JP2012023163A - プラズマ処理装置 - Google Patents

プラズマ処理装置 Download PDF

Info

Publication number
JP2012023163A
JP2012023163A JP2010159256A JP2010159256A JP2012023163A JP 2012023163 A JP2012023163 A JP 2012023163A JP 2010159256 A JP2010159256 A JP 2010159256A JP 2010159256 A JP2010159256 A JP 2010159256A JP 2012023163 A JP2012023163 A JP 2012023163A
Authority
JP
Japan
Prior art keywords
microwave
plasma
wafer
processing chamber
transmission window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010159256A
Other languages
English (en)
Inventor
Kenji Maeda
賢治 前田
Hitoshi Tamura
仁 田村
Yoji Takahashi
洋二 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2010159256A priority Critical patent/JP2012023163A/ja
Publication of JP2012023163A publication Critical patent/JP2012023163A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】微細な加工処理に有効な中密度プラズマ領域での高い制御性とウエハの大口径化に対応した均一性とを両立できるプラズマ処理装置を提供する。
【解決手段】真空排気手段により排気された真空処理室と、真空処理室にガスを供給するためのガス供給手段と、プラズマを生成するためのマイクロ波電力供給手段と、前記真空処理室に備えられた誘電体製のマイクロ波透過窓と、ウエハを載置するための基板ステージと、前記基板ステージを介してウエハに高周波バイアス電力を印加するための高周波バイアス電源と、真空容器に磁場を発生させるためのソレノイドコイルとヨークとを備えたプラズマ処理装置において、前記した誘電体製マイクロ波透過窓の中央部を、他の部分に対して、誘電体中のマイクロ波の波長の概略1/4突出させる。
【選択図】 図1

Description

本発明は、減圧した真空容器内部の処理室内に供給したマイクロ波による電界を用いて形成したプラズマを用いて半導体ウエハ等の処理対象の基板状の試料を処理するプラズマ処理装置に係り、特に処理室内に供給した磁場との相互作用により形成したプラズマを用いて半導体デバイスの製造工程でウエハの表面に処理を施すプラズマ処理装置に関する。
半導体デバイスの量産工程において、プラズマエッチング,プラズマCVD(Chemical Vapor Deposition),プラズマアッシング等のプラズマ処理が広く用いられている。プラズマ処理は、減圧した状態の処理用ガスに高周波電力やマイクロ波電力を投入することで発生したイオンやラジカルを、ウエハに照射することで行われる。エッチング用のプラズマ源には、半導体デバイスの微細化に対応した低ガス圧力領域での良好なエッチング形状制御性と、ウエハ面内を均一に処理するための高均一性が求められている。特に、工業周波数である2.45GHzで、電子サイクロトロン共鳴(Electron Cycrotolon Resonance:ECR)を利用した有磁場マイクロ波プラズマ源は、低圧力で高密度のプラズマを生成することができるため、1990年前後から盛んに研究・開発が行われてきた。
このようなマイクロ波プラズマ処理装置の例として特許文献1,特許文献2が挙げられる。この従来技術の装置は、プラズマ生成室とウエハの処理室とが分離されており、プラズマ生成室でECR効果を用いて発生させたプラズマを磁場で処理室に引き出し、ウエハの処理を行うことが特徴であった。マイクロ波は矩形導波管や円形導波管を用いてプラズマ生成室に導入され、導波管とプラズマ生成室の間は石英等のマイクロ波を透過する材質の窓で仕切られ、真空封止されていた。
このような従来の技術では処理の不均一性が問題となった。これは、矩形導波管の基本モードである矩形TE10モードや円形導波管の基本モードである円形TE11モードでは、電界強度が周辺部に比べ中央部が強くなることが原因となって、プラズマの密度,強度の分布が不均一になってしまうためである。
これを解消するため、特許文献1には、導波管とプラズマ生成室の入り口の間の窓部に凹レンズを設けることで中央部のマイクロ波を広げる技術が開示されている。また特許文献2には、該窓部の中央部に凹部を、外周部に凸部を設けることで、中央部のマイクロ波電界を広げ、外周部にマイクロ波電界を集中させる技術が開示されている。
さらに、この窓部とプラズマ界面からの反射波を逆に利用した技術が、特許文献3に開示されている。特許文献3には、処理室がプラズマ生成室を兼ねており投入した電力を効率的に処理に用いることができる処理装置が開示されている。また、プラズマ生成室の上部に円筒空洞部を設けている。
円筒空洞部の中心には円形導波管が接続されており、マイクロ波は該導波管から円形TE11モードで円筒空洞部に導入される。ここで、円筒空洞部の天板から、真空を封止している石英天板とプラズマとの境界面までのマイクロ波に対する等価距離を円形TE01モードの管内波長の1/2の整数倍とすることで、プラズマ境界面からの反射波と円筒空洞部の天板からの反射波が共振し、円筒空洞内に円形TE01モードの定在波を形成する。この結果導入した円形TE11モードと、共振モードであるTE01モードが重畳されたマイクロ波モードが円筒空洞内に発生する。円形TE11モードの電界強度分布は中高分布であり、円形TE01モードは外高分布であるため、円筒空洞内にて、両者が重畳されたマイクロ波モードの電界強度分布は略均一となる。これにより円筒空洞下部にあるプラズマ生成室(処理室)に均一で安定な高密度プラズマを発生させることができる。
さらに特許文献4には、円筒空洞共振部とエッチング処理室との間の、真空封じを行っている石英天板の厚さを、石英中のマイクロ波の波長の約1/2の整数倍とすることにより、ウエハ上のプラズマを高密度にする技術が開示されている。
特開平3−244123号公報 特開平6−120155号公報 特開平7−235394号公報 特開平8−315998号公報
国際半導体技術ロードマップ(International Technologiy Roadmap for Semiconductors;ITRS)によれば、半導体デバイスの微細化とウエハの大口径化は今後も進み、2014年から2016年の間には22nmノード,450mm(18インチ)ウエハを用いた量産が立ち上がると予想されている。またトランジスタ構造は、現在の主流であるプレーナ型(平面型)から、ダブルゲート型,トライゲート型等の3D構造を有したFinFET型が主流になるものと予想される。これら将来の半導体デバイスの製造に用いられるプラズマ処理装置、特に微細化の要であるエッチング装置には、450mmの広範囲に渡っての高い処理均一性と極限の微細加工性能が求められている。
特許文献3や特許文献4に記載されているような高密度プラズマを用いるとエッチング速度が速くなりすぎ、制御性,再現性を損なってしまう虞が有った。さらには、マスク選択比や下地選択比の低下、また、側壁荒れの問題も顕在化してくる。ここで高密度プラズマとは、プラズマ密度で7.5e10cm-3(2.45GHzにおける無磁場でのプラズマのカットオフ密度)以上、ウエハ上のイオン電流密度で3mA/cm2程度以上のプラズマを指している。
特許文献3や特許文献4に記載の技術では、プラズマ密度を下げるためにマイクロ波の電力を下げると、TE11モードに起因したエッチングレートの中高分布となってしまう虞がある。円筒空洞がTE01モードの共振器として作用するためには、石英天板とプラズマとの境界面からの反射波が、ある程度必要になってくる。マイクロ波はカットオフ密度以上の高密度プラズマ中を、無磁場では全く伝播できず、また、有磁場でも十分には伝播できないため、前記境界面で相当量反射されることになる。この反射波と、円筒空洞の上部からの反射波の重ね合わせで円筒空洞はTE01モードの共振器として作用できる。
これに対し、カットオフ密度以下の中密度プラズマ領域ではマイクロ波はプラズマ中を伝播できるため、前記境界面でその一部は反射される。その結果、中央部の電界強度が強い円形TE11モードが支配的となり、エッチングレート分布も中高になってしまう。このため、中密度領域のプラズマを均一に維持することができなくなってしまうという問題が有った。ここで中密度プラズマとは、プラズマ密度が概略7.5e10cm-3以下、1.2e10cm-3以上(ウエハ上のイオン電流密度で3.0mA/cm2程度以下、0.5mA/cm2程度以上。0.5mA/cm2は現実的な処理速度が得られる下限。)のプラズマを指している。
さらには、450mmウエハの処理に対応するために処理室の径や円筒空洞共振器の径を拡大すると、プロセス条件によっては空洞部で共振させたいモードである円形TE01モード以外の高次モード、例えばTM01,TE21,TM11,TE31等が発生し、処理の均一性を損なったり放電不安定性を引き起こしてしまう虞が有る。
また、特許文献3に記載の従来技術では、真空容器からの金属汚染をさけるために耐プラズマ性の材料で形成された円筒状の絶縁物カバーを真空容器内壁に設置していた。一方、該絶縁物カバーは非常に高価な交換部品であり、装置のランニングコストを上昇させてしまう。また、絶縁物カバーは真空容器から真空断熱されてしまうため、その温度制御が難しいといった問題もあった。
本発明は、微細な加工処理に有効な中密度プラズマ領域での高い制御性とウエハの大口径化に対応した均一性とを両立できるプラズマ処理装置を提供することを目的とする。
上記目的を達成するために、本発明は、真空排気手段により排気された真空処理室と、真空処理室にガスを供給するためのガス供給手段と、プラズマを生成するためのマイクロ波電力供給手段と、前記真空処理室に備えられた誘電体製のマイクロ波透過窓と、ウエハを載置するための基板ステージと、前記基板ステージを介してウエハに高周波バイアス電力を印加するための高周波バイアス電源と、真空容器に磁場を発生させるためのソレノイドコイルとヨークとを備えたプラズマ処理装置において、前記した誘電体製マイクロ波透過窓の中央部を、他の部分に対して、誘電体中のマイクロ波の波長の概略1/4突出させたことを特徴とする。
また、上記のプラズマ処理装置において、マイクロ波透過窓の中央突出部の直径が、ウエハ直径の1/3ないし2/3であることを特徴とする。
さらには、上記したプラズマ処理装置において、前記マイクロ波透過窓の外周部を、内径がウエハ直径よりも大きく、厚さが誘電体中のマイクロ波の波長の概略1/4となるように、リング状に突出させたことを特徴とする。
本発明の第一の実施例を示す縦断面図。 従来技術及び本発明におけるウエハ上でのイオン電流密度分布のマイクロ波電力依存性を示す二次元グラフ。 従来技術及び本発明におけるウエハ上でのイオン電流密度分布のECR高さ依存性を示す二次元グラフ。 マイクロ波電力とECR高さを変化させた際の、従来技術及び本発明におけるウエハ上でのイオン電流密度の均一性の等高線マップ。 誘電体製マイクロ波透過窓の中央突出部の直径を変えた際の、ウエハ上でのイオン電流密度を示す二次元グラフ。 本発明の第二の実施例を示す縦断面図。 磁力線とECR高さの一例を示す模式図。
以下、図1乃至図7を用いて本発明によるマイクロ波プラズマ処理装置の実施例を示す。
〔実施例〕
図1は本実施例によるプラズマ処理装置の縦断面図を示している。まず図1を用いて概略を説明する。
略円筒形の真空処理室1の下部には、ウエハ4を載置する基板ステージ5が備えられており、該真空処理室1はコンダクタンス調節バルブ31を介してターボ分子ポンプ32により真空排気される構成となっている。前記真空処理室1の上部には略円板状の突出部9を備えた誘電体製のマイクロ波透過窓6が備えられており、その上部には円筒空洞7が備えられている。円筒空洞7の高さは、円筒空洞中で円形TE01モードのマイクロ波が共振するように調整されている。
マイクロ波透過窓6の下部にはシャワープレート8が備えられており、図示しないガス供給系から導入された処理用のガスを真空処理室1に均一に分散させる構成となっている。前記円筒空洞7の上部には、円形導波管21を介してマイクロ波導入系が接続されている。
本実施例では、マイクロ波の周波数として、例えば、工業周波数である2.45GHzを用いている。さらに真空処理室1の外部には、1系統ないし3系統の独立して制御,調節された電力が供給されるソレノイドコイル2と、ヨーク3とが備えられている。
本実施例では、真空処理室1にシャワープレート8を介して処理用のガスを導入し、真空処理室1内の圧力をコンダクタンス調節バルブ31により所望の値に調整した後、マイクロ波等の電波源から真空処理室1に電界を投入することで処理用のガスがプラズマ化される。この際、ソレノイドコイル2により真空処理室1内部にECR共鳴を引き起こす強度である875ガウスの磁場を印加しておくことで、0.05Paから5Pa程度の低圧力領域で安定したプラズマを生成することができる。基板ステージ5にはウエハ4に高周波バイアス電力を印加するための手段が備えられており、この電力により基板ステージ5またはウエハ4上面にバイアス電位を形成することでプラズマ中のイオンをウエハ4に引き込みウエハ4の処理の高精度,高速化を図ることができる。
内部が略円筒形の真空処理室1はアルミニウム等の金属製であり側壁の一部は接地されている。また、真空処理室1の内壁は、プラズマ耐性があり、かつデバイスの金属汚染の生起を抑制する絶縁材料、即ち、イットリア(Y23),アルミナ(Al23),フッ化イットリウム(Y23),フッ化アルミニウム(Al23),窒化アルミニウム(AlN),石英(SiO2)等の材料で、50μmないし500μm程度の厚さでコーティングしてある。
また真空処理室1の内部の壁面を温度調節することで、量産時の処理安定性を向上させることができる。真空処理室1の温度の調節は、真空処理室1の内側に液体が流れる流路を形成しておき、チラー等で温調された液体を該流路に流すことで実現できる。もしくは、真空処理室1の側壁の大気側の箇所にヒーターを具備してもよい。
本実施例では、これらの温調手段により真空処理室1は30℃から100℃の間の所望の温度で温調される。また、真空処理室1の金属壁部分に白金温度計等の温度モニタ手段を埋め込み、温度モニタ手段からの出力をフィードバックして真空処理室1の温度を調節することで、さらなる処理の安定化が期待できる。
真空処理室1の下方には、ウエハ4を載置するための基板ステージ5が備えられている。基板ステージ5には1系統ないし5系統の温度の調節手段である温調ユニット45が設けられている。また基板ステージ5は、図示しない伝熱ガス供給系と静電チャック機能を有しており、プラズマ処理中にウエハ4を静電気力で保持し、ウエハ4裏面にHe等の伝熱ガスを供給することで、ウエハ4の温調を可能としている。温調手段を複数設けることにより、ウエハ4の温度分布をきめ細かく制御することができるため、径が450mmのような大口径のウエハ4の処理に適した構成となっている。
さらに、基板ステージ5には、第一の整合器42を介して第一の高周波バイアス電源41が、さらに、第二の整合器44を介して第二の高周波バイアス電源43が備えられている。第一の高周波電源の周波数は第二の高周波バイアス電源の周波数よりも低く設定されており、第一の高周波バイアス電源41の周波数は400kHzないし4MHzの間から、第二の高周波バイアス電源43の周波数は2MHzないし13.56MHzの間から適切に選択される。周波数の異なった2種類の高周波バイアス電源の電力比率を適切に調節することで、ウエハ4に入射するイオンのエネルギー分布を、より細かく制御できる。これにより、マスク選択比や下地選択比の向上が期待できるだけでなく、側壁荒れやノッチ形状,テーパー形状の抑制も期待できる。
真空処理室1の上部には、マイクロ波透過窓6を介して円筒空洞7と電界を供給する電波であるマイクロ波の供給手段が連結されている。マイクロ波供給系は、円形導波管21,円偏波発生器22,矩形円形導波管変換部23,矩形導波管24,マイクロ波用自動整合器25,アイソレータ26,マグネトロン27から構成されている。
マグネトロン27より発振されたマイクロ波は矩形TE10モードで矩形導波管24を伝播し、矩形円形導波管変換部23で円形TE11モードに変換されて円筒空洞7に導入される。また、円偏波発生器22で円形TE11モードの偏波面を回転させ、右回り円偏波を発生させることにより、周方向での電界分布を均一化することができる。
また、マイクロ波用自動整合器25で負荷とのマッチングを取ることにより、マイクロ波電力をプラズマ負荷に効率よく投入し、反射電力を抑えることができる。さらに、アイソレータ26は、マイクロ波用自動整合器25で取りきれなかった反射波がマグネトロンに戻ることを防いでいる。
真空処理室1の外部配置された1系統ないし3系統のソレノイドコイル2と、ヨーク3とにより、真空処理室1内部にECR共鳴を引き起こす強度である875ガウスの磁場が印加される。参考として、図7に磁場形状の一例を示す。図中の点線101は磁力線を、実線102は875ガウスの等磁束密度面(今後、ECR面と称する)を示している。
このようなソレノイドコイル2に流れる電流を適宜調節することで、真空処理室1内でのECR面の高さ(今後、ECR高さと称する)や、ECR面の形状,磁力線の発散度合い等を調節することができるようになっている。ECR共鳴を用いることにより、微細加工に有利な0.05Paから5Pa程度の低圧力領域にて、安定したプラズマを生成することができる上に、ECR高さやECR面の形状,磁力線の発散度合いを制御することにより、真空処理室1内のプラズマ密度分布を制御できる。
真空処理室1の上部には、略円板状をした誘電体製のマイクロ波透過窓6が備えられている。該マイクロ波透過窓の直径は前記真空処理室1の内径よりも若干大きくなっており、外周縁部の下面と真空処理室1の側壁の部材の上端部との間をこれらに挟まれたOリング等でシールすることにより、真空処理室1内と外部の大気との間を気密に封止して内部の真空度を所望のものに維持している。マイクロ波透過窓6の材質としては、マイクロ波の損失が小さく、汚染を引き起こさない材質、即ち、石英,アルミナ,イットリア等の材質が望ましい。
前記マイクロ波透過窓6の下部には略円板状の誘電体製のシャワープレート8が備えられている。シャワープレート8の材質も、マイクロ波透過窓6の材質と同様に、マイクロ波の損失が小さく、汚染を引き起こさない材質、即ち、石英,アルミナ,イットリア等の材質が望ましい。本実施形態ではマイクロ波透過窓及びシャワープレート8の材質を石英とした。
シャワープレート8には直径0.1mmないし0.8mm程度の小孔が、5mmピッチないし20mmピッチ程度の間隔で開けられており、また、その厚さは5mmないし15mmの間で使用者の処理に応じて適切に選択される。シャワープレート8とマイクロ波透過窓6の間には、0.1mmないし1mm程度の図示しないガスバッファ室が設けられており、このガスバッファ室の外周部から導入された処理用のガスはガスバッファ室の全体に充満して行き渡り下方のガス孔から全体的に均等に真空処理室1内に流入させることができる。
また、本実施例でガスバッファ室とシャワープレートを内周部と外周部の2つの領域に分け、それぞれに別系統のガス供給系(図示せず)を接続し、内周部と外周部に流す処理用のガスの種類,組成,流量を適宜調節することで、ウエハ4に到達するラジカル種の分布を制御することが可能になる。これにより、より高いウエハ4面内の処理均一性を達成することができる。また、処理用のガスとしては、Cl2,HBr,HCl,CF4,CHF3,SF6,BCl3,O2,CH4等の反応性ガスの中から1種類ないしは4種類程度を、被エッチング膜の種類に応じて適切に選び、それぞれの流量や混合比が適切に調節される。また、これらの混合した反応性ガスに、ArやXe等の希釈ガスを適切な流量で加えても良い。
本実施例で用いられる石英製のマイクロ波透過窓6の上面の中央部には、マイクロ波透過窓6と同じ材質である石英で、直径がウエハ4径の1/3から2/3の範囲の値で選択されたもので、高さが石英中を伝播するマイクロ波の波長の1/4にされた略円板状の突出部9が、円筒空洞7及びマイクロ波透過窓6と中心軸を合わせて配置されている。本突出部9は、前記マイクロ波透過窓6と一体で形成されていても良く、別々の部品であっても良い。
突出部9を設けることにより、突出部9を透過して下方に伝播するマイクロ波の透過率を周囲の他の部分と比較し低下させることができる。前述したように、中密度程度のプラズマを想定した場合、円筒空洞7での円形TE01モードの共振が十分に行われないため、中心部の電界強度が強い円形TE11モードが主体となって真空処理室1に伝播する。したがって、本実施例のように突出部9によってマイクロ波透過窓6の中央部でマイクロ波透過率を低減することにより、プラズマに投入されるマイクロ波の電界強度分布を均一化でき、ひいてはプラズマ分布を均一化できる。以下、マイクロ波透過率の調節について説明する。
マイクロ波がある媒質から別の媒質へと伝播する際には、その界面で必ず一部は反射する。また、両媒質の誘電率が大きく異なるときには、反射はより大きくなることは良く知られている。
本実施例の場合、マイクロ波がプラズマに伝播していく過程の中でマイクロ波の反射界面となるのは、マイクロ波透過窓6及び突出部9両者の上面と、シャワープレート8の下面(プラズマとの境界面)の2箇所である。マイクロ波透過窓6の厚さを、この2箇所からの反射波を打ち消しあうような厚さ(仮に厚さAとする)に設定すればマイクロ波の透過率は最大となり、また、マイクロ波透過窓6と突出部9の厚さを、前記した2箇所からの反射波が強めあうような厚さ(厚さBとする)に設定すると、突出部9のマイクロ波の透過率は最小となる。ここで、厚さAと厚さBの差の絶対値は、マイクロ波透過窓6の媒質(石英)中のマイクロ波の波長λwの1/4(石英中では16mm)となる。
上記の説明では片方のマイクロ波の反射界面をシャワープレート8下面(プラズマとの境界面)としたが、実際はシャワープレート8の上部にはガスバッファ室があり、また、シャワープレート8直下のプラズマ密度も縦方向に分布を持っているため、シャワープレート8下面の反射境界の位置は明確には定まらない。したがって、前記した厚さAと厚さBとの差の絶対値を概ねλw/4とした上で、厚さAを実験的に定めればよい。
次に、図2から図4を用いて、本実施例の作用を説明する。これらの例では、ウエハ4径が300mmの場合のプラズマ処理装置における結果を説明する。また、結果の説明の中で比較対象として従来の技術の結果を説明する。また、本実施例は、マイクロ波透過窓6の中央部に、φ150mmの範囲で16mm突出部9を設けた例における結果を意味している。また、事前に行った予備試験の結果、マイクロ波透過窓6の上面からシャワープレート8の下面までの距離は42mmとしている。
図2に、ウエハ4上のイオン電流密度分布のマイクロ波電力依存性を示す。放電に用いたガスはCl2/HBr混合ガス、圧力は0.4Pa、ECR高さが60mmの磁場条件であり、マイクロ波電力を小(400W、破線),中(800W、実線),大(1200W、一点破線)と変化させた際の結果である。図2(a)に示したように、従来の技術ではマイクロ波電力が1200Wと大きい条件では比較的均一性は良好であるのに対し、マイクロ波電力を400Wまで下げると著しい凸分布が発生することがわかる。また、投入したマイクロ波電力に対する、イオン電流密度分布のリニアリティーも小さいことがわかる。
これに対し図2(b)に示したように、本実施例ではマイクロ波電力が1200Wから400Wの範囲にてイオン電流密度の均一性は良好であり、また、投入したマイクロ波電力に対する、イオン電流密度分布のリニアリティーも良好であることがわかる。つまり、イオン電流密度で1mA/cm2から3mA/cm2程度の中密度領域のプラズマ密度を、マイクロ波パワーにて良好に制御できていることがわかる。
次に図3に、ウエハ4上のイオン電流密度分布のECR高さ依存性を示す。放電に用いたガスはCl2/HBr混合ガス、圧力は0.4Pa、マイクロ波電力は600Wであり、ヨークの下端を基準にしたECR高さ(図7中のH)をパラメータとして低(0mm、破線),中(40mm、実線)、高(140mm、一点破線)と変化させた場合の結果である。
従来の技術では、ECR高さを変化させてもプラズマ生成に寄与している電界強度分布が中高分布であるため、凸型のイオン電流密度分布しか得られていない。これに対し、本実施例では、マイクロ波透過窓6の突出部9により中央部分のマイクロ波透過率を抑制することで、プラズマ生成に寄与する電界強度分布が均一(もしくは、若干の外高分布)化されている。
このため、ウエハ4上イオン電流密度分布は、ECR高さを変化させることで、凹分布,フラット分布,凸分布と制御できることがわかる。また、ECR高さを変化させた場合には、イオン電流密度分布の形状が変わるだけでなく、マイクロ波の電力が一定であっても、イオン電流密度の平均値は変化する。ECR高さが低い、即ちECR面がウエハ4に近い場合は、ウエハ4のごく近傍でプラズマが生成されるため、イオン電流密度の平均値は高くなる一方、ECR高さが高い、即ちECR面がウエハ4から遠い場合は、ECR面で生成されたプラズマがウエハ4に届くまでの間に拡散,減衰するため、イオン電流密度の平均値は低くなる。
以上の図2,図3に示した通り、本実施例によれば、微細加工に適した中密度程度のプラズマを均一に生成させることができるだけでなく、マイクロ波パワーとECR高さを変化させることにより、プラズマ密度分布形状を凸分布から凹分布まで制御できることがわかる。また、ECR高さだけでなく、ECR面の形状や磁力線の発散程度を制御することで、より精密なプラズマ密度分布制御をおこなうことができる。
図4に、マイクロ波パワーとECR高さを変化させた場合のウエハ4上イオン電流密度分布の均一性の等高線図を示す。放電に用いたガスはCl2/HBr混合ガス、圧力は0.4Paであり、マイクロ波パワーは400Wから1200Wまでを200Wピッチで6条件、ECR高さは0mmから160mmまでを20mmピッチで9条件、1つのハードに対し都合54条件で実験データを採取した結果である。図4に示される通り、本実施例である図4(b)では、従来の技術である図4(a)と比較してイオン電流密度分布の均一性が20%以下の領域が、低マイクロ波パワー側に広がっていることが明らかであり、プロセスウインドが2倍近く広くなっていることがわかる。
図2から図4では、マイクロ波パワーとECR高さ(磁場)を変化させた際のウエハ4上のイオン電流密度分布をもって本実施例の作用効果を説明してきた。これは、マイクロ波の伝播とプラズマの生成に最も寄与しているのが、電界強度分布と磁場強度,磁場形状だからである。実際のプラズマ処理では、これ以外にガスの種類やガスの流量といったパラメータも変化させるが、これらを変化させたとしても図2から図4で説明した実施例の効果に何ら変わりはない。ガス種やガス流量が最も強く影響を与えるのは、被エッチング材料やマスク材料,下地材料との化学反応であり、マイクロ波の伝播やプラズマの生成ではないからである。
但し、ガス圧力に関しては、ECR共鳴によるプラズマ生成に影響を与える場合もありうる。電子は磁場によりローレンツ力を受け、磁力線の周りを旋回するように運動する。電子が磁力線の周りを回転する角周波数(ラーマー周波数、ωr)とマイクロ波の角周波数(ωm)が一致した場合にECR共鳴が起きるが、もし処理用ガスの圧力が高ければ、電子が共鳴加熱されている間にガス分子やガス原子と弾性衝突を起こして運動方向を変えられてしまうため、ECR共鳴はおきにくくなる。但し本実施例では微細加工に適した低圧力を対象としているため、ECR共鳴が起きにくくなるといった事態は発生しない。
電子とガス分子との衝突周角波数をωcとした場合、ωc≪ωm(=ωr)がECR共鳴を引き起こす条件となるが、微細加工に好適な圧力0.05Paから5Paでは、例えばCl2ガス中の電子の衝突周波数ωc/2πは2.5e6Hzから2.5e8Hz程度になる。これに対し、マイクロ波の周波数ωm/2πは2.45e9Hとなるため、ωc≪ωmとなるからである。以上をまとめると、本実施例の効果は、ωc≪ωmとなるガス圧力領域においては、ガス圧力を変えた場合においても有効である。
次に、図5に、本発明において、マイクロ波透過窓6の中央の突出部9の直径を、φ100mm,φ150mm,φ200mmと変化させた場合のウエハ4上のイオン電流密度分布を示す。放電に用いた条件は、ガス種がCl2/HBr混合ガス、圧力が0.4Pa、マイクロ波電力が1200W、ECR高さが100mmである。
本図に示す通り、突出部9の直径を、ウエハ4の直径(φ300mm)に対し1/3から2/3程度で変化させても、電界強度分布を均一化し、プラズマを均一化するという作用変化しない。また、この結果は特定のマイクロ波パワーとECR高さで示したが、実際の実験データは、図4のような54条件のマトリクスデータで採取しており、いずれの条件においてもφ100mmからφ200mmの範囲で本実施例の上記効果に変わりがない。
以上、本発明の第一の実施例の構成と効果を詳細に説明してきた。なお、上記では径300mmのウエハ4を用いたプラズマ処理装置について説明を行ったが、これらは450mm径のプラズマ処理装置に容易に適用可能であることはいうまでもない。
次に、図6に、本発明の実施例の変形例について説明する。図1に示した実施例に対応する構成要素には同じ番号を付けてあり、同一となる説明は省略する。
本変形例は、誘電体のマイクロ波透過窓6の中央部に突出部9を設けるとともに、誘電体のマイクロ波透過窓6の外周部に、誘電体内でのマイクロ波の波長の1/4程度の厚さの、略円環状の部材であるリング状突出部10を設けている。リング状突出部10は、その内径がウエハ4直径よりも大きく、外径がマイクロ波透過窓6とほぼ同一であり、マイクロ波透過窓6と内周及び外周の円の中心が同心となるように配置されている。リング状突出部10は、前記マイクロ波透過窓6と同一の誘電体材料で一体で形成されていても良く、別々の部品であっても良い。
このようなリング状突出部10を設けることにより、リング状突出部10のマイクロ波透過率を他の部分と比較し低下させることができる、即ち、ウエハ4よりも外側の真空処理室1の内壁近傍の領域のマイクロ波強度を低下させることができ、このような領域で生成されるプラズマ密度を下げることができる。これにより、真空処理室1の内壁へのプラズマからのダメージを抑制し、内壁の消耗を抑制することができるため、真空処理室1の寿命を長くすることができる。さらには、真空処理室1の内側壁の削れに起因した、パーティクルや金属汚染の発生を抑制することができる。また、本変形例においても実施例と同様に、誘電体のマイクロ波透過窓6の中央部に突出部9を設けてあるため、ウエハ4上のプラズマを中密度領域で均一に生成でき、また、磁場の制御でプラズマ密度分布を制御できることは言うまでもない。
このような変形例よれば、中密度領域のプラズマを均一に、制御性良く生成できるだけでなく、真空処理室1の内壁の消耗を抑え、パーティクルや汚染の発生を抑制し、真空処理室1の寿命を延ばすことが可能となる。
以上の実施例、変形例によれば、誘電体製マイクロ波透過窓6の中央部を、他の部分に対して、誘電体中のマイクロ波の波長の1/4だけ突出させることで、マイクロ波透過窓6の中央部でのマイクロ波の透過率が低下する。これにより、真空処理室1内の電界の強度の分布が均一化され、中密度領域(ウエハ上イオン電流密度で0.5mA/cm2〜3mA/cm2程度)で均一なプラズマが生成される。さらには、マイクロ波と磁場の相互作用を用いることで、微細加工に有利な低圧領域(0.05Pa〜5Pa、特に0.1Pa以下)で、プラズマが安定に生成される。さらには、磁場を調節することでウエハ直上のプラズマ密度分布が調節される。
また、前記マイクロ波透過窓6の外周部をリング状に突出させることにより、真空処理室1の内側壁面の近傍に発生するプラズマが抑制される。このため、真空処理室1の内側壁の削れに起因したパーティクルや金属汚染の発生が抑えられ、真空処理室1の長寿命化やこの内部を大気開放してウエット清掃する間隔が長くでき、プラズマ処理装置の稼働率が向上しひいては装置のランニングコストが低減される。
1 真空処理室
2 ソレノイドコイル
3 ヨーク
4 ウエハ
5 基板ステージ
6 マイクロ波透過窓
7 円筒空洞
8 シャワープレート
9 突出部
10 リング状突出部
21 円形導波管
22 円偏波発生器
23 矩形円形導波管変換部
24 矩形導波管
25 マイクロ波用自動整合器
26 アイソレータ
27 マグネトロン
31 コンダクタンス調節バルブ
32 ターボ分子ポンプ
41 第一の高周波バイアス電源
42 第一の整合器
43 第二の高周波バイアス電源
44 第二の整合器
45 温調ユニット
101 磁力線
102 ECR面

Claims (3)

  1. 真空排気手段により排気された真空処理室と、真空処理室にガスを供給するためのガス供給手段と、プラズマを生成するためのマイクロ波電力供給手段と、前記真空処理室に備えられた誘電体製のマイクロ波透過窓と、ウエハを載置するための基板ステージと、前記基板ステージを介してウエハに高周波バイアス電力を印加するための高周波バイアス電源と、真空容器に磁場を発生させるためのソレノイドコイルと、ヨークと、を備えたプラズマ処理装置において、前記した誘電体製マイクロ波透過窓の中央部を、他の部分に対して、誘電体中のマイクロ波の波長の概略1/4突出させたことを特徴としたプラズマ処理装置。
  2. 請求項1のプラズマ処理装置において、前記マイクロ波透過窓の中央突出部の直径が、ウエハ直径の1/3ないし2/3であることを特徴としたプラズマ処理装置。
  3. 請求項1ないし請求項2に記載のプラズマ処理装置において、前記マイクロ波透過窓の外周部を、内径がウエハ直径よりも大きく、厚さが誘電体中のマイクロ波の波長の概略1/4となるように、リング状に突出させたことを特徴としたプラズマ処理装置。
JP2010159256A 2010-07-14 2010-07-14 プラズマ処理装置 Pending JP2012023163A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010159256A JP2012023163A (ja) 2010-07-14 2010-07-14 プラズマ処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010159256A JP2012023163A (ja) 2010-07-14 2010-07-14 プラズマ処理装置

Publications (1)

Publication Number Publication Date
JP2012023163A true JP2012023163A (ja) 2012-02-02

Family

ID=45777202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010159256A Pending JP2012023163A (ja) 2010-07-14 2010-07-14 プラズマ処理装置

Country Status (1)

Country Link
JP (1) JP2012023163A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170131520A (ko) * 2015-03-23 2017-11-29 어플라이드 머티어리얼스, 인코포레이티드 직접 상향 변환을 이용한 마이크로파 필드의 회전 주파수에 대한 디지털 제어를 갖는 플라즈마 반응기
JP2019110028A (ja) * 2017-12-18 2019-07-04 株式会社日立ハイテクノロジーズ プラズマ処理装置
CN111739778A (zh) * 2019-03-25 2020-10-02 株式会社国际电气 基板处理装置、半导体器件的制造方法及记录介质、程序
CN113767453A (zh) * 2020-04-03 2021-12-07 株式会社日立高新技术 等离子处理装置以及等离子处理方法
CN113840439A (zh) * 2021-10-11 2021-12-24 中国科学院合肥物质科学研究院 一种智能控制的等离子体空气快速灭菌装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111403255B (zh) * 2015-03-23 2023-03-28 应用材料公司 具有以直接上转换对微波场的旋转频率进行的数字控制的等离子体反应器
JP2018510475A (ja) * 2015-03-23 2018-04-12 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated ダイレクトアップコンバージョンを用いてマイクロ波フィールドの回転周波数をデジタル制御するプラズマリアクタ
KR20170131520A (ko) * 2015-03-23 2017-11-29 어플라이드 머티어리얼스, 인코포레이티드 직접 상향 변환을 이용한 마이크로파 필드의 회전 주파수에 대한 디지털 제어를 갖는 플라즈마 반응기
US10453655B2 (en) 2015-03-23 2019-10-22 Applied Materials, Inc. Plasma reactor having digital control over rotation frequency of a microwave field with direct up-conversion
CN111403255A (zh) * 2015-03-23 2020-07-10 应用材料公司 具有以直接上转换对微波场的旋转频率进行的数字控制的等离子体反应器
KR102520868B1 (ko) * 2015-03-23 2023-04-13 어플라이드 머티어리얼스, 인코포레이티드 직접 상향 변환을 이용한 마이크로파 필드의 회전 주파수에 대한 디지털 제어를 갖는 플라즈마 반응기
JP7085828B2 (ja) 2017-12-18 2022-06-17 株式会社日立ハイテク プラズマ処理装置
JP2019110028A (ja) * 2017-12-18 2019-07-04 株式会社日立ハイテクノロジーズ プラズマ処理装置
CN111739778A (zh) * 2019-03-25 2020-10-02 株式会社国际电气 基板处理装置、半导体器件的制造方法及记录介质、程序
CN111739778B (zh) * 2019-03-25 2023-08-22 株式会社国际电气 基板处理装置、半导体器件的制造方法及记录介质、程序
CN113767453A (zh) * 2020-04-03 2021-12-07 株式会社日立高新技术 等离子处理装置以及等离子处理方法
CN113767453B (zh) * 2020-04-03 2023-12-12 株式会社日立高新技术 等离子处理装置以及等离子处理方法
CN113840439A (zh) * 2021-10-11 2021-12-24 中国科学院合肥物质科学研究院 一种智能控制的等离子体空气快速灭菌装置
CN113840439B (zh) * 2021-10-11 2023-12-12 中国科学院合肥物质科学研究院 一种智能控制的等离子体空气快速灭菌装置

Similar Documents

Publication Publication Date Title
JP5168907B2 (ja) プラズマ処理装置、プラズマ処理方法及び記憶媒体
JP5360069B2 (ja) プラズマ処理装置およびプラズマ処理方法
WO2010004997A1 (ja) プラズマ処理装置
JP5898882B2 (ja) プラズマ処理装置およびプラズマ処理方法
JPH08264515A (ja) プラズマ処理装置、処理装置及びエッチング処理装置
JPH06251896A (ja) プラズマ処理方法及び装置
US20120186747A1 (en) Plasma processing apparatus
JP7085828B2 (ja) プラズマ処理装置
JP2010050046A (ja) プラズマ処理装置
US20050051273A1 (en) Plasma processing apparatus
JP2012023163A (ja) プラズマ処理装置
US20050126711A1 (en) Plasma processing apparatus
JP5332362B2 (ja) プラズマ処理装置、プラズマ処理方法及び記憶媒体
JP7001456B2 (ja) プラズマ処理装置
JP5063626B2 (ja) プラズマ処理装置
JP2005079416A (ja) プラズマ処理装置
JPH11204297A (ja) プラズマ処理装置及びプラズマ処理方法
JP3761474B2 (ja) プラズマ処理装置
JP2012134235A (ja) プラズマ処理装置
JP2932946B2 (ja) プラズマ処理装置
JP2001015297A (ja) プラズマ装置
JP5913817B2 (ja) プラズマ処理装置
JP2008166844A (ja) プラズマ処理装置
KR102337936B1 (ko) 플라즈마 처리 장치
JP3047801B2 (ja) プラズマ処理方法及び装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120517