JP6440601B2 - Method for manufacturing polycrystalline silicon rod and method for manufacturing FZ single crystal silicon - Google Patents

Method for manufacturing polycrystalline silicon rod and method for manufacturing FZ single crystal silicon Download PDF

Info

Publication number
JP6440601B2
JP6440601B2 JP2015174740A JP2015174740A JP6440601B2 JP 6440601 B2 JP6440601 B2 JP 6440601B2 JP 2015174740 A JP2015174740 A JP 2015174740A JP 2015174740 A JP2015174740 A JP 2015174740A JP 6440601 B2 JP6440601 B2 JP 6440601B2
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
rod
silicon
residual stress
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015174740A
Other languages
Japanese (ja)
Other versions
JP2017048098A (en
Inventor
秀一 宮尾
秀一 宮尾
哲郎 岡田
哲郎 岡田
祢津 茂義
茂義 祢津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2015174740A priority Critical patent/JP6440601B2/en
Priority to PCT/JP2016/072592 priority patent/WO2017038347A1/en
Publication of JP2017048098A publication Critical patent/JP2017048098A/en
Application granted granted Critical
Publication of JP6440601B2 publication Critical patent/JP6440601B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Description

本発明は、多結晶シリコン棒の製造技術に関し、より具体的には、シーメンス法により合成される多結晶シリコン棒に残留する応力を制御し、FZ単結晶シリコンの製造用として好適な多結晶シリコン棒を製造する技術に関する。   The present invention relates to a technique for manufacturing a polycrystalline silicon rod, and more specifically, controls the stress remaining in a polycrystalline silicon rod synthesized by the Siemens method, and is suitable for manufacturing FZ single crystal silicon. The present invention relates to a technique for manufacturing a rod.

半導体デバイス等の製造に不可欠な単結晶シリコン基板は、CZ法やFZ法により育成されたインゴットから切り出されるが、これらのインゴットの製造原料として、多結晶シリコン棒や多結晶シリコン塊が用いられる。   A single crystal silicon substrate indispensable for manufacturing a semiconductor device or the like is cut out from an ingot grown by a CZ method or an FZ method, and a polycrystalline silicon rod or a polycrystalline silicon lump is used as a raw material for manufacturing these ingots.

これらの多結晶シリコン原料は、一般に、シーメンス法により製造される。シーメンス法とは、トリクロロシランやモノシラン等のシラン原料ガスを加熱されたシリコン芯線に接触させることにより、該シリコン芯線の表面に多結晶シリコンをCVD(Chemical Vapor Deposition)法により気相成長(析出)させる方法である。   These polycrystalline silicon raw materials are generally produced by the Siemens method. Siemens method is a process of vapor deposition (precipitation) of polycrystalline silicon on the surface of silicon core wire by CVD (Chemical Vapor Deposition) method by contacting silane source gas such as trichlorosilane and monosilane with heated silicon core wire. It is a method to make it.

シリコン芯線の加熱は電流を流すことによる抵抗加熱によるが、多結晶シリコンの析出に伴い多結晶シリコン棒の径が太くなるにつれて、徐々に、シリコン棒の外表面には電流が流れ難くなる。その結果、外表面は中心領域の温度よりも相対的に低くなり、これが熱膨張率の差を引き起こし残留応力が発生する。このような残留応力の発生は、大口径の多結晶シリコン棒ほど顕著である。   Although the heating of the silicon core wire is based on resistance heating by passing an electric current, as the diameter of the polycrystalline silicon rod increases with the deposition of polycrystalline silicon, the current gradually becomes difficult to flow on the outer surface of the silicon rod. As a result, the outer surface becomes relatively lower than the temperature of the central region, which causes a difference in thermal expansion coefficient and generates residual stress. The occurrence of such residual stress is more conspicuous as the polycrystalline silicon rod has a larger diameter.

ところで、残留応力には引張応力と圧縮応力があるが、前者は多結晶シリコンに割れを発生させるため強度低下を招く傾向があり、後者は、多結晶シリコンの強度を向上させる傾向がある。   By the way, although residual stress includes tensile stress and compressive stress, the former tends to cause a decrease in strength because cracks occur in polycrystalline silicon, and the latter tends to improve the strength of polycrystalline silicon.

従って、多結晶シリコン棒中の残留応力を制御することは極めて重要であり、例えば、引張応力が高い多結晶シリコン棒を原料としてFZ単結晶シリコンを製造する際に自重により割れてしまうといった事故が生じ得る。   Therefore, it is extremely important to control the residual stress in the polycrystalline silicon rod. For example, when an FZ single crystal silicon is produced from a polycrystalline silicon rod having a high tensile stress as a raw material, an accident such as cracking due to its own weight occurs. Can occur.

この様な事情を背景に、特許文献1(特開平7−277874号公報)には、原料となる棒状の多結晶シリコンが破断すること無く融解して原料融液を供給し、安定した単結晶育成が可能なシリコン単結晶の引上げ方法を提供することを目的とした、棒状の多結晶シリコンの最大残留応力を、標準状態下で3.5kgf/mm2未満とする発明が開示されている。 Against this background, Patent Document 1 (Japanese Patent Laid-Open No. 7-277874) discloses a stable single crystal in which a rod-like polycrystalline silicon serving as a raw material is melted without breaking and a raw material melt is supplied. An invention has been disclosed in which the maximum residual stress of rod-like polycrystalline silicon is less than 3.5 kgf / mm 2 under standard conditions for the purpose of providing a silicon single crystal pulling method that can be grown.

特開平7−277874号公報JP-A-7-277874 特開2001−146499号公報JP 2001-146499 A

S. Timoshenko and J.N. Goodier, "Theory of Elasticity ", McGraw-Hill, New York (1970)S. Timoshenko and J.N.Goodier, "Theory of Elasticity", McGraw-Hill, New York (1970) Journal of the Ceramic Society of Japan 101[8]932-935 (1993)Journal of the Ceramic Society of Japan 101 [8] 932-935 (1993)

しかし、特許文献1には、最大残留応力が3.5kgf/mm2未満(標準状態下での測定値)であれば、最適な棒状多結晶シリコンの融解条件を確保しつつ、破断が防止可能となるとの知見の開示があるものの、これを実現するための手法として開示があるのは、焼鈍など応力除去の熱処理を施すことに止まり、多結晶シリコン棒の合成プロセスにおける残留応力制御の可能性についての検討はなされていない。 However, in Patent Document 1, if the maximum residual stress is less than 3.5 kgf / mm 2 (measured value under a standard state), it is possible to prevent breakage while ensuring the optimum melting condition of rod-shaped polycrystalline silicon. Although there is a disclosure of knowledge that it will become, the only way to realize this is to apply heat treatment for stress removal such as annealing, and the possibility of residual stress control in the synthesis process of polycrystalline silicon rod No consideration has been given to.

本発明は、斯かる現状に鑑みてなされたもので、その目的とするところは、多結晶シリコン棒の合成プロセス後ではなく、多結晶シリコン棒の合成プロセス中に残留応力制御を行い、合成後の多結晶シリコン棒の熱処理等を不要とする技術を提供することにある。   The present invention has been made in view of such a situation, and the object of the present invention is to perform residual stress control during the synthesis process of the polycrystalline silicon rod, not after the synthesis process of the polycrystalline silicon rod, It is an object of the present invention to provide a technique that eliminates the need for heat treatment of the polycrystalline silicon rod.

上記課題を解決するために、本発明に係る第1の態様の多結晶シリコン棒の製造方法は、シーメンス法によりシリコン芯線上に多結晶シリコンを析出させて得られる半径Rの多結晶シリコン棒の製造方法であって、前記シリコン芯線の近傍領域、R/2領域、最表面領域における多結晶シリコンの析出温度をそれぞれT1、T2、T3としたときに、T1>T2>T3に設定することを特徴とする。   In order to solve the above-mentioned problems, a polycrystalline silicon rod manufacturing method according to a first aspect of the present invention is a method for producing a polycrystalline silicon rod having a radius R obtained by depositing polycrystalline silicon on a silicon core wire by a Siemens method. In the manufacturing method, T1> T2> T3 is set when the deposition temperatures of polycrystalline silicon in the vicinity region, R / 2 region, and outermost surface region of the silicon core wire are T1, T2, and T3, respectively. Features.

また、本発明に係る第2の態様の多結晶シリコン棒の製造方法は、シーメンス法によりシリコン芯線上に多結晶シリコンを析出させて得られる半径Rの多結晶シリコン棒の製造方法であって、前記シリコン芯線の近傍領域、R/2領域、最表面領域における多結晶シリコンの析出温度をそれぞれT1、T2、T3としたときに、T1>T2かつT2<T3とし、さらに、前記最表面領域における多結晶シリコンの析出時における前記シリコン芯線の近傍領域の温度T1´と前記T3との温度差をΔTとしたときに、T1>T3+ΔTとなるように設定することを特徴とする。   The method for producing a polycrystalline silicon rod according to the second aspect of the present invention is a method for producing a polycrystalline silicon rod having a radius R obtained by depositing polycrystalline silicon on a silicon core wire by a Siemens method, When the deposition temperatures of polycrystalline silicon in the vicinity region, R / 2 region, and outermost surface region of the silicon core wire are T1, T2, and T3, respectively, T1> T2 and T2 <T3, and further in the outermost surface region It is characterized in that T1> T3 + ΔT is set, where ΔT is a temperature difference between the temperature T1 ′ in the vicinity of the silicon core wire during the deposition of polycrystalline silicon and T3.

さらに、本発明に係るFZ単結晶シリコンの製造方法は、上述の方法により得られた多結晶シリコン棒を、該多結晶シリコン棒の析出工程後の熱処理を行うことなく誘導加熱して単結晶化することを特徴とする。   Furthermore, the method for producing FZ single crystal silicon according to the present invention is a method for producing a single crystal by inductively heating the polycrystalline silicon rod obtained by the above-described method without performing a heat treatment after the precipitation step of the polycrystalline silicon rod. It is characterized by doing.

本発明は、シーメンス法によりシリコン芯線上に多結晶シリコンを析出させて半径Rの多結晶シリコン棒を得るプロセスにおいて、当該プロセス中の温度を適切に制御することにより残留応力を制御し、FZ単結晶シリコンの製造用として好適な多結晶シリコン棒を提供する。   The present invention controls the residual stress by appropriately controlling the temperature during the process of obtaining polycrystalline silicon rods having a radius R by depositing polycrystalline silicon on a silicon core wire by the Siemens method. A polycrystalline silicon rod suitable for producing crystalline silicon is provided.

本発明の方法によれば、従来は、多結晶シリコン棒育成後に行っていた熱処理等を行う必要がない。   According to the method of the present invention, it is not necessary to perform heat treatment or the like conventionally performed after growing a polycrystalline silicon rod.

多結晶シリコン棒からのX線回折測定法による残留応力測定用の板状試料の第1の採取例について説明するための図である。It is a figure for demonstrating the 1st collection example of the plate-shaped sample for the residual stress measurement by the X-ray-diffraction measuring method from a polycrystal silicon stick | rod. 多結晶シリコン棒からのX線回折測定法による残留応力測定用の板状試料の第1の採取例について説明するための図である。It is a figure for demonstrating the 1st collection example of the plate-shaped sample for the residual stress measurement by the X-ray-diffraction measuring method from a polycrystal silicon stick | rod. 多結晶シリコン棒からのX線回折測定法による残留応力測定用の板状試料の第2の採取例について説明するための図である。It is a figure for demonstrating the 2nd collection example of the plate-shaped sample for the residual stress measurement by the X-ray-diffraction measuring method from a polycrystalline silicon stick. 多結晶シリコン棒からのX線回折測定法による残留応力測定用の板状試料の第2の採取例について説明するための図である。It is a figure for demonstrating the 2nd collection example of the plate-shaped sample for the residual stress measurement by the X-ray-diffraction measuring method from a polycrystalline silicon stick. 多結晶シリコン棒からのX線回折測定法による残留応力測定用の板状試料の第3の採取例について説明するための図である。It is a figure for demonstrating the 3rd collection example of the plate-shaped sample for the residual stress measurement by the X-ray-diffraction measuring method from a polycrystalline silicon stick. 多結晶シリコン棒からのX線回折測定法による残留応力測定用の板状試料の第3の採取例について説明するための図である。It is a figure for demonstrating the 3rd collection example of the plate-shaped sample for the residual stress measurement by the X-ray-diffraction measuring method from a polycrystalline silicon stick.

以下に、図面を参照して、本発明に係る多結晶シリコン棒の製造方法について説明する。   Below, with reference to drawings, the manufacturing method of the polycrystalline-silicon stick | rod concerning this invention is demonstrated.

従来より、場所による温度差が熱膨張α・T(温度)の差となり熱応力を発生させると言う考え方があり(例えば、非特許文献1:S. Timoshenko and J.N. Goodier, "Theory of Elasticity ", McGraw-Hill, New York (1970))、この考えに立った熱応力計算の方法も提案されている(非特許文献2:「円筒及び円板の熱応力計算法」, Journal of the Ceramic Society of Japan 101[8]932-935 (1993))。この計算方法は、一定太さの円筒の内部の温度分布を元に計算する手法であるが、シーメンス法による多結晶シリコン棒の析出のように徐々に径が太くなる場合には、応力計算することができない。加えて、この方法では、多結晶特有の構造に起因して発生する応力も考慮されていない。   Conventionally, there is an idea that a temperature difference due to a place becomes a difference in thermal expansion α · T (temperature) to generate thermal stress (for example, Non-Patent Document 1: S. Timoshenko and JN Goodier, “Theory of Elasticity”, McGraw-Hill, New York (1970)), a thermal stress calculation method based on this idea has also been proposed (Non-Patent Document 2: “Method of calculating thermal stress of cylinders and disks”, Journal of the Ceramic Society of Japan 101 [8] 932-935 (1993)). This calculation method is a method of calculating based on the temperature distribution inside a cylinder with a constant thickness. However, when the diameter gradually increases as in the case of precipitation of a polycrystalline silicon rod by the Siemens method, the stress is calculated. I can't. In addition, in this method, the stress generated due to the structure unique to the polycrystal is not taken into consideration.

そこで、本発明者らは、X線回折測定法(以下、XRD法)により結晶の面間隔値d値を精密測定することで、残留応力値を求める手法を検討した。この検討の結果、引張応力と圧縮応力はそれぞれが独立して結晶中に内在しており、単純な円筒内部の温度分布のみでは定まらないものであることが分かってきた。   Therefore, the present inventors examined a method for obtaining a residual stress value by precisely measuring the interplanar spacing value d value by an X-ray diffraction measurement method (hereinafter referred to as XRD method). As a result of this study, it has been found that the tensile stress and the compressive stress are independently present in the crystal and cannot be determined only by a simple temperature distribution inside the cylinder.

本発明者らが、多結晶シリコン析出時のCVD温度と結晶中の残留応力の関係につき詳細に解析を重ねたところ、下記の規則性があることが判明した。   The present inventors have conducted detailed analysis on the relationship between the CVD temperature at the time of polycrystalline silicon precipitation and the residual stress in the crystal, and found that the following regularity exists.

シーメンス法によりシリコン芯線上に多結晶シリコンを析出させて得られる多結晶シリコン棒の最終的な半径をRとし、シリコン芯線の近傍領域、R/2領域、最表面領域における多結晶シリコンの析出温度をそれぞれT1、T2、T3とし、さらに、最表面領域における多結晶シリコンの析出時におけるシリコン芯線の近傍領域の温度T1´とT3との温度差をΔTとすると、表1に纏めた関係が認められる。   The final radius of the polycrystalline silicon rod obtained by depositing polycrystalline silicon on the silicon core wire by the Siemens method is R, and the deposition temperature of polycrystalline silicon in the vicinity region, R / 2 region, and outermost surface region of the silicon core wire Are T1, T2, and T3, respectively, and when the temperature difference between the temperatures T1 ′ and T3 in the vicinity of the silicon core wire when the polycrystalline silicon is deposited in the outermost surface region is ΔT, the relationship summarized in Table 1 is recognized. It is done.

ここで言う残留応力とは、多結晶シリコン棒の中心軸方向(鉛直方向:zz方向)の残留応力成分を意味している。残留応力の他の方向、すなわち、径方向(成長方向:rr方向)および当該rr方向と中心軸に垂直な平面内で90°の角度を成すθθ方向があるが、これらの残留応力成分は、多結晶シリコン棒を原料としてFZ単結晶シリコンを製造する際の破断には関与しない。   The residual stress here means a residual stress component in the central axis direction (vertical direction: zz direction) of the polycrystalline silicon rod. There are other directions of residual stress, that is, a radial direction (growth direction: rr direction) and a θθ direction that forms an angle of 90 ° in a plane perpendicular to the rr direction and the central axis. It does not participate in fracture when manufacturing FZ single crystal silicon using a polycrystalline silicon rod as a raw material.

結晶内に応力が生じていると、その大きさに比例して結晶格子の面間隔dは変化する。具体的には、引張応力が生じていると格子面間隔は広がり、圧縮応力が生じていると格子面間隔は縮まることになる。   When stress is generated in the crystal, the interplanar spacing d of the crystal lattice changes in proportion to the magnitude. Specifically, the lattice spacing increases when tensile stress is generated, and the lattice spacing decreases when compressive stress is generated.

ブラッグ回折を起こす結晶面に注目すると、その回折角θはブラッグ条件(nλ=2d・sinθ)を満足する。従って、X線の波長λが一定であれば、格子面間隔dの変化に伴って回折角2θも変化する。   When attention is paid to a crystal plane causing Bragg diffraction, the diffraction angle θ satisfies the Bragg condition (nλ = 2d · sin θ). Therefore, if the wavelength λ of the X-ray is constant, the diffraction angle 2θ also changes with the change in the lattice spacing d.

結晶中の残留応力σは、X線回折で得られた2θ−sin2Ψ線図にプロットした点の最小2乗近似直線の傾き(Δ(2θ)/Δ(sin2Ψ))から、下記の式(1)で与えられる。 The residual stress σ in the crystal is calculated from the slope of the least square approximation line (Δ (2θ) / Δ (sin 2 ψ)) of the points plotted in the 2θ-sin 2 Ψ diagram obtained by X-ray diffraction, as follows: Is given by equation (1).

σ(MPa)=K・[Δ(2θ)/Δ(sin2Ψ)] ・・・ (1) σ (MPa) = K · [Δ (2θ) / Δ (sin 2 Ψ)] (1)

ここで、Ψは試料面法線と格子面法線とのなす角度(deg.)である。また、Kは応力定数(MPa/deg.)であり、下記の式(2)で与えられる。   Here, Ψ is an angle (deg.) Between the sample surface normal and the lattice surface normal. K is a stress constant (MPa / deg.) And is given by the following equation (2).

K=−(E/2(1+ν))・cotθ0・π/180 ・・・ (2) K = − (E / 2 (1 + ν)) · cot θ 0 · π / 180 (2)

なお、式(2)中のEはヤング率(MPa)、νはポアソン比、そして、θ0は歪が無い状態でのブラッグ角(deg.)である。 In Equation (2), E is the Young's modulus (MPa), ν is the Poisson's ratio, and θ 0 is the Bragg angle (deg.) Without any distortion.

つまり、X線回折法を用いれば、格子面法線を変化させながら特定の回折ピークの挙動を観測することで、格子面間隔の伸縮量から内部応力を求めることができる。   In other words, if the X-ray diffraction method is used, the internal stress can be obtained from the expansion / contraction amount of the lattice plane interval by observing the behavior of a specific diffraction peak while changing the lattice plane normal.

具体的には、内部応力がない場合には当然、回折ピークのシフトは生じないが、圧縮応力があると回折ピークは高角側へシフトし、引張応力があると回折ピークは低角側へシフトする。   Specifically, when there is no internal stress, of course, the diffraction peak does not shift, but when there is compressive stress, the diffraction peak shifts to the high angle side, and when there is tensile stress, the diffraction peak shifts to the low angle side. To do.

本発明では、この原理に基づき、種々のCVD条件で合成した多結晶シリコンの残留応力を評価している。   In the present invention, based on this principle, the residual stress of polycrystalline silicon synthesized under various CVD conditions is evaluated.

[評価試料の採取]
図1Aおよび図1Bは、シーメンス法などの化学気相法で析出させて育成された多結晶シリコン棒10からの、X線回折測定法による残留応力測定用の板状試料20の採取例(第1)について説明するための図で、rr方向とθθ方向の残留応力成分を測定するための試料採取例である。
[Collecting evaluation samples]
FIG. 1A and FIG. 1B show an example of collecting a plate-like sample 20 for measuring residual stress by X-ray diffraction measurement from a polycrystalline silicon rod 10 grown by chemical vapor deposition such as Siemens (No. 1). It is a figure for demonstrating 1), and is the sample collection example for measuring the residual stress component of rr direction and (theta) theta direction.

また、図2Aおよび図2Bは、X線回折測定法による残留応力測定用の板状試料20の採取例(第2)について説明するための図で、これもまた、rr方向とθθ方向の残留応力成分を測定するための試料採取例である。
ある。
FIGS. 2A and 2B are diagrams for explaining an example (second) of collecting the plate-like sample 20 for measuring residual stress by the X-ray diffraction measurement method, and these are also residuals in the rr direction and the θθ direction. It is a sample collection example for measuring a stress component.
is there.

さらに、図3Aおよび図3Bは、X線回折測定法による残留応力測定用の板状試料20の採取例(第3)について説明するための図で、zz方向の残留応力成分を測定するための試料採取例である。   3A and 3B are diagrams for explaining an example (third) of collecting the plate-like sample 20 for residual stress measurement by the X-ray diffraction measurement method, for measuring the residual stress component in the zz direction. This is an example of sampling.

図中、符号1で示したものは、表面に多結晶シリコンを析出させてシリコン棒とするためのシリコン芯線である。これらの図に例示した多結晶シリコン棒10の直径は概ね140〜160mmであり、残留応力測定用の板状試料20を採取する。なお、板状試料20の採取部位は、これらに限定されるものではない。   In the figure, reference numeral 1 denotes a silicon core wire for depositing polycrystalline silicon on the surface to form a silicon rod. The diameter of the polycrystalline silicon rod 10 illustrated in these figures is approximately 140 to 160 mm, and a plate-like sample 20 for measuring residual stress is taken. In addition, the collection site | part of the plate-shaped sample 20 is not limited to these.

図1Aに示した第1例では、長軸方向に垂直な平面内でみたときに、シリコン芯線1に近い部位(11CTR)、多結晶シリコン棒10の側面に近い部位(11EDG)、CTRとEGDの中間の部位(11R/2)の3部位から、直径が概ね20mmのロッド11をくり抜く。そして、図1Bに示したように、このロッド11から、厚みが概ね2mmの円板状試料20を採取する。ロッド11CTRから採取された円板状試料20を20CTR、ロッド11R/2から採取された円板状試料20を20R/2、ロッド11EDGから採取された円板状試料20を20EDGと表記する。 In the first example shown in FIG. 1A, when viewed in a plane perpendicular to the major axis direction, a portion close to the silicon core wire 1 (11 CTR ), a portion close to the side surface of the polycrystalline silicon rod 10 (11 EDG ), CTR A rod 11 having a diameter of approximately 20 mm is cut out from three portions (11 R / 2 ) in the middle of EGD and EGD. Then, as shown in FIG. 1B, a disk-shaped sample 20 having a thickness of approximately 2 mm is collected from the rod 11. The disc-shaped sample 20 taken from the rod 11 CTR 20 CTR, the rod 11 R / 2 the disc-shaped samples 20 taken from 20 R / 2, disc-shaped samples 20 taken from the rod 11 EDG 20 Indicated as EDG .

これにより、多結晶シリコン棒10の長軸方向に垂直な断面から採取した円板状試料が得られる。この円板状試料の主面上でのX線照射領域をスリットで適切に選択することで、成長方向(rr)と、この方向に対して90度方向(θθ)の、残留応力を測定することができる。   Thereby, the disk-shaped sample extract | collected from the cross section perpendicular | vertical to the major axis direction of the polycrystalline silicon stick | rod 10 is obtained. By appropriately selecting the X-ray irradiation region on the main surface of the disk-shaped sample with a slit, the residual stress in the growth direction (rr) and the 90 degree direction (θθ) with respect to this direction is measured. be able to.

図2Aに示した第2例では、先ず、長軸方向に垂直にスライスして、シリコン芯線1を中心とする円板12を採取する。そして、図2Bに示すように、この円板12の、シリコン芯線1に近い部位、多結晶シリコン棒10の側面に近い部位、CTRとEGDの中間の部位の3部位から、直径が概ね20mmの円板状試料(20CTR、20R/2、20EDG)をくり抜く。 In the second example shown in FIG. 2A, first, a disk 12 centered on the silicon core wire 1 is sampled by slicing perpendicularly to the long axis direction. Then, as shown in FIG. 2B, the diameter of the circular plate 12 is approximately 20 mm from three parts, a part close to the silicon core wire 1, a part close to the side surface of the polycrystalline silicon rod 10, and an intermediate part between CTR and EGD. A disk-shaped sample (20 CTR , 20 R / 2 , 20 EDG ) is cut out.

これによっても、多結晶シリコン棒10の長軸方向に垂直な断面から採取した円板状試料が得られる。この円板状試料の主面上でのX線照射領域をスリットで適切に選択することで、成長方向(rr)と、この方向に対して90度方向(θθ)の、残留応力を測定することができる。   Also by this, a disk-shaped sample taken from a cross section perpendicular to the major axis direction of the polycrystalline silicon rod 10 can be obtained. By appropriately selecting the X-ray irradiation region on the main surface of the disk-shaped sample with a slit, the residual stress in the growth direction (rr) and the 90 degree direction (θθ) with respect to this direction is measured. be able to.

図3Aに示した第3例では、先ず、長軸方向に垂直に、直径が概ね20mmのロッド11をくり抜く。そして、図3Bに示したように、このロッド11から、シリコン芯線1に近い部位、多結晶シリコン棒10の側面に近い部位、CTRとEGDの中間の部位の3部位から、直径が概ね20mmの円板状試料(20CTR、20R/2、20EDG)を採取する。 In the third example shown in FIG. 3A, first, a rod 11 having a diameter of approximately 20 mm is cut out perpendicularly to the long axis direction. As shown in FIG. 3B, the diameter of the rod 11 is approximately 20 mm from three parts, a part close to the silicon core wire 1, a part close to the side surface of the polycrystalline silicon rod 10, and an intermediate part between CTR and EGD. A disk-shaped sample (20 CTR , 20 R / 2 , 20 EDG ) is collected.

これにより、多結晶シリコン棒10の長軸方向に平行な断面から採取した円板状試料が得られる。この円板状試料の主面上でのX線照射領域をスリットで適切に選択することで、長軸方向(zz)の残留応力を測定することができる。   Thereby, the disk-shaped sample extract | collected from the cross section parallel to the major axis direction of the polycrystalline silicon stick | rod 10 is obtained. The residual stress in the major axis direction (zz) can be measured by appropriately selecting the X-ray irradiation region on the main surface of the disk-shaped sample with a slit.

なお、ロッド11を採取する部位、長さ、および本数は、シリコン棒10の直径やくり抜くロッド11の直径に応じて適宜定めればよい。円板状試料20も、くり抜いたロッド11のどの部位から採取してもよいが、シリコン棒10全体の性状を合理的に推定可能な位置であることが好ましい。   In addition, the site | part from which the rod 11 is extract | collected, length, and the number should just be suitably determined according to the diameter of the silicon rod 10, and the diameter of the rod 11 to cut out. The disk-shaped sample 20 may also be collected from any part of the hollowed rod 11, but is preferably at a position where the properties of the entire silicon rod 10 can be reasonably estimated.

また、円板状試料20の直径を概ね20mmとしたのも例示に過ぎず、直径は残留応力測定に支障がない範囲で適当に定めればよい。   Further, the diameter of the disk-shaped sample 20 is set to approximately 20 mm for illustration only, and the diameter may be appropriately determined within a range that does not hinder the residual stress measurement.

[X線回折法による応力測定]
上述のrr方向、θθ方向、およびzz方向の3方向での残留応力を測定すべく、直径19mmで厚さ2mmの円板状試料を採取する。採取した円板状試料を、ミラー指数面<331>からのブラッグ反射が検出される位置に配置し、X線照射領域が上述の3方向となるようにスリットを設定して、残留応力を測定する。なお、rr方向とθθ方向の2方向については、走査軸を平行にした並傾法と走査軸を直交する側傾法にて測定を行う。
[Stress measurement by X-ray diffraction method]
In order to measure the residual stress in the three directions of the rr direction, the θθ direction, and the zz direction, a disk-shaped sample having a diameter of 19 mm and a thickness of 2 mm is collected. The collected disk-shaped sample is placed at a position where Bragg reflection from the mirror index surface <331> is detected, and the residual stress is measured by setting slits so that the X-ray irradiation area is in the above three directions. To do. Note that the two directions of the rr direction and the θθ direction are measured by a parallel tilt method in which the scanning axes are parallel and a side tilt method in which the scanning axes are orthogonal to each other.

上述のとおり、残留応力(σ)は、X線回折で得られた2θ−sin2Ψ線図にプロットした点の最小2乗近似直線の傾き(Δ(2θ)/Δ(sin2Ψ))で評価できる。 As described above, the residual stress (σ) is the slope of the least square approximation line (Δ (2θ) / Δ (sin 2 ψ)) of the points plotted in the 2θ-sin 2 Ψ diagram obtained by X-ray diffraction. Can be evaluated.

本来、ヤング率Eについては、実測定試料である多結晶シリコンのヤング率の値を採用すべきである。しかし、全結晶方位についての存在割合を考慮した上でのヤング率を算出することができないこと等の理由により、単結晶シリコンの<111>方位のヤング率の文献値である171.8GPaを採用した。   Originally, as the Young's modulus E, the value of Young's modulus of polycrystalline silicon which is an actual measurement sample should be adopted. However, due to the fact that the Young's modulus cannot be calculated after considering the existence ratio for all crystal orientations, the literature value of 171.8 GPa for the Young's modulus of the <111> orientation of single crystal silicon is adopted. did.

[残留応力のCVD条件依存性]
シーメンス法にて各種条件にて合成した、(a)炉内にて既に割れてしまったロッド、(b)ハンマーによる破砕テストにおいて割れ易かったロッド、および(c)ハンマーによる破砕テストにおいて割れ難かったロッドの三者について、XRD法による残留応力測定の結果を検討したところ、残留応力のzz方向成分に違いが認められた。
[Dependence of residual stress on CVD conditions]
Synthesized under various conditions by the Siemens method, (a) a rod that was already cracked in the furnace, (b) a rod that was easy to break in the hammering test, and (c) a crack that was difficult to crack in the hammering test When the results of residual stress measurement by the XRD method were examined for the three rods, a difference was found in the zz direction component of the residual stress.

(a)炉内にて既に割れてしまったロッド、および(b)ハンマーによる破砕テストにおいて割れ易かったロッドのものにおいては、引張応力と圧縮応力の双方において高い値が認められたのに対し、(c)ハンマーによる破砕テストにおいて割れ難かったロッドのものにおいては、引張応力の値が低い一方で圧縮応力の値が高く、圧縮応力が優勢であることが判明した。   In (a) a rod that had already been cracked in the furnace, and (b) a rod that was easily cracked in the crushing test with a hammer, a high value was observed in both tensile stress and compressive stress, (C) For rods that were difficult to break in the crushing test with a hammer, it was found that the compressive stress was dominant because the compressive stress value was high while the tensile stress value was low.

残留応力発生の原因が温度差であることはこれまでの定説であるが、結晶成長の観点から考えると以下の成長経緯による発生理由が有力である。   The conventional theory is that the cause of the residual stress is the temperature difference, but from the viewpoint of crystal growth, the following reasons for the generation are dominant.

CVD反応の初期においてはシリコン芯線近傍において結晶析出が始まるが、この段階では結晶方位毎にランダムに結晶成長が進行し、やがて多結晶体を形成し始める。この時、この集合体としての全体の応力は結晶方位毎の各分力の合成、即ち、ベクトルの合成により定まる方向性を持った応力値が形成される。   In the initial stage of the CVD reaction, crystal precipitation starts in the vicinity of the silicon core wire, but at this stage, crystal growth proceeds at random for each crystal orientation and eventually begins to form a polycrystal. At this time, a stress value having a directivity determined by synthesis of each component force for each crystal orientation, that is, synthesis of a vector, is formed as the total stress as the aggregate.

さらに反応が進行すると、徐々に中心近傍領域と外側領域で温度差が発生する。この時の中心近傍領域温度(T1’)が、当該領域における結晶析出時の温度(T1)よりも低ければ(T1’<T1)当該領域の結晶中の応力は変わらないが、高い場合(T1’>T1)は結晶の再配列若しくは配向が起こり応力は変化する。   As the reaction proceeds further, a temperature difference gradually occurs between the region near the center and the outer region. If the temperature near the center region (T1 ′) at this time is lower than the temperature (T1) at the time of crystal precipitation in the region (T1 ′ <T1), the stress in the crystal in the region does not change, but is high (T1 '> T1) causes rearrangement or orientation of crystals and changes in stress.

zz方向の残留応力に着目し、シリコン芯線の近傍領域、R/2領域、最表面領域(R領域)における残留応力を平均化した場合に、この平均値が(+)値の場合は引張応力を意味し、(−)値の場合は圧縮応力を意味する。   Paying attention to the residual stress in the zz direction, if the residual stress in the vicinity region, R / 2 region, and outermost surface region (R region) of the silicon core wire is averaged, if this average value is (+) value, tensile stress And (-) value means compressive stress.

その結果、表1に示したとおりの分類が可能であることが判明した。   As a result, it was found that classification as shown in Table 1 was possible.

表2に纏めて示した各種CVD条件で多結晶シリコン棒を育成して、残留応力を調べた。   Polycrystalline silicon rods were grown under the various CVD conditions summarized in Table 2, and the residual stress was examined.

なお、温度測定は、CVD反応炉に覗き穴を取り付け、そこに放射温度計を設置し使用した。放射温度計は、株式会社チノー製の放射温度計、型番IR−CAQを使用した。測定波長は0.9μm、検出素子素材はシリコンである。測定位置は、多結晶シリコン棒の高さの中心位置であり、成長するに連れて焦点位置が徐々に変化するため測定の都度、焦点の微調整を行ってから測定値を得た。なお、ΔTの算出は、特許文献2(特開2001−146499号公報)に記載の方法に従い、ロッドの平均温度を算出後、上記の表面温度から中心温度を算出した。   The temperature was measured by attaching a peephole to the CVD reactor and installing a radiation thermometer there. As the radiation thermometer, a radiation thermometer manufactured by Chino Co., Ltd., model number IR-CAQ was used. The measurement wavelength is 0.9 μm, and the detection element material is silicon. The measurement position is the center position of the height of the polycrystalline silicon rod, and the focus position gradually changes as it grows. Therefore, the measurement value was obtained after fine adjustment of the focus each time measurement was performed. In addition, calculation of (DELTA) T followed the method of patent document 2 (Unexamined-Japanese-Patent No. 2001-146499), calculated the average temperature of the rod, and calculated center temperature from said surface temperature.

実施例1および実施例2のものは、シリコン芯線の近傍領域、R/2領域、最表面領域における多結晶シリコンの析出温度をそれぞれT1、T2、T3としたときに、T1>T2>T3に設定されて得られた多結晶シリコン棒である。   In Examples 1 and 2, T1> T2> T3 when the deposition temperatures of polycrystalline silicon in the vicinity region, R / 2 region, and outermost surface region of the silicon core wire are T1, T2, and T3, respectively. It is a polycrystalline silicon rod obtained by setting.

また、実施例3のものは、シリコン芯線の近傍領域、R/2領域、最表面領域における多結晶シリコンの析出温度をそれぞれT1、T2、T3としたときに、T1>T2かつT2<T3とし、さらに、最表面領域における多結晶シリコンの析出時におけるシリコン芯線の近傍領域の温度T1´とT3との温度差をΔTとしたときに、T1>T3+ΔTとなるように設定されて得られた多結晶シリコン棒である。   Further, in Example 3, T1> T2 and T2 <T3 when the deposition temperatures of polycrystalline silicon in the vicinity region, R / 2 region, and outermost surface region of the silicon core wire are T1, T2, and T3, respectively. Furthermore, when the temperature difference between the temperatures T1 ′ and T3 in the region near the silicon core wire at the time of deposition of polycrystalline silicon in the outermost surface region is ΔT, the polycrystal obtained by setting T1> T3 + ΔT. It is a crystalline silicon rod.

実施例1〜3で得られた多結晶シリコン棒を、析出工程後の熱処理を行うことなくFZ単結晶シリコン育成用の原料として用いたところ、FZ行程(誘導加熱)中での落下等のトラブルは皆無であり、結晶線の消失や乱れの発生もなく、良質なFZ単結晶シリコンのインゴットが得られた。   When the polycrystalline silicon rod obtained in Examples 1 to 3 was used as a raw material for FZ single crystal silicon growth without performing a heat treatment after the precipitation process, troubles such as dropping during the FZ process (induction heating) There was no disappearance of crystal lines, and there was no disappearance or disturbance of the crystal line, and a high-quality FZ single crystal silicon ingot was obtained.

本発明は、シーメンス法によりシリコン芯線上に多結晶シリコンを析出させて半径Rの多結晶シリコン棒を得るプロセスにおいて、当該プロセス中の温度を適切に制御することにより残留応力を制御し、FZ単結晶シリコンの製造用として好適な多結晶シリコン棒を提供する。本発明の方法によれば、従来は、多結晶シリコン棒育成後に行っていた熱処理等を行う必要がない。   The present invention controls the residual stress by appropriately controlling the temperature during the process of obtaining polycrystalline silicon rods having a radius R by depositing polycrystalline silicon on a silicon core wire by the Siemens method. A polycrystalline silicon rod suitable for producing crystalline silicon is provided. According to the method of the present invention, it is not necessary to perform heat treatment or the like conventionally performed after growing a polycrystalline silicon rod.

1 シリコン芯線
10 多結晶シリコン棒
11 ロッド
12 円板
20 円板状試料
1 Silicon core wire 10 Polycrystalline silicon rod 11 Rod 12 Disc 20 Disc-shaped sample

Claims (2)

シーメンス法によりシリコン芯線上に多結晶シリコンを析出させて得られる半径Rの多結晶シリコン棒の製造方法であって、
前記シリコン芯線の近傍領域、R/2領域、最表面領域における多結晶シリコンの析出温度をそれぞれT1、T2、T3としたときに、T1>T2かつT2<T3とし、さらに、
前記最表面領域における多結晶シリコンの析出時における前記シリコン芯線の近傍領域の温度T1´と前記T3との温度差をΔTとしたときに、T1>T3+ΔTとなるように設定する、多結晶シリコン棒の製造方法。
A method for producing a polycrystalline silicon rod having a radius R obtained by depositing polycrystalline silicon on a silicon core wire by a Siemens method,
When the precipitation temperatures of polycrystalline silicon in the vicinity region, R / 2 region, and outermost surface region of the silicon core wire are T1, T2, and T3, respectively, T1> T2 and T2 <T3,
A polycrystalline silicon rod that is set such that T1> T3 + ΔT, where ΔT is the temperature difference between the temperature T1 ′ in the vicinity of the silicon core wire and the temperature T3 when the polycrystalline silicon is deposited in the outermost surface region Manufacturing method.
請求項1に記載の方法により得られた多結晶シリコン棒を、該多結晶シリコン棒の析出工程後の熱処理を行うことなく誘導加熱して単結晶化する、FZ単結晶シリコンの製造方法。 A method for producing FZ single crystal silicon, wherein the polycrystalline silicon rod obtained by the method according to claim 1 is single-crystallized by induction heating without performing a heat treatment after the step of depositing the polycrystalline silicon rod.
JP2015174740A 2015-09-04 2015-09-04 Method for manufacturing polycrystalline silicon rod and method for manufacturing FZ single crystal silicon Active JP6440601B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015174740A JP6440601B2 (en) 2015-09-04 2015-09-04 Method for manufacturing polycrystalline silicon rod and method for manufacturing FZ single crystal silicon
PCT/JP2016/072592 WO2017038347A1 (en) 2015-09-04 2016-08-02 Method for producing polycrystalline silicon rod, and method for producing fz single-crystal silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015174740A JP6440601B2 (en) 2015-09-04 2015-09-04 Method for manufacturing polycrystalline silicon rod and method for manufacturing FZ single crystal silicon

Publications (2)

Publication Number Publication Date
JP2017048098A JP2017048098A (en) 2017-03-09
JP6440601B2 true JP6440601B2 (en) 2018-12-19

Family

ID=58187173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015174740A Active JP6440601B2 (en) 2015-09-04 2015-09-04 Method for manufacturing polycrystalline silicon rod and method for manufacturing FZ single crystal silicon

Country Status (2)

Country Link
JP (1) JP6440601B2 (en)
WO (1) WO2017038347A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7128124B2 (en) 2019-01-18 2022-08-30 信越化学工業株式会社 Polycrystalline silicon rod, polycrystalline silicon rod and manufacturing method thereof
CN110133023B (en) * 2019-05-17 2022-04-26 西安奕斯伟材料科技有限公司 Method for selecting polycrystalline silicon, polycrystalline silicon and use thereof in Czochralski method
JP2023159508A (en) 2022-04-20 2023-11-01 信越化学工業株式会社 Polycrystalline silicon rod and method for manufacturing polycrystalline silicon rod

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100210261B1 (en) * 1997-03-13 1999-07-15 이서봉 Method of production for poly crystal silicon
DE102007023041A1 (en) * 2007-05-16 2008-11-20 Wacker Chemie Ag Polycrystalline silicon rod for zone pulling and a method for its production
JP5719282B2 (en) * 2011-11-29 2015-05-13 信越化学工業株式会社 Method for producing polycrystalline silicon
JP6114687B2 (en) * 2013-12-02 2017-04-12 信越化学工業株式会社 Method for measuring surface temperature of polycrystalline silicon rod and method for producing polycrystalline silicon

Also Published As

Publication number Publication date
JP2017048098A (en) 2017-03-09
WO2017038347A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP6418778B2 (en) Polycrystalline silicon rod, method for producing polycrystalline silicon rod, and single crystal silicon
CN107848808B (en) Polycrystalline silicon rod
KR20140142267A (en) Method for evaluating degree of crystal orientation in polycrystalline silicon, selection method for polycrystalline silicon rods, and production method for single-crystal silicon
JP6440601B2 (en) Method for manufacturing polycrystalline silicon rod and method for manufacturing FZ single crystal silicon
JP6131218B2 (en) Method for calculating and controlling surface temperature of polycrystalline silicon rod, method for producing polycrystalline silicon rod, polycrystalline silicon rod, and polycrystalline silicon lump
KR20160024925A (en) Method for evaluating crystallinity of polycrystalline silicon
JP6314097B2 (en) Polycrystalline silicon rod
JP2022009646A (en) Polycrystalline silicon rod and method for producing polycrystalline silicon rod
JP2016028990A (en) Production method of polycrystalline silicon rod and polycrystalline silicone block
JP5868286B2 (en) Method for selecting polycrystalline silicon rod, method for producing polycrystalline silicon lump, and method for producing single crystal silicon
JP6378147B2 (en) Method for producing polycrystalline silicon rod and method for producing CZ single crystal silicon
JP5969956B2 (en) Method for evaluating grain size of polycrystalline silicon and method for selecting polycrystalline silicon rod
US11167994B2 (en) Polycrystalline silicon rod, processing method for polycrystalline silicon rod, method for evaluating polycrystalline silicon rod, and method for producing FZ single crystal silicon
JP6951936B2 (en) Manufacturing method for polycrystalline silicon rods and single crystal silicon
JP6470223B2 (en) Method for producing single crystal silicon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181120

R150 Certificate of patent or registration of utility model

Ref document number: 6440601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150