JP2017140594A - Sewage treatment instrument and regenerated water system of sewage - Google Patents

Sewage treatment instrument and regenerated water system of sewage Download PDF

Info

Publication number
JP2017140594A
JP2017140594A JP2016024813A JP2016024813A JP2017140594A JP 2017140594 A JP2017140594 A JP 2017140594A JP 2016024813 A JP2016024813 A JP 2016024813A JP 2016024813 A JP2016024813 A JP 2016024813A JP 2017140594 A JP2017140594 A JP 2017140594A
Authority
JP
Japan
Prior art keywords
sewage treatment
sewage
capsule container
microorganism carrier
treatment tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016024813A
Other languages
Japanese (ja)
Inventor
芳幸 田附
Yoshiyuki Tatsuki
芳幸 田附
正彦 二瓶
Masahiko Nihei
正彦 二瓶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2016024813A priority Critical patent/JP2017140594A/en
Publication of JP2017140594A publication Critical patent/JP2017140594A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sewage treatment instrument and a regenerated water system of sewage, capable of exerting a higher sewage treatment effect when used in a flow under a water flow condition inside a sewage treatment tank.SOLUTION: A sewage treatment instrument 200 includes a sewage treatment microorganism carrier body 1 composed of a crimpable fiber assembly; and capsule accommodation tool 100 having a plurality of water passage pores 105 around and configured to accommodate the sewage treatment microorganism carrier body 1. The capsule accommodation tool 100 includes an accommodation area S2 for accommodating the sewage treatment microorganism carrier body 1 and a non-accommodation area S1 for not accommodating the sewage treatment microorganism carrier body 1. The accommodation area S2 and the non-accommodation area S1 are arranged so that fluid can be circulated through each other.SELECTED DRAWING: Figure 2

Description

本発明は、汚水処理用微生物担持体を収容した汚水処理用具及び汚水の再生水システムに関する。   The present invention relates to a sewage treatment tool and a sewage reclaimed water system containing a sewage treatment microorganism carrier.

従来より、汚水処理槽内の流水条件下で使用される汚水処理用微生物担持体、いわゆる流動担体としては、種々の形状のものが提案されている。   2. Description of the Related Art Conventionally, sewage treatment microorganism carriers used under running water conditions in a sewage treatment tank, so-called fluid carriers, have been proposed in various shapes.

例えば下記特許文献1には、捲縮繊維集合体のボール状体(ボール状繊維集合体)からなる汚水処理用微生物担持体(保水性団塊物)が提案されている。   For example, Patent Document 1 listed below proposes a microorganism carrier for sewage treatment (water retentive nodule) composed of a ball-like body (ball-like fiber aggregate) of crimped fiber aggregates.

また、これらのボール状繊維集合体を保護容器に入れた汚水処理用微生物担持体の提案もされており、例えば下記特許文献1には、複数個のボール状体を、保護容器の中空凸部に収容したものが記載されている。また、例えば下記特許文献2には、収容具を球形アーチ格子構造とし、当該球形アーチ格子構造を構成するフレームの内部に、汚水処理用微生物担持体を脱落不可能なように収容した構成が記載されている。   Further, a microbial support for sewage treatment in which these ball-shaped fiber assemblies are put in a protective container has also been proposed. For example, in Patent Document 1 below, a plurality of ball-shaped bodies are arranged as hollow convex portions of a protective container. Is contained. Further, for example, Patent Document 2 described below describes a configuration in which the container has a spherical arch lattice structure, and the microorganism carrier for sewage treatment is accommodated in the frame constituting the spherical arch lattice structure so as not to fall off. Has been.

特許2919266号Japanese Patent No. 2919266 特許3121063号Patent 3121063

上述したボール状繊維集合体を、汚水処理槽内の流水条件下で流動する流動担体として用いた場合は、既存の流動担体として広く用いられているスポンジ状や中空円筒状と比較して、体積に比べ比表面積が大きく、バクテリアなどの小さい微生物の着床は有利であると考えられる。ところが、実際には比表面積の割には微生物の付着が不均一となり水処理効果が上がらなく、更にミミズなどの後生動物の付着も十分でなく、汚水処理の効果が不十分であった。また、ボール状繊維集合体を単に容器に入れただけの場合、微生物の付着により大きな汚泥の塊になり、内部が嫌気化し、有機物を生成し、汚水浄化を妨げる恐れがあった。   When the above-described ball-shaped fiber assembly is used as a fluid carrier that flows under flowing water conditions in a sewage treatment tank, the volume is compared with a sponge or a hollow cylinder that is widely used as an existing fluid carrier. It is considered that the implantation of microorganisms such as bacteria having a large specific surface area is advantageous. However, in reality, the adhesion of microorganisms is uneven due to the specific surface area and the water treatment effect is not improved, and the adhesion of metazoans such as earthworms is not sufficient, and the effect of sewage treatment is insufficient. Further, when the ball-shaped fiber assembly is simply put in a container, it becomes a large sludge mass due to the adhesion of microorganisms, the inside becomes anaerobic, and organic matter is generated, which may impede purification of sewage.

本発明はこのような課題に鑑みてなされたものであり、その目的は、汚水処理槽内の流水条件下に流動させて使用される場合に、高い汚水処理効果を発揮する汚水処理用具及び汚水の再生水システムを提供することにある。   This invention is made | formed in view of such a subject, The objective is the sewage treatment tool and sewage which show a high sewage treatment effect, when it is made to flow under the flowing water conditions in a sewage treatment tank, and is used. Is to provide a reclaimed water system.

上記課題を解決するために本発明に係る汚水処理用具は、汚水処理槽内に収容され且つ流動させて使用される汚水処理用具であって、捲縮性繊維集合体から成る汚水処理用微生物担持体と、周囲に多数の通水孔を有し、前記汚水処理用微生物担持体を収容するカプセル収容具とを備え、前記カプセル収容具は、前記汚水処理用微生物担持体を収容する収容領域と、前記汚水処理用微生物担持体を収容しない非収容領域とを有し、前記収容領域と前記非収容領域とは、液体が相互に流通するように配置されている。   In order to solve the above-mentioned problems, a sewage treatment tool according to the present invention is a sewage treatment tool that is accommodated in a sewage treatment tank and used by being flowed, and is provided with a microorganism for sewage treatment comprising a crimpable fiber assembly. And a capsule container that has a large number of water passage holes around it, and that accommodates the sewage treatment microorganism carrier, and the capsule container has a housing region that houses the sewage treatment microorganism carrier. And a non-contained area that does not accommodate the sewage treatment microorganism carrier, and the accommodating area and the non-contained area are arranged so that liquid flows through each other.

かかる構成によれば、カプセル収容具内に、汚水処理用微生物担持体を収容しない非収容領域を設けているので、カプセル収容具内を通る水流の通過性を向上させ、収容領域に収容された汚水処理用微生物担持体の暴露の均一化を図ることができる。これにより、カプセル収容具内部に収容された汚水処理用微生物担持体の内部に、バクテリアなどの小さい微生物が均一に付着し、更にミミズなどの後生動物も付着して、汚泥減少も含めた汚水処理能力を向上させることができる。また、非収容領域に溶存酸素を含んだ液が出入りすることにより汚水処理用微生物担持体に生息する微生物に良好に溶存酸素が補給され、全体が好気雰囲気で汚水浄化が効率良く進むようになる。   According to such a configuration, since the non-contained area that does not accommodate the sewage treatment microorganism carrier is provided in the capsule container, the water flow through the capsule container is improved, and the capsule container is accommodated in the container area. The exposure of the sewage treatment microorganism carrier can be made uniform. As a result, small microorganisms such as bacteria uniformly adhere to the inside of the microorganism carrier for sewage treatment accommodated inside the capsule container, and metazoans such as earthworms also adhere to the sewage treatment including sludge reduction. Ability can be improved. In addition, the solution containing dissolved oxygen enters and exits the non-contained area, so that dissolved oxygen is well replenished to microorganisms living in the microorganism carrier for sewage treatment, and sewage purification proceeds efficiently in an aerobic atmosphere as a whole. Become.

また非収容領域は、前記カプセル収容具の中央側に、平面視略環状に間隔を設けて配置される複数の支柱によって囲まれた空間から成ることも好ましい。また前記非収容領域は、前記カプセル収容具の中央側に設けられる筒状の芯部であり、前記芯部の側面に、液体が流通する連通孔が形成されていることも好ましい。従来のようにカプセル収容具内に汚水処理用微生物担持体をつめて収容した場合では、特にカプセル収容具の中央側での汚水処理用微生物担持体の暴露が不均一となり、汚水処理用微生物担持体への微生物付着が不均一となることがある。これに対し、本発明では、カプセル収容具の中央側に非収容領域を設けることで、汚水処理用微生物担持体の暴露の均一化を図ることができ、汚水処理用微生物担持体への微生物付着の均一性を向上させることができる。   Moreover, it is also preferable that the non-accommodating region is a space surrounded by a plurality of struts arranged at intervals in an annular shape in plan view on the center side of the capsule container. The non-accommodating region is preferably a cylindrical core provided on the center side of the capsule container, and a communication hole through which liquid flows is formed on the side of the core. When the sewage treatment microorganism carrier is contained in the capsule container as in the conventional case, the exposure of the sewage treatment microorganism carrier is particularly uneven at the center side of the capsule container, and the microorganisms for sewage treatment are carried. Microbial adhesion to the body may be uneven. On the other hand, in the present invention, by providing a non-contained region on the center side of the capsule container, it is possible to make the exposure of the sewage treatment microorganism carrier uniform, and adhere microorganisms to the sewage treatment microorganism carrier. Can improve the uniformity.

また前記汚水処理用微生物担持体は、前記非収容領域の周囲に沿って螺旋状に配置されることが好ましく、また、前記螺旋状に配置された汚水処理用微生物担持体は、前記捲縮性繊維集合体が数珠繋ぎに連結された数珠状繊維集合体から成ることが好ましい。このように汚水処理用微生物担持体を配置することで、カプセル収容具内での汚水処理用微生物担持体の暴露を均一化させることができ、また、流動時にカプセル収容具から汚水処理用微生物担持体が飛び出すことを防止することができる。更には、汚水処理用微生物担持体同士の衝突等による衝撃や変形により、汚水処理用微生物担持体に着床した微生物やミミズなどの後生動物の脱落を防ぐことができる。その結果、汚水処理用微生物担持体への微生物の付着の均一化が図られ、また微生物の付着量も増加し、更にはミミズなどの後生動物の付着量も増加する。   The sewage treatment microorganism carrier is preferably arranged in a spiral shape around the non-accommodating region, and the sewage treatment microorganism support member arranged in the spiral shape has the crimpability. It is preferable that the fiber assembly is composed of a bead-like fiber assembly connected in a daisy chain. By arranging the sewage treatment microorganism carrier in this manner, the exposure of the sewage treatment microorganism carrier in the capsule container can be made uniform, and the sewage treatment microorganism carrier can be carried from the capsule container during flow. The body can be prevented from jumping out. Furthermore, dropping off of metazoans such as microorganisms and earthworms that have landed on the sewage treatment microorganism carrier can be prevented by impact or deformation caused by collision between the sewage treatment microorganism carriers. As a result, the adhesion of microorganisms to the microorganism carrier for sewage treatment is made uniform, the adhesion amount of microorganisms increases, and the adhesion amount of metazoans such as earthworms also increases.

また前記カプセル収容具は球形格子形状を成し、球形格子を構成するフレームの内側に、前記カプセル収容具の中心部に向かって延びるフィンが設けられていることが好ましい。この構成によれば、上記フィンが水流コントロールの為に機能し、汚水処理槽内の流水条件下において、カプセル収容具内部へ一定方向の水流が流れ込む。その結果、カプセル収容具内部の繊維状集合体と汚水との接触性が向上し、汚水処理能力が向上する。   Moreover, it is preferable that the capsule container has a spherical lattice shape, and fins extending toward the center of the capsule container are provided inside the frame constituting the spherical lattice. According to this configuration, the fin functions for water flow control, and a water flow in a certain direction flows into the capsule container under flowing water conditions in the sewage treatment tank. As a result, the contact property between the fibrous aggregate inside the capsule container and the sewage is improved, and the sewage treatment capacity is improved.

また前記汚水処理用具を収容する汚水処理槽を備えた汚水の再生水システムにおいて、前記汚水処理槽は、前記汚水処理用具を流動状態で収容した第1処理槽と、汚泥と処理水とを膜分離する膜分離装置を収容した第2処理槽とを備える。例えば、膜分離装置のみを搭載した汚水の再生水システムにおいては、多糖類やタンパク質を主成分とする細胞外代謝産物(EPS)や溶解性微生物代謝産物(SMP)によって膜分離装置に膜詰りが生じることがある。これに対し、本発明では汚水の再生水システムに汚水処理用具を用いることで、その環境に適した微生物がそこに生息し、上記EPSやSMPを処理する。そのために、EPSやSMP濃度が著しく低下し、膜詰まりが少なくなる。結果的に、膜分離における負荷が減少し、フラックスの増大などの能力が向上し、消費電力の減少や膜分離装置の耐用年数の向上を図ることができる。   Further, in the sewage reclaimed water system comprising a sewage treatment tank for accommodating the sewage treatment tool, the sewage treatment tank is a membrane separation of the first treatment tank containing the sewage treatment tool in a fluid state, sludge and treated water. And a second treatment tank containing a membrane separation apparatus. For example, in a sewage reclaimed water system equipped with only a membrane separator, membrane clogging occurs in the membrane separator due to extracellular metabolites (EPS) and soluble microbial metabolites (SMP) mainly composed of polysaccharides and proteins. Sometimes. In contrast, in the present invention, by using a sewage treatment tool in a sewage reclaimed water system, microorganisms suitable for the environment live there and process the EPS and SMP. For this reason, the EPS and SMP concentrations are remarkably lowered and film clogging is reduced. As a result, the load in membrane separation is reduced, the ability to increase flux is improved, and power consumption can be reduced and the useful life of the membrane separation device can be improved.

本発明によれば、汚水処理槽内の流水条件下に流動させて使用される場合に、高い汚水処理効果を発揮する汚水処理用具及び汚水の再生水システムを提供することができる。   According to the present invention, it is possible to provide a sewage treatment tool and a sewage reclaimed water system that exhibit a high sewage treatment effect when used under flowing water conditions in a sewage treatment tank.

本発明の実施形態に係る汚水処理用具の一例を示す図である。It is a figure which shows an example of the sewage treatment tool which concerns on embodiment of this invention. 図1に示すカプセル収容具の分解斜視図である。It is a disassembled perspective view of the capsule container shown in FIG. 図1に示すカプセル収容具内部を示す斜視図である。It is a perspective view which shows the inside of a capsule container shown in FIG. 図1に示すカプセル収容具に収容される汚水処理用微生物担持体を示す図である。It is a figure which shows the microorganisms support body for wastewater treatment accommodated in the capsule container shown in FIG. 本発明の実施形態に係る汚水の再生水システムの一例を示す図である。It is a figure showing an example of the reclaimed water system of sewage concerning the embodiment of the present invention. 比較例に係る汚水の再生水システムを示す図である。It is a figure which shows the recycled water system of the sewage which concerns on a comparative example.

以下添付図面を参照しながら本発明の実施形態について説明する。尚、以下の好ましい実施形態の説明は、例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。   Embodiments of the present invention will be described below with reference to the accompanying drawings. It should be noted that the following description of the preferred embodiment is merely an example, and is not intended to limit the present invention, its application, or its use.

まず、本発明の実施形態に係る汚水処理用具の構成について説明する。図1は、汚水処理用具の一例を示す図である。図2は、カプセル収容具の分解斜視図である。   First, the configuration of the sewage treatment tool according to the embodiment of the present invention will be described. FIG. 1 is a diagram illustrating an example of a sewage treatment tool. FIG. 2 is an exploded perspective view of the capsule container.

図1に示すように、汚水処理用具200は、カプセル収容具100と、当該カプセル収容具100の内部に収容された多数の汚水処理用微生物担持体1とを備える。   As shown in FIG. 1, the sewage treatment tool 200 includes a capsule container 100 and a number of sewage treatment microorganism carriers 1 housed in the capsule container 100.

カプセル収容具100は、球形格子形状(球形アーチ格子構造)を成し、その大きさに特に制限はないが、例えば直径(外径)が166mm、200mmのものが用いられる。また、カプセル収容具100の格子の隙間は、汚水処理用微生物担持体1の直径よりも小さい。なお、カプセル収容具100の格子の隙間は、汚水処理用具200を汚水処理槽に収容した際に、カプセル収容具100内に液体(汚水を含む)を導入する通水孔105(図2)として機能する。   The capsule container 100 has a spherical lattice shape (spherical arch lattice structure), and the size thereof is not particularly limited. For example, those having a diameter (outer diameter) of 166 mm and 200 mm are used. Further, the gap between the lattices of the capsule container 100 is smaller than the diameter of the microorganism carrier 1 for sewage treatment. The gap between the lattices of the capsule container 100 serves as a water passage hole 105 (FIG. 2) for introducing liquid (including sewage) into the capsule container 100 when the sewage treatment tool 200 is accommodated in the sewage treatment tank. Function.

またカプセル収容具100の材質は、特に制限はされないが、例えばポリプロピレン等の合成樹脂を選択することができる。   The material of the capsule container 100 is not particularly limited, but for example, a synthetic resin such as polypropylene can be selected.

またカプセル収容具100は、図2に示すように、2つの半球状部材100a、100bを組み合わせて構成される。汚水処理用微生物担持体1を内部に収容した後に、2つの半球状部材100a、100bを結合すれば、汚水処理用微生物担持体1を脱落不能に収容することができる。2つの半球状部材100a、100bを結合する方法は、特に制限はないが、通常は、係合片などを用いて互いに嵌合しうるように構成すればよい。   The capsule container 100 is configured by combining two hemispherical members 100a and 100b as shown in FIG. If the two hemispherical members 100a and 100b are combined after accommodating the sewage treatment microorganism carrier 1, the sewage treatment microorganism carrier 1 can be housed in a manner that prevents it from dropping off. The method for joining the two hemispherical members 100a and 100b is not particularly limited, but it is usually sufficient that the two hemispherical members 100a and 100b can be fitted to each other using an engagement piece or the like.

またカプセル収容具100は、一例として、図2に示すように、環状フレーム101、102、103、104と、放射状フレーム120からなる。各フレーム同士の間隔や本数は、収容具の大きさ、材質、内部に収容される繊維集合体の大きさ等を考慮して適宜選択される。   Further, as an example, the capsule container 100 includes annular frames 101, 102, 103, and 104 and a radial frame 120 as shown in FIG. The interval and number of frames are appropriately selected in consideration of the size and material of the container, the size of the fiber assembly accommodated therein, and the like.

またカプセル収容具100は、図2に示すように、球形格子を構成する放射状フレーム120の内側の少なくとも一部に水流コントロールのためのフィン121を有する。フィン121は、球形格子を構成する放射状フレーム120の内側に、カプセル収容具100の中心部に向かって径方向に延びる板状の部材で構成される。なお、フィン121の形状や大きさは、図2に示す例に限定されず、水流コントロールの機能を有していれば、他の様々な形状や大きさを選択することができる。   In addition, as shown in FIG. 2, the capsule container 100 has fins 121 for controlling water flow at least at a part of the inside of the radial frame 120 constituting the spherical lattice. The fins 121 are constituted by plate-like members that extend radially toward the center of the capsule container 100 inside the radial frame 120 that forms a spherical lattice. Note that the shape and size of the fin 121 are not limited to the example shown in FIG. 2, and various other shapes and sizes can be selected as long as the fin 121 has a water flow control function.

半球状部材100bには、図2に示すように、カプセル収容具100の中央側に、複数の支柱130が設けられている。これら複数の支柱130は、平面視略環状に間隔を設けて配置されており、相隣接する支柱130の間隔は、汚水処理用微生物担持体1(図4等参照)の外形より小さい。この複数の支柱130の先端部131は、半球状部材同士100a、100bが結合されるときに、当該支柱130の配置と対応するように設けられた、半球状部材100aの係合部132に係合される。このように、半球状部材100a、100b同士が結合されることで、カプセル収容具100の中央側には、複数の支柱130によって囲まれた空間が形成される。後述するように、本実施形態では、この複数の支柱130によって囲まれた空間内には汚水処理用微生物担持体1が収容されず、複数の支柱130の周囲に沿うように汚水処理用微生物担持体1が配置される。   As shown in FIG. 2, the hemispherical member 100 b is provided with a plurality of columns 130 on the center side of the capsule container 100. The plurality of struts 130 are arranged in an approximately annular shape in plan view, and the distance between the adjacent struts 130 is smaller than the outer shape of the sewage treatment microorganism carrier 1 (see FIG. 4 and the like). The tip portions 131 of the plurality of struts 130 are engaged with the engaging portions 132 of the hemispherical member 100a provided so as to correspond to the arrangement of the struts 130 when the hemispherical members 100a and 100b are coupled to each other. Combined. As described above, the hemispherical members 100 a and 100 b are coupled to each other, so that a space surrounded by the plurality of support columns 130 is formed on the center side of the capsule container 100. As will be described later, in this embodiment, the sewage treatment microorganism carrier 1 is not accommodated in the space surrounded by the plurality of struts 130, and the sewage treatment microorganism support is provided along the periphery of the plurality of struts 130. The body 1 is arranged.

なお、支柱130の個数や配置、形状等は図に示す例に限定されず、半球状部材100aの係合部132に係合したときに、当該複数の支柱130によって囲まれた空間内に汚水処理用微生物担持体1が入らないように、支柱130が設けられていれば良い。図2では、平面視略環状に支柱130が配置されるがこの例に限定されず、つまり、本発明における「平面視略環状」とは、円形の他、例えば三角形や四角形等の多角形状等を含む。   Note that the number, arrangement, shape, and the like of the columns 130 are not limited to the example shown in the figure, and when the hemispherical member 100a is engaged with the engaging portion 132, sewage is contained in the space surrounded by the columns 130. The support | pillar 130 should just be provided so that the microorganisms 1 for a process may not enter. In FIG. 2, the support pillars 130 are arranged in a substantially circular shape in plan view. However, the column 130 is not limited to this example. including.

カプセル収容具100に収容される汚水処理用微生物担持体1は、図3に示すように、複数の支柱130の周囲に沿って配置される。好適には、汚水処理用微生物担持体1は、平面視略環状に間隔を設けて配置された複数の支柱130の周囲に沿って巻き付けるように、螺旋状に配置されることが好ましい。より好適には、複数の支柱130の周囲に螺旋状に配置された汚水処理用微生物担持体1は、繊維集合体が数珠繋ぎに連結された数珠状繊維集合体9を形成し、当該数珠状繊維集合体9がカプセル収容具100内部に収容されていることが好ましい。数珠繋ぎに連結する際には、例えば集束部5(図4参照)を介して汚水処理用微生物担持体1を数珠繋ぎにして数珠状繊維集合体9を形成しても良い。   As shown in FIG. 3, the sewage treatment microorganism carrier 1 accommodated in the capsule container 100 is disposed along the periphery of the plurality of columns 130. Preferably, the microorganism carrier 1 for sewage treatment is preferably arranged in a spiral shape so as to be wound around a plurality of support columns 130 arranged at intervals in a substantially annular shape in plan view. More preferably, the microorganism-supporting body 1 for sewage treatment disposed spirally around the plurality of columns 130 forms a rosary fiber assembly 9 in which fiber assemblies are connected in a daisy chain, and the rosary fiber It is preferable that the aggregate 9 is accommodated in the capsule container 100. When connecting to a rosary chain, for example, the sewage treatment microorganism carrier 1 may be connected via a converging part 5 (see FIG. 4) to form a rosary fiber assembly 9.

なお、汚水処理用微生物担持体1の収納個数は、カプセル収容具100の大きさや汚水処理用微生物担持体1の大きさや形状等により異なるが、通常は10〜100個程度収納すれば良い。この場合、汚水処理用微生物担持体1がカプセル収容具100内で簡単に移動しない程度であって、汚水処理用微生物担持体1に変形を生じさせることがない程度の数とすることが好ましい。これは、ある程度つめて収納した方が、流動状態にあるカプセル収容具100内での汚水処理用微生物担持体1同士の衝突による微生物の脱落を防ぐことができ、微生物の付着能に優れたものとなるからである。   The number of stored sewage treatment microorganism carriers 1 varies depending on the size of the capsule container 100 and the size and shape of the sewage treatment microorganism carrier 1, but usually only about 10 to 100 containers may be stored. In this case, the number is preferably such that the sewage treatment microorganism carrier 1 does not easily move in the capsule container 100 and does not cause deformation of the sewage treatment microorganism carrier 1. This is more excellent in the ability to attach microorganisms when they are packed to a certain extent, and can prevent microorganisms from falling off due to collision between the sewage treatment microorganism carriers 1 in the capsule container 100 in a fluid state. Because it becomes.

図3に示すように、カプセル収容具100内部における汚水処理用微生物担持体1が収容されていない領域(本実施形態では、複数の支柱130によって囲まれた空間)が、本発明における「非収容領域」に相当し符号S1を付して表す、カプセル収容具100内部における汚水処理用微生物担持体1が収容された領域が、本発明における「収容領域」に相当し符号S2を付して表す。   As shown in FIG. 3, an area in the capsule container 100 where the sewage treatment microorganism carrier 1 is not accommodated (in this embodiment, a space surrounded by a plurality of support columns 130) is “non-accommodated” in the present invention. A region in which the sewage treatment microorganism carrier 1 is accommodated inside the capsule container 100, which corresponds to “region” and is represented by reference S1, corresponds to “containment region” in the present invention and is represented by reference S2. .

図3に示す例では、非収容領域S1が、平面視略環状に一定の間隔を設けて配置された複数の支柱130によって囲まれた空間から成るものであるが、この例に制限されない。例えば、非収容領域を、カプセル収容具の中央側に設けられる筒状(円筒又は角筒の形状等)の芯部によって構成しても良い。この場合には、芯部の側面に、液体が流通する連通孔が形成され、芯部の内部(非収容領域)と芯部の外部(収容領域)とは、当該連通孔を介して液体が相互に流通する。   In the example shown in FIG. 3, the non-accommodating region S <b> 1 is composed of a space surrounded by a plurality of support columns 130 arranged at regular intervals in a substantially annular shape in plan view, but is not limited to this example. For example, the non-accommodating area may be constituted by a cylindrical (cylindrical or rectangular tube shape) core provided on the center side of the capsule container. In this case, a communication hole through which the liquid flows is formed on the side surface of the core portion, and the inside of the core portion (non-accommodating region) and the outside of the core portion (accommodating region) pass through the communication hole. Distribute to each other.

また図3に示す例では、非収容領域S1が1つ、収容領域S2が1つ示されているが、例えば、非収容領域S1を2つ、収容領域S2を3つ設けても良く、それぞれの領域の個数は制限されない。また、非収容領域S1の配置は、図3に示すようなカプセル収容具100内部の中央側に限定されるものではなく、例えば、非収容領域S1をカプセル収容具100内部の端部側に配置して、収容領域S2を中央側に配置しても良く、それぞれの領域の配置も適宜設定される。このように、本実施形態における非収容領域S1及び収容領域S2についての形状や個数、配置等は、図3に示す例に限定されず、適宜選択されるものである。   In the example shown in FIG. 3, one non-accommodating area S1 and one accommodating area S2 are shown. For example, two non-accommodating areas S1 and three accommodating areas S2 may be provided. The number of areas is not limited. In addition, the arrangement of the non-accommodating region S1 is not limited to the center side inside the capsule container 100 as shown in FIG. 3. For example, the non-accommodating region S1 is arranged on the end side inside the capsule container 100. Then, the accommodation area S2 may be arranged on the center side, and the arrangement of each area is also set as appropriate. As described above, the shape, number, arrangement, and the like of the non-accommodating area S1 and the accommodating area S2 in the present embodiment are not limited to the example illustrated in FIG.

続いて汚水処理用微生物担持体1の構成について説明する。図4に示すように、カプセル収容具100に収容される汚水処理用微生物担持体1は、捲縮繊維束を束ねて形成される捲縮繊維集合体から成る。   Then, the structure of the microorganisms support body 1 for wastewater treatment is demonstrated. As shown in FIG. 4, the sewage treatment microorganism carrier 1 accommodated in the capsule container 100 is composed of a crimped fiber assembly formed by bundling crimped fiber bundles.

捲縮性繊維集合体は、例えば、束ねた捲縮繊維束を両端で集束し、両方の集束部分に挟まれた中央部分がボール状(略球状)に形成された構造をなす。本実施形態における捲縮繊維集合体からなるボール状体の付着生物は流動担体にもかかわらず、固定床同様で原生動物や後生動物の種類および量が多い。なお、汚水処理用微生物担持体1の形状は、図3及び図4に示すようなボール状(略球状)のものに限定されず、例えば直方体形状等、種々の形状を選択可能である。図4に示すように、中央のボール状の部分を「ボール状部」と称し符号”3”を付して表す、また、ボール状部3の両端に形成される集束部分を「集束部」と称し符号”5”を付して表す。ボール状部3の直径は、20〜30mm程度とされる。捲縮繊維束を集束する構造により、槽内の流水条件下において、繊維がばらけたり、絡みついたりすることがなくなる為、好ましい。   The crimpable fiber assembly has, for example, a structure in which bundled crimped fiber bundles are converged at both ends, and a central portion sandwiched between both convergent portions is formed in a ball shape (substantially spherical). The adhering organisms of the ball-shaped body composed of the crimped fiber aggregates in this embodiment are similar to the fixed bed, and there are many kinds and amounts of protozoa and metazoans, regardless of the fluid carrier. In addition, the shape of the microorganism carrier 1 for wastewater treatment is not limited to a ball shape (substantially spherical shape) as shown in FIGS. 3 and 4, and various shapes such as a rectangular parallelepiped shape can be selected. As shown in FIG. 4, the central ball-shaped portion is referred to as a “ball-shaped portion” and is denoted by a reference numeral “3”. And denoted by the reference numeral “5”. The diameter of the ball-shaped portion 3 is about 20 to 30 mm. The structure that bundles the crimped fiber bundles is preferable because the fibers are not scattered or entangled under running water in the tank.

上記捲縮繊維における捲縮の程度は、10〜16回/10cmが好ましく、繊維の断面形状は円形が好ましいが、円形に限らず、楕円形、長方形、三角形、中空形状などを用いても良い。また繊度については、例えば140〜160dが好ましいが、この値に限定されず適宜設定される。   The degree of crimp in the crimped fiber is preferably 10 to 16 times / 10 cm, and the cross-sectional shape of the fiber is preferably circular, but is not limited to a circular shape, and an elliptical shape, a rectangular shape, a triangular shape, a hollow shape, or the like may be used. . The fineness is preferably, for example, 140 to 160d, but is not limited to this value and is set as appropriate.

また、ボール状部3の空隙率は、ボール状部3の見掛けの体積に対して例えば80〜95%であることが好ましいが、この数値に限定されない。このボール状部3の見掛けの体積とは、ボール状部の外形をなす球の体積である。   Further, the porosity of the ball-shaped portion 3 is preferably 80 to 95% with respect to the apparent volume of the ball-shaped portion 3, but is not limited to this value. The apparent volume of the ball-shaped portion 3 is the volume of a sphere that forms the outer shape of the ball-shaped portion.

更に集束部5を除いたボール状部3の各々の繊維同士の平均間隔は、例えば0.05〜0.15であることが好ましいが、この数値に限定されない。この繊維同士の平均間隔とは、下記計算式(1)から求められる数値である。
平均間隔=ボール状部3の見掛けの体積(立方cm)×ボール状部3の空隙率(%)/
ボール状部3を構成する繊維の総長さ(cm) …(1)
Further, the average interval between the fibers of the ball-like portion 3 excluding the converging portion 5 is preferably 0.05 to 0.15, for example, but is not limited to this value. The average interval between the fibers is a numerical value obtained from the following calculation formula (1).
Average interval = apparent volume of the ball-shaped part 3 (cubic cm) × porosity of the ball-shaped part 3 (%) /
Total length (cm) of fibers constituting the ball-shaped portion 3 (1)

上記計算式(1)の繊維の総長さとは、ボール状部3を構成するすべての繊維の長さを足したものである。繊維の長さは、ボール状部3を構成する繊維の重量を測定する事で、下記式から計算できる。
繊維の長さ(cm)=繊維の重量(g)/繊度(デニール)×900000cm
なお、繊度(デニール)900000cmあたりの重量(g)を表している。あるいは、
繊維の断面が円状の場合は、繊維の直径、比重から計算してもよい。
The total fiber length in the above calculation formula (1) is the sum of the lengths of all the fibers constituting the ball-shaped portion 3. The length of the fiber can be calculated from the following formula by measuring the weight of the fiber constituting the ball-shaped portion 3.
Fiber length (cm) = fiber weight (g) / fineness (denier) × 900000 cm
The fineness (denier) represents the weight (g) per 900,000 cm. Or
When the cross section of the fiber is circular, it may be calculated from the diameter and specific gravity of the fiber.

なお、捲縮繊維束を集束する方法は、超音波や高周波により熱融着する方法、合成樹脂線材や金属製線材での結紮により収束する方法等がある。合成樹脂線材の材質は、PP(ポリプロピレン)、PET(ポリエチレンテレフタラート)、PA(ポリアミド)、PS(ポリスチレン)、PE(ポリエチレン)、HDPE(高密度ポリエチレン)、VDC/VC(塩化ビニリデン/塩化ビニル共重合体)、VDC/MA(塩化ビニリデン/メチルアクリレート共重合体)、HIPS(耐衝撃性ポリスチレン)などを用いることができる。
金属製線材の材質は、ソーセージ等で見られるようなアルミニウムワイヤによる結紮は、集束が容易である事、集束が強く糸が抜け落ちにくい事、安価である事から好ましい。
また捲縮繊維束を集束する場合、集束する位置は、中央部、或いは両端のどちらでも良い。
In addition, as a method of converging the crimped fiber bundle, there are a method of heat-sealing by ultrasonic waves or high frequency, a method of converging by ligation with a synthetic resin wire or a metal wire, and the like. The synthetic resin wire material is PP (polypropylene), PET (polyethylene terephthalate), PA (polyamide), PS (polystyrene), PE (polyethylene), HDPE (high density polyethylene), VDC / VC (vinylidene chloride / vinyl chloride). Copolymer), VDC / MA (vinylidene chloride / methyl acrylate copolymer), HIPS (impact-resistant polystyrene), and the like.
The metal wire material is preferably ligated with an aluminum wire such as that found in sausages because it is easy to focus, strong and hard to come off, and inexpensive.
When the crimped fiber bundle is converged, the converging position may be at the center or at both ends.

一つのボール状部3を構成する繊維の本数は、特に限定されるものではないが通常100〜10,000本の捲縮繊維から構成される。繊維の種類としては、いずれの合成繊維であってもよく、塩化ビニル、塩化ビニリデン、ポリアミド、ポリエステル、ポリプロピレン系繊維等が挙げられる。特に、塩化ビニリデン系樹脂繊維がより好ましい。ここで言う塩化ビニリデン系樹脂繊維とは、塩化ビニリデン系樹脂を80〜99重量%含有するポリ塩化ビニリデン系繊維であるが、この繊維を用いた場合、バクテリア等の微生物の着床やミミズ等の原生動物の着床に優れているのでより好ましい。   The number of fibers constituting one ball-shaped portion 3 is not particularly limited, but is usually composed of 100 to 10,000 crimped fibers. The type of fiber may be any synthetic fiber, and examples thereof include vinyl chloride, vinylidene chloride, polyamide, polyester, and polypropylene fiber. In particular, vinylidene chloride resin fibers are more preferable. The vinylidene chloride resin fiber referred to here is a polyvinylidene chloride fiber containing 80 to 99% by weight of a vinylidene chloride resin. When this fiber is used, it is native to the implantation of microorganisms such as bacteria and the earthworms. Since it is excellent in the implantation of an animal, it is more preferable.

塩化ビニリデン系樹脂とは、塩化ビニリデンモノマーを主体とし、塩化ビニリデンモノマーと共重合可能な少なくとも1種類のエチレン誘導体モノマーを含めたモノマー混合物を重合して得たものである。ここで主体とするとは、塩化ビニリデンモノマーがモノマー混合物全体の70重量%以上を占めることを言う。   The vinylidene chloride-based resin is obtained by polymerizing a monomer mixture including a vinylidene chloride monomer as a main component and at least one ethylene derivative monomer copolymerizable with the vinylidene chloride monomer. Here, “mainly” means that the vinylidene chloride monomer accounts for 70% by weight or more of the entire monomer mixture.

モノマー混合物に含めても良いエチレン誘導体モノマーとしては、アクリルニトリルやメタクリロニトリルのごときエチレン性不飽和カルボン酸のニトリル、メチルアクリレートやメチルメタクリレートのごときアクリル酸やメタクリル酸のアルキルエステル、ヒドロキシプロピルアクリレートやヒドロキシエチルアクリレートやヒドロキシブチルアクリレートのごときヒドロキシアルキルエステル、酢酸ビニルのごとき飽和カルボン酸のビニルエステル、アクリルアミドのごときエチレン性不飽和カルボン酸のアミド、アクリル酸のごときエチレン性不飽和カルボン酸、アリルアルコールのごときエチレン性不飽和アルコール、塩化ビニルのごときハロゲン化ビニルなどが例示される。これらの中で塩化ビニルを共重合体としたものが、繊維のしなやかさと耐久性の面で優れており、さらにより好ましい。   Ethylene derivative monomers that may be included in the monomer mixture include nitriles of ethylenically unsaturated carboxylic acids such as acrylonitrile and methacrylonitrile, alkyl esters of acrylic acid and methacrylic acid such as methyl acrylate and methyl methacrylate, hydroxypropyl acrylate, Of hydroxyalkyl esters such as hydroxyethyl acrylate and hydroxybutyl acrylate, vinyl esters of saturated carboxylic acids such as vinyl acetate, amides of ethylenically unsaturated carboxylic acids such as acrylamide, ethylenically unsaturated carboxylic acids such as acrylic acid, allyl alcohol Examples thereof include ethylenically unsaturated alcohols and vinyl halides such as vinyl chloride. Among these, a vinyl chloride copolymer is superior in terms of fiber flexibility and durability, and is more preferable.

モノマー組成物における塩化ビニリデンモノマーとエチレン誘導体モノマーの好ましい重量比は、使用されるエチレン誘導体モノマーによって異なるものの、例えば、エチレン誘導体モノマーが塩化ビニルの場合には、塩化ビニリデンモノマー/塩化ビニルモノマーの好ましい重量比は70/30以上98/2以下である。塩化ビニリデンモノマーを70重量%以上とすることで得られる塩化ビニリデン系樹脂として結晶化が促進し、繊維の収縮が小さくなり、寸法安定性が維持されて好ましい。逆に塩化ビニリデンモノマーを98重量%以下とすることで塩化ビニリデン系樹脂の脆さがなくなり強度が維持されて、繊維集合体の耐久性がより向上するため好ましい。より好ましくは、塩化ビニリデンモノマー/塩化ビニルモノマーの重量比が80/20以上95/5以下である。   Although the preferred weight ratio of vinylidene chloride monomer to ethylene derivative monomer in the monomer composition varies depending on the ethylene derivative monomer used, for example, when the ethylene derivative monomer is vinyl chloride, the preferred weight of vinylidene chloride monomer / vinyl chloride monomer The ratio is 70/30 or more and 98/2 or less. As the vinylidene chloride monomer obtained by setting the vinylidene chloride monomer to 70% by weight or more, crystallization is promoted, shrinkage of fibers is reduced, and dimensional stability is maintained, which is preferable. Conversely, the vinylidene chloride monomer content is preferably 98% by weight or less because the vinylidene chloride resin is not brittle and the strength is maintained, and the durability of the fiber assembly is further improved. More preferably, the weight ratio of vinylidene chloride monomer / vinyl chloride monomer is 80/20 or more and 95/5 or less.

続いて、上述した汚水処理用具を収容した汚水の再生水システムについて説明する。図5は、本発明の実施形態に係る汚水の再生水システムの一例を示す概略図である。   Then, the recycled water system of the sewage which accommodated the sewage treatment tool mentioned above is demonstrated. FIG. 5 is a schematic view showing an example of a sewage reclaimed water system according to an embodiment of the present invention.

汚水の再生水システム400は、流動床式生物処理槽401(第1処理槽)と、膜分離活性汚泥処理槽402(第2処理槽)とを備え、流動床式生物処理槽401と膜分離活性汚泥処理槽402とがスクリーン70によって区分されている。この第1処理槽と第2処理槽とを備える処理槽が、本発明における「汚水処理槽」に相当する。なお、この汚水処理槽は単槽でも良いし、多段槽でも良い。   The sewage reclaimed water system 400 includes a fluidized bed biological treatment tank 401 (first treatment tank) and a membrane separation activated sludge treatment tank 402 (second treatment tank), and the fluidized bed biological treatment tank 401 and the membrane separation activity. A sludge treatment tank 402 is separated by a screen 70. The treatment tank provided with the first treatment tank and the second treatment tank corresponds to the “sewage treatment tank” in the present invention. The sewage treatment tank may be a single tank or a multistage tank.

流動床式生物処理槽401には上述した構成の汚水処理用具200が流動状態で多数収容され、膜分離活性汚泥処理槽402には膜分離装置50が設けられている。両処理槽を区分するスクリーン70には、汚水処理用具200の外径より小さい孔71が形成されており、両処理槽内に保有される浮遊汚泥や処理水が孔71を介して相互に流通可能に構成されると共に、汚水処理用具200が膜分離活性汚泥処理槽402側に流動することが防止されている。なお、浮遊汚泥は増減し、無い場合もある。   The fluidized bed biological treatment tank 401 contains a large number of sewage treatment tools 200 configured as described above in a fluidized state, and the membrane separation activated sludge treatment tank 402 is provided with a membrane separation device 50. A hole 70 smaller than the outer diameter of the sewage treatment tool 200 is formed in the screen 70 that divides both treatment tanks, and floating sludge and treated water held in both treatment tanks circulate through the holes 71. The sewage treatment tool 200 is prevented from flowing toward the membrane-separated activated sludge treatment tank 402 side. In addition, floating sludge increases or decreases and may not exist.

なお、流動床式生物処理槽401及び膜分離活性汚泥処理槽402には、送風機90より空気が供給される散気装置60が設けられる。また、膜分離活性汚泥処理槽402内に設けられた膜分離装置50によって活性汚泥と分離ろ過された処理水は、ポンプ80を介して浄化された処理水として排出される。   The fluidized bed biological treatment tank 401 and the membrane separation activated sludge treatment tank 402 are provided with an air diffuser 60 to which air is supplied from the blower 90. In addition, the treated water separated from the activated sludge by the membrane separation device 50 provided in the membrane separation activated sludge treatment tank 402 is discharged as purified treated water through the pump 80.

上記のように汚水処理用具200が収容されているため、両処理槽内に存在する多糖類やタンパク室を主成分とする細胞外代謝産物(EPS)や溶解性微生物代謝産物(SMP)は、汚水処理用具200内の汚水処理用微生物担持体1(図4参照)に生息する微生物によって処理することが可能である。この構成と比較して、例えば図6(比較例)に示すような汚水処理用具200を設けない構成(膜分離装置50のみを設けた膜分離活性汚泥処理槽402b)では、多糖類やタンパク室を主成分とする細胞外代謝産物(EPS)や溶解性微生物代謝産物(SMP)によって、膜分離装置50の膜詰まりの問題が生じることがある。これに対して図5に示す汚水の再生水システム400では、上述したように、両処理槽内に存在する多糖類やタンパク室を主成分とする細胞外代謝産物(EPS)や溶解性微生物代謝産物(SMP)は、汚水処理用具200内の汚水処理用微生物担持体1(図4等参照)に生息する微生物によって処理できるので、膜分離装置50の膜詰まりを抑えることができる。その結果、膜分離における負荷が減少し、フラックスの増大などの能力が向上し、消費電力の減少や膜分離装置50の耐用年数の向上を図ることができる。   Since the sewage treatment tool 200 is housed as described above, the extracellular metabolites (EPS) and soluble microbial metabolites (SMP) mainly composed of polysaccharides and protein chambers present in both treatment tanks are: The sewage treatment tool 200 can be treated with microorganisms that live in the sewage treatment microorganism carrier 1 (see FIG. 4). Compared with this configuration, for example, in a configuration in which the sewage treatment tool 200 as shown in FIG. 6 (comparative example) is not provided (membrane separation activated sludge treatment tank 402b provided only with the membrane separation device 50), the polysaccharide or protein chamber Occurrence of membrane clogging of the membrane separation device 50 may occur due to extracellular metabolites (EPS) and soluble microbial metabolites (SMP). On the other hand, in the reclaimed water system 400 shown in FIG. 5, as described above, an extracellular metabolite (EPS) or a soluble microbial metabolite mainly composed of polysaccharides and protein chambers present in both treatment tanks. Since (SMP) can be treated by microorganisms that live in the sewage treatment microorganism carrier 1 (see FIG. 4 and the like) in the sewage treatment tool 200, membrane clogging of the membrane separation device 50 can be suppressed. As a result, the load in membrane separation is reduced, the ability to increase flux is improved, and power consumption can be reduced and the useful life of the membrane separation device 50 can be improved.

以上、本発明の実施形態を説明したが、これは本発明の説明のための例示であって、本発明の範囲をこの実施形態にのみ限定する趣旨ではない。本発明は、他の種々の実施形態でも実施することが可能である。   As mentioned above, although embodiment of this invention was described, this is an illustration for description of this invention, Comprising: It is not the meaning which limits the scope of the present invention only to this embodiment. The present invention can be implemented in various other embodiments.

1:汚水処理用微生物担持体
3:ボール状部
5:集束部
9:数珠状繊維集合体
50:膜分離装置
60:散気装置
70:スクリーン
80:ポンプ
90:送風機
100:カプセル収容具
105:通水孔
120:放射状フレーム
121:フィン
130:支柱
200:汚水処理用具
400:汚水の再生水システム
401:流動床式生物処理槽
402:膜分離活性汚泥処理槽
S1:非収容領域
S2:収容領域
1: Microbe support for wastewater treatment 3: Ball-shaped part 5: Converging part 9: Beaded fiber aggregate 50: Membrane separator 60: Air diffuser 70: Screen 80: Pump 90: Blower 100: Capsule container 105: Water flow hole 120: Radial frame 121: Fin 130: Prop 200: Sewage treatment tool 400: Sewage reclaimed water system 401: Fluidized bed biological treatment tank 402: Membrane separation activated sludge treatment tank S1: Non-contained area S2: Contained area

Claims (7)

汚水処理槽内に収容され且つ流動させて使用される汚水処理用具であって、
捲縮性繊維集合体から成る汚水処理用微生物担持体と、
周囲に多数の通水孔を有し、前記汚水処理用微生物担持体を収容するカプセル収容具とを備え、
前記カプセル収容具は、前記汚水処理用微生物担持体を収容する収容領域と、前記汚水処理用微生物担持体を収容しない非収容領域とを有し、
前記収容領域と前記非収容領域とは、液体が相互に流通するように配置されている汚水処理用具。
A sewage treatment tool that is housed in a sewage treatment tank and is used by flowing,
A microbial support for wastewater treatment comprising a crimped fiber assembly;
A capsule container having a large number of water passage holes around it, and containing the sewage treatment microorganism carrier;
The capsule container has a storage area for storing the microorganism carrier for sewage treatment, and a non-storage area for not storing the microorganism carrier for sewage treatment,
The storage area and the non-storage area are sewage treatment tools arranged such that liquid flows through each other.
前記非収容領域は、前記カプセル収容具の中央側に、平面視略環状に間隔を設けて配置される複数の支柱によって囲まれた空間から成る、請求項1に記載の汚水処理用具。   2. The sewage treatment tool according to claim 1, wherein the non-accommodating region includes a space surrounded by a plurality of support columns arranged at intervals in an annular shape in a plan view on the center side of the capsule container. 前記非収容領域は、前記カプセル収容具の中央側に設けられる筒状の芯部であり、
前記芯部の側面に、液体が流通する連通孔が形成されている、請求項1に記載の汚水処理用具。
The non-accommodating region is a cylindrical core provided on the center side of the capsule container,
The sewage treatment tool according to claim 1, wherein a communication hole through which a liquid flows is formed on a side surface of the core portion.
前記汚水処理用微生物担持体は、前記非収容領域の周囲に沿って螺旋状に配置される、請求項2又は請求項3に記載の汚水処理用具。   The sewage treatment tool according to claim 2 or 3, wherein the sewage treatment microorganism carrier is arranged in a spiral shape around the non-accommodating region. 前記螺旋状に配置された汚水処理用微生物担持体は、前記捲縮性繊維集合体が数珠繋ぎに連結された数珠状繊維集合体から成る、請求項4に記載の汚水処理用具。   The sewage treatment tool according to claim 4, wherein the spirally disposed microorganism-supporting body for sewage treatment comprises a rosary fiber aggregate in which the crimped fiber aggregates are connected in a daisy chain. 前記カプセル収容具は球形格子形状を成し、
球形格子を構成するフレームの内側に、前記カプセル収容具の中心部に向かって延びるフィンが設けられている、請求項1〜5のいずれか1項に記載の汚水処理用具。
The capsule container has a spherical lattice shape,
The sewage treatment tool according to any one of claims 1 to 5, wherein a fin extending toward a central portion of the capsule container is provided inside a frame constituting the spherical lattice.
請求項1〜6のいずれか1項に記載の汚水処理用具を収容する汚水処理槽を備えた汚水の再生水システムにおいて、
前記汚水処理槽は、前記汚水処理用具を流動状態で収容した第1処理槽と、汚泥と処理水とを膜分離する膜分離装置を収容した第2処理槽とを備える汚水の再生水システム。
In the sewage reclaimed water system provided with the sewage treatment tank which stores the sewage treatment tool according to any one of claims 1 to 6,
The sewage treatment tank is a sewage reclaimed water system comprising: a first treatment tank containing the sewage treatment tool in a fluidized state; and a second treatment tank containing a membrane separation device for membrane separation of sludge and treated water.
JP2016024813A 2016-02-12 2016-02-12 Sewage treatment instrument and regenerated water system of sewage Pending JP2017140594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016024813A JP2017140594A (en) 2016-02-12 2016-02-12 Sewage treatment instrument and regenerated water system of sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016024813A JP2017140594A (en) 2016-02-12 2016-02-12 Sewage treatment instrument and regenerated water system of sewage

Publications (1)

Publication Number Publication Date
JP2017140594A true JP2017140594A (en) 2017-08-17

Family

ID=59628055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016024813A Pending JP2017140594A (en) 2016-02-12 2016-02-12 Sewage treatment instrument and regenerated water system of sewage

Country Status (1)

Country Link
JP (1) JP2017140594A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109761375A (en) * 2019-03-15 2019-05-17 河南宗源环保科技有限公司 A kind of river sewage improvement dam
CN116693103A (en) * 2023-06-16 2023-09-05 云南惠源环境工程有限公司 Carrier solidified microorganism domestic sewage treatment device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109761375A (en) * 2019-03-15 2019-05-17 河南宗源环保科技有限公司 A kind of river sewage improvement dam
CN116693103A (en) * 2023-06-16 2023-09-05 云南惠源环境工程有限公司 Carrier solidified microorganism domestic sewage treatment device
CN116693103B (en) * 2023-06-16 2024-02-09 云南惠源环境工程有限公司 Carrier solidified microorganism domestic sewage treatment device

Similar Documents

Publication Publication Date Title
JP5599668B2 (en) Microorganism carrier for sewage treatment and sewage treatment tool
CN205241329U (en) Globular carbon fiber combined packing
US20130020266A1 (en) Method and apparatus for water jet moving bed filtration system
JP2017140594A (en) Sewage treatment instrument and regenerated water system of sewage
JP5254834B2 (en) Land culture system
CN103910453A (en) Aquatic product culture waste water processing apparatus
CN101479200B (en) Entrapping immobilization pellets, wastewater treatment system using the entrapping immobilization pellets and wastewater treatment method
CN106132520A (en) Aeration and biological membrane reactor fibrous membrane
US6133004A (en) Bioreactor carrier gel prepared from a crosslinked N-vinylcarboxamide resin
CN102671615A (en) Raschig ring and porous medium combined biologic filling
US7527730B2 (en) Water filtration system and its use
CN108467113A (en) Efficient denitrification filter pool
CN104261552A (en) Rotary moving bed biological filtration device
CN202482128U (en) Biofilm carrier
US9193615B2 (en) Portable biofilter and degasser
CN109467195A (en) Denitrification expanded bed and wastewater treatment method containing nitrate nitrogen
JP2022153873A (en) Microorganism carrier and denitrification treatment method
JPS63209788A (en) Microorganism carrier
JPS61293591A (en) Contact material for sewage treatment
CN210855439U (en) Improved suspension filler
KR100887760B1 (en) Water treatment system using fluidized bed media
JP5954870B2 (en) Carrier
JP4872757B2 (en) Multistage biological treatment apparatus and multistage biological treatment method
JPH0721196U (en) Sewage treatment contact material
JPH01135593A (en) Contact means for biological treatment and preparation of said means

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200319