JP2012021176A - 金属鉛の製造方法 - Google Patents

金属鉛の製造方法 Download PDF

Info

Publication number
JP2012021176A
JP2012021176A JP2010157894A JP2010157894A JP2012021176A JP 2012021176 A JP2012021176 A JP 2012021176A JP 2010157894 A JP2010157894 A JP 2010157894A JP 2010157894 A JP2010157894 A JP 2010157894A JP 2012021176 A JP2012021176 A JP 2012021176A
Authority
JP
Japan
Prior art keywords
lead
raw material
metallic
halide
containing composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010157894A
Other languages
English (en)
Inventor
Hironori Tateiwa
宏則 立岩
Yukio Kawashita
幸夫 川下
Yuichi Kitazaki
裕一 北崎
Hajime Nai
肇 名井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2010157894A priority Critical patent/JP2012021176A/ja
Publication of JP2012021176A publication Critical patent/JP2012021176A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

【課題】鉛溶鉱炉煙灰、鉛製錬以外の製煉煙灰、ゴミ焼却煙灰、ファンネルガラス等の鉛ガラスのように、酸化鉛或いはハロゲン化鉛を含む不要物を原料として用いて、800℃以上に加熱することなく、金属鉛を回収する。
【解決手段】酸化鉛又はハロゲン化鉛を含有する鉛含有組成物原料を、水酸化ナトリウム及び還元剤と混合して400〜700℃に加熱することにより、鉛含有組成物原料に含まれる酸化鉛又はハロゲン化鉛を還元して金属鉛として回収することを特徴とする金属鉛の製造方法を提案する。
【選択図】なし

Description

本発明は、鉛溶鉱炉煙灰、鉛製錬以外の製煉煙灰、ゴミ焼却煙灰、ファンネルガラス等の鉛ガラスのように、酸化鉛或いはハロゲン化鉛を含む不要物から金属鉛を回収することができる金属鉛の製造方法に関する。
鉛製煉では、鉛精鉱を焙焼・焼結して得られる焼結塊や、廃バッテリーなどを、溶鉱炉で溶融・還元して粗鉛としている。この際、一部の鉛は原料に含まれるハロゲンと結合してハロゲン化鉛の形態で揮発し、また、他の一部の鉛は酸化鉛の形態で揮発して、いずれもバグフィルターなどの集塵機により煙灰(これを「鉛熔鉱炉煙灰」と称す。)として捕集される。
このように捕集された鉛熔鉱炉煙灰から再利用可能な金属鉛を回収することができれば、資源の有効利用につながり望ましい。
ところが、捕集された鉛熔鉱炉煙灰をそのまま熔鉱炉に投入すると、原料に含まれるハロゲンと鉛が結合して再びハロゲン化鉛となって揮発するため、鉛回収率が低くなるだけでなく、鉛熔鉱炉煙灰による熔鉱炉内閉塞に起因して、空気の通りが悪くなり操業不能になりやすくなるといった問題があった。
そのため、鉛熔鉱炉煙灰のようにハロゲン化鉛や酸化鉛を含む不要物から、効率良く金属鉛を回収する方法が望まれていた。
例えば特許文献1、2には、都市ゴミ等を処理する焼却炉等の高温処理炉から生じる飛灰を硫酸浸出することで、飛灰中の鉛は硫酸鉛の形態で浸出残渣中に濃縮し、鉛製錬用の原料として回収する方法が開示されている。
また、特許文献3には、硫酸鉛に炭素源を入れて800〜1200℃の温度で、硫化鉛や金属鉛が生成しない条件で焼結させ、焼結体を鉛熔鉱炉で還元熔融して金属鉛を回収する方法が開示されている。
さらに特許文献4には、スラグ中の鉛を、竪型炉もしくはシャフト炉を用いて1000℃以上の高温で還元して金属鉛として回収する方法が開示されている。
特開2006−198448号公報 特開H08−309313号公報 特開H09−241769号公報 特開2007−117977号公報
前述のように、鉛熔鉱炉煙灰のようにハロゲン化鉛や酸化鉛を含む不要物から金属鉛を回収する従来の方法はいずれも、ハロゲン化鉛や酸化鉛を少なくとも800℃以上の高温に加熱して焼結させた後、鉛溶鉱炉などで還元熔融させて金属鉛として回収する方法であったが、このような方法では工程が複雑であるばかりか、800℃以上の高温に加熱するため、エネルギー使用量が大きく、二酸化酸素の排出量も多くなり、経済的及び環境的に課題を抱えていた。
ところが、特にハロゲン化鉛は、炭素などの還元剤を加えても、770℃より低温の領域では、熱力学的に還元しないことが確かめられており、ハロゲン化鉛の還元温度を低下させることは容易なことではない。
そこで本発明の目的は、例えば鉛溶鉱炉煙灰、鉛製錬以外の製煉煙灰、ゴミ焼却煙灰、ファンネルガラス等の鉛ガラスのように、酸化鉛或いはハロゲン化鉛を含む不要物を原料として用いて、800℃以上に加熱することなく、金属鉛を回収することができる、新たな金属鉛の製造方法を提供することにある。
本発明は、酸化鉛又はハロゲン化鉛を含有する鉛含有組成物原料を、水酸化ナトリウム及び還元剤と混合して400〜700℃に加熱することにより、鉛含有組成物原料に含まれる酸化鉛又はハロゲン化鉛を還元して金属鉛として回収することを特徴とする金属鉛の製造方法を提案する。
本発明はまた、酸化鉛又はハロゲン化鉛を含有する鉛含有組成物原料、水酸化ナトリウム及び還元剤を、400〜700℃の鉛溶湯中に投入することにより、鉛含有組成物原料に含まれる酸化鉛又はハロゲン化鉛を還元し、還元した金属鉛を鉛溶湯に吸収させて金属鉛を回収することを特徴とする金属鉛の製造方法を提案する。
通常、ハロゲン化鉛は、770℃より低温では還元しないが、本発明のように水酸化ナトリウムを加えて還元させると、水酸化ナトリウムと反応して金属鉛を生成することができる。水酸化ナトリウムは、安全性やハンドリングの点で注意を必要とするため、従来このような用途に用いるという発想はなかったが、極めて有用であることが分かった。
よって、本発明によれば、例えば鉛溶鉱炉煙灰、鉛製錬以外の製煉煙灰、ゴミ焼却煙灰、ファンネルガラス等の鉛ガラスのように、酸化鉛或いはハロゲン化鉛を含む不要物から、効率良く金属鉛を回収することができる。
以下、本発明の一実施形態の例(以下、「本実施形態」という)について説明するが、本発明が下記本実施形態に限定されるものではない。
<第1の実施形態>
第1の実施形態に係る金属鉛の製造方法(「本実施形態」と称する)は、酸化鉛又はハロゲン化鉛を含有する鉛含有組成物原料を、水酸化ナトリウム及び還元剤と混合して400〜700℃に加熱することにより、鉛含有組成物原料に含まれる酸化鉛又はハロゲン化鉛を還元して金属鉛として回収することを特徴とする方法である。
鉛を含有する鉛含有組成物原料としては、例えば鉛溶鉱炉煙灰、鉛製錬以外の製煉煙灰、ゴミ焼却煙灰、ファンネルガラス等の鉛ガラスのように、酸化鉛或いはハロゲン化鉛を含む不要物を挙げることができる。特に、PbCl2、PbBr2などのハロゲン化鉛を含む鉛含有組成物原料であるのが好ましい。
中でも、鉛含有組成物原料に含まれる鉛化合物のうちの50質量%以上、特に70質量%以上、中でも90質量%以上をハロゲン化鉛が占める原料であれば、本発明の効果をより一層享受できる点で好ましい。
還元剤としては、石炭、コークス、木炭、廃プリント基板、鉄、アルミニウム及び錫からなる群から選ばれる一種又は二種以上の混合物を挙げることができる。中でも原料としての取り扱いの点で、コークス、木炭、石炭などが特に好ましい。
還元する際の温度は、400〜700℃の範囲であれば還元を効果的に行うことができる。中でもエネルギーコストの点で、430℃以上或いは650℃以下であるのが特に好ましい。
400℃以上であれば、効率的に酸化鉛又はハロゲン化鉛を還元させることができる一方、700℃以下とするのが設備面及びエネルギー面から効率的である。
本実施形態のように処理することにより、鉛含有組成物原料中のハロゲン化鉛は次の例のように、水酸化ナトリウムと反応して酸化鉛とハロゲン化ナトリウムを生成し、当該酸化鉛が還元されて金属鉛を生成させることができる。
(反応例)
PbCl2+NaOH→PbO+2NaCl+H2O↑
2PbO+C→2Pb+CO2
水酸化ナトリウムの量は、鉛の回収率の点から、鉛含有組成物原料に対して0.1質量倍以上、特に0.1〜2質量倍、中でも特に0.5〜1質量倍とするのが好ましい。
金属鉛の分離手段としては、金属鉛は沈降するため、スラグとして金属鉛を掻きだしたり、或いは、炉底部から抜き出したり、公知の方法によって行えばよい。
また、鉛以外の不要成分は、酸化物などとなって浮き上がり、沈降する成分は存在しないため、掬い取るなどして分離すればよい。
<第2の実施形態>
第2の実施形態に係る金属鉛の製造方法(「本実施形態」と称する)は、酸化鉛又はハロゲン化鉛を含有する鉛含有組成物原料、水酸化ナトリウム及び還元剤を、400〜700℃の鉛溶湯中に投入することにより、鉛含有組成物原料に含まれる酸化鉛又はハロゲン化鉛を還元し、還元した金属鉛を鉛溶湯に吸収させて金属鉛を回収することを特徴とする方法である。
本実施形態の製法は、上記第1の実施形態の製法に比べて、従来の鉛製錬工程を改造等することなく適用可能という特徴があり、設備投資や追加のエネルギー源が不要というメリットを有している。また、水酸化ナトリウムの濡れ性を改善し、還元速度を速めることができるというメリットも有している。さらに、常温の状態でそのものが有する比熱により全体を冷却するというメリットを享受することもできる。
鉛を含有する鉛含有組成物原料の種類、および還元剤の種類としては、第1の実施形態と同様である。
鉛溶湯の量は、鉛含有組成物原料に対して90wt%以上であるのが好ましい。
鉛溶湯に加える水酸化ナトリウムの量は、鉛含有組成物原料に対して十分濡れ性を確保できる量であればよく、その範囲でコスト高とならないようなるべく少量とすることが好ましい。鉛の回収率の点を加味すると、鉛含有組成物原料に対して0.1質量倍以上、特に0.1〜2質量倍、中でも特に0.5〜1質量倍とするのが好ましい。
鉛溶湯の温度は、400〜700℃の範囲であれば還元を効果的に行うことができる。中でもエネルギーコストの点で、430℃以上或いは650℃以下であるのが特に好ましく、その中でも600℃以下であるのがさらに好ましい。
400℃以上であれば、効率的に酸化鉛又はハロゲン化鉛を還元させることができる一方、700℃以下とするのが設備面及びエネルギー面から効率的である。
鉛含有組成物原料などを鉛溶湯中に投入後、例えば攪拌翼や、Arガス、N2ガスなどを用いて攪拌して反応させるのが好ましい。
本実施形態のように処理することにより、鉛含有組成物原料中のハロゲン化鉛は次の例のように、水酸化ナトリウムと反応して酸化鉛とハロゲン化ナトリウムを生成し、当該酸化鉛が還元されて金属鉛を生成させることができる。
(反応例)
PbCl2+NaOH→PbO+2NaCl+H2O↑
2PbO+C→2Pb+CO2
鉛溶湯から金属鉛を分離回収する手段としては、金属鉛は沈降するため、スラグとして金属鉛を掻きだしたり、或いは、炉底部から抜き出したり、公知の方法によって行えばよい。
また、鉛以外の不要成分は、酸化物などとなって浮き上がり、沈降する成分は存在しないため、掬い取るなどして分離すればよい。
<語句の説明>
本明細書において「X〜Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)と表現する場合、特にことわらない限り「好ましくはXより大きい」の意を包含し、「Y以下」(Yは任意の数字)と表現する場合、特にことわらない限り「好ましくYより小さい」の意を包含する。
以下、本発明の実施例について説明する。但し、本発明の範囲が下記実施例に限定されるものではない。
(実施例1−1)
PbO(Pb品位92.8%)100g、NaOH200g及び小麦粉50gを、鉄ルツボ内に投入し、電気炉(大気雰囲気)にて500℃まで加熱し、その後攪拌機で攪拌しながら3時間保持した。
電気炉から鉄ルツボを取出して、冷却後手選別にて金属鉛を回収したところ、得られた金属鉛は85.4gであり、鉛の回収率としては92.0%であった。
この際、次のような反応が進行したものと考えられる。また、NaOHは、濡れ性改善のために働き、反応後はNaOHの状態で浮き上がった。
2PbO+C→2Pb+CO2 (g)
(実施例1−2)
実施例1−1の加熱処理条件(500℃×3時間)を、400℃×3時間に変更した以外は、実施例1−1と同様に処理したところ、得られた金属鉛は22.9gであり、鉛の回収率としては24.7%であった。
(実施例1−3)
実施例1−1の原料であるPbOを、熔鉱炉煙灰(Pb品位(煙灰中に占めるPbの割合):35%,Br品位17%, Cl品位6%)に変更し、且つ、加熱処理条件を550℃×3時間に変更した以外は、実施例1−1と同様に処理したところ、得られた金属鉛は22.3gであり、鉛の回収率としては63.7%であった。
この際、次のような反応が進行したものと考えられる。また、NaOHは、濡れ性改善のために働き、反応後はNaOHの状態で浮き上がった。また、金属鉛以外の含有成分(鉛熔鉱炉煙灰に含まれるPb以外の成分)は、酸化物などとなって浮き上がった。
2PbBr2+4NaOH+C →2Pb+4NaBr+2H2O+CO2(g)
2PbCl2+2NaOH+C →2Pb+4NaCl+2H2O+CO2(g)
(実施例1−4)
実施例1−1の原料であるPbOを、廃鉛ガラス(Pb品位:23%)に変更し、且つ、加熱処理条件を550℃×3時間に変更した以外は、実施例1−1と同様に処理したところ、得られた金属鉛は13.2gであり、鉛の回収率としては57.4%であった。
(比較例1−1)
実施例1−1において、NaOHを原料に添加しない以外は、実施例1−1と同様に処理したところ、得られた金属鉛は6.5gであり、鉛の回収率としては7.0%であった。
Figure 2012021176
(実施例2−1)
金属鉛954gを鉄ルツボにいれて電気炉にて熔融後、熔融した金属鉛の溶湯に、PbO(Pb品位92.8%)100g、NaOH200g及び粉砕した木炭50gを投入し、電気炉(大気雰囲気)にて500℃まで加熱し、その後攪拌機で攪拌しながら500℃を3時間保持した。
電気炉から鉄ルツボを取出して、熔融した金属鉛を鋳型に鋳込んで金属鉛を回収したところ、得られた金属鉛は1035gであり、鉛の回収率としては87.1%であった。
この際、次のような反応が進行したものと考えられる。また、NaOHは、濡れ性改善のために働き、反応後はNaOHの状態で浮き上がった。
2PbO+C→2Pb+CO2 (g)
(実施例2−2)
実施例2−1において、原料としての金属鉛の量を1003gに変更し、加熱処理条件(500℃×3時間)を、400℃×3時間に変更した以外は、実施例2−1と同様に処理したところ、得られた金属鉛は1021gであり、鉛の回収率としては19.4%であった。
(実施例2−3)
実施例2−1において、原料としての金属鉛の量を963gに変更し、原料であるPbOを、熔鉱炉煙灰(Pb品位:35%,Br品位17%, Cl品位6%)に変更し、且つ、加熱処理条件を550℃×3時間に変更した以外は、実施例2−1と同様に処理したところ、得られた金属鉛は980gであり、鉛の回収率としては48.6%であった。
なお、原料である金属Pb及び回収された金属鉛を、XRF半定量分析したところ、前者の品位は、Pb99.7%、Cl0.1%、Fe0.1%、K0.1%であったのに対し、後者の品位は、Pb98.9%、Cl0.4%、Ni0.2%、Na0.2%、S0.1%、K0.1%であった。
(実施例2−4)
実施例2−1において、原料としての金属鉛の量を1035gに変更し、原料であるPbOを、廃鉛ガラス(Pb品位:23%)100gに変更し、且つ、加熱処理条件を550℃×3時間に変更した以外は、実施例2−1と同様に処理したところ、得られた金属鉛は1041gであり、鉛の回収率としては26.1%であった。
(実施例2−5)
金属鉛496gを鉄ルツボにいれて電気炉にて熔融後、熔融した金属鉛の溶湯に、PbO(Pb品位92.8%)100g、NaOH200g及びPb−Sn合金(Sn品位10%)502gを投入し、電気炉(大気雰囲気)にて450℃まで加熱し、その後攪拌機で攪拌しながら450℃を3時間保持した。
電気炉から鉄ルツボを取出して、熔融した金属鉛を鋳型に鋳込んで金属鉛を回収したところ、得られた金属鉛は1013gであり、鉛の回収率としては69.9%であった。
(実施例2−6)
実施例2−3において、原料としての金属鉛の量を1006gに変更し、加熱処理条件(550℃×3時間)を、700℃×3時間に変更した以外は、実施例2−3と同様に処理したところ、得られた金属鉛は1039gであり、鉛の回収率としては94.3%であった。
(実施例2−7)
実施例2−4において、原料としての金属鉛の量を1013gに変更し、加熱処理条件(550℃×3時間)を、700℃×3時間に変更した以外は、実施例2−3と同様に処理したところ、得られた金属鉛は1034gであり、鉛の回収率としては91.3%であった。
(比較例2−1)
実施例2−1において、原料としての金属鉛の量を1001gに変更し、且つNaOHを原料に添加しない以外は、実施例2−1と同様に処理したところ、得られた金属鉛は897gであった。
Figure 2012021176

(実施例3−1)
金属鉛1023gを鉄ルツボにいれて電気炉にて熔融後、熔融した金属鉛の溶湯に、PbO(Pb品位92.8%)100g、NaOH200g及び小麦50gを投入し、電気炉(大気雰囲気)にて500℃まで加熱し、その後攪拌機で攪拌しながら550℃を3時間保持した。
電気炉から鉄ルツボを取出して、熔融した金属鉛を鋳型に鋳込んで金属鉛を回収したところ、得られた金属鉛は1111gであり、鉛の回収率としては94.4%であった。
(実施例3−2)
金属鉛1056gを鉄ルツボにいれて電気炉にて熔融後、熔融した金属鉛の溶湯に、PbO(Pb品位92.8%)100g、NaOH100g及び小麦50gを投入した以外の点については、実施例3−1と同様に 電気炉から鉄ルツボを取出して、熔融した金属鉛を鋳型に鋳込んで金属鉛を回収した。
(実施例3−3)
金属鉛979gを鉄ルツボにいれて電気炉にて熔融後、熔融した金属鉛の溶湯に、PbO(Pb品位92.8%)100g、NaOH50g及び小麦50gを投入した以外の点については、実施例3−1と同様に 電気炉から鉄ルツボを取出して、熔融した金属鉛を鋳型に鋳込んで金属鉛を回収した。
(実施例3−4)
金属鉛992gを鉄ルツボにいれて電気炉にて熔融後、熔融した金属鉛の溶湯に、PbO(Pb品位92.8%)100g、NaOH10g及び小麦50gを投入した以外の点については、実施例3−1と同様に 電気炉から鉄ルツボを取出して、熔融した金属鉛を鋳型に鋳込んで金属鉛を回収した。
(比較例3−1)
金属鉛1001gを鉄ルツボにいれて電気炉にて熔融後、熔融した金属鉛の溶湯に、PbO(Pb品位92.8%)100g、NaOH0g及び小麦50gを投入した以外の点については、実施例3−1と同様に 電気炉から鉄ルツボを取出して、熔融した金属鉛を鋳型に鋳込んで金属鉛を回収した。
Figure 2012021176
以上の結果、酸化鉛又はハロゲン化鉛を含有する鉛含有組成物原料に水酸化ナトリウムを加えて還元させると、酸化鉛又はハロゲン化鉛が水酸化ナトリウムと反応して金属鉛を生成し、金属鉛を効率良く回収することができることが判明した。
この際、還元する際の温度は、400〜700℃の範囲であればよいが、金属鉛の回収率を高める観点からは、430℃以上、特に450℃以上、その中でも特に500℃以上とするのが好ましいことが分かった。
また、表3の結果より、添加する水酸化ナトリウムの量は、鉛の回収率の点から、鉛含有組成物原料に対して0.1質量倍以上、特に0.1〜2質量倍、中でも特に0.5〜1質量倍配合するのが好ましいと考えることができる。

Claims (5)

  1. 酸化鉛又はハロゲン化鉛を含有する鉛含有組成物原料を、水酸化ナトリウム及び還元剤と混合して400〜700℃に加熱することにより、鉛含有組成物原料に含まれる酸化鉛又はハロゲン化鉛を還元して金属鉛として回収することを特徴とする金属鉛の製造方法。
  2. 酸化鉛又はハロゲン化鉛を含有する鉛含有組成物原料、水酸化ナトリウム及び還元剤を、400〜700℃の鉛溶湯中に投入することにより、鉛含有組成物原料に含まれる酸化鉛又はハロゲン化鉛を還元し、還元した金属鉛を鉛溶湯に吸収させて金属鉛を回収することを特徴とする金属鉛の製造方法。
  3. 鉛含有組成物原料に含まれるハロゲン化鉛が、水酸化ナトリウムと反応して、酸化鉛とハロゲン化ナトリウムを生成し、当該酸化鉛が還元されて金属鉛を生成する反応を含むことを特徴とする請求項1又は2に記載の金属鉛の製造方法。
  4. 鉛含有組成物原料は、鉛溶鉱炉煙灰、鉛製錬以外の製煉煙灰、ゴミ焼却煙灰及び鉛ガラスからなる群から選ばれる一種又は二種以上の混合物であることを特徴とする請求項1〜3の何れかに記載の金属鉛の製造方法。
  5. 還元材は、石炭、コークス、木炭、廃プリント基板、或いは、鉄、アルミニウム及び錫の何れか或いはそれを含む合金からなる群から選ばれる一種又は二種以上の混合物であることを特徴とする請求項1〜4の何れかに記載の金属鉛の製造方法。
JP2010157894A 2010-07-12 2010-07-12 金属鉛の製造方法 Pending JP2012021176A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010157894A JP2012021176A (ja) 2010-07-12 2010-07-12 金属鉛の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010157894A JP2012021176A (ja) 2010-07-12 2010-07-12 金属鉛の製造方法

Publications (1)

Publication Number Publication Date
JP2012021176A true JP2012021176A (ja) 2012-02-02

Family

ID=45775666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010157894A Pending JP2012021176A (ja) 2010-07-12 2010-07-12 金属鉛の製造方法

Country Status (1)

Country Link
JP (1) JP2012021176A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014040332A1 (zh) * 2012-09-17 2014-03-20 广东省生态环境与土壤研究所 一种从含铅废弃电子垃圾阴极射线管玻璃中回收利用铅的方法
GB2512814A (en) * 2013-02-12 2014-10-15 Ultromex Ltd Apparatus and method for recovery of lead
KR101464182B1 (ko) * 2012-11-23 2014-12-04 문상우 철, 아연, 망간, 마그네슘, 칼슘, 코발트가 함유된 폐기물로부터 수용성 혼합 미네랄과 금속납을 제조하는 방법
JP2016130335A (ja) * 2015-01-13 2016-07-21 パナソニックIpマネジメント株式会社 鉛ガラスからの鉛の分別方法及び装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140013B1 (ja) * 1970-12-24 1976-11-01
JPS56139637A (en) * 1980-03-20 1981-10-31 Asarco Inc Separation of lead from material containing lead sulfide
JP2006322031A (ja) * 2005-05-18 2006-11-30 Dowa Mining Co Ltd 金属回収方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140013B1 (ja) * 1970-12-24 1976-11-01
JPS56139637A (en) * 1980-03-20 1981-10-31 Asarco Inc Separation of lead from material containing lead sulfide
JP2006322031A (ja) * 2005-05-18 2006-11-30 Dowa Mining Co Ltd 金属回収方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014038077; PICKLES C A, TOGURI J M: 'Soda ash smelting of lead chloride' Canadian Metallurgy Quarterly Vol.27 No.2, 198804, Page.117-122, Maney Publishing *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014040332A1 (zh) * 2012-09-17 2014-03-20 广东省生态环境与土壤研究所 一种从含铅废弃电子垃圾阴极射线管玻璃中回收利用铅的方法
US20150232962A1 (en) * 2012-09-17 2015-08-20 Guangdong Institute Of Eco-Environment And Soil Sciences Method for recovering lead from lead-containing discarded electronic waste cathode ray tube glass
US9650693B2 (en) 2012-09-17 2017-05-16 Guangdong Institute Of Eco-Environmental Science & Technology Method for recovering lead from lead-containing discarded electronic waste cathode ray tube glass
KR101464182B1 (ko) * 2012-11-23 2014-12-04 문상우 철, 아연, 망간, 마그네슘, 칼슘, 코발트가 함유된 폐기물로부터 수용성 혼합 미네랄과 금속납을 제조하는 방법
GB2512814A (en) * 2013-02-12 2014-10-15 Ultromex Ltd Apparatus and method for recovery of lead
JP2016130335A (ja) * 2015-01-13 2016-07-21 パナソニックIpマネジメント株式会社 鉛ガラスからの鉛の分別方法及び装置

Similar Documents

Publication Publication Date Title
JP6960926B2 (ja) リチウムリッチな冶金スラグ
CN102286665B (zh) 一种复杂含砷及有价金属渣尘物料的综合回收方法
US9017542B2 (en) Process for recovering valuable metals from precious metal smelting slag
KR101145957B1 (ko) 아연 잔류물로부터 비철 금속의 회수 방법 및 장치
JP4461283B2 (ja) 亜鉛残留物からの非鉄金属の回収
CN111876611B (zh) 一种粗铜火法精炼深度脱除砷、铅、锌、锡的方法
CN105039701A (zh) 一种复杂富锌含铅物料处理方法
JP2008031548A (ja) 鉄鋼副生物の還元リサイクル用原料及びその焙焼還元方法
CN113355525A (zh) 一种铜冶炼渣协同搭配处理含金废渣的方法
KR20080022545A (ko) 아연 침출 잔류물에서 유가 금속을 분리하는 방법
JP2012021176A (ja) 金属鉛の製造方法
CN101818266A (zh) 一种从氯氧化锑渣中回收锑的生产方法
JP2010007180A (ja) 高亜鉛含有鉄鉱石を用いた銑鉄製造方法
JP5742360B2 (ja) 鉄鋼ダスト還元焙焼用ロータリーキルンの操業方法
JP2009041052A (ja) スラグフューミング炉による含銅ドロスの製錬方法
JP2009209405A (ja) 含銅ドロスの製錬方法
CN1566379A (zh) 一种铜锌物料的鼓风炉熔炼铜锌分离方法
CN101280364B (zh) 一种生产高锑粗铅的方法
JP2008031549A (ja) 鉄鋼副生物の焙焼還元方法
CN115852162B (zh) 高锌熔体熔池还原炉渣、锌的冶炼方法及其应用
CN1188533C (zh) 铜锌钴分离的熔炼法
JPH05202436A (ja) 製鋼ダストから高品位金属亜鉛を回収する方法
JP4757829B2 (ja) 鉄鋼副生物から効率的に有価金属を回収する電気製錬方法
JP2009209388A (ja) スラグフューミング方法
CA3141668A1 (en) Method and system for slag vitrification of toxic elements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150203