in the following examples are as follows.
1) Porosity (volume%)
The diameter of the ball-shaped part is measured with a caliper or the like, and the apparent volume A is calculated. By measuring the weight of the ball-shaped part and dividing by the specific gravity, the volume B of only the fiber is obtained.
The porosity is calculated from the following formula.
Porosity = (A−B) / A

2)ボール状部における繊維の平均間隔
下式(1)により求める。
平均間隔=ボール状部の見掛けの体積(cm)×ボール状部の空隙率(%)/ボール状部を構成する繊維の総長さ(cm) …(1)
2) Average spacing of fibers in the ball-shaped part.
Average interval = apparent volume of ball-shaped part (cm 3 ) × void ratio of ball-shaped part (%) / total length of fibers constituting ball-shaped part (cm) (1)

3)曝気処理後の水質分析
・BOD(生物化学的酸素要求量)
測定法:JIS K 0102:2008
水中の有機物などの量を、その酸化分解のために微生物が必要とする酸素の量で表した水質指標。
・全窒素
測定法:総和法
水中の硝酸、亜硝酸、アンモニア等全窒化物の量。
・アンモニア性窒素
測定方法:インドフェノールブルー吸光光度法
水中のアンモニアの量。
・SS(浮遊物質濃度)
測定方法:日本下水道協会「下水試験方法」1997
水中の浮遊物質の量を測定し、水中の水の濁りを表した水質指標。
3) Water quality analysis after aeration and BOD (biochemical oxygen demand)
Measuring method: JIS K 0102: 2008
A water quality index that expresses the amount of organic matter in water as the amount of oxygen required by microorganisms for its oxidative degradation.
・ Total nitrogen Measurement method: Summation method The amount of total nitrides such as nitric acid, nitrous acid and ammonia in water.
・ Ammonia nitrogen Measurement method: Indophenol blue spectrophotometry Amount of ammonia in water.
・ SS (suspended substance concentration)
Measurement method: Japan Sewerage Association “Sewage test method” 1997
A water quality indicator that shows the turbidity of water in water by measuring the amount of suspended solids in the water.

[実施例1]
塩化ビニリデンモノマー83wt%、塩化ビニルモノマー17wt%の仕込み比からなる塩化ビニリデン−塩化ビニル共重合体樹脂と、可塑剤としてクエン酸アセトトリブチル5wt%、熱安定剤としてエポキシ化大豆油2wt%をV型ブレンダーで混合して混合物とし、次に該混合物を55mmφスクリュー押出機で溶融し、合計3200ホールの丸穴紡口から3200本のトウ状繊維を溶融紡出し、空冷した後、速度差ローラーで2倍延伸した後、室温で10分間張力をかけずにリラックス状態で放置して倦縮を付与した後、48000デニール/3200フィラメント(単糸15デニール)の塩化ビニリデン系倦縮繊維を得た。
[Example 1]
V-type vinylidene chloride-vinyl chloride copolymer resin consisting of 83 wt% vinylidene chloride monomer and 17 wt% vinyl chloride monomer, 5 wt% acetotributyl citrate as plasticizer, and 2 wt% epoxidized soybean oil as heat stabilizer After mixing with a blender to make a mixture, the mixture was melted with a 55 mmφ screw extruder, 3200 tow fibers were melt spun from a total of 3200 hole round hole nozzles, air-cooled, and then 2 with a speed difference roller. After being stretched twice, it was allowed to stand in a relaxed state without applying tension at room temperature for 10 minutes to give crimps, and 48,000 denier / 3200 filament (single yarn 15 denier) vinylidene chloride crimped fibers were obtained.

さらにこの繊維を3束にまとめてトウ状繊維にしたのちに、アルミクリップによる結束とカットを行い、両サイドがアルミクリップで結束された直径3cmのボール状部をもつ繊維集合体を得た。この繊維集合体のボール状部では、表1の実施例1に示す通りの空隙率、見掛けの体積、繊維の総長さ、平均間隔であった。この繊維集合体を用いて次のとおり排水処理の試験を行った。   The fibers were further bundled into three bundles to form tow-like fibers, which were then bound and cut with aluminum clips to obtain a fiber assembly having a ball-shaped portion with a diameter of 3 cm, which was bound with aluminum clips on both sides. In the ball-shaped portion of this fiber assembly, the porosity, apparent volume, total length of fibers, and average interval were as shown in Example 1 in Table 1. Using this fiber assembly, a wastewater treatment test was performed as follows.

排水処理装置としては、槽の下部から曝気を送り込む活性汚泥流動槽を採用した。この槽は、容積が約1.5m3 (高さ1.5m×幅1m×長さ1m)のものであり、これに高さ1mの位置まで、約1m3の畜肉工場排水(原水)を投入した。次にこの曝気槽に上記のボール状部をもつ繊維集合体を14000個(排水量に対して担持体の見掛けの容積率が21容量%)を汚水処理用微生物担持体として投入した。 この処理槽において、約22時間曝気処理を行った後、処理水の半分を放流して再び原水を投入した。これを60日間繰り返し、繊維集合体へ微生物を付着させた。 As the wastewater treatment device, an activated sludge fluidization tank that sends aeration from the bottom of the tank was adopted. This tank has a volume of about 1.5m 3 (height 1.5m x width 1m x length 1m), and about 1m 3 of meat factory wastewater (raw water) is placed up to the height of 1m. I put it in. Next, 14,000 fiber assemblies having the above-mentioned ball-like portions (21% by volume of the apparent volume of the carrier with respect to the amount of drainage) were put in this aeration tank as a microorganism carrier for sewage treatment. In this treatment tank, an aeration process was performed for about 22 hours, and then half of the treated water was discharged and raw water was charged again. This was repeated for 60 days to attach microorganisms to the fiber assembly.

60日目の曝気処理後の水質分析を行った結果を表1の実施例1に示す。表1の実施例1に示す結果から、本発明の汚水処理用微生物担持体は、汚水の浄化作用に優れ、また汚泥の減少にも優れた効果がある事が確認された。   The results of water quality analysis after the 60-day aeration treatment are shown in Example 1 of Table 1. From the results shown in Example 1 of Table 1, it was confirmed that the microorganism carrier for sewage treatment of the present invention was excellent in the purification action of sewage and had an excellent effect in reducing sludge.

[実施例2]
実施例1と同様の樹脂組成物を用いて、640ホールの丸穴紡口から640本のトウ状繊維を溶融紡出し空冷した後、速度差ローラーで2倍延伸した後、室温で10分間張力をかけずにリラックス状態で放置して倦縮を付与した後、48000デニール/640フィラメント(単糸75デニール)の塩化ビニリデン系倦縮繊維を得た。
[Example 2]
Using the same resin composition as in Example 1, 640 tow-like fibers were melt spun from a 640 hole round hole nozzle, air-cooled, stretched twice with a speed difference roller, and then tensioned at room temperature for 10 minutes. After being allowed to stand in a relaxed state without being subjected to crimping, 48,000 denier / 640 filament (single yarn 75 denier) vinylidene chloride crimped fiber was obtained.

さらにこの繊維を3束にまとめてトウ状繊維にしたのちに、アルミクリップによる結束とカットを行い、両サイドがアルミクリップで結束された直径3cmのボール状部をもつ繊維集合体を得た。この維集合体のボール状部では、表1の実施例2に示す通りの空隙率、見掛けの体積、繊維の総長さ、平均間隔であった。この繊維集合体を用いる以外は、実施例1と同様の曝気処理を行い、曝気処理後の水質分析を行った結果を表1の実施例2に示す。表1の実施例2に示す結果から、本発明の汚水処理用微生物担持体は、汚水の浄化作用に優れ、また汚泥の減少にも優れた効果がある事が確認された。   The fibers were further bundled into three bundles to form tow-like fibers, which were then bound and cut with aluminum clips to obtain a fiber assembly having a ball-shaped portion with a diameter of 3 cm, which was bound with aluminum clips on both sides. In the ball-like portion of this fiber assembly, the porosity, the apparent volume, the total length of the fibers, and the average interval as shown in Example 2 of Table 1 were obtained. Except for using this fiber assembly, the result of aeration treatment similar to that of Example 1 and water quality analysis after aeration treatment is shown in Example 2 of Table 1. From the results shown in Example 2 of Table 1, it was confirmed that the microorganism-supporting body for wastewater treatment of the present invention was excellent in the sewage purification action and excellent in reducing sludge.

[実施例3]
実施例1と同様の樹脂組成物を用いて、320ホールの丸穴紡口から320本のトウ状繊維を溶融紡出し空冷した後、速度差ローラーで2倍延伸した後、室温で10分間張力をかけずにリラックス状態で放置して倦縮を付与した後、48000デニール/320フィラメント(単糸150デニール)の塩化ビニリデン系倦縮繊維を得た。さらにこの繊維を3束にまとめてトウ状繊維にしたのちに、アルミクリップによる結束とカットを行い、両サイドがアルミクリップで結束された直径3cmのボール状部をもつ繊維集合体を得た。この繊維集合体のボール状部では、表1の実施例3に示す通りの空隙率、見掛けの体積、繊維の総長さ、平均間隔であった。
[Example 3]
Using the same resin composition as in Example 1, 320 tow-like fibers were melt spun from a 320-hole round hole nozzle, air-cooled, stretched twice with a speed difference roller, and then tensioned at room temperature for 10 minutes. After being allowed to stand in a relaxed state without being subjected to crimping, 48,000 denier / 320 filament (single denier 150 denier) vinylidene chloride crimped fiber was obtained. The fibers were further bundled into three bundles to form tow-like fibers, which were then bound and cut with aluminum clips to obtain a fiber assembly having a ball-shaped portion with a diameter of 3 cm, which was bound with aluminum clips on both sides. In the ball-like portion of this fiber assembly, the porosity, the apparent volume, the total length of fibers, and the average interval as shown in Example 3 of Table 1 were obtained.

この繊維集合体を用いる以外は、実施例1と同様の曝気処理を行い、曝気処理後の水質分析を行った結果を表1の実施例3に示す。表1の実施例3に示す結果から、本発明の汚水処理用微生物担持体は、汚水の浄化作用に非常に優れ、また汚泥の減少にも非常に優れた効果がある事が確認された。   Except for using this fiber assembly, the results of aeration treatment similar to that of Example 1 and water quality analysis after aeration treatment are shown in Example 3 of Table 1. From the results shown in Example 3 of Table 1, it was confirmed that the microorganism-supporting body for sewage treatment according to the present invention was very excellent in the purification action of sewage and had a very excellent effect in reducing sludge.

[比較例1]
汚水処理用微生物担持体を投入しない事以外は、実施例1と同様の曝気処理を行った。その結果表1の比較例1に示す結果から、実施例1〜3と比較し、汚水の浄化作用は劣るものであった。
[Comparative Example 1]
The aeration treatment was performed in the same manner as in Example 1 except that the sewage treatment microorganism carrier was not added. As a result, from the results shown in Comparative Example 1 of Table 1, the purification effect of sewage was inferior compared with Examples 1-3.

[比較例2]
実施例1と同様の樹脂組成物を用いて、合計9600ホールの丸穴紡口から9600本のトウ状繊維を溶融紡出し空冷した後、速度差ローラーで2倍延伸した後、室温で10分間張力をかけずにリラックス状態で放置して倦縮を付与した後、48000デニール/9600フィラメント(単糸5デニール)の塩化ビニリデン系倦縮繊維を得た。さらにこの繊維を3束にまとめてトウ状繊維にしたのちに、アルミクリップによる結束とカットを行い、両サイドがアルミクリップで結束された直径3cmのボール状部をもつ繊維集合体を得た。この繊維集合体のボール状部では、表1の比較例2に示す通りの空隙率、見掛けの体積、繊維の総長さ、平均間隔であった。
[Comparative Example 2]
Using the same resin composition as in Example 1, 9600 tow-like fibers were melt spun from a total of 9600 hole round hole nozzles, air-cooled, stretched twice with a speed difference roller, and then at room temperature for 10 minutes. After allowing to stand in a relaxed state without applying tension and imparting crimps, 48,000 denier / 9600 filament (single yarn 5 denier) vinylidene chloride-based crimped fibers were obtained. The fibers were further bundled into three bundles to form tow-like fibers, which were then bound and cut with aluminum clips to obtain a fiber assembly having a ball-shaped portion with a diameter of 3 cm, which was bound with aluminum clips on both sides. In the ball-like portion of this fiber assembly, the porosity, apparent volume, total length of fibers, and average interval as shown in Comparative Example 2 of Table 1 were obtained.

この繊維集合体を用いる以外は、実施例1と同様の曝気処理を行い、曝気処理後の水質分析を行った結果を表1の比較例2に示す。表1の比較例2に示す結果から、比較例2の汚水処理用微生物担持体は、実施例1〜3に比較し、汚水の浄化作用は劣るものであった。   A comparative example 2 in Table 1 shows the results of performing the aeration process similar to Example 1 and performing the water quality analysis after the aeration process except that this fiber assembly is used. From the results shown in Comparative Example 2 of Table 1, the sewage treatment microorganism carrier of Comparative Example 2 was inferior in purification of sewage compared to Examples 1-3.

[比較例3]
実施例1と同様の樹脂組成物を用いて、合計96ホールの丸穴紡口から96本のトウ状繊維を溶融紡出し空冷した後、速度差ローラーで2倍延伸した後、室温で10分間張力をかけずにリラックス状態で放置して倦縮を付与した後、48000デニール/96フィラメント(単糸500デニール)の塩化ビニリデン系倦縮繊維を得た。さらにこの繊維を3束にまとめてトウ状繊維にしたのちに、アルミクリップによる結束とカットを行い、両サイドがアルミクリップで結束された直径3cmのボール状部をもつ繊維集合体を得た。この繊維集合体のボール状部では、表1の比較例3に示す通りの空隙率、見掛けの体積、繊維の総長さ、平均間隔であった。
[Comparative Example 3]
Using the same resin composition as in Example 1, 96 tow fibers were melt spun from a total of 96 hole round hole nozzles, air-cooled, stretched twice with a speed difference roller, and then at room temperature for 10 minutes. After being allowed to stand in a relaxed state without applying tension and imparting crimps, 48,000 denier / 96 filament (single yarn 500 denier) vinylidene chloride-based crimped fibers were obtained. The fibers were further bundled into three bundles to form tow-like fibers, which were then bound and cut with aluminum clips to obtain a fiber assembly having a ball-shaped portion with a diameter of 3 cm, which was bound with aluminum clips on both sides. In the ball-like portion of this fiber assembly, the porosity, the apparent volume, the total length of fibers, and the average interval as shown in Comparative Example 3 of Table 1 were obtained.

この繊維集合体を用いる以外は、実施例1と同様の曝気処理を行い、曝気処理後の水質分析を行った結果を表1の比較例3に示す。表1の比較例3に示す結果から、比較例3の汚水処理用微生物担持体は、実施例1〜3に比較し、汚水の浄化作用は劣るものであった。   A comparative example 3 of Table 1 shows the results of performing the aeration treatment similar to Example 1 and performing the water quality analysis after the aeration treatment except that this fiber assembly is used. From the results shown in Comparative Example 3 of Table 1, the sewage treatment microorganism carrier of Comparative Example 3 was inferior in the sewage purification action compared to Examples 1-3.

[比較例4]
ポリプロピレン樹脂を用いて、合計240ホールの丸穴紡口から240本のトウ状繊維を溶融紡出し空冷した後、速度差ローラーで2倍延伸した後、室温で10分間張力をかけずにリラックス状態で放置して倦縮を付与した後、48000デニール/240フィラメント(単糸200デニール)のポリプロピレン倦縮繊維を得た。さらにこの繊維を3束にまとめてトウ状繊維にしたのちに、アルミクリップによる結束とカットを行い、両サイドがアルミクリップで結束された直径3cmのボール状部をもつ繊維集合体を得た。この繊維集合体のボール状部では、表1の比較例4に示す通りの空隙率、見掛けの体積、繊維の総長さ、平均間隔であった。
[Comparative Example 4]
Using polypropylene resin, 240 tow-like fibers were melt spun from a total of 240 hole round hole nozzles, air-cooled, stretched twice with a speed difference roller, and then relaxed without applying tension for 10 minutes at room temperature. After being allowed to stand for crimping, a 48,000 denier / 240 filament (single yarn 200 denier) polypropylene crimped fiber was obtained. The fibers were further bundled into three bundles to form tow-like fibers, which were then bound and cut with aluminum clips to obtain a fiber assembly having a ball-shaped portion with a diameter of 3 cm, which was bound with aluminum clips on both sides. In the ball-like portion of this fiber assembly, the porosity, apparent volume, total length of fibers, and average interval were as shown in Comparative Example 4 in Table 1.

この繊維集合体を用いる以外は、実施例1と同様の曝気処理を行い、曝気処理後の水質分析を行った結果を表1の比較例4に示す。表1の比較例4に示す結果から、比較例4の汚水処理用微生物担持体は、実施例1〜3に比較し、汚水の浄化作用は劣るものであった。   A comparative example 4 in Table 1 shows the results of performing the aeration treatment similar to that in Example 1 and performing the water quality analysis after the aeration treatment except that this fiber assembly is used. From the results shown in Comparative Example 4 of Table 1, the sewage treatment microorganism carrier of Comparative Example 4 was inferior in the sewage purification action compared to Examples 1-3.

[比較例5]
ポリエチレンテレフタレート樹脂を用いて、合計12000ホールの丸穴紡口から12000本のトウ状繊維を溶融紡出し空冷した後、速度差ローラーで2倍延伸した後、室温で10分間張力をかけずにリラックス状態で放置して倦縮を付与した後、48000デニール/12000フィラメント(単糸4デニール)のポリエチレンテレフタレート倦縮繊維を得た。
[Comparative Example 5]
Using polyethylene terephthalate resin, 12000 tow-like fibers were melt spun from a total of 12000 holes round hole, air-cooled, stretched twice with a speed difference roller, and then relaxed without applying tension for 10 minutes at room temperature. After leaving in the state to give crimps, 48,000 denier / 12000 filament (single yarn 4 denier) polyethylene terephthalate crimped fiber was obtained.

さらにこの繊維を3束にまとめてトウ状繊維にしたのちに、アルミクリップによる結束とカットを行い、両サイドがアルミクリップで結束された直径3cmのボール状部をもつ繊維集合体を得た。この繊維集合体のボール状部では、表1の比較例5に示す通りの空隙率、見掛けの体積、繊維の総長さ、平均間隔であった。   The fibers were further bundled into three bundles to form tow-like fibers, which were then bound and cut with aluminum clips to obtain a fiber assembly having a ball-shaped portion with a diameter of 3 cm, which was bound with aluminum clips on both sides. In the ball-like portion of this fiber assembly, the porosity, the apparent volume, the total length of fibers, and the average interval as shown in Comparative Example 5 of Table 1 were obtained.

この繊維集合体を用いる以外は、実施例1と同様の曝気処理を行い、曝気処理後の水質分析を行った結果を表1の比較例5に示す。表1の比較例5に示す結果から、比較例5の汚水処理用微生物担持体は、実施例1〜3に比較し、汚水の浄化作用は劣るものであった。   A comparative example 5 in Table 1 shows the results of performing the aeration treatment similar to Example 1 and performing the water quality analysis after the aeration treatment except that this fiber assembly is used. From the results shown in Comparative Example 5 of Table 1, the sewage treatment microorganism carrier of Comparative Example 5 was inferior in purification of sewage compared to Examples 1-3.

[実施例4]
第2図〜第5図に示したカプセル収納具(ポリプロピレン製、直径20cm)に、実施例3と同様の直径3cmのボール状部をもつ繊維集合体を60個(カプセル見掛けの体積に対して、ボールの見掛けの総体積が20容積%)収納した汚水処理用具を作成した。
[Example 4]
2 to 5 capsule assembly (made of polypropylene, 20 cm in diameter), 60 fiber assemblies having a ball-like portion having a diameter of 3 cm as in Example 3 (relative to the apparent capsule volume) A sewage treatment tool was prepared in which the total apparent volume of the balls was 20% by volume).

排水処理装置としては、曝気回流式活性汚泥槽を採用したが、この槽は、容積が約4.5m3 (高さ1.5m×幅1m×長さ3m)のものであり、これに高さ1mの位置まで、約3m3の食品工場排水(原水)を投入した。次にこの曝気槽に上記の汚水処理用具(カプセル)を150個(排水量に対して担持体の見掛けの容積率が21容積%)を投入した。この処理槽において、約20時間曝気処理を行い、2時間曝気を停止して沈殿させ、半分の1.5mの上澄みを放流したのち再び約1.5m3の食品工場排水を投入するサイクルを約3ヶ月間繰り返し、担持体にバクテリアや原生動物が安定して着床するのを待った。 As the wastewater treatment equipment, an aeration recirculation activated sludge tank was adopted, but this tank has a volume of about 4.5 m 3 (height 1.5 m × width 1 m × length 3 m). About 3m 3 of food factory effluent (raw water) was thrown up to 1m. Next, 150 pieces of the above-mentioned sewage treatment tools (capsules) (the apparent volume ratio of the carrier was 21% by volume with respect to the amount of drainage) were put into this aeration tank. In this treatment tank, a cycle in which aeration treatment is carried out for about 20 hours, aeration is stopped for 2 hours to precipitate, half of the 1.5 m 3 supernatant is discharged, and then about 1.5 m 3 of the food factory wastewater is charged again. Repeated for about 3 months, and waited for bacteria and protozoa to stably land on the carrier.

担持体投入3ヶ月後、食品工場排水(原水)と曝気処理後の放流水の水質分析を行った結果を表2に示す。(ただしSSに関しては、放流水ではなく曝気終了直後、沈殿前の処理水を採取した。)この時同時に、投入した汚水処理用具を回収し、内部の状態を確認したところ、繊維集合体に多数のミミズ等の原生動物の着床が見られ、バクテリアだけでなく原生動物の着床にも優れる事が確認された。   Table 2 shows the results of water quality analysis of food factory effluent (raw water) and discharged water after aeration after 3 months from loading the support. (However, for SS, treated water before settling was collected immediately after the end of aeration rather than discharged water.) At the same time, the sewage treatment tool was collected and the internal state was confirmed. Implantation of protozoa such as earthworms was observed, and it was confirmed that it is excellent not only for bacteria but also for implantation of protozoa.

表2の実施例4に示す結果から、本発明の汚水処理用微生物担持体及び汚水処理用具は、汚水の浄化作用に非常に優れ、また汚泥の減少にも非常に優れた効果がある事が確認された。   From the results shown in Example 4 in Table 2, the microorganism carrier for sewage treatment and the sewage treatment tool of the present invention are very excellent in the sewage purification action and also have a very excellent effect in reducing sludge. confirmed.

[比較例6]
汚水処理用微生物担持体を投入しない事以外は、実施例4と同様の曝気処理実験を行った。その結果表2の比較例4に示す結果から、実施例4と比較し、汚水の浄化作用は劣るものであった。

Figure 2012024700

Figure 2012024700
[Comparative Example 6]
An aeration treatment experiment similar to that in Example 4 was performed, except that the sewage treatment microorganism carrier was not added. As a result, from the results shown in Comparative Example 4 in Table 2, the purification action of sewage was inferior compared with Example 4.
Figure 2012024700

Figure 2012024700

本発明の汚水処理用微生物担持体は、既存の活性汚泥槽に対して特別な改造工事等を必要とせず、単に投入するだけで排液処理能力を大幅に向上させることができる。   The microorganism carrier for sewage treatment according to the present invention does not require any special remodeling work or the like for the existing activated sludge tank, and can greatly improve the drainage treatment capacity by simply introducing it.

また膜分離槽を用いた汚水の再生水システムにおいては、本発明の汚水処理用微生物担持体を用いる事で、汚泥が減少し、膜分離における負荷が減少し、膜の能力が向上し、消費電力の減少や膜の耐用年数の向上を図ることができる。   Moreover, in the sewage reclaimed water system using the membrane separation tank, by using the sewage treatment microorganism carrier of the present invention, sludge is reduced, the load in membrane separation is reduced, the membrane performance is improved, and the power consumption is increased. Can be reduced and the useful life of the membrane can be improved.

1 汚水処理用微生物担持体
3 ボール状部
5 集束部
100 カプセル収納具
101 環状フレーム(大)
102 環状フレーム(中)
103 環状フレーム(小)
104 放射状フレーム
105 フィン
106 フィンの開口部
107 数珠状繊維集合体
108 数珠状繊維集合体の固定された端部
200 汚水処理用具
DESCRIPTION OF SYMBOLS 1 Microbe support body for wastewater treatment 3 Ball-shaped part 5 Focusing part 100 Capsule container 101 Annular frame (large)
102 Ring frame (middle)
103 Ring frame (small)
104 Radial frame 105 Fin 106 Fin opening 107 Beaded fiber aggregate 108 Fixed end part 200 of beaded fiber aggregate Sewage treatment tool

Claims (5)

繊維を集合させた繊維集合体からなる汚水処理用微生物担持体であって、
前記繊維集合体は、ボール状をなすボール状部と当該ボール状部の端部に形成され前記繊維を集束する集束部とを備え、
前記ボール状部の空隙率は、前記ボール状部の見掛けの体積に対して90〜99容積%であり、
前記ボール状部を構成する繊維の、下式(1)で表される平均間隔が0.01〜0.5である汚水処理用微生物担持体。
平均間隔=ボール状部の見掛けの体積(立方cm)×ボール状部の空隙率(容積%)/ボール状部を構成する繊維の総長さ(cm) …(1)
A microorganism-supporting body for wastewater treatment comprising a fiber assembly in which fibers are assembled,
The fiber assembly includes a ball-shaped portion having a ball shape and a converging portion that is formed at an end of the ball-shaped portion and focuses the fibers.
The void ratio of the ball-shaped part is 90 to 99% by volume with respect to the apparent volume of the ball-shaped part,
A microorganism-supporting body for sewage treatment in which an average interval represented by the following formula (1) of fibers constituting the ball-shaped portion is 0.01 to 0.5.
Average interval = apparent volume of ball-shaped part (cubic cm) × porosity of ball-shaped part (volume%) / total length of fibers constituting ball-shaped part (cm) (1)
前記繊維集合体を構成する繊維が、塩化ビニリデン樹脂を80〜99重量%含有するポリ塩化ビニリデン系繊維である、請求項1に記載の汚水処理用微生物担持体。   The microorganism carrier for sewage treatment according to claim 1, wherein the fibers constituting the fiber assembly are polyvinylidene chloride fibers containing 80 to 99% by weight of vinylidene chloride resin. 前記繊維集合体は、複数の前記ボール状部を備え、複数の前記ボール状部が前記集束部を介して数珠繋ぎに連結された数珠状繊維集合体である、請求項1または2に記載の汚水処理用微生物担持体。   The sewage according to claim 1 or 2, wherein the fiber aggregate is a rosary fiber aggregate that includes a plurality of the ball-shaped portions, and the plurality of ball-shaped portions are connected to each other via the converging portion. Microorganism carrier for treatment. 請求項1〜3のいずれか1項に記載の汚水処理用微生物担持体と、当該汚水処理用微生物担持体を収納する球形格子形状のカプセル収納具と、を備え、
前記カプセル収納具の見掛けの体積に対して、収納する前記汚水処理用微生物担持体の見掛けの総体積が10〜50容積%である、汚水処理用具。
The sewage treatment microorganism carrier according to any one of claims 1 to 3, and a spherical lattice-shaped capsule container for housing the sewage treatment microorganism carrier,
The sewage treatment tool, wherein the apparent total volume of the sewage treatment microorganism carrier to be stored is 10 to 50% by volume with respect to the apparent volume of the capsule storage tool.
前記球形格子形状カプセル収納具が、球形格子を構成するフレームの内側の少なくとも一部にフィンを有する、請求項4に記載の汚水処理用具。   The sewage treatment tool according to claim 4, wherein the spherical lattice-shaped capsule storage device has fins on at least a part of an inner side of a frame constituting the spherical lattice.
JP2010166094A 2010-07-23 2010-07-23 Microorganism carrier for sewage treatment and sewage treatment tool Active JP5599668B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010166094A JP5599668B2 (en) 2010-07-23 2010-07-23 Microorganism carrier for sewage treatment and sewage treatment tool
TW100212963U TWM425869U (en) 2010-07-23 2011-07-14 Microbe carrier for sewage treatment and sewage treatment apparatus
CN2011202594006U CN202246233U (en) 2010-07-23 2011-07-21 Microbial carrier for sewage treatment and sewage treatment appliance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010166094A JP5599668B2 (en) 2010-07-23 2010-07-23 Microorganism carrier for sewage treatment and sewage treatment tool

Publications (2)

Publication Number Publication Date
JP2012024700A true JP2012024700A (en) 2012-02-09
JP5599668B2 JP5599668B2 (en) 2014-10-01

Family

ID=45778311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010166094A Active JP5599668B2 (en) 2010-07-23 2010-07-23 Microorganism carrier for sewage treatment and sewage treatment tool

Country Status (3)

Country Link
JP (1) JP5599668B2 (en)
CN (1) CN202246233U (en)
TW (1) TWM425869U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102674555A (en) * 2012-05-07 2012-09-19 同济大学 Wood filler earthworm biofilter and method for processing town residue sludge
CN106621554A (en) * 2015-11-04 2017-05-10 宜兴市中碳科技有限公司 Carbon fiber filler

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103508555B (en) * 2013-10-08 2015-04-29 中国石油天然气集团公司 Reactor for realizing suspension of biofilm carriers under low aeration quantity
CN105858866A (en) * 2016-05-09 2016-08-17 河北天朗环保工程有限公司 Biological rotating ball
CN108238705A (en) * 2018-03-17 2018-07-03 凌建军 A kind of Novel unpowered purification tank
CN113072170B (en) * 2021-04-22 2022-09-13 青海洁神环境科技股份有限公司 Biological rotating disc material and preparation method thereof
CN113651489B (en) * 2021-05-10 2023-01-17 青海洁神环境科技股份有限公司 Kitchen waste sewage treatment system
KR102366945B1 (en) * 2021-06-21 2022-02-24 한국위험물환경기술(주) Soil remediation ball of a soil carry-in remediation facility

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57110384A (en) * 1980-12-27 1982-07-09 Unitika Ltd Water-treating medium and production thereof
JPS6167898U (en) * 1984-10-12 1986-05-09
JPS6224997U (en) * 1985-07-30 1987-02-16
JPH0327138A (en) * 1989-06-20 1991-02-05 Kureha Gosen Kk Yarn having connected ball-like structure
JPH04202837A (en) * 1990-11-30 1992-07-23 Kureha Gosen Kk Production of ball-like structure and apparatus therefor
JPH0568992A (en) * 1991-09-12 1993-03-23 Chiyoda Corp Bacteria carrier packed device
JP3004964U (en) * 1994-01-17 1994-12-06 澄 江口 Contact filter medium
JPH078983A (en) * 1993-06-29 1995-01-13 Kureha Gosen Kk Ball-like structural body and contacting material for waste water treatment
JPH0788493A (en) * 1993-07-30 1995-04-04 Inax Corp Filter medium for waste water treatment
JPH07163991A (en) * 1993-12-10 1995-06-27 Chisso Corp Fiber formed material and its production
JPH07251192A (en) * 1993-12-20 1995-10-03 Sang-Bae Han Biological contact material unit for foul and waste liquid treatment
JPH08337956A (en) * 1995-06-09 1996-12-24 Kureha Chem Ind Co Ltd Fiber aggregate structure
JPH1014569A (en) * 1996-06-28 1998-01-20 Chisso Corp Molded-form fiber aggregate
JP3149173U (en) * 2008-12-27 2009-03-12 株式会社アクト Purification treatment carrier container

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57110384A (en) * 1980-12-27 1982-07-09 Unitika Ltd Water-treating medium and production thereof
JPS6167898U (en) * 1984-10-12 1986-05-09
JPS6224997U (en) * 1985-07-30 1987-02-16
JPH0327138A (en) * 1989-06-20 1991-02-05 Kureha Gosen Kk Yarn having connected ball-like structure
JPH04202837A (en) * 1990-11-30 1992-07-23 Kureha Gosen Kk Production of ball-like structure and apparatus therefor
JPH0568992A (en) * 1991-09-12 1993-03-23 Chiyoda Corp Bacteria carrier packed device
JPH078983A (en) * 1993-06-29 1995-01-13 Kureha Gosen Kk Ball-like structural body and contacting material for waste water treatment
JPH0788493A (en) * 1993-07-30 1995-04-04 Inax Corp Filter medium for waste water treatment
JPH07163991A (en) * 1993-12-10 1995-06-27 Chisso Corp Fiber formed material and its production
JPH07251192A (en) * 1993-12-20 1995-10-03 Sang-Bae Han Biological contact material unit for foul and waste liquid treatment
JP3004964U (en) * 1994-01-17 1994-12-06 澄 江口 Contact filter medium
JPH08337956A (en) * 1995-06-09 1996-12-24 Kureha Chem Ind Co Ltd Fiber aggregate structure
JPH1014569A (en) * 1996-06-28 1998-01-20 Chisso Corp Molded-form fiber aggregate
JP3149173U (en) * 2008-12-27 2009-03-12 株式会社アクト Purification treatment carrier container

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102674555A (en) * 2012-05-07 2012-09-19 同济大学 Wood filler earthworm biofilter and method for processing town residue sludge
CN102674555B (en) * 2012-05-07 2013-07-17 同济大学 Wood filler earthworm biofilter and method for processing town residue sludge
CN106621554A (en) * 2015-11-04 2017-05-10 宜兴市中碳科技有限公司 Carbon fiber filler

Also Published As

Publication number Publication date
JP5599668B2 (en) 2014-10-01
TWM425869U (en) 2012-04-01
CN202246233U (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP5599668B2 (en) Microorganism carrier for sewage treatment and sewage treatment tool
CN205241329U (en) Globular carbon fiber combined packing
CN204265528U (en) A kind of ecological floating island of pollution administration water body
CN102491498A (en) Ecological carbon-fiber composite, preparation method thereof and sewage treatment reactor containing ecological carbon-fiber composite
CN103058362A (en) Suspension filler for water treatment
EP1837310A3 (en) Entrapping immobilization pellets and process for producing the same, and wastewater treatment process and equipment using the same
CN203222512U (en) Combined biological stuffing for removing ammonia nitrogen
JP2017140594A (en) Sewage treatment instrument and regenerated water system of sewage
CN106495326A (en) A kind of for the combined biological floating bed of water body purification
CN1958474A (en) Suspended biological carrier adapted to microbial bodies, and preparation method
CN101033099A (en) Oxygen increasing disc
CN201626868U (en) Filler for waste water biological treatment
CN110436622A (en) A kind of method of the filler-reinforced biofilter of Immobilized hyphae and its sewage treatment
CN107522283B (en) Intelligent biological carrier, intelligent biological carrier component and biological membrane reactor thereof
CN210340462U (en) Combined biological filler for sewage treatment
CN219217715U (en) Combined suspension filler
CN208308512U (en) A kind of polyester filler
CN205204902U (en) Plane formula biological concentration waste water plane is handled and is packed
CN205710087U (en) A kind of pond purifying ecological floating bed using compound bio medium carrier
JPS61293591A (en) Contact material for sewage treatment
CN218755231U (en) Filler and water treatment device
JP2610192B2 (en) Contact material for water treatment and method for producing the same
JPH07290079A (en) Sewage treating contact material
CN109319935A (en) A kind of functional ecological floating bed quality purifying device for water
CN216837311U (en) Biological cage device and biochemical pond of using thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140813

R150 Certificate of patent or registration of utility model

Ref document number: 5599668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350