JP2012017503A - Aluminum alloy brazing sheet excellent in strength and formability and method for producing the same - Google Patents

Aluminum alloy brazing sheet excellent in strength and formability and method for producing the same Download PDF

Info

Publication number
JP2012017503A
JP2012017503A JP2010155982A JP2010155982A JP2012017503A JP 2012017503 A JP2012017503 A JP 2012017503A JP 2010155982 A JP2010155982 A JP 2010155982A JP 2010155982 A JP2010155982 A JP 2010155982A JP 2012017503 A JP2012017503 A JP 2012017503A
Authority
JP
Japan
Prior art keywords
aluminum alloy
strength
brazing sheet
brazing
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010155982A
Other languages
Japanese (ja)
Other versions
JP5737798B2 (en
JP2012017503A5 (en
Inventor
Michihide Yoshino
路英 吉野
Shu Kuroda
周 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2010155982A priority Critical patent/JP5737798B2/en
Publication of JP2012017503A publication Critical patent/JP2012017503A/en
Publication of JP2012017503A5 publication Critical patent/JP2012017503A5/ja
Application granted granted Critical
Publication of JP5737798B2 publication Critical patent/JP5737798B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)
  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy brazing sheet used as a tube material for heat exchangers and the like which achieves thinning wall by improving strength and formability without positively adding Mg.SOLUTION: The aluminum alloy brazing sheet has a core material of an aluminum alloy containing 1.2-1.8% Mn, 0.4-1.3% Si, 0.21-0.5% Fe, and 0.5 to 1.3% Cu, with the balance being Al and unavoidable impurities, wherein one side of the core material is clad with a sacrificial material and the other side is clad with an Al-Si-based or Al-Si-Zn-based brazing filler metal; and the sheet has a thickness of 0.20 mm or less. When the sheet is subjected to heat treatment at 595°C for one minute corresponding to brazing, the resulting sheet has a tensile strength of 170 MPa or more and an average crystal grain diameter of the core material falls in the range of 30-120 μm.

Description

本発明は、熱交換器などの製造に用いられる強度および成形性に優れたアルミニウム合金ブレージングシートに関するものである。   The present invention relates to an aluminum alloy brazing sheet excellent in strength and formability used in the manufacture of heat exchangers and the like.

自動車などに用いられているアルミニウム合金製熱交換器のチューブ材には、Mn等を含有するアルミニウム合金製芯材の片面にAl−Si系やAl−Si−Mg系のろう材をクラッドし、他の片面に犠牲材をクラッドしたブレージングシートを使用したものが知られてる。該ブレージングシートは、例えば成形ロールなどによって犠牲材側が内側となるようにチューブ形状に成形加工され、高周波溶接等により接合されて熱交換器のチューブとして使用される。また、最近では、ブレージングシートの両端部を内側に曲げ、ブレージングシートの内面に突き合わせてろう付けすることでB型のチューブとする方法も知られている。   The aluminum alloy heat exchanger tube material used in automobiles, etc. is clad with an Al—Si based or Al—Si—Mg based brazing material on one side of an aluminum alloy core material containing Mn, etc. There is known one using a brazing sheet in which a sacrificial material is clad on the other side. The brazing sheet is formed into a tube shape by a forming roll or the like so that the sacrificial material side is inside, and is joined by high-frequency welding or the like and used as a tube of a heat exchanger. In addition, recently, there is also known a method of forming a B-type tube by bending both ends of a brazing sheet inward and butting it against the inner surface of the brazing sheet.

そして、近年、熱交換器の高性能化・軽量化の要求が高まっており、この要求を達成するにはチューブ材の薄肉化が有効な手段である。チューブ材の薄肉化にあたっては肉厚減少分に見合うように素材強度を高める必要がある。従来行われている高強度化方法としては、ブレージングシートの芯材となるアルミニウム合金にMgを添加する方法が提案されている(例えば特許文献1参照)。   In recent years, demands for higher performance and weight reduction of heat exchangers are increasing, and thinning of the tube material is an effective means for achieving this requirement. In reducing the thickness of the tube material, it is necessary to increase the material strength to meet the thickness reduction. As a conventional method for increasing the strength, a method of adding Mg to an aluminum alloy serving as a core material of a brazing sheet has been proposed (see, for example, Patent Document 1).

特開2009−24221号公報JP 2009-24221 A

しかし、上記したMgを添加する高強度化方法では、Mgの含有によってろう付性が低下するという問題がある。また、チューブ材を薄肉化するとチューブ形状への成形、特にB型チューブへの成形が困難になるという問題もある。
すなわち薄肉化を達成するためにはろう付け性を損なうことなく材料を高強度化するとともに成形性を向上させることが必要であるが、強度と成形性は相反する特性であり、従来材では高強度と高成形性とを両立させることは困難である。
However, the above-described high-strength method in which Mg is added has a problem that brazing properties are reduced by the inclusion of Mg. Further, when the tube material is thinned, there is a problem that it becomes difficult to form into a tube shape, particularly into a B-type tube.
In other words, in order to achieve thinning, it is necessary to increase the strength of the material without impairing the brazeability and improve the moldability. However, the strength and formability are contradictory properties, and the conventional materials have high properties. It is difficult to achieve both strength and high formability.

本発明は上記事情を背景としてなされたものであり、ろう付け性を損なうことなく高い強度と優れた成形性を得ることができるアルミニウム合金製ブレージングシートを提供することを目的とする。   The present invention has been made against the background of the above circumstances, and an object thereof is to provide an aluminum alloy brazing sheet capable of obtaining high strength and excellent formability without impairing brazing properties.

質量%で、Mn:1.2〜1.8%、Si:0.4〜1.3%、Fe:0.21〜0.5%、Cu:0.5〜1.3%を含有し、残部がAlおよび不可避不純物からなるアルミニウム合金を芯材とし、該芯材の片面に犠牲陽極材、他の片面にAl−Si系またはAl−Si−Zn系ろう材がクラッドされた、板厚が0.20mm以下のアルミニウム合金ブレージングシートであって、595℃×1分間のろう付け相当加熱処理によって、引張強さが170MPa以上、かつ、芯材の平均結晶粒径が30〜120μmの範囲となることを特徴とする。   In mass%, Mn: 1.2 to 1.8%, Si: 0.4 to 1.3%, Fe: 0.21 to 0.5%, Cu: 0.5 to 1.3% The thickness is obtained by using an aluminum alloy consisting of Al and inevitable impurities as the core, the sacrificial anode material on one side of the core, and the Al-Si or Al-Si-Zn brazing material on the other side. Is an aluminum alloy brazing sheet of 0.20 mm or less, and is subjected to brazing equivalent heat treatment at 595 ° C. for 1 minute, the tensile strength is 170 MPa or more, and the average crystal grain size of the core is 30 to 120 μm. It is characterized by becoming.

第2の本発明の強度および成形性に優れたアルミニウム合金ブレージングシートは、前記第1の本発明において、前記芯材が、さらに、質量%で、Zr:0.3%以下、Ti:0.3%以下、Cr:0.3%以下のうち、1種以上を含有することを特徴とする。
第3の本発明の強度および成形性に優れたアルミニウム合金ブレージングシートは、前記第1または2の本発明において、前記犠牲材が、質量%でZn:4.0〜7.0%、Mn:1.0〜1.8%、Si:0.2〜1.2%を含有し、残部がAlおよび不可避不純物からなることを特徴とする。
第4の本発明の強度および成形性に優れたアルミニウム合金ブレージングシートは、前記第3の本発明において、前記犠牲材が、さらに、質量%で、Ti:0.3%以下を含有することを特徴とする。
第5の本発明の強度および成形性に優れたアルミニウム合金ブレージングシートは、前記第1〜4の本発明において、前記芯材のFe含有量(質量%)とろう付熱処理後の芯材の平均結晶粒径(μm)の積が40以下の範囲にあることを特徴とする。
第6の本発明の強度および成形性に優れたアルミニウム合金ブレージングシートは、前記第1〜5のいずれかの本発明において、引張強さが180〜240MPaの範囲にあることを特徴とする。
第7の本発明の強度および成形性に優れたアルミニウム合金ブレージングシートは、前記第1〜6のいずれかの本発明において、芯材の結晶集合組織におけるP方位({011}<111>)の方位密度が4〜40の範囲にあることを特徴とする。
第8の本発明の強度および成形性に優れたアルミニウム合金ブレージングシートは、前記第1〜7のいずれかの本発明において、前記芯材は、円相当径0.2〜0.8μmの金属間化合物が5×10〜5×10個/mmの範囲で分散していることを特徴とする。
The aluminum alloy brazing sheet excellent in strength and formability according to the second aspect of the present invention is the above-mentioned first aspect of the present invention, wherein the core material further comprises, in mass%, Zr: 0.3% or less, Ti: 0.00. It is characterized by containing one or more of 3% or less and Cr: 0.3% or less.
The aluminum alloy brazing sheet excellent in strength and formability according to the third aspect of the present invention is the first or second aspect of the present invention, wherein the sacrificial material is Zn: 4.0-7.0% by mass%, Mn: It contains 1.0 to 1.8%, Si: 0.2 to 1.2%, and the balance is made of Al and inevitable impurities.
The aluminum alloy brazing sheet excellent in strength and formability according to the fourth aspect of the present invention is that in the third aspect of the present invention, the sacrificial material further contains, by mass%, Ti: 0.3% or less. Features.
The aluminum alloy brazing sheet excellent in strength and formability according to the fifth aspect of the present invention is the average of the Fe content (% by mass) of the core material and the core material after brazing heat treatment in the first to fourth aspects of the present invention. The product of the crystal grain size (μm) is in the range of 40 or less.
The aluminum alloy brazing sheet excellent in strength and formability of the sixth aspect of the present invention is characterized in that, in any one of the first to fifth aspects of the present invention, the tensile strength is in the range of 180 to 240 MPa.
The aluminum alloy brazing sheet excellent in strength and formability according to the seventh aspect of the present invention is the P-direction ({011} <111>) in the crystal texture of the core material in any one of the first to sixth aspects of the present invention. The orientation density is in the range of 4 to 40.
The aluminum alloy brazing sheet excellent in strength and formability according to the eighth aspect of the present invention is the metal material according to any one of the first to seventh aspects, wherein the core material is between metals with an equivalent circle diameter of 0.2 to 0.8 μm. The compound is dispersed in the range of 5 × 10 6 to 5 × 10 7 / mm 2 .

また、本発明の強度および成形性に優れたアルミニウム合金ブレージングシートの製造方法は、質量%で、Mn:1.2〜1.8%、Si:0.4〜1.3%、Fe:0.21〜0.5%、Cu:0.5〜1.3%を含有し、残部がAlおよび不可避不純物からなるアルミニウム合金を芯材とし、該芯材の片面に犠牲陽極材、他の片面にAl−Si系またはAl−Si−Zn系ろう材をクラッドしたアルミニウム合金ブレージングシートを中間焼鈍を介在させた冷間圧延によって製造する際に、前記中間焼鈍後の最終圧延時の冷間圧延率を30〜50%の範囲にすることを特徴とする。   Moreover, the manufacturing method of the aluminum alloy brazing sheet excellent in strength and formability of the present invention is mass%, Mn: 1.2 to 1.8%, Si: 0.4 to 1.3%, Fe: 0 An aluminum alloy containing 21 to 0.5%, Cu: 0.5 to 1.3% with the balance being Al and unavoidable impurities as a core material, a sacrificial anode material on one side of the core material, and the other side surface When an aluminum alloy brazing sheet clad with an Al-Si or Al-Si-Zn brazing material is manufactured by cold rolling with intermediate annealing, the cold rolling rate during final rolling after the intermediate annealing Is in the range of 30 to 50%.

次に、本発明で規定する限定理由について説明する。なお、以下では各合金成分の含有量はいずれも質量%で示される。   Next, the reason for limitation defined in the present invention will be described. In the following, the content of each alloy component is indicated by mass%.

(1)芯材の組成
芯材の成分の適正化によって、Mgを添加することなく高強度化を図っている。
(1) Composition of core material Strengthening is achieved without adding Mg by optimizing the components of the core material.

Mn:1.2〜1.8%
Mnはマトリックス中にAl−Mn−Si系、Al−Mn−Fe系、Al−Mn−Fe−Si系金属間化合物を微細に形成し、材料の強度を高める効果がある。しかし、Mn量が1.2%未満ではその効果が十分発揮されず、1.8%を超えると鋳造時に巨大な金属間化合物を生成するため材料の成形性が低下する。なお、同様の理由により下限を1.4%、上限を1.8%とすることが望ましく、さらには、下限を1.5%、上限を1.75%とすることがより望ましい。
Mn: 1.2 to 1.8%
Mn forms an Al—Mn—Si, Al—Mn—Fe, and Al—Mn—Fe—Si intermetallic compound in the matrix and has the effect of increasing the strength of the material. However, if the amount of Mn is less than 1.2%, the effect is not sufficiently exhibited. If the amount exceeds 1.8%, a huge intermetallic compound is produced at the time of casting, so that the formability of the material is lowered. For the same reason, it is desirable to set the lower limit to 1.4% and the upper limit to 1.8%, and it is more desirable to set the lower limit to 1.5% and the upper limit to 1.75%.

Si:0.4〜1.3%
Siはマトリックス中にAl−Mn−Si系、Al−Mn−Fe−Si系金属間化合物を微細に形成し、材料の強度を高める効果がある。しかし、Si量が0.4%未満ではその効果が十分発揮されず、1.3%を超えると材料の融点が低下する。なお、同様の理由により下限を0.6%、上限を1.2%とすることが望ましく、さらには、下限を0.7%、上限を1.1%とすることがより望ましい。
Si: 0.4 to 1.3%
Si has the effect of forming Al-Mn-Si-based and Al-Mn-Fe-Si-based intermetallic compounds in the matrix and increasing the strength of the material. However, if the amount of Si is less than 0.4%, the effect is not sufficiently exhibited, and if it exceeds 1.3%, the melting point of the material is lowered. For the same reason, it is desirable to set the lower limit to 0.6% and the upper limit to 1.2%, and it is more desirable to set the lower limit to 0.7% and the upper limit to 1.1%.

Fe:0.21〜0.5%
Feはマトリックス中にAl−Mn−Fe系、Al−Mn−Fe−Si系金属間化合物を微細に形成し、材料の強度を高める効果や、ろう付熱処理後の結晶を微細化することによりろう付後の強度を向上させる効果がある。しかし、Fe量が0.21%未満ではその効果が十分発揮されず、0.5%を超えると耐食性が劣化したり、鋳造時の巨大な金属間化合物を生成して材料の成形性が低下する。なお、同様の理由により下限を0.25%、上限を0.45%とすることが望ましく、さらには、下限を0.28%、上限を0.40%とすることがより望ましい。
Fe: 0.21 to 0.5%
Fe may be formed by finely forming Al-Mn-Fe-based and Al-Mn-Fe-Si-based intermetallic compounds in the matrix to increase the strength of the material and by refining the crystal after brazing heat treatment. There is an effect of improving the strength after application. However, if the amount of Fe is less than 0.21%, the effect is not sufficiently exerted, and if it exceeds 0.5%, the corrosion resistance is deteriorated, or a huge intermetallic compound at the time of casting is generated and the formability of the material is lowered. To do. For the same reason, it is desirable to set the lower limit to 0.25% and the upper limit to 0.45%, and it is more desirable to set the lower limit to 0.28% and the upper limit to 0.40%.

Cu:0.5〜1.3%
Cuはマトリックス中に固溶し、材料の強度を高める効果や、芯材に添加した場合、芯材の電位を貴として犠牲材との電位差が大きくなるため耐食性を向上させる効果がある。しかし、Cu量が0.5%未満ではその効果が十分発揮されず、1.3%を超えると材料の融点が低下する。なお、同様の理由により下限を0.6%、上限を1.2%とすることが望ましく、さらには、下限を0.8%、上限を1.1%とすることがより望ましい。
Cu: 0.5 to 1.3%
Cu dissolves in the matrix and has the effect of increasing the strength of the material, and when added to the core material, the potential of the core material is made noble and the potential difference from the sacrificial material is increased, thereby improving the corrosion resistance. However, if the amount of Cu is less than 0.5%, the effect is not sufficiently exhibited, and if it exceeds 1.3%, the melting point of the material is lowered. For the same reason, it is desirable to set the lower limit to 0.6% and the upper limit to 1.2%, and it is more desirable to set the lower limit to 0.8% and the upper limit to 1.1%.

Zr:0.3%以下、Ti:0.3%以下、Cr:0.3%以下
芯材には、上記した組成のほか、さらに、Zr:0.3%以下、Ti:0.3%以下、Cr:0.3%以下のうち、1種以上を所望により含有することができる。Zr、Ti、CrはAlZr、AlTi、AlCrを形成して材料の強度をさらに高める効果がある。しかし、含有量が上限を超えると鋳造時に巨大な金属間化合物を生成し、材料の成形性が劣化する。
Zr: 0.3% or less, Ti: 0.3% or less, Cr: 0.3% or less In addition to the above-described composition, Zr: 0.3% or less, Ti: 0.3% Hereinafter, one or more of Cr: 0.3% or less can be contained as desired. Zr, Ti, and Cr have the effect of further increasing the strength of the material by forming Al 3 Zr, Al 3 Ti, and Al 3 Cr. However, if the content exceeds the upper limit, a huge intermetallic compound is generated at the time of casting, and the formability of the material deteriorates.

芯材における、
ろう付相当加熱処理(595℃×1分)後の平均結晶粒径:30〜120μm
芯材の化学組成を適正化することにより強度は向上するものの、単に強度を向上させるのみでは、最大応力に達するまでに破断してしまうことが多く、材料本来の強度が得られない(引張強さの低下)。すなわち、高強度化に際しては伸びを向上させることが必要である。
伸びを向上させるには、ろう付熱処理後において結晶粒が微細であることが有効である。結晶粒が粗大であると結晶粒間で不均一な変形が生じるため伸びが低下する。そこで、ろう付相当の加熱処理後の平均結晶粒径が30〜120μmであることを要件とした。ろう付け温度は操業条件などによって異なるので、標準的な条件(595℃×1分)において得られる特性として規定している。したがって、ろう付け温度が上記条件である必要はない。なお、本願でいう結晶粒径とは、圧延方向に対して平行する断面における結晶粒の円相当径をいう。 ここで円相当径は、結晶粒子の投影図形の周長に等しい円周をもつ円の直径をいう。
平均結晶粒径が30μm未満であると、ろう付熱処理時にろう侵食を受けやすくなり、耐エロージョン性が低下する。一方、結晶粒径が120μmを超えると、上記した理由により材料の伸びが低下する。なお、同様の理由により下限を40μm、上限を110μmとすることが望ましく、さらには、下限を45μm、上限を100μmとすることがより望ましい。
上記微細な結晶粒は、後述するようにろう付前の芯材に比較的粗大な金属間化合物が粗く分散させることによって得ることができ、該粗大な金属間化合物の大きさや分散密度の調整によって上記結晶粒径を調整することができる。
In the core material,
Average grain size after brazing equivalent heat treatment (595 ° C. × 1 minute): 30 to 120 μm
Although the strength can be improved by optimizing the chemical composition of the core material, simply increasing the strength often results in fracture before reaching the maximum stress, and the original strength of the material cannot be obtained (tensile strength ). That is, it is necessary to improve the elongation when the strength is increased.
In order to improve the elongation, it is effective that the crystal grains are fine after the brazing heat treatment. If the crystal grains are coarse, non-uniform deformation occurs between the crystal grains, resulting in a decrease in elongation. Therefore, the average crystal grain size after heat treatment corresponding to brazing is 30 to 120 μm. Since the brazing temperature varies depending on the operating conditions and the like, it is defined as a characteristic obtained under standard conditions (595 ° C. × 1 minute). Therefore, the brazing temperature does not have to be the above condition. In addition, the crystal grain diameter as used in this application means the circle equivalent diameter of the crystal grain in the cross section parallel to a rolling direction. Here, the equivalent circle diameter refers to the diameter of a circle having a circumference equal to the circumference of the projected pattern of crystal grains.
When the average crystal grain size is less than 30 μm, it becomes susceptible to wax erosion during the brazing heat treatment, and the erosion resistance is lowered. On the other hand, when the crystal grain size exceeds 120 μm, the elongation of the material is lowered for the reason described above. For the same reason, it is desirable that the lower limit is 40 μm and the upper limit is 110 μm, and it is more desirable that the lower limit is 45 μm and the upper limit is 100 μm.
The fine crystal grains can be obtained by coarsely dispersing a relatively coarse intermetallic compound in the core material before brazing as described later, and by adjusting the size and dispersion density of the coarse intermetallic compound. The crystal grain size can be adjusted.

芯材におけるP方位の方位密度:4〜40
薄肉材では、チューブ成形時のロールへのなじみ易さという特性を有することが望ましい。該特性は、厚肉材にはない成形性に関する新たな特性である。チューブ成形時のロールへのなじみ易さや所望の形状の得られやすさは、素材に所定の結晶集合組織を発達させると向上する。ろう付前に、芯材においてP方位の結晶方位が発達すると、チューブ造管時にロールになじみ易くなり、B型チューブ形成時などに所望の形状が得られやすくなる。P方位({011}<111>)の発達の程度は、方位密度で表すことができる。方位密度とは、X線回折において、ランダムな結晶方位に対する、ある結晶方位のX線回折強度を比率で示したものであり、発達の程度が高いほど、方位密度の値は高くなる。P方位の方位密度が4未満であると、P方位の発達が乏しいので上記した効果が十分発揮されない。一方、方位密度が40を超えると、P方位が発達しすぎて素材の異方性が大きくなり、むしろ所望の形状が得られにくくなる。そのため、P方位の方位密度を規定する場合、その範囲は4〜40とする。同様の理由で下限を6、上限を38とするのが望ましく、下限を8、上限を30とするのが一層望ましい。
なお、P方位の方位密度の測定は、例えば、X線回折法を用いて、方位分布関数(Orientation Distribution Function:ODF)を求め、これを解析することにより行うことができる。
また、上記方位密度は、製造過程において、たとえば、均質化処理条件により調整することができる。
Orientation density in the P direction in the core material: 4 to 40
It is desirable that the thin-walled material has a characteristic that it can be easily adapted to a roll during tube forming. This property is a new property relating to formability that is not found in thick materials. The ease of fitting into a roll and the ease of obtaining a desired shape during tube forming are improved when a predetermined crystal texture is developed in the material. If the crystal orientation of the P orientation develops in the core material before brazing, it becomes easy to become familiar with the roll during tube making, and a desired shape is easily obtained when forming a B-type tube. The degree of development of the P orientation ({011} <111>) can be expressed by orientation density. The orientation density is the ratio of the X-ray diffraction intensity of a certain crystal orientation relative to a random crystal orientation in X-ray diffraction. The higher the degree of development, the higher the orientation density value. If the orientation density of the P orientation is less than 4, the above effect cannot be sufficiently exhibited because the development of the P orientation is poor. On the other hand, when the orientation density exceeds 40, the P orientation develops too much and the anisotropy of the material increases, and it is rather difficult to obtain a desired shape. Therefore, when the orientation density of the P orientation is specified, the range is 4 to 40. For the same reason, it is desirable that the lower limit is 6 and the upper limit is 38, and it is more desirable that the lower limit is 8 and the upper limit is 30.
The measurement of the orientation density of the P orientation can be performed, for example, by obtaining an orientation distribution function (ODF) by using an X-ray diffraction method and analyzing the orientation distribution function (ODF).
In addition, the orientation density can be adjusted in the manufacturing process, for example, by homogenization processing conditions.

芯材のFe含有量(質量%)と前記ろう付相当加熱処理後の芯材平均結晶粒径(μm)の積:40以下
ろう付後の平均結晶粒が微細な場合でも、Fe系の粗大な晶出物があると結晶粒内の晶出物近傍で不均一な変形が生じるため伸びが低下する。したがってFe系の粗大な晶出物を抑制することが望ましいが、結晶粒が微細な場合には許容しうるFe系晶出物の量が多くなる。ここで、Fe系晶出物の量はFe含有量に依存するので、許容しうるFe系晶出物の量が多くなれば許容しうるFe含有量も多くなる。一方、Fe含有量が少なくてFe系晶出物の量が少ない場合には許容しうる平均結晶粒径は大きくなる。結晶粒の粗大化による不均一変形と粗大な晶出物による不均一変形は独立に作用するが、その総和として材料全体の不均一変形の程度が決まる。よっていずれかの不均一変形の程度が軽ければ、もう一方の不均一変形の程度が多くなってもよいことになり、Fe添加量×結晶粒径の積を所定の値以下とすることで伸びの低下を抑制でき、高強度が得られる。そのため、Fe添加量×結晶粒径の範囲は40以下とした。
The product of the Fe content (% by mass) of the core material and the average crystal grain size (μm) of the core material after brazing equivalent heat treatment: 40 or less Even if the average crystal grain after brazing is fine, the Fe-based coarseness If there is a crystallized material, non-uniform deformation occurs in the vicinity of the crystallized material in the crystal grains, so that the elongation decreases. Therefore, it is desirable to suppress Fe-based coarse crystallized products, but when the crystal grains are fine, the amount of Fe-based crystallized materials that can be tolerated increases. Here, since the amount of the Fe-based crystallized product depends on the Fe content, the allowable Fe content increases as the amount of the Fe-based crystallized material increases. On the other hand, when the Fe content is small and the amount of Fe-based crystallized material is small, the allowable average crystal grain size becomes large. The non-uniform deformation due to the coarsening of the crystal grains and the non-uniform deformation due to the coarse crystallized product act independently, but the sum of the non-uniform deformation of the whole material is determined. Therefore, if one of the non-uniform deformations is light, the other non-uniform deformation may be increased, and elongation can be achieved by setting the product of Fe addition amount × crystal grain size to a predetermined value or less. Can be suppressed, and high strength can be obtained. Therefore, the range of Fe addition amount × crystal grain size is set to 40 or less.

芯材の金属間化合物分散状態:円相当径0.2〜0.8μmの金属間化合物が5×10〜5×10個/mm
アルミニウム合金ブレージングシートは、製造時に最終圧延率を高くすることによって結晶が微細化し、強度を向上させる効果が得られる。ただし、最終圧延率を高くすると強度が高くなりすぎてしまうことがある。これを回避するため芯材の金属間化合物の分散状態や固溶度を調整することが望ましい。
ろう付前の芯材に比較的粗大な金属間化合物が粗く分散すると、これらがろう付時の再結晶の核となるため、ろう付後の結晶を微細にしやすくする。また、このような比較的粗大な金属間化合物は強度に寄与しにくいため、ろう付前の強度を低くすることもできる。ただし、ろう付前の金属間化合物が粗大すぎると、ろう付後の結晶が微細になりすぎたり、強度が低くなりすぎてしまう。一方、微細すぎると、ろう付後の結晶が粗大になりやすく、強度も高くなりすぎてしまう。そのため、円相当径0.2〜0.8μmの金属間化合物に着目する。
そして、ろう付前の芯材において、前記したサイズの金属間化合物が5×10個/mm未満の場合は、上記したろう付後の結晶微細化の効果やろう付前の強度抑制の効果が少なく、5×10個/mmを超える場合は、結晶が微細になりすぎたり、強度が低くなりすぎてしまう。したがって、前記円相当径の金属間化合物の分散状態は5×10〜5×10個/mmの範囲であることが望ましい。
上記粗大な金属間化合物は、製造過程における熱履歴の管理によって行うことができる。すなわち、金属間化合物の分散状態は均質化処理温度や処理時間を変更することによって効率的に制御することができる。また、焼鈍条件によっても制御することができる。例えば、均質化処理であれば処理を高温、長時間とすることで金属間化合物を適度に粗大に分散させることができ、本発明に好適な分散状態とすることができる。
Intermetallic compounds dispersed state of the core: circular intermetallic compound equivalent diameter 0.2~0.8μm is 5 × 10 6 ~5 × 10 7 cells / mm 2
The aluminum alloy brazing sheet has the effect of increasing the final rolling ratio at the time of manufacture to refine the crystal and improve the strength. However, when the final rolling rate is increased, the strength may become too high. In order to avoid this, it is desirable to adjust the dispersion state and solid solubility of the intermetallic compound of the core material.
If relatively coarse intermetallic compounds are coarsely dispersed in the core material before brazing, these become the cores of recrystallization during brazing, so that the crystal after brazing is easily made fine. Moreover, since such a comparatively coarse intermetallic compound does not contribute to strength, the strength before brazing can be lowered. However, if the intermetallic compound before brazing is too coarse, the crystal after brazing becomes too fine or the strength becomes too low. On the other hand, if it is too fine, the crystals after brazing tend to be coarse and the strength becomes too high. Therefore, attention is focused on an intermetallic compound having an equivalent circle diameter of 0.2 to 0.8 μm.
And in the core material before brazing, when the intermetallic compound of the above-mentioned size is less than 5 × 10 6 pieces / mm 2 , the effect of crystal refining after brazing and the strength suppression before brazing are reduced. When the effect is small and it exceeds 5 × 10 7 pieces / mm 2 , the crystal becomes too fine or the strength becomes too low. Therefore, the dispersion state of the intermetallic compound having an equivalent circle diameter is desirably in the range of 5 × 10 6 to 5 × 10 7 pieces / mm 2 .
The coarse intermetallic compound can be obtained by managing the thermal history during the production process. That is, the dispersion state of the intermetallic compound can be efficiently controlled by changing the homogenization treatment temperature and the treatment time. It can also be controlled by annealing conditions. For example, in the case of a homogenization treatment, the intermetallic compound can be dispersed moderately and coarsely by setting the treatment at a high temperature for a long time, and a dispersion state suitable for the present invention can be obtained.

(2)犠牲材の組成
芯材のみを高強度化すると、犠牲材との強度差が大きくなって変形が不均一となり伸びが低下してしまうことがある。そこで、犠牲材の成分を適正化するとともに犠牲材を高強度化するのが望ましい。ろう材は高強度であり、このような問題はない。
なお、以下の犠牲材成分は所望により選定されるものである。
(2) Composition of sacrificial material When only the core material is strengthened, the strength difference from the sacrificial material becomes large, the deformation becomes non-uniform, and the elongation may decrease. Therefore, it is desirable to optimize the components of the sacrificial material and increase the strength of the sacrificial material. The brazing material has high strength, and there is no such problem.
The following sacrificial material components are selected as desired.

Zn:4.0〜7.0%
Znは電位を卑にするため作用があり、犠牲材に添加した場合、芯材との電位差が大きくなり、犠牲効果が向上することでブレージングシートの耐食性を向上させ、腐食深さを低減する効果がある。しかし、Zn量が4.0%未満ではその効果が十分発揮されず、7.0%を超えると腐食速度が速くなりすぎて犠牲材層が早期に消失する結果、腐食深さが増加する。なお、同様の理由により、下限を4.5%、上限を7.0%とすることがより望ましく、さらには下限を4.8%、上限を6.8%とすることがより望ましい。
Zn: 4.0-7.0%
Zn has the effect of lowering the potential, and when added to the sacrificial material, the potential difference with the core material is increased, and the sacrificial effect is improved, thereby improving the corrosion resistance of the brazing sheet and reducing the corrosion depth. There is. However, if the Zn content is less than 4.0%, the effect is not sufficiently exhibited. If the Zn content exceeds 7.0%, the corrosion rate becomes too fast and the sacrificial material layer disappears early, resulting in an increase in the corrosion depth. For the same reason, it is more desirable to set the lower limit to 4.5% and the upper limit to 7.0%, and it is more desirable to set the lower limit to 4.8% and the upper limit to 6.8%.

Mn:1.0〜1.8%
Mnはマトリックス中にAl−Mn−Si系、Al−Mn−Fe系、Al−Mn−Fe−Si系金属間化合物を微細に形成して、材料の強度を向上させる効果がある。しかし、Mn量が1.0%未満ではその効果が十分発揮されず、1.8%を超えると素材の強度が高くなりすぎて成形性が劣化する。なお、同様の理由により、下限を1.2%、上限を1.8%とすることがより望ましく、さらには下限を1.3%、上限を1.7%とすることがより望ましい。
Mn: 1.0 to 1.8%
Mn has the effect of improving the strength of the material by finely forming an Al—Mn—Si, Al—Mn—Fe, and Al—Mn—Fe—Si intermetallic compound in the matrix. However, if the amount of Mn is less than 1.0%, the effect is not sufficiently exhibited. For the same reason, it is more desirable that the lower limit is 1.2% and the upper limit is 1.8%, and it is more desirable that the lower limit is 1.3% and the upper limit is 1.7%.

Si:0.2〜1.2%
Siはマトリックス中にAl−Mn−Si系、Al−Mn−Fe−Si系金属間化合物を微細に形成して、材料の強度を向上させる効果がある。しかし、Si量が0.2%未満ではその効果が十分発揮されず、1.2%を超えると耐食性が劣化する。なお、同様の理由により、下限を0.3%、上限を1.1%とすることがより望ましく、さらには下限を0.4%、上限を1.0%とすることがより望ましい。
Si: 0.2-1.2%
Si has the effect of improving the strength of the material by finely forming an Al—Mn—Si based or Al—Mn—Fe—Si based intermetallic compound in the matrix. However, if the amount of Si is less than 0.2%, the effect is not sufficiently exhibited, and if it exceeds 1.2%, the corrosion resistance deteriorates. For the same reason, it is more desirable to set the lower limit to 0.3% and the upper limit to 1.1%, and it is more desirable to set the lower limit to 0.4% and the upper limit to 1.0%.

Ti:0.3%以下
犠牲材には、上記した組成のほか、さらに、Ti:0.3%以下を所望により含有させることもできる。Tiは腐食形態を層状にして腐食深さを低減する効果がある。しかし、Ti量が0.3%を超えると鋳造時に巨大な金属間化合物が生成して、材料の成形性が低下する。
Ti: 0.3% or less In addition to the above-described composition, Ti: 0.3% or less can be further optionally contained in the sacrificial material. Ti has the effect of reducing the corrosion depth by layering the corrosion form. However, if the Ti content exceeds 0.3%, a huge intermetallic compound is produced during casting, and the formability of the material is lowered.

(3)ブレージングシート
板厚:0.20mm以下
ブレージングシートの板厚が0.20mmを超えると、熱交換器の軽量化に対する効果が少ない。そのため板厚は0.20mm以下に限定する。
(3) Brazing sheet thickness: 0.20 mm or less When the thickness of the brazing sheet exceeds 0.20 mm, the effect on the weight reduction of the heat exchanger is small. Therefore, the plate thickness is limited to 0.20 mm or less.

ろう付相当加熱処理(595℃×1分)後の引張強さ:170MPa以上
ブレージングシートの薄肉化にあたっては、肉厚減少分に見合うようにろう付け後における材料強度を高める必要がある。そこでろう付相当加熱処理後の引張強さが170MPa以上であることを要件とした。ろう付け温度は操業条件などによって異なるので、標準的な条件(595℃×1分)において得られる特性として規定している。したがって、ろう付け温度が上記条件である必要はない。
ろう付相当加熱処理後の引張強さが170MPa未満であると、熱交換器に使用したときに十分な強度が得られず、実用に向かない。
Tensile strength after brazing equivalent heat treatment (595 ° C. × 1 minute): 170 MPa or more In reducing the thickness of the brazing sheet, it is necessary to increase the material strength after brazing to meet the thickness reduction. Therefore, the tensile strength after brazing equivalent heat treatment is required to be 170 MPa or more. Since the brazing temperature varies depending on the operating conditions and the like, it is defined as a characteristic obtained under standard conditions (595 ° C. × 1 minute). Therefore, the brazing temperature does not have to be the above condition.
When the tensile strength after brazing equivalent heat treatment is less than 170 MPa, sufficient strength cannot be obtained when used in a heat exchanger, which is not suitable for practical use.

引張強さ:180〜240MPa
薄肉材では、成形性を得るために、ろう付前の素材にコシがあることが望ましい。素材のコシは引張強さが高いほど強くなる。ただし、引張強さが240MPaを超えると強度が高くなりすぎてスプリングバック量が大きくなり、所望の形状を得がたくなる。一方、引張強さが180MPa未満であると、ろう付後に十分な強度が得られにくくなる。したがって、ブレージングシートの引張強さは180〜240MPaであることが望ましい。
Tensile strength: 180-240 MPa
For thin-walled materials, it is desirable that the material before brazing is stiff in order to obtain formability. The stiffness of the material becomes stronger as the tensile strength is higher. However, if the tensile strength exceeds 240 MPa, the strength becomes too high and the amount of springback increases, making it difficult to obtain the desired shape. On the other hand, when the tensile strength is less than 180 MPa, it is difficult to obtain sufficient strength after brazing. Therefore, the tensile strength of the brazing sheet is desirably 180 to 240 MPa.

最終圧延時の冷間圧延率:30〜50%
本発明のブレージングシートは、中間焼鈍を介して冷間圧延によって製造することができる。該中間焼鈍後の最終圧延の冷間圧延率を規定する。
最終圧延時の冷間圧延率を高くすると、結晶が微細になる。したがって、冷間圧延率を30〜50%とすることが望ましい。冷間圧延率が30%未満であると、その効果が少なく、50%を超えると結晶が微細化しすぎて、ろう付後の結晶が粗大になりやすく、強度が高くなりすぎる。
なお、上記中間焼鈍は、例えば300〜400℃で1〜6時間の加熱によって行うことができる。
Cold rolling rate during final rolling: 30-50%
The brazing sheet of the present invention can be produced by cold rolling through intermediate annealing. The cold rolling ratio of the final rolling after the intermediate annealing is specified.
When the cold rolling rate during the final rolling is increased, the crystal becomes finer. Therefore, it is desirable that the cold rolling rate is 30 to 50%. If the cold rolling rate is less than 30%, the effect is small, and if it exceeds 50%, the crystal becomes too fine, the crystal after brazing tends to be coarse, and the strength becomes too high.
In addition, the said intermediate annealing can be performed by heating for 1 to 6 hours, for example at 300-400 degreeC.

以上説明したように、本願発明のアルミニウム合金ブレージングシートよれば、質量%で、Mn:1.2〜1.8%、Si:0.4〜1.3%、Fe:0.21〜0.5%、Cu:0.5〜1.3%を含有し、残部がAlおよび不可避不純物からなるアルミニウム合金を芯材とし、該芯材の片面に犠牲陽極材、他の片面にAl−Si系またはAl−Si−Zn系ろう材がクラッドされた、板厚が0.20mm以下のアルミニウム合金ブレージングシートであって、595℃×1分間のろう付け相当加熱処理において、引張強さが170MPa以上、かつ、芯材の平均結晶粒径が30〜120μmの範囲にあるので、Mgを積極的に添加することなく強度および成形性を向上させることができる。   As described above, according to the aluminum alloy brazing sheet of the present invention, by mass%, Mn: 1.2 to 1.8%, Si: 0.4 to 1.3%, Fe: 0.21 to 0.00. An aluminum alloy containing 5%, Cu: 0.5 to 1.3%, the balance being Al and unavoidable impurities is used as a core material, a sacrificial anode material is provided on one side of the core material, and an Al—Si system is provided on the other side. Alternatively, an aluminum alloy brazing sheet clad with an Al—Si—Zn brazing material and having a plate thickness of 0.20 mm or less, and in a heat treatment equivalent to brazing at 595 ° C. for 1 minute, the tensile strength is 170 MPa or more, And since the average crystal grain diameter of a core material exists in the range of 30-120 micrometers, intensity | strength and a moldability can be improved, without adding Mg positively.

本発明の一実施形態のブレージングシートをチューブ形状に成形する工程を示す図である。It is a figure which shows the process of shape | molding the brazing sheet of one Embodiment of this invention in a tube shape. 本発明の実施例における供試材の金属組織写真である。It is a metallographic photograph of the test material in the Example of this invention.

以下に、本発明の一実施形態を説明する。
本発明の組成範囲内である芯材用のアルミニウム合金および犠牲材用アルミニウム合金を用意する。これらの合金は、常法により溶製することができる。ろう材に用いられるアルミニウム合金については、Al−Si系およびAl−Si−Zn系であれば本発明では特に限定するものではなく、例えばJIS A 4343合金、4047合金、また、4045合金、4343合金、4047合金等にZnを含有する合金、またMg、Cu、Li等を含有する合金を用いることもできる。これらの合金は、溶製した後、均質化処理を施すことができる。該均質化処理は、例えば530〜600℃で8〜16時間加熱することによって行うことができる。該鋳塊は熱間圧延を経て合金板とされる。また連続鋳造圧延を経て合金板とするものであってもよい。
Hereinafter, an embodiment of the present invention will be described.
An aluminum alloy for a core material and an aluminum alloy for a sacrificial material that are within the composition range of the present invention are prepared. These alloys can be melted by a conventional method. The aluminum alloy used for the brazing material is not particularly limited in the present invention as long as it is Al—Si and Al—Si—Zn. For example, JIS A 4343 alloy, 4047 alloy, 4045 alloy, 4343 alloy Further, an alloy containing Zn or an alloy containing Mg, Cu, Li, or the like can be used for the 4047 alloy or the like. These alloys can be homogenized after being melted. The homogenization treatment can be performed, for example, by heating at 530 to 600 ° C. for 8 to 16 hours. The ingot is hot rolled to be an alloy plate. Further, it may be an alloy plate through continuous casting and rolling.

これら合金板は、通常は、クラッドに組み付けられて適宜のクラッド率でクラッドされる。クラッドは、一般に圧延により行われる。その後、さらに冷間圧延を行うことで所望の厚さのアルミニウム合金ブレージングシートが得られる。クラッド材の構成は、例えば、犠牲材:芯材:ろう材=15%:75%:10%とすることができる。ただし、上記クラッド材の構成はこれに限定されるものではなく、例えば、犠牲材のクラッド率を17%や20%にしてもよい。
上記製造過程では、冷間圧延に際し中間焼鈍を介在させることができる。該中間焼鈍は、例えば300〜400℃で1〜6時間の加熱によって行うことができる。
中間焼鈍後の最終冷間圧延では、30〜50%の冷間圧延率で圧延を行う。
金属間化合物の分散状態は均質化処理温度や処理時間を変更することによって効率的に制御することができる。処理温度が低いほど金属間化合物のサイズは微細となり、一方、処理温度が高い場合、金属間化合物のサイズは粗大となる。例えば、均質化処理温度を、上記した530〜600℃という条件で実施することで金属間化合物を適度に粗大に分散させることができ、本発明に好適な分散状態とすることができる。
These alloy plates are usually assembled into a clad and clad at an appropriate clad rate. The cladding is generally performed by rolling. Then, the aluminum alloy brazing sheet of desired thickness is obtained by performing cold rolling further. The composition of the clad material can be, for example, sacrificial material: core material: brazing material = 15%: 75%: 10%. However, the configuration of the cladding material is not limited to this, and for example, the cladding rate of the sacrificial material may be 17% or 20%.
In the manufacturing process, intermediate annealing can be interposed during cold rolling. The intermediate annealing can be performed, for example, by heating at 300 to 400 ° C. for 1 to 6 hours.
In the final cold rolling after the intermediate annealing, rolling is performed at a cold rolling rate of 30 to 50%.
The dispersion state of the intermetallic compound can be efficiently controlled by changing the homogenization treatment temperature and the treatment time. The lower the processing temperature, the finer the intermetallic compound size, while the higher the processing temperature, the coarser the intermetallic compound size. For example, by carrying out the homogenization treatment temperature under the above conditions of 530 to 600 ° C., the intermetallic compound can be dispersed moderately and coarsely, and a dispersion state suitable for the present invention can be obtained.

前記ブレージングシートは、好適には熱交換器用チューブとして用いることができる。図1に示すように、前記ブレージングシート1は成形ロールなどによって犠牲材4が内側、ろう材3が外側になるように両端を内側に曲げ、犠牲材4に前記端部を突き合わせるようにして内柱1aを設けてB型に成形加工しチューブ形状とする。図中2は芯材である。これを他部材と組み付けてろう材によって他部材とろう付けするとともに、ブレージングシートの端部同士を同時にろう付け接合する。   The brazing sheet can be preferably used as a heat exchanger tube. As shown in FIG. 1, the brazing sheet 1 is bent inward so that the sacrificial material 4 is on the inside and the brazing material 3 is on the outside by a forming roll or the like, and the end portion is abutted against the sacrificial material 4. An inner pillar 1a is provided and formed into a B shape to obtain a tube shape. In the figure, 2 is a core material. This is assembled with another member and brazed to the other member with a brazing material, and the brazing sheet ends are brazed and joined simultaneously.

半連続鋳造により芯材用アルミニウム合金、犠牲材用アルミニウム合金、およびろう材用合金(4045合金)を鋳造した。芯材用アルミニウム合金の組成は表1(残部Alおよび不可避不純物)に示し、犠牲材用アルミニウム合金の組成は表2(残部Alおよび不可避不純物)に示した。得られた芯材およびろう材は所定温度で均質化処理を行った。犠牲材については均質化処理を行わなかった。   Aluminum alloy for core material, aluminum alloy for sacrificial material, and alloy for brazing material (4045 alloy) were cast by semi-continuous casting. The composition of the aluminum alloy for the core material is shown in Table 1 (remainder Al and unavoidable impurities), and the composition of the aluminum alloy for the sacrificial material is shown in Table 2 (remainder Al and unavoidable impurities). The obtained core material and brazing material were homogenized at a predetermined temperature. The sacrificial material was not homogenized.

上記で得た芯材用アルミニウム合金の片面に犠牲材用アルミニウム合金、他の片面にろう材用アルミニウム合金を組み合わせて熱間圧延し、クラッド材とした。芯材、犠牲材の組み合わせは表3〜5に示す。次いで前記クラッド材を所定の厚さまで冷間圧延した。その後、中間焼鈍を350℃で6時間行い、最終冷間圧延により厚さ0.19mmのH14調質のクラッド材(供試材)を作製した。クラッド材のクラッド率は、犠牲材:芯材:ろう材=15%:75%:10%とした。   The aluminum alloy for sacrificial material was combined on one side of the aluminum alloy for core material obtained above, and the aluminum alloy for brazing material was combined on the other side and hot rolled to obtain a clad material. Tables 3 to 5 show combinations of the core material and the sacrificial material. Next, the clad material was cold-rolled to a predetermined thickness. Thereafter, intermediate annealing was performed at 350 ° C. for 6 hours, and a H14 tempered clad material (test material) having a thickness of 0.19 mm was produced by final cold rolling. The clad ratio of the clad material was sacrificial material: core material: brazing material = 15%: 75%: 10%.

得られた供試材について以下の項目の評価を行った。評価結果については表3〜5に示す。   The obtained test material was evaluated for the following items. The evaluation results are shown in Tables 3-5.

(ろう付相当加熱処理後の平均結晶粒径)
作製した供試材を高純度窒素ガス雰囲気中でドロップ形式で595℃×1分のろう付相当加熱処理(室温から595℃まで昇温時間は5〜7分)を施した。ろう付相当加熱処理を実施した供試材は、圧延方向平行断面を樹脂埋めし、該断面を鏡面に研磨した後、エッチング液で結晶粒を現出させ、試料の3箇所について光学顕微鏡を用いて200倍で写真撮影した。撮影した写真から圧延方向について切断法で平均結晶粒径を測定した。結果を表3〜5に示した。
(Average crystal grain size after brazing equivalent heat treatment)
The prepared test material was subjected to a heat treatment equivalent to brazing at 595 ° C. for 1 minute in a high purity nitrogen gas atmosphere (temperature rising time from room temperature to 595 ° C. is 5 to 7 minutes). The test material subjected to the brazing equivalent heat treatment was filled with a resin in a cross section parallel to the rolling direction, and the cross section was polished to a mirror surface. Then, crystal grains were revealed with an etching solution, and an optical microscope was used for three portions of the sample. I took a photo at 200x. From the photograph taken, the average crystal grain size was measured by the cutting method in the rolling direction. The results are shown in Tables 3-5.

(集合組織)
ろう付相当加熱処理前の供試材について、苛性ソーダによるアルカリエッチングで芯材のほぼ中央部を露出させた後、X線解析装置を用いて反射法によって不完全極点図を測定した。得られた極点図をODF解析し、この解析結果からP方位の方位密度を求めた。なお、解析の際のP方位の強度については、理想方位であるφ2=45°断面におけるψ1=55°から±3°の平均値をP方位の強度とした。その結果を表3〜5に示した。
(Gathering organization)
About the test material before brazing equivalent heat processing, after exposing the substantially center part of the core material by the alkali etching by caustic soda, the incomplete pole figure was measured by the reflection method using the X-ray analyzer. The obtained pole figure was subjected to ODF analysis, and the orientation density of the P orientation was obtained from the analysis result. As for the strength of the P orientation at the time of analysis, the average value of ψ1 = 55 ° to ± 3 ° in the φ2 = 45 ° cross section which is the ideal orientation was taken as the strength of the P orientation. The results are shown in Tables 3-5.

(金属間化合物の分散状態)
ろう付相当加熱処理前の供試材に600℃×15秒のソルトバス焼鈍を行って変形ひずみを除去し、金属間化合物を観察しやすくした後、苛性ソーダによるアルカリエッチングによって芯材を露出させ、通常の方法で機械研磨、および電解研磨によって薄膜を作製し、TEMによって20000倍で写真撮影した。撮影した写真を画像解析し、円相当径0.2〜0.8μmの金属間化合物の密度(個/mm)を求めた。その結果を表3〜5に示した。
(Dispersion state of intermetallic compound)
The test material before brazing equivalent heat treatment was subjected to salt bath annealing at 600 ° C. for 15 seconds to remove the deformation strain, making it easy to observe intermetallic compounds, and then exposing the core material by alkaline etching with caustic soda, A thin film was prepared by mechanical polishing and electrolytic polishing by an ordinary method, and photographed with a TEM at 20000 times. The photographed photograph was subjected to image analysis, and the density (number / mm 2 ) of an intermetallic compound having an equivalent circle diameter of 0.2 to 0.8 μm was determined. The results are shown in Tables 3-5.

(強度)
ろう付相当加熱処理前の供試材から圧延方向と平行にサンプルを切り出し、JIS13号B試験片を作製し、引張試験を実施して引張強さを測定し、表3〜5に示した。測定値が200MPa以上、220MPa以下の範囲内であったものは○○○と評価し、190MPa以上、200MPa未満もしくは220MPa超、230MPa以下であったものを○○と評価し、180MPa以上、190MPa未満もしくは230MPa超、240MPa以下であったものを○と評価し、180MPa未満もしくは240MPa超であったものを×と評価した。
(Strength)
Samples were cut out in parallel to the rolling direction from the specimens before the brazing equivalent heat treatment, JIS No. 13 B test pieces were prepared, tensile tests were performed, and the tensile strengths were measured. When the measured value was in the range of 200 MPa or more and 220 MPa or less, it was evaluated as XX, and when it was 190 MPa or more and less than 200 MPa or more than 220 MPa and 230 MPa or less, it was evaluated as XX, and 180 MPa or more and less than 190 MPa. Or what was more than 230 MPa and 240 MPa or less was evaluated as (circle), and what was less than 180 MPa or more than 240 MPa was evaluated as x.

(ろう付相当加熱処理後のろう付後強度)
供試材を高純度窒素ガス雰囲気中でドロップ形式で595℃×1分のろう付相当加熱処理(室温から595℃まで昇温時間は5〜7分)を施したのち、圧延方向と平行にサンプルを切り出し、JIS13号B試験片を作製し、引張試験を実施して引張強さを測定し、表3〜5に示した。測定値が179MPa以上であったものを○○○と評価し、測定値が175MPa以上、179MPa未満であったものを○○と評価し、測定値が170MPa以上、175MPa未満であったものを○と評価し、170MPa未満であったものを×と評価した。
(Strength after brazing after heat treatment equivalent to brazing)
The test material was subjected to brazing equivalent heat treatment in a high purity nitrogen gas atmosphere at 595 ° C. for 1 minute (room temperature rising from room temperature to 595 ° C. for 5 to 7 minutes), and then parallel to the rolling direction A sample was cut out, a JIS No. 13 B test piece was prepared, a tensile test was performed, and the tensile strength was measured. The results are shown in Tables 3 to 5. A measurement value of 179 MPa or more was evaluated as XX, a measurement value of 175 MPa or more and less than 179 MPa was evaluated as OO, and a measurement value of 170 MPa or more and less than 175 MPa was evaluated as XX. A value of less than 170 MPa was evaluated as x.

(成形性)
供試材を犠牲材が内側となるようにして、図1に示すB型チューブ形状に加工した。加工したチューブの断面を樹脂に埋め込んで、光学顕微鏡で内柱の形状を観察し、目的とした形状(寸法)からのズレを測定した。目的とした寸法からのズレが10μm以下であったものを○○○と評価し、10μm超、15μm以下であったものを○○と評価し、15μm超、20μm以下であったものを○と評価し、20μm超であったものを×と評価して表3〜5に示した。
(Formability)
The specimen was processed into a B-shaped tube shape shown in FIG. 1 with the sacrificial material inside. The cross section of the processed tube was embedded in resin, the shape of the inner pillar was observed with an optical microscope, and the deviation from the intended shape (dimension) was measured. When the deviation from the target dimension was 10 μm or less, it was evaluated as XX, and when it was more than 10 μm and 15 μm or less, it was evaluated as XX, and when it was more than 15 μm and 20 μm or less, Evaluation was made and those exceeding 20 μm were evaluated as x and shown in Tables 3 to 5.

(耐ろう侵食性(エロージョン深さ))
供試材を高純度窒素ガス雰囲気中でドロップ形式で595℃×1分のろう付相当加熱処理(室温から595℃まで昇温時間は5〜7分)を施した。ろう付相当熱処理を実施したサンプルを樹脂埋めし、圧延方向平行断面を鏡面研磨し、バーカー氏液で組織を現出後、光学顕微鏡で観察した。図2に観察像の一例を示す。図2において断面上部に現れる組織変質部の最大厚みをろう浸漬深さ(エロージョン深さ)とし、表3〜5に示した。エロージョン深さが55μm以下であったものを○○と評価し、55μm超、80μm以下のものを○と評価し、80μm超のものを×と評価した。
(Wax erosion resistance (erosion depth))
The specimen was subjected to a heat treatment equivalent to brazing at 595 ° C. for 1 minute in a high purity nitrogen gas atmosphere (temperature rising time from room temperature to 595 ° C. was 5 to 7 minutes). A sample subjected to brazing-corresponding heat treatment was filled with resin, the cross section in the rolling direction was mirror-polished, the structure was revealed with Barker's solution, and then observed with an optical microscope. FIG. 2 shows an example of an observation image. The maximum thickness of the tissue alteration portion appearing at the top of the cross section in FIG. Those having an erosion depth of 55 μm or less were evaluated as ◯, those having an erosion depth of more than 55 μm and 80 μm or less were evaluated as ◯, and those having an erosion depth of more than 80 μm were evaluated as ×.

(内部耐食性(腐食深さ))
ろう付相当加熱処理後の供試材から30×40mmのサンプルを切り出し、犠牲材側について、Cl:195ppm、SO 2―:60ppm、Cu2+:1ppm、Fe3+:30ppmを含む水溶液中で80℃×8時間→室温×16時間のサイクルで浸漬試験を8週間実施した。腐食試験後のサンプルを沸騰させたリン酸クロム酸混合溶液に浸漬して腐食生成物を除去した後、最大腐食部の断面観察を実施して腐食深さを測定し表3〜5に示した。腐食深さが35μm以下であったものを○○○と評価し、35μm超、50μm以下であったものを○○と評価し、50μm超、150μm以下のものを○と評価し、150μm超のものを×と評価した。
(Internal corrosion resistance (corrosion depth))
A 30 × 40 mm sample was cut out from the test material after brazing equivalent heat treatment, and the sacrificial material side was in an aqueous solution containing Cl : 195 ppm, SO 4 2− : 60 ppm, Cu 2+ : 1 ppm, Fe 3+ : 30 ppm. The immersion test was carried out for 8 weeks in a cycle of 80 ° C. × 8 hours → room temperature × 16 hours. After removing the corrosion products by immersing the sample after the corrosion test in a boiled chromic phosphate mixed solution, the cross-sectional observation of the maximum corrosion portion was performed to measure the corrosion depth, and shown in Tables 3 to 5 . When the corrosion depth was 35 μm or less, it was evaluated as XX, and when it was more than 35 μm or less than 50 μm, it was evaluated as XX, and when it was more than 50 μm or less than 150 μm, it was evaluated as ◯, Things were rated as x.

(製造性)
鋳造、熱間圧延、冷間圧延、ろう付熱処理の各工程において、不具合の有無を評価した。鋳造工程においては、鋳造割れや巨大晶出物の有無を評価し、熱間圧延工程においては、割れ、剥離、サイドクラックの発生の有無を評価し、冷間圧延工程においては、サイドクラック発生の有無を評価し、ろう付相当加熱処理工程においては、溶融の有無を評価した。不具合が発生したものについては、表3〜5中に※を示した。
すなわち、供試材No.14、30ではろう付時に溶融が見られた。また、供試材No.23では巨大化合物が形成された。
(Manufacturability)
In each process of casting, hot rolling, cold rolling and brazing heat treatment, the presence or absence of defects was evaluated. In the casting process, the presence of casting cracks and giant crystals is evaluated. In the hot rolling process, the presence of cracks, delamination and side cracks is evaluated. In the cold rolling process, side cracks are generated. The presence or absence was evaluated, and the presence or absence of melting was evaluated in the brazing equivalent heat treatment step. Tables 3 to 5 show * for those in which defects occurred.
That is, the test material No. In 14 and 30, melting was observed during brazing. In addition, specimen No. In 23, a giant compound was formed.

(総合評価)
上記の各評価において、エロージョン深さ以外の項目が○○○以上、かつエロージョン深さが○○以上のもの(全ての項目が最高評価のもの)を○○○と評価し、その他で全ての項目が○○以上のものを○○と評価し、その他で全ての項目が○以上のものを○と評価し、いずれかの項目に×があるものを×と評価して表3〜5に示した。
(Comprehensive evaluation)
In each of the above evaluations, an item other than the erosion depth is XX or higher and an erosion depth is XX or higher (all items are the highest rating), and all other items are evaluated as XX. If the item is XX or higher, it is evaluated as XX. Otherwise, if all items are ◯ or higher, it is evaluated as ◯. If any item has X, it is evaluated as X. Indicated.

1 アルミニウム合金ブレージングシート
2 芯材
3 ろう材
4 犠牲材
1 Aluminum alloy brazing sheet 2 Core material 3 Brazing material 4 Sacrificial material

質量%で、Mn:1.2〜1.8%、Si:0.4〜1.3%、Fe:0.21〜0.5%、Cu:0.5〜1.3%を含有し、残部がAlおよび不可避不純物からなるアルミニウム合金を芯材とし、該芯材の片面に犠牲材、他の片面にAl−Si系またはAl−Si−Zn系ろう材がクラッドされた、板厚が0.20mm以下のアルミニウム合金ブレージングシートであって、595℃×1分間のろう付け相当加熱処理によって、引張強さが170MPa以上、かつ、芯材の平均結晶粒径が30〜120μmの範囲となることを特徴とする。 In mass%, Mn: 1.2 to 1.8%, Si: 0.4 to 1.3%, Fe: 0.21 to 0.5%, Cu: 0.5 to 1.3% and the balance as a core material of aluminum alloy consisting of Al and unavoidable impurities, sacrificial 牲材 on one side of the core material, the other one surface Al-Si-based or Al-Si-Zn-based brazing material is clad, a thickness Is an aluminum alloy brazing sheet of 0.20 mm or less, and is subjected to brazing equivalent heat treatment at 595 ° C. for 1 minute, the tensile strength is 170 MPa or more, and the average crystal grain size of the core is 30 to 120 μm. It is characterized by becoming.

また、本発明の強度および成形性に優れたアルミニウム合金ブレージングシートの製造方法は、質量%で、Mn:1.2〜1.8%、Si:0.4〜1.3%、Fe:0.21〜0.5%、Cu:0.5〜1.3%を含有し、残部がAlおよび不可避不純物からなるアルミニウム合金を芯材とし、該芯材の片面に犠牲材、他の片面にAl−Si系またはAl−Si−Zn系ろう材をクラッドしたアルミニウム合金ブレージングシートを中間焼鈍を介在させた冷間圧延によって製造する際に、前記中間焼鈍後の最終圧延時の冷間圧延率を30〜50%の範囲にすることを特徴とする。 Moreover, the manufacturing method of the aluminum alloy brazing sheet excellent in strength and formability of the present invention is mass%, Mn: 1.2 to 1.8%, Si: 0.4 to 1.3%, Fe: 0 .21~0.5%, Cu: contains from 0.5 to 1.3%, the aluminum alloy and the balance being Al and inevitable impurities as a core material, sacrificial 牲材 on one side of the core material, other single-sided When an aluminum alloy brazing sheet clad with an Al-Si or Al-Si-Zn brazing material is manufactured by cold rolling with intermediate annealing, the cold rolling rate during final rolling after the intermediate annealing Is in the range of 30 to 50%.

以上説明したように、本願発明のアルミニウム合金ブレージングシートよれば、質量%で、Mn:1.2〜1.8%、Si:0.4〜1.3%、Fe:0.21〜0.5%、Cu:0.5〜1.3%を含有し、残部がAlおよび不可避不純物からなるアルミニウム合金を芯材とし、該芯材の片面に犠牲材、他の片面にAl−Si系またはAl−Si−Zn系ろう材がクラッドされた、板厚が0.20mm以下のアルミニウム合金ブレージングシートであって、595℃×1分間のろう付け相当加熱処理において、引張強さが170MPa以上、かつ、芯材の平均結晶粒径が30〜120μmの範囲にあるので、Mgを積極的に添加することなく強度および成形性を向上させることができる。 As described above, according to the aluminum alloy brazing sheet of the present invention, by mass%, Mn: 1.2 to 1.8%, Si: 0.4 to 1.3%, Fe: 0.21 to 0.00. 5% Cu: contains 0.5 to 1.3%, the aluminum alloy and the balance being Al and inevitable impurities as a core material, Al-Si system on one side of the core material sacrificial 牲材, the other one side Alternatively, an aluminum alloy brazing sheet clad with an Al—Si—Zn brazing material and having a plate thickness of 0.20 mm or less, and in a heat treatment equivalent to brazing at 595 ° C. for 1 minute, the tensile strength is 170 MPa or more, And since the average crystal grain diameter of a core material exists in the range of 30-120 micrometers, intensity | strength and a moldability can be improved, without adding Mg positively.

Claims (9)

質量%で、Mn:1.2〜1.8%、Si:0.4〜1.3%、Fe:0.21〜0.5%、Cu:0.5〜1.3%を含有し、残部がAlおよび不可避不純物からなるアルミニウム合金を芯材とし、該芯材の片面に犠牲陽極材、他の片面にAl−Si系またはAl−Si−Zn系ろう材がクラッドされた、板厚が0.20mm以下のアルミニウム合金ブレージングシートであって、595℃×1分間のろう付け相当加熱処理において、引張強さが170MPa以上、かつ、芯材の平均結晶粒径が30〜120μmの範囲にあることを特徴とする強度および成形性に優れたアルミニウム合金ブレージングシート。   In mass%, Mn: 1.2 to 1.8%, Si: 0.4 to 1.3%, Fe: 0.21 to 0.5%, Cu: 0.5 to 1.3% The thickness is obtained by using an aluminum alloy consisting of Al and inevitable impurities as the core, the sacrificial anode material on one side of the core, and the Al-Si or Al-Si-Zn brazing material on the other side. Is an aluminum alloy brazing sheet of 0.20 mm or less, and in a heat treatment equivalent to brazing at 595 ° C. for 1 minute, the tensile strength is 170 MPa or more and the average crystal grain size of the core material is in the range of 30 to 120 μm. An aluminum alloy brazing sheet excellent in strength and formability characterized by being. 前記芯材が、さらに、質量%で、Zr:0.3%以下、Ti:0.3%以下、Cr:0.3%以下のうち、1種以上を含有することを特徴とする請求項1に記載の強度および成形性に優れたアルミニウム合金ブレージングシート。   The core material further contains one or more of Zr: 0.3% or less, Ti: 0.3% or less, and Cr: 0.3% or less in mass%. 1. An aluminum alloy brazing sheet excellent in strength and formability according to 1. 前記犠牲材が、質量%でZn:4.0〜7.0%、Mn:1.0〜1.8%、Si:0.2〜1.2%を含有し、残部がAlおよび不可避不純物からなることを特徴とする請求項1または2に記載の強度および成形性に優れたアルミニウム合金ブレージングシート。   The sacrificial material contains Zn: 4.0-7.0%, Mn: 1.0-1.8%, Si: 0.2-1.2% by mass%, the balance being Al and inevitable impurities The aluminum alloy brazing sheet excellent in strength and formability according to claim 1 or 2, wherein the aluminum alloy brazing sheet is excellent in strength and formability. 前記犠牲材が、さらに、質量%で、Ti:0.3%以下を含有することを特徴とする請求項3に記載の強度および成形性に優れたアルミニウム合金ブレージングシート。   The aluminum alloy brazing sheet having excellent strength and formability according to claim 3, wherein the sacrificial material further contains, by mass%, Ti: 0.3% or less. 前記芯材のFe含有量(質量%)と、前記芯材の平均結晶粒径(μm)の積が40以下の範囲にあることを特徴とする請求項1〜4に記載の強度および成形性に優れたアルミニウム合金ブレージングシート。   The strength and formability according to claim 1, wherein the product of the Fe content (% by mass) of the core material and the average crystal grain size (μm) of the core material is in the range of 40 or less. Excellent aluminum alloy brazing sheet. 引張強さが180〜240MPaの範囲にあることを特徴とする請求項1〜5のいずれかに記載の強度および成形性に優れたアルミニウム合金ブレージングシート。   The aluminum alloy brazing sheet excellent in strength and formability according to any one of claims 1 to 5, wherein the tensile strength is in the range of 180 to 240 MPa. 前記芯材の結晶集合組織におけるP方位({011}<111>)の方位密度が4〜40の範囲にあることを特徴とする請求項1〜6のいずれかに記載の強度および成形性に優れたアルミニウム合金ブレージングシート。   The strength and formability according to any one of claims 1 to 6, wherein the orientation density of the P orientation ({011} <111>) in the crystal texture of the core material is in the range of 4 to 40. Excellent aluminum alloy brazing sheet. 前記芯材は、円相当径0.2〜0.8μmの金属間化合物が5×10〜5×10個/mmの範囲で分散していることを特徴とする請求項1〜7のいずれかに記載の強度および成形性に優れたアルミニウム合金ブレージングシート。 8. The core material, wherein an intermetallic compound having an equivalent circle diameter of 0.2 to 0.8 [mu] m is dispersed in a range of 5 * 10 < 6 > to 5 * 10 < 7 > pieces / mm < 2 >. An aluminum alloy brazing sheet excellent in strength and formability as described in any of the above. 質量%で、Mn:1.2〜1.8%、Si:0.4〜1.3%、Fe:0.21〜0.5%、Cu:0.5〜1.3%を含有し、残部がAlおよび不可避不純物からなるアルミニウム合金を芯材とし、該芯材の片面に犠牲陽極材、他の片面にAl−Si系またはAl−Si−Zn系ろう材をクラッドしたアルミニウム合金ブレージングシートを中間焼鈍を介在させた冷間圧延によって製造する際に、前記中間焼鈍後の最終圧延時の冷間圧延率を30〜50%の範囲にすることを特徴とする強度および成形性に優れたアルミニウム合金ブレージングシートの製造方法。   In mass%, Mn: 1.2 to 1.8%, Si: 0.4 to 1.3%, Fe: 0.21 to 0.5%, Cu: 0.5 to 1.3% An aluminum alloy brazing sheet in which an aluminum alloy composed of Al and inevitable impurities is used as a core, a sacrificial anode material is coated on one side of the core, and an Al—Si or Al—Si—Zn brazing material is clad on the other side. Is produced by cold rolling with intermediate annealing, the cold rolling rate at the time of final rolling after the intermediate annealing is in the range of 30 to 50%, and excellent in strength and formability A method for producing an aluminum alloy brazing sheet.
JP2010155982A 2010-07-08 2010-07-08 Aluminum alloy brazing sheet excellent in strength and formability and method for producing the same Active JP5737798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010155982A JP5737798B2 (en) 2010-07-08 2010-07-08 Aluminum alloy brazing sheet excellent in strength and formability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010155982A JP5737798B2 (en) 2010-07-08 2010-07-08 Aluminum alloy brazing sheet excellent in strength and formability and method for producing the same

Publications (3)

Publication Number Publication Date
JP2012017503A true JP2012017503A (en) 2012-01-26
JP2012017503A5 JP2012017503A5 (en) 2014-04-24
JP5737798B2 JP5737798B2 (en) 2015-06-17

Family

ID=45602959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010155982A Active JP5737798B2 (en) 2010-07-08 2010-07-08 Aluminum alloy brazing sheet excellent in strength and formability and method for producing the same

Country Status (1)

Country Link
JP (1) JP5737798B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014208905A (en) * 2013-03-26 2014-11-06 株式会社神戸製鋼所 Aluminum alloy blazing sheet
WO2015151942A1 (en) * 2014-03-31 2015-10-08 株式会社神戸製鋼所 Aluminium alloy laminated plate
JP2015187292A (en) * 2014-03-26 2015-10-29 株式会社神戸製鋼所 aluminum alloy brazing sheet
WO2016143119A1 (en) * 2015-03-12 2016-09-15 三菱アルミニウム株式会社 Brazing sheet with excellent corrosion resistance after brazing
JP2016169412A (en) * 2015-03-12 2016-09-23 三菱アルミニウム株式会社 Brazing sheet excellent in corrosion resistance after brazing
JP2019108597A (en) * 2017-12-20 2019-07-04 三菱アルミニウム株式会社 Aluminum alloy material for heat exchanger and heat exchanger
US10634439B2 (en) 2016-03-29 2020-04-28 Uacj Corporation Aluminum alloy brazing sheet for a heat exchanger, and process for producing the same
WO2022168566A1 (en) * 2021-02-03 2022-08-11 株式会社Uacj Aluminum alloy fin material and production method therefor

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278710A (en) * 1994-04-08 1995-10-24 Furukawa Electric Co Ltd:The Al brazing sheet
JPH07286250A (en) * 1994-02-24 1995-10-31 Furukawa Electric Co Ltd:The Production of aluminum alloy brazing sheet for heat exchanger
JPH10130760A (en) * 1996-10-28 1998-05-19 Furukawa Electric Co Ltd:The Aluminum alloy brazing sheet bar to be formed into tube by bending
JPH11229064A (en) * 1998-02-19 1999-08-24 Furukawa Electric Co Ltd:The Aluminum alloy sacrificial anode material for heat exchanger and high corrosion resistance aluminum alloy composite material for heat exchanger
JPH11293372A (en) * 1998-04-07 1999-10-26 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material for heat exchanger, having high strength and high corrosion resistance
JPH11293371A (en) * 1998-04-07 1999-10-26 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material for heat exchanger, excellent in strength and corrosion resistance
JP2001026850A (en) * 1999-07-12 2001-01-30 Mitsubishi Alum Co Ltd Production of tube material for heat exchanger excellent in tube formability
JP2001105173A (en) * 1999-09-30 2001-04-17 Mitsubishi Alum Co Ltd Aluminum alloy compound material for heat exchanger and its manufacturing method
JP2002086295A (en) * 2000-09-11 2002-03-26 Furukawa Electric Co Ltd:The Anticorrosive aluminum alloy brazing filler metal for heat exchanger and highly corrosion preventing aluminum alloy composite material for heat exchanger
JP2007327093A (en) * 2006-06-07 2007-12-20 Sumitomo Light Metal Ind Ltd Clad material of high-strength aluminum alloy excellent in brazability for heat exchanger
JP2007332424A (en) * 2006-06-15 2007-12-27 Furukawa Sky Kk Sacrificial anode material, and composite of aluminum alloy
JP2008500453A (en) * 2004-05-26 2008-01-10 コラス・アルミニウム・バルツプロドウクテ・ゲーエムベーハー Aluminum alloy brazing sheet manufacturing method and aluminum alloy brazing sheet
JP2009191293A (en) * 2008-02-12 2009-08-27 Kobe Steel Ltd Aluminum alloy laminate having excellent fatigue property
JP2010095758A (en) * 2008-10-16 2010-04-30 Mitsubishi Alum Co Ltd Brazing sheet for automotive heat exchanger for brazed tube making

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286250A (en) * 1994-02-24 1995-10-31 Furukawa Electric Co Ltd:The Production of aluminum alloy brazing sheet for heat exchanger
JPH07278710A (en) * 1994-04-08 1995-10-24 Furukawa Electric Co Ltd:The Al brazing sheet
JPH10130760A (en) * 1996-10-28 1998-05-19 Furukawa Electric Co Ltd:The Aluminum alloy brazing sheet bar to be formed into tube by bending
JPH11229064A (en) * 1998-02-19 1999-08-24 Furukawa Electric Co Ltd:The Aluminum alloy sacrificial anode material for heat exchanger and high corrosion resistance aluminum alloy composite material for heat exchanger
JPH11293372A (en) * 1998-04-07 1999-10-26 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material for heat exchanger, having high strength and high corrosion resistance
JPH11293371A (en) * 1998-04-07 1999-10-26 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material for heat exchanger, excellent in strength and corrosion resistance
JP2001026850A (en) * 1999-07-12 2001-01-30 Mitsubishi Alum Co Ltd Production of tube material for heat exchanger excellent in tube formability
JP2001105173A (en) * 1999-09-30 2001-04-17 Mitsubishi Alum Co Ltd Aluminum alloy compound material for heat exchanger and its manufacturing method
JP2002086295A (en) * 2000-09-11 2002-03-26 Furukawa Electric Co Ltd:The Anticorrosive aluminum alloy brazing filler metal for heat exchanger and highly corrosion preventing aluminum alloy composite material for heat exchanger
JP2008500453A (en) * 2004-05-26 2008-01-10 コラス・アルミニウム・バルツプロドウクテ・ゲーエムベーハー Aluminum alloy brazing sheet manufacturing method and aluminum alloy brazing sheet
JP2007327093A (en) * 2006-06-07 2007-12-20 Sumitomo Light Metal Ind Ltd Clad material of high-strength aluminum alloy excellent in brazability for heat exchanger
JP2007332424A (en) * 2006-06-15 2007-12-27 Furukawa Sky Kk Sacrificial anode material, and composite of aluminum alloy
JP2009191293A (en) * 2008-02-12 2009-08-27 Kobe Steel Ltd Aluminum alloy laminate having excellent fatigue property
JP2010095758A (en) * 2008-10-16 2010-04-30 Mitsubishi Alum Co Ltd Brazing sheet for automotive heat exchanger for brazed tube making

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018197395A (en) * 2013-03-26 2018-12-13 株式会社神戸製鋼所 Aluminum alloy blazing sheet
JP2014208905A (en) * 2013-03-26 2014-11-06 株式会社神戸製鋼所 Aluminum alloy blazing sheet
JP2015187292A (en) * 2014-03-26 2015-10-29 株式会社神戸製鋼所 aluminum alloy brazing sheet
US10315277B2 (en) 2014-03-31 2019-06-11 Kobe Steel, Ltd. Aluminium alloy laminated plate
JP2015196858A (en) * 2014-03-31 2015-11-09 株式会社神戸製鋼所 Aluminum alloy laminate sheet
WO2015151942A1 (en) * 2014-03-31 2015-10-08 株式会社神戸製鋼所 Aluminium alloy laminated plate
WO2016143119A1 (en) * 2015-03-12 2016-09-15 三菱アルミニウム株式会社 Brazing sheet with excellent corrosion resistance after brazing
JP2016169412A (en) * 2015-03-12 2016-09-23 三菱アルミニウム株式会社 Brazing sheet excellent in corrosion resistance after brazing
CN107429333A (en) * 2015-03-12 2017-12-01 三菱铝株式会社 The outstanding soldering lug of corrosion resistance after soldering
US20180043476A1 (en) * 2015-03-12 2018-02-15 Mitsubishi Aluminum Co., Ltd., Brazing sheet having improved corrosion resistance after brazing
US10384312B2 (en) 2015-03-12 2019-08-20 Mitsubishi Aluminum Co., Ltd. Brazing sheet having improved corrosion resistance after brazing
CN107429333B (en) * 2015-03-12 2019-12-27 三菱铝株式会社 Brazing sheet having excellent corrosion resistance after brazing
US10634439B2 (en) 2016-03-29 2020-04-28 Uacj Corporation Aluminum alloy brazing sheet for a heat exchanger, and process for producing the same
JP2019108597A (en) * 2017-12-20 2019-07-04 三菱アルミニウム株式会社 Aluminum alloy material for heat exchanger and heat exchanger
WO2022168566A1 (en) * 2021-02-03 2022-08-11 株式会社Uacj Aluminum alloy fin material and production method therefor

Also Published As

Publication number Publication date
JP5737798B2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5737798B2 (en) Aluminum alloy brazing sheet excellent in strength and formability and method for producing the same
US8524377B2 (en) Aluminum alloy clad sheet for heat exchanger
JP5948450B2 (en) Aluminum alloy sheet for brazing having high strength and excellent corrosion resistance and method for producing the same
JP5793336B2 (en) High strength aluminum alloy brazing sheet and method for producing the same
JP2019131890A (en) Strip having excellent corrosion resistance after blazing
JP6452626B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP6106748B2 (en) Aluminum alloy brazing sheet and method for producing the same
JP5336812B2 (en) Brazing sheet for automotive heat exchanger for brazed pipe
JP5491927B2 (en) Aluminum alloy brazing sheet
JP6147470B2 (en) Aluminum alloy brazing sheet for heat exchanger
JP5913853B2 (en) Aluminum alloy brazing sheet and method for producing the same
JPWO2015015767A1 (en) Aluminum alloy clad material, method for producing the same, and heat exchanger using the aluminum alloy clad material
JP5878365B2 (en) Aluminum alloy brazing sheet
JP6498911B2 (en) Aluminum alloy brazing sheet with high strength, high corrosion resistance and high material elongation
JP5836695B2 (en) Aluminum alloy fin material for heat exchangers with excellent strength and corrosion resistance after brazing
JP2013194244A (en) Aluminum alloy laminate
WO2019181768A1 (en) Aluminum alloy fin material for heat exchanger, production method therefor, and heat exchanger
WO2018110320A1 (en) Aluminum alloy brazing sheet and method for manufacturing same
JP2011241434A (en) Aluminum alloy brazing sheet
JP6178483B1 (en) Aluminum alloy brazing sheet
JP5466080B2 (en) Aluminum alloy brazing sheet
JP6415144B2 (en) Aluminum alloy clad material and heat exchanger
JP6091806B2 (en) Aluminum alloy brazing sheet for ERW welded tube
JP6526404B2 (en) Aluminum alloy brazing sheet
JP2018178170A (en) Thin wall fin material excellent in erosion resistance, manufacturing method of thin wall fin material excellent in erosion resistance, and manufacturing method of heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140318

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140318

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140730

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140926

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20141001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150316

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150420

R150 Certificate of patent or registration of utility model

Ref document number: 5737798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250