JP2012017998A - Polycrystalline silicon rod, inspection method of polycrystalline silicon rod, and manufacturing method of polycrystalline silicon rod - Google Patents

Polycrystalline silicon rod, inspection method of polycrystalline silicon rod, and manufacturing method of polycrystalline silicon rod Download PDF

Info

Publication number
JP2012017998A
JP2012017998A JP2010153830A JP2010153830A JP2012017998A JP 2012017998 A JP2012017998 A JP 2012017998A JP 2010153830 A JP2010153830 A JP 2010153830A JP 2010153830 A JP2010153830 A JP 2010153830A JP 2012017998 A JP2012017998 A JP 2012017998A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
silicon rod
frequency
rod
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010153830A
Other languages
Japanese (ja)
Inventor
Fumitaka Kume
史高 久米
Shigeyoshi Netsu
茂義 祢津
Junichi Okada
淳一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2010153830A priority Critical patent/JP2012017998A/en
Priority to PCT/JP2011/003801 priority patent/WO2012004969A1/en
Publication of JP2012017998A publication Critical patent/JP2012017998A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/045Analysing solids by imparting shocks to the workpiece and detecting the vibrations or the acoustic waves caused by the shocks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4454Signal recognition, e.g. specific values or portions, signal events, signatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2697Wafer or (micro)electronic parts

Landscapes

  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Signal Processing (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high quality polycrystalline silicon rod through easy detection of a crack in a polycrystalline silicon rod to select a polycrystalline silicon rod having no crack.SOLUTION: A polycrystalline silicon rod (100) is impacted with a hammer (120) to produce a hit sound which is recorded in a recorder (140) through a microphone (130). The hit sound is analyzed to calculate a natural frequency f, and acoustic signals of the hit sound are fast Fourier transformed to display a frequency distribution. A peak frequency f exhibiting a maximum loudness in the frequency distribution after the fast Fourier transformation is then detected to compare the natural frequency f(Hz) with the peak frequency f (Hz). For example, in the case that a frequency ratio R(f/f) is in the range of 0.9≤R≤1.1, the polycrystalline silicon rod is judged to be free from internal and external cracks.

Description

本発明は多結晶シリコン棒および多結晶シリコン棒の検査方法ならびに多結晶シリコン棒の製造方法に関し、より詳細には、多結晶シリコン棒内外部のひび割れ(クラック)を簡易的に検知する技術に関する。   The present invention relates to a polycrystalline silicon rod, a method for inspecting a polycrystalline silicon rod, and a method for producing a polycrystalline silicon rod, and more particularly to a technique for easily detecting cracks inside and outside the polycrystalline silicon rod.

半導体デバイス製造用単結晶シリコンあるいは太陽電池製造用シリコンの原料となる多結晶シリコンの製造方法として、シーメンス法が知られている。シーメンス法は、クロロシランを含む原料ガスを加熱されたシリコン芯線に接触させることにより、該シリコン芯線の表面に多結晶シリコンをCVD(Chemical Vapor Deposition)法を用いて気相成長させる方法である。   A Siemens method is known as a method for producing polycrystalline silicon which is a raw material for single crystal silicon for producing semiconductor devices or silicon for producing solar cells. The Siemens method is a method in which a source gas containing chlorosilane is brought into contact with a heated silicon core wire, and polycrystalline silicon is vapor-phase grown on the surface of the silicon core wire using a CVD (Chemical Vapor Deposition) method.

シーメンス法により多結晶シリコンを成長する際、気相成長装置の反応炉内にシリコン芯線を鉛直方向2本、水平方向1本の鳥居型に組み立て、該鳥居型のシリコン芯線の両端を一対の芯線ホルダを介してベースプレート上に配置した一対の金属電極に固定する。   When growing polycrystalline silicon by the Siemens method, two silicon core wires are assembled into a torii type in the vertical direction and one horizontal direction in the reactor of the vapor phase growth apparatus, and both ends of the torii type silicon core wire are connected to a pair of core wires. It fixes to a pair of metal electrode arrange | positioned on a baseplate through a holder.

次に、金属電極から電流を導通させてシリコン芯線を水素雰囲気中で900℃以上1200℃以下の温度範囲で加熱しながら、トリクロロシランと水素の混合ガスなどの原料ガスをガスノズルから反応炉内に供給すると、シリコン芯線上にシリコンが結晶成長し、所望の直径の多結晶シリコンが逆U字状に形成される。   Next, while conducting a current from the metal electrode and heating the silicon core wire in a temperature range of 900 ° C. or more and 1200 ° C. or less in a hydrogen atmosphere, a source gas such as a mixed gas of trichlorosilane and hydrogen is introduced from the gas nozzle into the reactor. When supplied, silicon grows on the silicon core, and polycrystalline silicon having a desired diameter is formed in an inverted U shape.

シーメンス法により気相成長させた多結晶シリコンを用いてFZ(Floating Zone)法により単結晶シリコンを製造する場合、上記逆U字状の多結晶シリコンの両端を切断して所望の長さの多結晶シリコン棒に調整し(切断工程)、この多結晶シリコン棒の外周を研磨して直径を長手方向に均一化し(円筒研磨工程)、さらにこの多結晶シリコン棒の一端を加工して尖らせ(先端加工工程)、最後に多結晶シリコン棒の表面をエッチングして不純物および歪を除去する(エッチング工程)などの処理が施される。   When single crystal silicon is manufactured by FZ (Floating Zone) method using polycrystalline silicon vapor-phase grown by Siemens method, both ends of the inverted U-shaped polycrystalline silicon are cut to obtain a desired length. Adjust to a crystalline silicon rod (cutting step), polish the outer periphery of this polycrystalline silicon rod to make the diameter uniform in the longitudinal direction (cylindrical polishing step), and further process and sharpen one end of this polycrystalline silicon rod ( The tip processing step) and finally, the surface of the polycrystalline silicon rod is etched to remove impurities and strain (etching step).

このような多結晶シリコン棒は、近年の大口径化に伴い、その気相成長過程や成長後の冷却過程において、内外部にひび割れ(クラック)が形成され易くなっている。   With such a polycrystalline silicon rod, cracks are easily formed on the inside and outside in the vapor phase growth process and the cooling process after growth as the diameter increases in recent years.

多結晶シリコン棒の内外部にひび割れが形成されていると、上述した切断工程、円筒研磨工程、先端加工工程、あるいはエッチング工程において折れてしまうことがある。また、最悪の場合には、FZ法による単結晶シリコンインゴットの育成工程中に、多結晶シリコン棒が割れてしまうこともある。これらの工程中に多結晶シリコン棒が割れてしまうと、それまでの工程作業が無駄になるばかりか、工程で使用している機器が破損されることもある。   If cracks are formed on the inside and outside of the polycrystalline silicon rod, they may break in the above-described cutting step, cylindrical polishing step, tip processing step, or etching step. In the worst case, the polycrystalline silicon rod may break during the growing process of the single crystal silicon ingot by the FZ method. If the polycrystalline silicon rod breaks during these processes, not only the previous process work is wasted, but the equipment used in the process may be damaged.

また、多結晶シリコン棒を、CZ(Czochralski)法による単結晶シリコンインゴットの育成工程における追チャージ材やリチャージ材として用いる場合、多結晶シリコン棒の内外部にひび割れがあると、棒状のままで使用するための機械加工の際や高温に加熱されたCZ炉内のルツボへの降下の際にひび割れを起点にして多結晶シリコン棒が破断して落下し、シリコン融液を飛散させたりルツボを破壊したりすることがある。   In addition, when a polycrystalline silicon rod is used as a recharge material or recharge material in the growth process of a single crystal silicon ingot by the CZ (Czochralski) method, if there is a crack inside or outside the polycrystalline silicon rod, it will be used as a rod When machining to make it, or when descending to a crucible in a CZ furnace heated to a high temperature, the polycrystalline silicon rod breaks and falls starting from cracks, and the silicon melt is scattered or the crucible is destroyed Sometimes.

ここで、追チャージとは、ルツボ内に充填したシリコン塊を溶融後、ルツボ上に吊り下げた多結晶シリコン棒を融液に徐々に溶け込ませてルツボ内の融液量を増加させることである。また、リチャージとは、CZ結晶を引上げた後に、ルツボ上に吊り下げた多結晶シリコン棒を残液に徐々に溶け込ませてルツボ内の融液量を増加させることである。   Here, the additional charge is to increase the amount of the melt in the crucible by melting the silicon lump filled in the crucible and then gradually dissolving the polycrystalline silicon rod suspended on the crucible into the melt. . In addition, recharging is to increase the amount of melt in the crucible by gradually dissolving the polycrystalline silicon rod suspended on the crucible into the residual liquid after pulling up the CZ crystal.

従来より、多結晶シリコン内外部のひび割れを検出するために種々の手法が提案されている。例えば、特開2001−21543号公報(特許文献1)には、水中またはその他の液体中に多結晶シリコン塊を置き、その上方で探触子を走査させながら0.5〜10MHzの音波を発信および受信し、探触子直下における異常部を二次平面的に表示させる探傷方法が開示されている。   Conventionally, various methods have been proposed for detecting cracks inside and outside the polycrystalline silicon. For example, in Japanese Patent Laid-Open No. 2001-21543 (Patent Document 1), a polycrystalline silicon lump is placed in water or other liquid, and a sound wave of 0.5 to 10 MHz is transmitted while scanning a probe above the lump. In addition, a flaw detection method for receiving and displaying an abnormal part directly below the probe in a second-order plane is disclosed.

また、特開2007−218638号公報(特許文献2)には、多結晶シリコンウエハの赤外線透過光による画像データと赤外線反射光による画像データとを比較し、同じ位置に対応する明度または輝度の差分を画素毎にとり、内外部にクラックがあるかどうかを判断する割れ検査方法が開示されている。   Japanese Patent Application Laid-Open No. 2007-218638 (Patent Document 2) compares image data of infrared transmission light and image data of infrared reflected light of a polycrystalline silicon wafer, and compares the brightness or luminance corresponding to the same position. Has been disclosed for each pixel, and a crack inspection method for judging whether or not there is a crack inside and outside is disclosed.

特開2001−21543号公報JP 2001-21543 A 特開2007−218638号公報JP 2007-218638 A

しかし、特許文献1および特許文献2に開示の探傷方法や割れ検査方法は、検査装置が大掛かりなものとならざるを得ない。また、従来より作業員の打音による割れ検査も行われているが、この打音検査は官能検査であるため、必然的に、作業員毎の判断のバラツキが生じてしまう。   However, the flaw detection method and the crack inspection method disclosed in Patent Document 1 and Patent Document 2 must be a large-scale inspection apparatus. In addition, crack inspection by hitting sounds of workers has been performed conventionally, but since this hitting sound inspection is a sensory test, there is inevitably a variation in judgment among workers.

本発明は、このような従来の多結晶シリコンのひび割れ(クラック)検査方法が抱える問題点を解決するためになされたものであり、その目的とするところは、大掛かりな装置を必要とせず且つ高い精度で多結晶シリコンのひび割れ(クラック)の有無を検査する手法を提供し、ひいては、高品質な多結晶シリコン棒を提供することにある。   The present invention has been made in order to solve the problems of the conventional method for inspecting cracks in polycrystalline silicon, and the object of the present invention is not to require a large-scale apparatus and is high. The object is to provide a method for inspecting the presence or absence of cracks in polycrystalline silicon with high accuracy, and to provide a high-quality polycrystalline silicon rod.

上述の課題を解決するために、本発明の多結晶シリコン棒の検査方法は、多結晶シリコン棒を打撃して得られた打撃音の周波数分析を行い、該打撃音の固有周波数f0(Hz)とピーク周波数f(Hz)を求め、周波数比R(f0/f)に基づいて、前記多結晶シリコン棒の内外部のひび割れの有無を判断することを特徴とする。 In order to solve the above-described problem, the polycrystalline silicon rod inspection method according to the present invention performs frequency analysis of the hitting sound obtained by hitting the polycrystalline silicon rod, and the natural frequency f 0 (Hz) of the hitting sound. ) And a peak frequency f (Hz), and the presence or absence of cracks on the inside and outside of the polycrystalline silicon rod is determined based on the frequency ratio R (f 0 / f).

例えば、前記周波数比R(f0/f)が0.9≦R≦1.1である場合に、前記多結晶シリコン棒の内外部にはひび割れが無いと判定することとしてもよい。 For example, when the frequency ratio R (f 0 / f) is 0.9 ≦ R ≦ 1.1, it may be determined that there is no crack inside and outside the polycrystalline silicon rod.

また、例えば、前記周波数比R(f0/f)が0.95≦R≦1.05である場合に、前記多結晶シリコン棒の内外部にはひび割れが無いと判定することとしてもよい。 For example, when the frequency ratio R (f 0 / f) is 0.95 ≦ R ≦ 1.05, it may be determined that there is no crack inside and outside the polycrystalline silicon rod.

前記多結晶シリコン棒は、例えば、シーメンス法による気相成長で得られたものである。   The polycrystalline silicon rod is obtained, for example, by vapor phase growth by the Siemens method.

本発明の多結晶シリコン棒の製造方法は、気相成長法により多結晶シリコンを成長させ、該多結晶シリコンを多結晶シリコン棒とし、該多結晶シリコン棒を打撃して得られた打撃音の周波数分析を行い、該打撃音の固有周波数f0(Hz)とピーク周波数f(Hz)を求め、周波数比R(f0/f)が0.9≦R≦1.1から外れる領域を除去することを特徴とする。 The method for producing a polycrystalline silicon rod according to the present invention comprises growing polycrystalline silicon by a vapor phase growth method, using the polycrystalline silicon as a polycrystalline silicon rod, and hitting the polycrystalline silicon rod. Perform frequency analysis to determine the natural frequency f 0 (Hz) and peak frequency f (Hz) of the percussion sound, and remove the region where the frequency ratio R (f 0 / f) deviates from 0.9 ≦ R ≦ 1.1 It is characterized by doing.

また、本発明の多結晶シリコン棒の製造方法は、気相成長法により多結晶シリコンを成長させ、該多結晶シリコンを多結晶シリコン棒とし、該多結晶シリコン棒を打撃して得られた打撃音の周波数分析を行い、該打撃音の固有周波数f0(Hz)とピーク周波数f(Hz)を求め、周波数比R(f0/f)が0.95≦R≦1.05から外れる領域を除去することとしてもよい。 Further, the method for producing a polycrystalline silicon rod according to the present invention is obtained by growing polycrystalline silicon by a vapor phase growth method, using the polycrystalline silicon as a polycrystalline silicon rod, and hitting the polycrystalline silicon rod. The frequency of the sound is analyzed, the natural frequency f 0 (Hz) and the peak frequency f (Hz) of the percussion sound are obtained, and the frequency ratio R (f 0 / f) is outside the range of 0.95 ≦ R ≦ 1.05 It is good also as removing.

前記気相成長法は、例えば、シーメンス法である。   The vapor phase growth method is, for example, a Siemens method.

本発明の多結晶シリコン棒は、該多結晶シリコン棒の打撃音の波形から求めた固有周波数f0(Hz)と前記打撃音を周波数分析して得られるピーク周波数f(Hz)との比R(f0/f)が0.9≦R≦1.1であることを特徴とする。 The polycrystalline silicon rod of the present invention has a ratio R between the natural frequency f 0 (Hz) obtained from the waveform of the hitting sound of the polycrystalline silicon rod and the peak frequency f (Hz) obtained by frequency analysis of the hitting sound. (F 0 / f) is 0.9 ≦ R ≦ 1.1.

前記R値は0.95≦R≦1.05としてもよい。   The R value may be 0.95 ≦ R ≦ 1.05.

前記多結晶シリコン棒は、例えば、シーメンス法による気相成長で得られたものである。   The polycrystalline silicon rod is obtained, for example, by vapor phase growth by the Siemens method.

本発明は、例えば、多結晶シリコン棒を打撃するハンマーと、打撃音を録音するボイスレコーダと周波数分析に用いるソフトおよびPC(パソコン)があれば実施できるので、大掛かりな装置を必要とすることなく簡易に行うことができる。   The present invention can be implemented with, for example, a hammer for striking a polycrystalline silicon rod, a voice recorder for recording a striking sound, software for use in frequency analysis, and a PC (personal computer), so that a large-scale apparatus is not required. It can be done easily.

また、ひび割れの有無を一義的に判断できるので、官能検査などのようなバラツキが生じない。   In addition, since the presence or absence of cracks can be uniquely determined, variations such as sensory inspection do not occur.

本発明によれば、多結晶シリコン棒内外部のひび割れ(クラック)を簡易的に検知することが可能となり、この手法に基づいてひび割れのない多結晶シリコン棒を選別して高品質な多結晶シリコン棒を製造することが可能となる。   According to the present invention, it is possible to easily detect cracks inside and outside the polycrystalline silicon rod. Based on this method, a polycrystalline silicon rod having no cracks is selected and high-quality polycrystalline silicon is selected. It becomes possible to manufacture a rod.

本発明の多結晶シリコン棒の検査方法の一態様を説明するための概略図である。It is the schematic for demonstrating the one aspect | mode of the inspection method of the polycrystal silicon stick | rod of this invention. 本発明において多結晶シリコン棒からの打撃音を周波数分析する手順を説明するためのフローチャートである。It is a flowchart for demonstrating the procedure which frequency-analyzes the impact sound from a polycrystalline silicon stick | rod in this invention. 打撃音の音響信号の一例を示す図である。It is a figure which shows an example of the acoustic signal of an impact sound. 打撃音の音響信号を高速フーリエ変換して得られた周波数分布の一例を示す図である。It is a figure which shows an example of the frequency distribution obtained by carrying out the fast Fourier transform of the acoustic signal of an impact sound. 多結晶シリコン棒について、固有周波数をピーク周波数で除した値とピーク周波数の関係を求めた結果を示す図である。It is a figure which shows the result of having calculated | required the relationship between the value which remove | divided the natural frequency by the peak frequency, and the peak frequency about the polycrystalline silicon rod. 多結晶シリコン棒について、固有周波数をピーク周波数で除した値とピーク周波数の関係を求めた結果を示す図である。It is a figure which shows the result of having calculated | required the relationship between the value which remove | divided the natural frequency by the peak frequency, and the peak frequency about the polycrystalline silicon rod. 内外部にひび割れの無い多結晶シリコン棒を選別するための工程例を示すフローチャートである。It is a flowchart which shows the example of a process for classifying a polycrystalline silicon stick without a crack inside and outside. 多結晶シリコン棒の製造に用いる装置の構成例を示す概略図である。It is the schematic which shows the structural example of the apparatus used for manufacture of a polycrystalline-silicon stick | rod. 多結晶シリコン棒の製造装置が備える炭素電極の構成例を示す概略図である。It is the schematic which shows the structural example of the carbon electrode with which the manufacturing apparatus of a polycrystalline silicon stick is provided.

以下に、図面を参照して、本発明を実施するための形態について説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1は、本発明の多結晶シリコン棒の検査方法の一態様を説明するための概略図である。図中、符号100は検査対象である多結晶シリコン棒であり、ここで例示した多結晶シリコン棒100は、上述したシーメンス法による気相成長により得られたもので、直径は約110mmであり、長さは約1600mmである。また、符号110はこの多結晶シリコン棒100を載せるコロであり、符号120は多結晶シリコン棒100を叩くハンマーであり、符号130はハンマー120による打撃により発生する多結晶シリコン棒100からの音を拾うためのマイクであり、符号140はマイク130で拾った打撃音を記録する録音機である。   FIG. 1 is a schematic view for explaining one embodiment of the method for inspecting a polycrystalline silicon rod of the present invention. In the figure, reference numeral 100 denotes a polycrystalline silicon rod to be inspected. The polycrystalline silicon rod 100 exemplified here is obtained by vapor phase growth by the Siemens method described above, and has a diameter of about 110 mm. The length is about 1600 mm. Reference numeral 110 denotes a roller on which the polycrystalline silicon rod 100 is placed, reference numeral 120 denotes a hammer for hitting the polycrystalline silicon rod 100, and reference numeral 130 denotes a sound from the polycrystalline silicon rod 100 generated by the hammer 120. A microphone is used for picking up, and a reference numeral 140 is a recording device for recording a hitting sound picked up by the microphone 130.

本発明の検査方法では、多結晶シリコン棒100をハンマー120で叩き、これにより生じた打撃音の周波数を解析して多結晶シリコン棒100内外部のひび割れの有無乃至その程度を判断する。このため、多結晶シリコン棒100の本来の打撃音を得るためには、多結晶シリコン棒100はなるべく他の部材と接触していないことが望ましい。つまり、正確な周波数解析を行うためには、他部材との接触面積が可能な限り狭くなる状態で多結晶シリコン棒100を保持することが望ましい。そこで、図1に示した例では、2つのコロ110の上に多結晶シリコン棒100を載置している。   In the inspection method of the present invention, the polycrystalline silicon rod 100 is hit with the hammer 120, and the frequency of the hitting sound generated thereby is analyzed to determine whether or not there are cracks inside and outside the polycrystalline silicon rod 100. For this reason, in order to obtain the original hitting sound of the polycrystalline silicon rod 100, it is desirable that the polycrystalline silicon rod 100 is not in contact with other members as much as possible. That is, in order to perform accurate frequency analysis, it is desirable to hold the polycrystalline silicon rod 100 in a state where the contact area with other members is as narrow as possible. Therefore, in the example shown in FIG. 1, the polycrystalline silicon rod 100 is placed on the two rollers 110.

多結晶シリコン棒100の打撃に用いるハンマー120は、打撃時に多結晶シリコン棒100への重金属汚染が殆ど無い材質のものであることが望ましい。例えば、プラスチックハンマーやタングステンハンマーを用いることが望ましい。   The hammer 120 used for hitting the polycrystalline silicon rod 100 is preferably made of a material that hardly causes heavy metal contamination to the polycrystalline silicon rod 100 when hit. For example, it is desirable to use a plastic hammer or a tungsten hammer.

多結晶シリコン棒100をハンマー120で叩くと、100Hz〜5000Hzの打撃音がする。多結晶シリコン棒100が長尺になるほど打撃音の周波数は低くなる。また、多結晶シリコン棒100の内外部にひび割れがあると、打撃音の周波数は低くなる。   When the polycrystalline silicon rod 100 is hit with the hammer 120, a striking sound of 100 Hz to 5000 Hz is produced. The longer the polycrystalline silicon rod 100, the lower the frequency of the impact sound. Further, if there are cracks inside and outside the polycrystalline silicon rod 100, the frequency of the hitting sound becomes low.

多結晶シリコン棒100からの打撃音は、マイク130により拾われ、録音器140に収録される。録音器140として、例えばデジタルボイスレコーダを用いると、音響信号がアナログからデジタルに変換されて録音される。   The hitting sound from the polycrystalline silicon rod 100 is picked up by the microphone 130 and recorded in the recording device 140. When a digital voice recorder, for example, is used as the recorder 140, an acoustic signal is converted from analog to digital and recorded.

図2は、本発明において、多結晶シリコン棒からの打撃音を周波数分析する手順を説明するためのフローチャートである。先ず、ハンマー120を用いて多結晶シリコン棒100の打撃を行い(S101)、この打撃音をマイク130を介して録音器140に収録する(S102)。そして、この打撃音を解析して固有周波数f0(Hz)を算出し(S103)、さらに、打撃音の音響信号を高速フーリエ変換(Fast Fourier Transform:FFT)して周波数分布を表示させる(S104)。 FIG. 2 is a flowchart for explaining the procedure for frequency analysis of the impact sound from the polycrystalline silicon rod in the present invention. First, the hammer 120 is used to hit the polycrystalline silicon rod 100 (S101), and this hitting sound is recorded in the recorder 140 via the microphone 130 (S102). The striking sound is analyzed to calculate the natural frequency f 0 (Hz) (S103), and the sound signal of the striking sound is fast Fourier transformed (FFT) to display the frequency distribution (S104). ).

図3Aおよび図3Bは、それぞれ、打撃音の音響信号の一例および当該音響信号を高速フーリエ変換して得られた周波数分布の一例である。   FIG. 3A and FIG. 3B are an example of an acoustic signal of an impact sound and an example of a frequency distribution obtained by fast Fourier transforming the acoustic signal, respectively.

図3Aに示した打撃音の音響信号波形の山から次の山(あるいは谷から次の谷)までの時間、すなわち周期をまず読み取り、その値の逆数を固有周波数f0として得る。続いて、図3Bに示したように、音響信号の高速フーリエ変換により周波数分布を得る。なお、デジタルに変換された音響信号を高速フーリエ変換するフリーソフトは、インターネットで入手可能である。 The time from the peak of the acoustic signal waveform of the impact sound shown in FIG. 3A to the next peak (or the valley to the next valley), that is, the period is first read, and the reciprocal of the value is obtained as the natural frequency f 0 . Subsequently, as shown in FIG. 3B, a frequency distribution is obtained by fast Fourier transform of the acoustic signal. Note that free software for performing a fast Fourier transform on a digitally converted acoustic signal is available on the Internet.

ハンマー120で多結晶シリコン棒100のひび割れの無い部位を叩いた際に生じる打撃音の波形は正弦波に近く、高速フーリエ変換後の周波数分布において認められる大きな音量を示す周波数は1つか2つである。   The sound of the hitting sound generated when the hammer 120 hits a portion of the polycrystalline silicon rod 100 that is not cracked is close to a sine wave, and there are one or two frequencies indicating a large volume recognized in the frequency distribution after the fast Fourier transform. is there.

これに対し、多結晶シリコン棒100のひび割れがある部位をハンマー120で叩くと、恰も、長さが少しずつ異なる複数の多結晶シリコン棒を一度に叩いたときに得られるかのような打撃音が生じる。具体的には、振動数がごく僅か異なる多数の音波が形成され、打撃音の波形は1周期内に多数の山と谷を有する唸りのような波形となる。このため、波形の周期は長くなり、周波数は低くなって打撃音が低く聞こえるようになる。このような打撃音の音響信号を高速フーリエ変換すると、多数の周波数が比較的大きな音量をもつ周波数分布が得られる。   On the other hand, hitting a cracked portion of the polycrystalline silicon rod 100 with the hammer 120, the hammering sound is as if it is obtained when a plurality of polycrystalline silicon rods having slightly different lengths are hit at once. Occurs. Specifically, a large number of sound waves having slightly different frequencies are formed, and the waveform of the hitting sound becomes a wave-like waveform having a large number of peaks and valleys in one cycle. For this reason, the period of the waveform becomes long, the frequency becomes low, and the hitting sound can be heard low. When the acoustic signal of such an impact sound is subjected to fast Fourier transform, a frequency distribution having a relatively large volume of many frequencies can be obtained.

そこで、本発明では、高速フーリエ変換後の周波数分布の中で、最も大きな音量を示すピーク周波数fを検出する(S105)。このピーク周波数fは打撃音を形成する主な周波数であり、打撃音の波形が仮に単一の正弦波により形成されている場合は、ピーク周波数fと固有周波数f0が完全に一致する。一方、多数の音波が重なって打撃音の波形を形成している場合は、ピーク周波数fと固有周波数f0がずれてくる。 Therefore, in the present invention, the peak frequency f indicating the largest volume in the frequency distribution after the fast Fourier transform is detected (S105). The peak frequency f is the main frequency to form a striking sound, if the waveform of the impact sound has been tentatively formed by a single sine wave, the peak frequency f and natural frequency f 0 is an exact match. On the other hand, when a large number of sound waves overlap to form a waveform of a hitting sound, the peak frequency f and the natural frequency f 0 are shifted.

そこで、固有周波数f0とピーク周波数fを比較する(S106)。 Therefore, the natural frequency f 0 and the peak frequency f are compared (S106).

打撃音の波形を形成する音波の数が比較的少なく、それらの周波数の差が小さい場合には、打撃音の波形は正弦波の周期が少し長くなる程度なので、固有周波数f0はピーク周波数fよりやや小さくなる。 When the number of sound waves forming the waveform of the hitting sound is relatively small and the difference between the frequencies is small, the waveform of the hitting sound is such that the period of the sine wave is a little longer, so the natural frequency f 0 is the peak frequency f. Slightly smaller.

これに対して、打撃音の波形を形成する音波の数が多くなり、唸りの波形がはっきり認められるようになると、唸りの周波数がピーク周波数fとなる。このとき、唸りの周期は打撃音の周期よりも長いので、固有周波数f0はピーク周波数fより大きくなる。 On the other hand, when the number of sound waves forming the waveform of the hitting sound increases and the beat waveform is clearly recognized, the beat frequency becomes the peak frequency f. At this time, since the beat period is longer than the period of the hit sound, the natural frequency f 0 is larger than the peak frequency f.

発明者らの検討によれば、総計31本の多結晶シリコン棒について固有周波数f0とピーク周波数fを測定してひび割れとの関係を調査したところ、ひび割れを有する多結晶シリコン棒が10本、ひび割れの無い多結晶シリコン棒が21本あった。また、これらの多結晶シリコン棒のそれぞれにつき固有周波数f0をピーク周波数fで除した値(R)を求めたところ、0以上2以下であった。 According to the study by the inventors, when the relationship between the natural frequency f 0 and the peak frequency f was investigated for a total of 31 polycrystalline silicon rods and the relationship between the cracks was investigated, 10 polycrystalline silicon rods having cracks were obtained. There were 21 polycrystalline silicon rods without cracks. Further, a value (R) obtained by dividing the natural frequency f 0 by the peak frequency f for each of these polycrystalline silicon rods was 0 or more and 2 or less.

次に、固有周波数f0をピーク周波数fで除した値(R)の上限値を徐々に下げ下限値を徐々に上げて範囲を次第に限定していき、その限定範囲内に属するひび割れ有りの多結晶シリコン棒の本数とひび割れ無しの多結晶シリコン棒の本数を調べた。その結果を表1に示す。 Next, the range is gradually limited by gradually lowering the upper limit of the value (R) obtained by dividing the natural frequency f 0 by the peak frequency f, and gradually increasing the lower limit, and there are many cracks within the limited range. The number of crystalline silicon rods and the number of polycrystalline silicon rods without cracks were examined. The results are shown in Table 1.

[表1]
[Table 1]

表1に示すように、固有周波数f0をピーク周波数fで除した値(R)を0.5以上1.5以下に限定したときは、ひび割れ有りの10本の多結晶シリコン棒のうちの7本、すなわち70%が、ひび割れ無しの多結晶シリコン棒と区別できなかった。しかし、R値の範囲を0.9以上1.1以下に限定すると、ひび割れ無しの多結晶シリコン棒と区別できないひび割れ有りの多結晶シリコン棒は僅かに1本のみとなった。 As shown in Table 1, when the value (R) obtained by dividing the natural frequency f 0 by the peak frequency f is limited to 0.5 or more and 1.5 or less, of the 10 polycrystalline silicon rods with cracks Seven, or 70%, were indistinguishable from cracked polycrystalline silicon rods. However, when the range of the R value is limited to 0.9 or more and 1.1 or less, there is only one polycrystalline silicon rod with a crack that cannot be distinguished from a polycrystalline silicon rod without a crack.

R値の範囲を0.9以上1.1以下に限定した場合、このR値範囲にあるひび割れ無しの多結晶シリコン棒は19本であり、全体の本数(21本)から2本少ないだけである。つまり、ひび割れ無しの多結晶シリコン棒の殆どは、そのR値が0.9以上1.1以下の範囲にあることがわかる。これに対し、0.9以上1.1以下のR値範囲にあるひび割れ有りの多結晶シリコン棒の本数は1本のみであり、ひび割れ有りの多結晶シリコン棒の殆どは、そのR値が0.9未満であるか1.1を超えているかの何れかである。   When the range of the R value is limited to 0.9 or more and 1.1 or less, there are 19 cracked polycrystalline silicon rods in the R value range, which is only 2 less than the total number (21). is there. That is, it can be seen that most of the polycrystalline silicon rods without cracks have an R value in the range of 0.9 to 1.1. On the other hand, the number of cracked polycrystalline silicon rods in the R value range of 0.9 to 1.1 is only one, and most of the cracked polycrystalline silicon rods have an R value of 0. Either less than 9 or greater than 1.1.

さらに、R値を0.95以上1.05以下の範囲に限定すると、当該R値範囲にある多結晶シリコン棒は全てがひび割れ無しのものであった。すなわち、固有周波数f0とピーク周波数fを比較することにより、多結晶シリコン棒のひび割れの有無を判断することができることがわかる。なお、このR値範囲にある多結晶シリコン棒の本数は11であるから、ひび割れ無しの21本の多結晶シリコン棒のうち10本は、R値が当該範囲にないこととなる。 Furthermore, when the R value was limited to a range of 0.95 to 1.05, all the polycrystalline silicon rods in the R value range were free from cracks. That is, it can be seen that the presence or absence of cracks in the polycrystalline silicon rod can be determined by comparing the natural frequency f 0 and the peak frequency f. Since the number of polycrystalline silicon rods in the R value range is 11, 10 out of 21 polycrystalline silicon rods without cracks have R values not in the range.

図4Aおよび4Bは、表1に纏めたものとは別の多結晶シリコン棒の母集団について、上記R値とピーク周波数の関係を求めた結果を示す図で、図4Aと4Bでは縦軸のスケールが異なっている。なお、これらの図において、黒丸はひび割れが無い多結晶シリコン棒の値を示し、白丸はひび割れが有る多結晶シリコン棒の値を示している。   4A and 4B are diagrams showing the results of obtaining the relationship between the R value and the peak frequency for a population of polycrystalline silicon rods different from those summarized in Table 1. In FIGS. 4A and 4B, the vertical axis represents the vertical axis. The scale is different. In these figures, black circles indicate the values of polycrystalline silicon rods without cracks, and white circles indicate the values of polycrystalline silicon rods with cracks.

図4Bに示すように、ひび割れが有る多結晶シリコン棒(白丸)は、その殆どが0.9未満または1.1超のR値を示すが、中には、0.9以上1.1以下の範囲のR値を示すものがある。しかし、0.95以上1.05以下の範囲に属するものは全く無い。   As shown in FIG. 4B, most of the cracked polycrystalline silicon rods (white circles) show an R value of less than 0.9 or more than 1.1, and some of them are 0.9 or more and 1.1 or less. Some exhibit R values in the range. However, nothing belongs to the range of 0.95 to 1.05.

すなわち、図4Bに示すように、固有周波数f0をピーク周波数fで除した値Rが0.9未満または1.1超の部分、より望ましくは0.95未満または1.05超の領域を切断等で除去することにより、ひび割れの無い多結晶シリコン棒100を選別することができる。 That is, as shown in FIG. 4B, a region where the value R obtained by dividing the natural frequency f 0 by the peak frequency f is less than 0.9 or more than 1.1, more preferably less than 0.95 or more than 1.05. By removing it by cutting or the like, it is possible to sort out the polycrystalline silicon rod 100 having no cracks.

そこで本発明では、上述したような原理に基づき、多結晶シリコン棒内外部のひび割れの有無を判断する(S107)。   Therefore, in the present invention, based on the principle described above, the presence / absence of cracks inside and outside the polycrystalline silicon rod is determined (S107).

図5は、内外部にひび割れの無い多結晶シリコン棒を選別するための工程例を示すフローチャートである。また、図6および図7はそれぞれ、多結晶シリコンの製造に用いる装置の構成例を示す概略図および当該多結晶シリコンの製造装置が備える炭素電極の構成例を示す概略図である。   FIG. 5 is a flowchart showing an example of a process for selecting a polycrystalline silicon rod having no cracks inside and outside. FIGS. 6 and 7 are a schematic diagram showing a configuration example of an apparatus used for manufacturing polycrystalline silicon and a schematic diagram showing a configuration example of a carbon electrode provided in the polycrystalline silicon manufacturing apparatus, respectively.

図6を参照すると、多結晶シリコンの製造装置50は、シーメンス法によりシリコン芯線の表面に多結晶シリコンを気相成長させるための装置であり、ベースプレート1と反応容器10により概略構成され、得られる多結晶シリコン100は、鳥居型に組み立てたシリコン芯線5の鉛直部分5aに気相成長する直胴部100aと水平部分(ブリッジ部5b)に気相成長するブリッジ部100bからなる。   Referring to FIG. 6, a polycrystalline silicon manufacturing apparatus 50 is an apparatus for vapor-phase growing polycrystalline silicon on the surface of a silicon core wire by the Siemens method, and is roughly constituted by a base plate 1 and a reaction vessel 10 and obtained. The polycrystalline silicon 100 includes a straight body portion 100a that is vapor-phase grown on the vertical portion 5a of the silicon core wire 5 assembled in a torii type and a bridge portion 100b that is vapor-phase grown on a horizontal portion (bridge portion 5b).

ベースプレート1には、シリコン芯線5に電流を供給する金属電極2と、窒素ガス、水素ガス、トリクロロシランガスなどのプロセスガスを供給するガスノズル3と、排気ガスを排出する排気口4が配置される。   The base plate 1 is provided with a metal electrode 2 for supplying current to the silicon core wire 5, a gas nozzle 3 for supplying process gas such as nitrogen gas, hydrogen gas, trichlorosilane gas, and an exhaust port 4 for exhausting exhaust gas.

金属電極2は、不図示の別の金属電極に接続されるか或いは反応炉外に配置された電源に接続され、外部からの電力供給を受ける。この金属電極2の側面には絶縁物7が設けられており、この絶縁物7に挟まれた状態でベースプレート1を貫通している。   The metal electrode 2 is connected to another metal electrode (not shown) or connected to a power source disposed outside the reaction furnace, and receives power from the outside. An insulator 7 is provided on the side surface of the metal electrode 2, and penetrates the base plate 1 while being sandwiched between the insulators 7.

図6に示したように、多結晶シリコンを気相成長させる際には、反応炉10内に、鉛直方向に2本(5a)と水平方向に1本(5b)の芯線を鳥居型に組み立ててシリコン芯線5とし、シリコン芯線5の鉛直方向部分5aの両端部をそれぞれ炭素電極30に保持された芯線ホルダ20により固定し、金属電極2に供給された外部電力を、炭素電極30を介してシリコン芯線5へと通電させる。   As shown in FIG. 6, when vapor-phase growing polycrystalline silicon, two core wires (5a) in the vertical direction and one core (5b) in the horizontal direction are assembled in the reactor 10 in a torii type. The silicon core wire 5 is fixed to both ends of the vertical portion 5a of the silicon core wire 5 by the core wire holder 20 held by the carbon electrode 30, and the external power supplied to the metal electrode 2 is passed through the carbon electrode 30. The silicon core wire 5 is energized.

なお、金属電極2とベースプレート1と反応炉10は、冷媒を用いて冷却される。また、芯線ホルダ20と炭素電極30は共にグラファイト製である。   In addition, the metal electrode 2, the base plate 1, and the reaction furnace 10 are cooled using a refrigerant. The core wire holder 20 and the carbon electrode 30 are both made of graphite.

炭素電極30の少なくとも一方は、図中の水平面内で全方位に摺動可能な構造とされている。炭素電極30は、シリコン芯線5への通電用外部電極である金属電極2の上に固定された下部電極32と、該下部電極32の上に載置された上部電極31とからなる。上部電極31の上面側には、シリコン芯線5aを保持する芯線ホルダ20の固定部が設けられている。   At least one of the carbon electrodes 30 has a structure that can slide in all directions within a horizontal plane in the drawing. The carbon electrode 30 includes a lower electrode 32 fixed on the metal electrode 2, which is an external electrode for energizing the silicon core wire 5, and an upper electrode 31 placed on the lower electrode 32. On the upper surface side of the upper electrode 31, a fixing portion for the core wire holder 20 that holds the silicon core wire 5a is provided.

また、上部電極31には、図7に示すように上面33から下面34に貫通する孔部(貫通孔)35が設けられており、棒状の締結部材であるボルト36がワッシャ37を介して上部電極31の上面33から孔部35に挿入され、下部電極32でネジ止めされて固定されている。   Further, as shown in FIG. 7, the upper electrode 31 is provided with a hole portion (through hole) 35 penetrating from the upper surface 33 to the lower surface 34, and a bolt 36, which is a rod-shaped fastening member, is placed on It is inserted into the hole 35 from the upper surface 33 of the electrode 31 and fixed by being screwed with the lower electrode 32.

図7に示したように、孔部35内においてボルト36の直胴部との間に間隙38が生じるように、孔部35の直径はボルト36の直胴部の直径よりも大きく形成されている。孔部35内におけるボルト36の直胴部との間の間隙は、上部電極31が下部電極32の上面との接触面である載置面(図7では上部電極31の下面34と接する下部電極32の上面)の面内での全方位の摺動を可能とするため、気相成長工程中にあらゆる方位に伸縮しうる多結晶シリコンのひびや割れの発生に対する抑制効果を奏することとなる。   As shown in FIG. 7, the diameter of the hole 35 is larger than the diameter of the straight body portion of the bolt 36 so that a gap 38 is formed between the straight body portion of the bolt 36 in the hole 35. Yes. The gap between the hole 35 and the straight body portion of the bolt 36 is a mounting surface where the upper electrode 31 is in contact with the upper surface of the lower electrode 32 (the lower electrode in contact with the lower surface 34 of the upper electrode 31 in FIG. 7). 32), it is possible to slide in all directions within the plane, and therefore, the effect of suppressing the occurrence of cracks and cracks in polycrystalline silicon that can expand and contract in any direction during the vapor phase growth process is exhibited.

先ず、図6で例示した構成の装置で、シーメンス法により逆U字状の多結晶シリコンを気相成長する(S201)。   First, with the apparatus having the configuration illustrated in FIG. 6, an inverted U-shaped polycrystalline silicon is vapor-phase grown by the Siemens method (S201).

多結晶シリコンの気相成長終了後、反応炉10から逆U字状の多結晶シリコンを取り出し、直胴部100aとブリッジ部100bに分ける。ただし、多結晶シリコン棒100の両端にはひび割れが残存していることが多いので、多結晶シリコン棒100の両端は切断する(S202)。   After the vapor phase growth of the polycrystalline silicon, the inverted U-shaped polycrystalline silicon is taken out from the reaction furnace 10 and divided into the straight body portion 100a and the bridge portion 100b. However, since cracks often remain at both ends of the polycrystalline silicon rod 100, both ends of the polycrystalline silicon rod 100 are cut (S202).

次に、図1に示したように、多結晶シリコン棒100をコロ110の上に載せてハンマー120で叩き、マイク130を介して打撃音を収録する。そして、図2を参照して説明した要領で上記衝撃音の周波数分析を行い、固有周波数f0をピーク周波数fで除した値Rが全ての領域で0.9以上1.1以下あるいは0.95以上1.05以下であるかどうかを確認する(S203)。 Next, as shown in FIG. 1, the polycrystalline silicon rod 100 is placed on the roller 110 and hit with the hammer 120, and the hitting sound is recorded via the microphone 130. Then, the frequency analysis of the impact sound is performed in the manner described with reference to FIG. 2, and the value R obtained by dividing the natural frequency f 0 by the peak frequency f is 0.9 or more and 1.1 or less or 0. It is confirmed whether it is 95 or more and 1.05 or less (S203).

なお、簡便法として、多結晶シリコン棒100全体をハンマー120で叩き、音が比較的低い領域の打音のみを収録し、周波数分析してもよい。   As a simple method, the entire polycrystalline silicon rod 100 may be hit with the hammer 120, and only the hitting sound in the region where the sound is relatively low may be recorded and the frequency analysis may be performed.

固有周波数f0をピーク周波数fで除した値Rが0.9≦R≦1.1あるいは0.95≦R≦1.05から外れる領域がある場合は内外部にひび割れが存在するものと思われるため、その領域は切断除去する(S204)。なお、この場合、ひび割れ領域を切断除去した後に再び周波数分析を行う(S205)。また、必要に応じ、ステップS204とS205を複数回繰り返して、最終的に、固有周波数f0をピーク周波数fで除した値Rが全ての領域で0.9以上1.1以下あるいは0.95以上1.05以下であることを確認して単結晶シリコン棒の選別を行う(S206)。このようにして、ひび割れの無い多結晶シリコン棒を選別することができる。 If there is a region where the value R obtained by dividing the natural frequency f 0 by the peak frequency f is outside 0.9 ≦ R ≦ 1.1 or 0.95 ≦ R ≦ 1.05, it seems that cracks exist inside and outside. Therefore, the area is cut and removed (S204). In this case, the frequency analysis is performed again after cutting and removing the crack region (S205). Further, if necessary, steps S204 and S205 are repeated a plurality of times, and finally a value R obtained by dividing the natural frequency f 0 by the peak frequency f is 0.9 or more and 1.1 or less or 0.95 in all regions. After confirming that it is 1.05 or less, the single crystal silicon rod is selected (S206). In this way, a polycrystalline silicon rod free from cracks can be selected.

[実施例1]シーメンス法による気相成長によって得られた多結晶シリコン100の両端を切断して、長さ1.2m、直径121mmの多結晶シリコン棒100とした。この多結晶シリコン棒100をタングステンカーバイド製のハンマー120で叩き、その打撃音をマイク130の付属したデジタルボイスレコーダー140に収録した。収録された打撃音の固有周波数f0は595Hzであった。 [Example 1] Both ends of polycrystalline silicon 100 obtained by vapor phase growth by the Siemens method were cut into a polycrystalline silicon rod 100 having a length of 1.2 m and a diameter of 121 mm. The polycrystalline silicon rod 100 was hit with a tungsten carbide hammer 120, and the hitting sound was recorded in a digital voice recorder 140 with a microphone 130 attached. The natural frequency f 0 of the recorded hitting sound was 595 Hz.

続いて、この打撃音の音響信号を高速フーリエ変換して周波数分布を表示させたところ、ピーク周波数fは603Hzであった。このとき、固有周波数f0をピーク周波数fで除した値Rは0.99である。 Subsequently, when the acoustic signal of the impact sound was subjected to fast Fourier transform to display the frequency distribution, the peak frequency f was 603 Hz. At this time, a value R obtained by dividing the natural frequency f 0 by the peak frequency f is 0.99.

この多結晶シリコン棒100を蛍光灯下で目視検査したところ、ひび割れは全く無かった。そして、多結晶シリコン棒100に円筒研磨、先端加工、及びエッチングを施し、FZ法による単結晶インゴットの育成を行ったが、これらの一連の工程中において、多結晶シリコン棒100に割れが発生することは無かった。   When this polycrystalline silicon rod 100 was visually inspected under a fluorescent lamp, there was no crack at all. The polycrystalline silicon rod 100 was subjected to cylindrical polishing, tip processing, and etching, and a single crystal ingot was grown by the FZ method, but cracks occurred in the polycrystalline silicon rod 100 during these series of steps. There was nothing.

[比較例1]上述した実施例1と同様に、シーメンス法により得られた長さ1.5m、直径122mmの多結晶シリコン棒の固有周波数f0とピーク周波数fを測定した。その結果は、固有周波数f0が147Hz、ピーク周波数fが75.4Hz、固有周波数f0をピーク周波数fで除した値Rが1.96であった。 [Comparative Example 1] In the same manner as in Example 1 described above, the natural frequency f 0 and peak frequency f of a polycrystalline silicon rod having a length of 1.5 m and a diameter of 122 mm obtained by the Siemens method were measured. As a result, the natural frequency f 0 was 147 Hz, the peak frequency f was 75.4 Hz, and the value R obtained by dividing the natural frequency f 0 by the peak frequency f was 1.96.

この多結晶シリコン棒を蛍光灯下で目視検査したところ、ひび割れが多くあり、FZシリコンインゴット育成用の多結晶シリコン棒としての加工は行わなかった。   When this polycrystalline silicon rod was visually inspected under a fluorescent lamp, there were many cracks, and processing as a polycrystalline silicon rod for growing an FZ silicon ingot was not performed.

このように、本発明によれば、多結晶シリコン棒内外部のひび割れ(クラック)を簡易的に検知することが可能となり、この手法に基づいてひび割れのない多結晶シリコン棒を選別して高品質な多結晶シリコン棒を提供することが可能となる。   As described above, according to the present invention, it becomes possible to easily detect cracks inside and outside the polycrystalline silicon rod, and based on this method, a polycrystalline silicon rod having no cracks is selected for high quality. It becomes possible to provide a simple polycrystalline silicon rod.

本発明により、割れの無い多結晶シリコン棒のみを選別することが可能となり、FZ法やCZ法によるシリコン単結晶の育成に用られる多結晶シリコン棒の割れの発生を抑制することができる。   According to the present invention, it becomes possible to select only polycrystalline silicon rods without cracks, and it is possible to suppress the occurrence of cracks in polycrystalline silicon rods used for growing silicon single crystals by the FZ method or the CZ method.

1 ベースプレート
2 金属電極
3 ガスノズル
4 排気口
5 シリコン芯線
5a 鉛直方向部分
5b ブリッジ部
10 反応容器
20 芯線ホルダ
30 炭素電極
31 上部電極
32 下部電極
33 上部電極31の上面
34 上部電極31の下面
35 貫通孔
36 ボルト
37 ワッシャ
38 間隙
50 多結晶シリコンの製造装置
100 多結晶シリコン棒
110 コロ
120 ハンマー
130 マイク
140 録音器
DESCRIPTION OF SYMBOLS 1 Base plate 2 Metal electrode 3 Gas nozzle 4 Exhaust port 5 Silicon core wire 5a Vertical part 5b Bridge part 10 Reaction container 20 Core wire holder 30 Carbon electrode 31 Upper electrode 32 Lower electrode 33 Upper surface 34 of upper electrode 31 Lower surface 35 of upper electrode 31 Through-hole 36 bolt 37 washer 38 gap 50 polycrystalline silicon manufacturing apparatus 100 polycrystalline silicon rod 110 roller 120 hammer 130 microphone 140 recorder

Claims (10)

多結晶シリコン棒であって、該多結晶シリコン棒の打撃音の波形から求めた固有周波数f0(Hz)と前記打撃音を周波数分析して得られるピーク周波数f(Hz)との比R(f0/f)が0.9≦R≦1.1であることを特徴とする多結晶シリコン棒。 A ratio R () between a natural frequency f 0 (Hz) obtained from a waveform of a hitting sound of the polycrystalline silicon bar and a peak frequency f (Hz) obtained by frequency analysis of the hitting sound. A polycrystalline silicon rod, wherein f 0 / f) is 0.9 ≦ R ≦ 1.1. 前記R値が0.95≦R≦1.05であることを特徴とする請求項1に記載の多結晶シリコン棒。   The polycrystalline silicon rod according to claim 1, wherein the R value is 0.95 ≦ R ≦ 1.05. 前記多結晶シリコン棒はシーメンス法による気相成長で得られたものである請求項1又は2に記載の多結晶シリコン棒。   The polycrystalline silicon rod according to claim 1 or 2, wherein the polycrystalline silicon rod is obtained by vapor phase growth by a Siemens method. 多結晶シリコン棒を打撃して得られた打撃音の周波数分析を行い、該打撃音の固有周波数f0(Hz)とピーク周波数f(Hz)を求め、周波数比R(f0/f)に基づいて、前記多結晶シリコン棒の内外部のひび割れの有無を判断することを特徴とする多結晶シリコン棒の検査方法。 The frequency analysis of the hitting sound obtained by hitting the polycrystalline silicon rod is performed, the natural frequency f 0 (Hz) and the peak frequency f (Hz) of the hitting sound are obtained, and the frequency ratio R (f 0 / f) is obtained. Based on the above, a method for inspecting a polycrystalline silicon rod, wherein the presence or absence of cracks inside and outside the polycrystalline silicon rod is judged. 前記周波数比R(f0/f)が0.9≦R≦1.1である場合に、前記多結晶シリコン棒の内外部にはひび割れが無いと判定することを特徴とする請求項4に記載の多結晶シリコン棒の検査方法。 5. The method according to claim 4, wherein when the frequency ratio R (f 0 / f) is 0.9 ≦ R ≦ 1.1, it is determined that there is no crack inside and outside the polycrystalline silicon rod. The inspection method of the polycrystalline silicon rod as described. 前記周波数比R(f0/f)が0.95≦R≦1.05である場合に、前記多結晶シリコン棒の内外部にはひび割れが無いと判定することを特徴とする請求項5に記載の多結晶シリコン棒の検査方法。 6. The method according to claim 5, wherein when the frequency ratio R (f 0 / f) is 0.95 ≦ R ≦ 1.05, it is determined that there is no crack inside and outside the polycrystalline silicon rod. The inspection method of the polycrystalline silicon rod as described. 前記多結晶シリコン棒はシーメンス法による気相成長で得られたものである請求項4乃至6の何れか1項に記載の多結晶シリコン棒の検査方法。   The method for inspecting a polycrystalline silicon rod according to any one of claims 4 to 6, wherein the polycrystalline silicon rod is obtained by vapor phase growth by a Siemens method. 気相成長法により多結晶シリコンを成長させ、該多結晶シリコンを多結晶シリコン棒とし、該多結晶シリコン棒を打撃して得られた打撃音の周波数分析を行い、該打撃音の固有周波数f0(Hz)とピーク周波数f(Hz)を求め、周波数比R(f0/f)が0.9≦R≦1.1から外れる領域を除去することを特徴とする多結晶シリコン棒の製造方法。 A polycrystalline silicon is grown by a vapor phase growth method, the polycrystalline silicon is used as a polycrystalline silicon rod, a frequency analysis of a hitting sound obtained by hitting the polycrystalline silicon rod is performed, and a natural frequency f of the hitting sound is obtained. Production of a polycrystalline silicon rod characterized by obtaining 0 (Hz) and a peak frequency f (Hz) and removing a region where the frequency ratio R (f 0 / f) deviates from 0.9 ≦ R ≦ 1.1 Method. 気相成長法により多結晶シリコンを成長させ、該多結晶シリコンを多結晶シリコン棒とし、該多結晶シリコン棒を打撃して得られた打撃音の周波数分析を行い、該打撃音の固有周波数f0(Hz)とピーク周波数f(Hz)を求め、周波数比R(f0/f)が0.95≦R≦1.05から外れる領域を除去することを特徴とする多結晶シリコン棒の製造方法。 A polycrystalline silicon is grown by a vapor phase growth method, the polycrystalline silicon is used as a polycrystalline silicon rod, a frequency analysis of a hitting sound obtained by hitting the polycrystalline silicon rod is performed, and a natural frequency f of the hitting sound is obtained. Production of a polycrystalline silicon rod characterized by obtaining 0 (Hz) and a peak frequency f (Hz) and removing a region where the frequency ratio R (f 0 / f) deviates from 0.95 ≦ R ≦ 1.05 Method. 前記気相成長法はシーメンス法である請求項8又は9に記載の多結晶シリコン棒の製造方法。   The method for producing a polycrystalline silicon rod according to claim 8 or 9, wherein the vapor phase growth method is a Siemens method.
JP2010153830A 2010-07-06 2010-07-06 Polycrystalline silicon rod, inspection method of polycrystalline silicon rod, and manufacturing method of polycrystalline silicon rod Withdrawn JP2012017998A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010153830A JP2012017998A (en) 2010-07-06 2010-07-06 Polycrystalline silicon rod, inspection method of polycrystalline silicon rod, and manufacturing method of polycrystalline silicon rod
PCT/JP2011/003801 WO2012004969A1 (en) 2010-07-06 2011-07-04 Polycrystalline silicon rod, method for inspecting polycrystalline silicon rod, and method for manufacturing polycrystalline silicon rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010153830A JP2012017998A (en) 2010-07-06 2010-07-06 Polycrystalline silicon rod, inspection method of polycrystalline silicon rod, and manufacturing method of polycrystalline silicon rod

Publications (1)

Publication Number Publication Date
JP2012017998A true JP2012017998A (en) 2012-01-26

Family

ID=45440961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010153830A Withdrawn JP2012017998A (en) 2010-07-06 2010-07-06 Polycrystalline silicon rod, inspection method of polycrystalline silicon rod, and manufacturing method of polycrystalline silicon rod

Country Status (2)

Country Link
JP (1) JP2012017998A (en)
WO (1) WO2012004969A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102998364A (en) * 2012-11-20 2013-03-27 雅安恒圣高纯石墨科技有限责任公司 Audio spectrum detection system and method for internal crack of graphite product
CN103837595B (en) * 2012-11-20 2016-03-02 重庆长安汽车股份有限公司 For testing the device and method of preventing stone hitting, splash-proof material restraint speckle level
JP6345108B2 (en) 2014-12-25 2018-06-20 信越化学工業株式会社 Polycrystalline silicon rod, polycrystalline silicon rod processing method, polycrystalline silicon rod crystal evaluation method, and FZ single crystal silicon manufacturing method
JP6930240B2 (en) * 2017-06-16 2021-09-01 株式会社島津製作所 Impact test evaluation method and impact tester
JP6794936B2 (en) * 2017-06-16 2020-12-02 株式会社島津製作所 Impact test evaluation method and impact tester

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294416A (en) * 2000-04-07 2001-10-23 Mitsubishi Materials Polycrystalline Silicon Corp Device for producing polycrystalline silicon
JP4768927B2 (en) * 2001-05-11 2011-09-07 新日本製鐵株式会社 Nondestructive inspection method and quality control method
JP2004149324A (en) * 2002-10-28 2004-05-27 Sumitomo Mitsubishi Silicon Corp Polycrystalline silicon rod, production method therefor, and silicon core material used for producing the rod
JP4471872B2 (en) * 2005-03-10 2010-06-02 財団法人鉄道総合技術研究所 How to determine the soundness of telephone poles or telephone poles
DE102006040486A1 (en) * 2006-08-30 2008-03-13 Wacker Chemie Ag Non-destructive testing of high purity polycrystalline silicon

Also Published As

Publication number Publication date
WO2012004969A1 (en) 2012-01-12

Similar Documents

Publication Publication Date Title
JP5238762B2 (en) Polycrystalline silicon rod and method for producing polycrystalline silicon rod
WO2012004969A1 (en) Polycrystalline silicon rod, method for inspecting polycrystalline silicon rod, and method for manufacturing polycrystalline silicon rod
Dallas et al. Resonance ultrasonic vibrations for crack detection in photovoltaic silicon wafers
JP5828795B2 (en) Method for evaluating degree of crystal orientation of polycrystalline silicon, method for selecting polycrystalline silicon rod, and method for producing single crystal silicon
JP6567501B2 (en) Method for producing polycrystalline silicon
JP2014001096A (en) Polycrystalline silicon crystal orientation degree evaluation method, polycrystalline silicon rod selection method, polycrystalline silicon rod, polycrystalline silicon ingot, and polycrystalline silicon fabrication method
EP3184489A1 (en) Method for manufacturing polycrystalline silicon bar and polycrystalline silicon bar
JP3881647B2 (en) Polycrystalline silicon rod and manufacturing method thereof
EP1997940B1 (en) METHOD FOR MANUFACTURING Si SINGLE CRYSTAL INGOT BY CZ METHOD
JP2011068558A (en) Rod-type polysilicon having improved breaking property
JP6692526B2 (en) Crucible inspection device, crucible inspection method, silica glass crucible manufacturing method, silicon ingot manufacturing method, homoepitaxial wafer manufacturing method
JP2004149324A (en) Polycrystalline silicon rod, production method therefor, and silicon core material used for producing the rod
CN113138195A (en) Monitoring method of crystal defects and crystal bar growing method
KR102402431B1 (en) Method for detecting cracks in the silicone rod
JP6440601B2 (en) Method for manufacturing polycrystalline silicon rod and method for manufacturing FZ single crystal silicon
JP2014034506A (en) Method of selecting polycrystalline silicon rod, method of manufacturing polycrystalline silicon bulk, and method of manufacturing single crystal silicon
EP3205625A1 (en) Polycrystalline silicon and method for selecting polycrystalline silicon
JP2015003847A (en) Method of evaluating polycrystal silicon grain size, method of selecting polycrystal silicon rod, polycrystal silicon rod, polycrystal silicon lump, and method of manufacturing single crystal silicon
JP2001257163A (en) Silicon carbide member, plasma-resistant member, and semiconductor manufacturing device
JP2004277223A (en) High strength polycrystalline silicon and its manufacturing method
JP6470223B2 (en) Method for producing single crystal silicon
JP5984741B2 (en) Method for selecting polycrystalline silicon rod and method for producing FZ single crystal silicon
JP2023106715A (en) Production method and evaluation method of single crystal silicon
JP6938961B2 (en) Seed crystal
US20220314228A1 (en) Method for producing silicon fragments

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131001