JP2012012244A - Method for producing metal fluoride single crystal body - Google Patents

Method for producing metal fluoride single crystal body Download PDF

Info

Publication number
JP2012012244A
JP2012012244A JP2010149307A JP2010149307A JP2012012244A JP 2012012244 A JP2012012244 A JP 2012012244A JP 2010149307 A JP2010149307 A JP 2010149307A JP 2010149307 A JP2010149307 A JP 2010149307A JP 2012012244 A JP2012012244 A JP 2012012244A
Authority
JP
Japan
Prior art keywords
diameter
single crystal
crystal
crucible
straight body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010149307A
Other languages
Japanese (ja)
Inventor
Tsunetoshi Sugimura
恒俊 杉村
Masami Kudo
雅己 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2010149307A priority Critical patent/JP2012012244A/en
Publication of JP2012012244A publication Critical patent/JP2012012244A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a metal fluoride single crystal body having a small inclination of a crystal orientation azimuth on both parts in the growth direction (vertical direction) and in the horizontal direction.SOLUTION: In this method for producing a metal fluoride single crystal body, a seed crystal body is brought from the upside into contact with a raw material molten liquid surface in a crucible used in the Czochralski method or the like, and a crystal having the same crystal orientation azimuth as the seed crystal body is grown up, to thereby acquire a single crystal body having a rod-like part (a) originated in the seed crystal body, a columnar straight body part (b) having a larger diameter than the rod-like part (a), and an enlarged diameter part (c) for connecting the rod-like part (a) to the straight body part (b), wherein the enlarged diameter part (c) is formed so that the ratio h/r between a height h of the enlarged diameter part (c) and a diameter r of the straight body part (b) is ≤0.35, preferably ≤0.25.

Description

本発明は、光学材料等に用いられるフッ化金属単結晶体を、種結晶を用い融液凝固法で製造する方法に関する。   The present invention relates to a method for producing a metal fluoride single crystal used for an optical material or the like by a melt solidification method using a seed crystal.

フッ化カルシウムやフッ化バリウム等のフッ化金属の単結晶体は、広範囲の波長帯域にわたって高い透過率を有し、低分散で化学的安定性にも優れることから、紫外波長または真空紫外波長のレーザーを用いた各種機器、カメラ、CVD装置等のレンズ、窓材等の光学材料として需要が広がってきている。とりわけ、フッ化カルシウム単結晶体は、ArFレーザー(193nm)やFレーザー(157nm)での光源の窓材、光源系レンズ、投影系レンズとして用いられている。 Single crystal of metal fluoride such as calcium fluoride and barium fluoride has high transmittance over a wide wavelength band, low dispersion and excellent chemical stability. Demand is expanding as optical materials such as various devices using lasers, lenses for cameras, CVD devices, and window materials. In particular, the calcium fluoride single crystal is used as a light source window material, light source system lens, and projection system lens with an ArF laser (193 nm) or an F 2 laser (157 nm).

従来、こうしたフッ化金属の単結晶体は融液凝固法で製造されてきている。融液凝固法のなかでも、ブリッジマン法やチョクラルスキー法などの坩堝を用いる方法により製造するのが一般的である。ブリッジマン法は、坩堝底に種結晶体を配置しておき、該坩堝中に収容された原料溶融液を、坩堝を徐々に下降させて低温域に移動させることにより冷却し、坩堝中に収容された原料溶融液を成長させる方法である。一方、チョクラルスキー法は、坩堝中の原料溶融液面に種結晶体を接触させ、次いで、その種結晶体を坩堝の加熱域から徐々に引上げて冷却することにより、該種結晶体の下方に単結晶体を成長させる方法である(例えば、特許文献1〜4参照)。   Conventionally, such a single crystal of a metal fluoride has been manufactured by a melt solidification method. Among melt coagulation methods, it is common to manufacture by a method using a crucible such as the Bridgeman method or the Czochralski method. In the Bridgman method, a seed crystal is placed at the bottom of the crucible, and the raw material melt stored in the crucible is cooled by gradually lowering the crucible and moving to a low temperature region, and then stored in the crucible. This is a method for growing the raw material melt. On the other hand, in the Czochralski method, the seed crystal is brought into contact with the surface of the raw material melt in the crucible, and then the seed crystal is gradually pulled up from the heating region of the crucible and cooled, thereby lowering the seed crystal. (See, for example, Patent Documents 1 to 4).

これら融液凝固法でフッ化金属単結晶体を製造する際には、通常、刃状転移やらせん転移などの線欠陥の生成が伴い、さらにはこれら転移が拡大して面欠陥となり、最終的に得られる単結晶体は各々配向方位が微妙に異なる多数のサブグレインを有するものとなる場合が多い。さらにサブグレインまでならずとも、上記線欠陥の生成により、成長させた単結晶体の中心部と周縁部とで配向方位の傾きが生じる場合も少なくない。   When producing a metal fluoride single crystal by the melt solidification method, it is usually accompanied by the generation of line defects such as edge transitions and spiral transitions. In many cases, the obtained single crystal has a number of subgrains with slightly different orientation directions. Furthermore, even if the sub-grains are not used, there are many cases where the orientation azimuth is inclined between the central portion and the peripheral portion of the grown single crystal due to the generation of the line defects.

しかしながら、このような育成単結晶体から前記光学材料とするための硝材を得た場合、その中心部と周縁部で、或いは表面と裏面とで主配向方位が異なるものとなってしまい、所望の光学物性を得られない場合がある。また配向方位が他と極端に異なる大きなサブグレインが存在する場合も同様である。   However, when a glass material for obtaining the optical material is obtained from such a grown single crystal, the main orientation direction is different between the center portion and the peripheral portion or between the front surface and the back surface. Optical properties may not be obtained. The same applies to the case where there are large subgrains with extremely different orientation directions.

特開平11−130594号公報JP-A-11-130594 特開2006−117494号公報JP 2006-117494 A 特開2007−106662号公報JP 2007-106662 A 特開2004−231502号公報JP 2004-231502 A

従って本発明は、用いた種結晶の配向方位からのずれを生じさせる線欠陥や面欠陥の発生を可能な限り抑制し、中心部と周縁部とで、また上部と下部とで主たる配向方位の差が少なく、単結晶性に優れたフッ化金属単結晶体の製造方法を提供することを目的とする。   Therefore, the present invention suppresses as much as possible the generation of line defects and surface defects that cause a deviation from the orientation orientation of the seed crystal used, and the main orientation orientations at the central portion and the peripheral portion, and at the upper and lower portions. An object is to provide a method for producing a metal fluoride single crystal having little difference and excellent single crystallinity.

上記課題に鑑み、本発明者らは鋭意検討を行った。そして成長結晶が坩堝によって拘束されるブリッジマン法よりも、該拘束のないチョクラルスキー法によって製造する方が結晶成長方向(上下方向)での結晶配向方位のずれが少ないことを見いだし、さらに検討をすすめた結果、中心部と周縁部の結晶配向方位のずれに対しては、種結晶部から直胴部へと結晶径を拡大させる際に必然的に形成される肩部(拡径部)の形状が極めて重要なことを見出し本発明を完成した。   In view of the above problems, the present inventors have intensively studied. And, it was found that the crystal orientation orientation shift in the crystal growth direction (vertical direction) is less when the grown crystal is produced by the Czochralski method without the restraint than the Bridgman method where the grown crystal is restrained by the crucible. As a result, the shoulder part (expanded part) inevitably formed when the crystal diameter is expanded from the seed crystal part to the straight body part with respect to the deviation of the crystal orientation orientation between the central part and the peripheral part. As a result, the present invention was completed.

即ち本発明は、坩堝中の原料溶融液面に上方から種結晶体を接触させ、該種結晶体と同じ結晶配向方位を有する結晶を成長させて、該種結晶体に由来する棒状部、該棒状部よりも径の大きな円柱状の直胴部、及び棒状部と直胴部とを繋ぐ拡径部とを有する単結晶体を得るフッ化金属単結晶体の製造方法において、
前記肩部の高さhと、直胴部の直径rとの比h/rが0.35以下となるように拡径部を形成することを特徴とするフッ化金属単結晶体の製造方法である。
That is, the present invention is a method in which a seed crystal is brought into contact with the raw material melt liquid surface in a crucible from above, a crystal having the same crystal orientation as the seed crystal is grown, and a rod-like portion derived from the seed crystal, In the method for producing a metal fluoride single crystal having a columnar straight body having a diameter larger than that of the rod-shaped portion, and a single crystal having an enlarged diameter portion connecting the rod-shaped portion and the straight drum portion,
A method for producing a metal fluoride single crystal, comprising forming a diameter-expanded portion so that a ratio h / r between a height h of the shoulder portion and a diameter r of the straight body portion is 0.35 or less. It is.

本発明によれば、得られるフッ化金属単結晶体の成長方向(上部と下部)及び横方向(中心部と周縁部)のいずれの位置でも用いた種結晶体の配向方位からのずれが少なく、よって歩留まりよく各種光学性能に優れた単結晶体を得ることができる。   According to the present invention, there is little deviation from the orientation orientation of the seed crystal used at any position in the growth direction (upper and lower) and lateral direction (central and peripheral) of the obtained metal fluoride single crystal. Therefore, a single crystal body excellent in various optical performances can be obtained with a high yield.

さらに、直胴部を成長させる際に、該直胴部の直径と原料溶融液面の直径とを特定の範囲にすることにより、さらに横方向の配向方位のずれを小さくすることが可能となる。   Further, when the straight body portion is grown, the deviation of the orientation direction in the lateral direction can be further reduced by setting the diameter of the straight body portion and the diameter of the raw material melt to a specific range. .

単結晶引き上げの肩部(拡径部)形成過程を示す模式図。The schematic diagram which shows the shoulder (expansion part) formation process of single crystal pulling. 製造された単結晶体の模式図Schematic diagram of manufactured single crystal 拡径部と直胴部の境界を示す模式図。The schematic diagram which shows the boundary of an enlarged diameter part and a straight body part. チョクラルスキー法単結晶引上げ炉の構造を示す模式図。The schematic diagram which shows the structure of a Czochralski method single crystal pulling furnace. 配向方位の傾きの測定点を示す模式図。The schematic diagram which shows the measuring point of the inclination of an orientation azimuth | direction.

本発明は、結晶成長炉内で、原料溶融液面に上方から種結晶体を接触させ、該種結晶体と同じ結晶配向方位を有する結晶を成長させて融液凝固法によりフッ化金属単結晶体を製造する方法(チョクラルスキー法、キロポーラス法など)で可能なフッ化金属の製造方法に対し特に制限なく適用できる。このようなフッ化金属の具体例としては、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化ルビジウム、フッ化マグネシウム、フッ化カルシウム、フッ化バリウム、フッ化ストロンチウム、フッ化アルミニウム、フッ化バリウムリチウム、フッ化マグネシウムカリウム、フッ化アルミニウムリチウム、フッ化カルシウムストロンチウム、フッ化カリウムマグネシウム、フッ化ストロンチウムリチウム、フッ化セシウムカルシウム、フッ化リチウムカルシウムアルミニウム、フッ化リチウムストロンチウムアルミニウム、及びフッ化ランタノイド類等が挙げられる。   In the crystal growth furnace, a seed crystal is brought into contact with the raw material melt surface from above, a crystal having the same crystal orientation as the seed crystal is grown, and a metal fluoride single crystal is obtained by a melt solidification method. The present invention can be applied to a method for producing a metal fluoride that is possible by a method for producing a body (Czochralski method, kiloporous method, etc.). Specific examples of such metal fluoride include lithium fluoride, sodium fluoride, potassium fluoride, rubidium fluoride, magnesium fluoride, calcium fluoride, barium fluoride, strontium fluoride, aluminum fluoride, and fluoride. Barium lithium, potassium potassium fluoride, lithium aluminum fluoride, calcium strontium fluoride, magnesium magnesium fluoride, lithium strontium fluoride, cesium calcium fluoride, lithium calcium calcium fluoride, lithium strontium aluminum fluoride, and lanthanoid fluorides Etc.

これらフッ化金属単結晶を、原料溶融液面に上方から種結晶体を接触させて、該種結晶下に単結晶体を成長させて得る際には、該種結晶体の径よりも、成長させて得る単結晶体(直胴部)の径を大きなものとするのが一般的である。そのため、種結晶体から直胴部まで拡径してゆく部分が生じる。本発明ではこの拡径部を前記特定の値以下とする点に特徴を有する。   When these metal fluoride single crystals are obtained by bringing the seed crystal into contact with the raw material melt surface from above and growing the single crystal under the seed crystal, the crystal growth is larger than the diameter of the seed crystal. In general, the diameter of the single crystal body (straight body portion) obtained is large. For this reason, a portion that expands from the seed crystal body to the straight body portion is generated. The present invention is characterized in that the diameter-expanded portion is not more than the specific value.

より具体的に図面を参照して説明すると、図1に示すように、種結晶体(116)は上方から降下させられ、フッ化金属の原料溶融液(104)に接触(場合によっては浸漬)させられる(図1A)。その後、種結晶体は引き上げられるが、その間、最終的な所望径となるまで徐々に拡径させられる(図1B)。拡径により所望径に達した後は、当該径を維持するようにさらに引き上げが継続される(図1C)。   More specifically, referring to the drawings, as shown in FIG. 1, the seed crystal (116) is lowered from above, and is brought into contact with the metal fluoride raw material melt (104) (in some cases, immersed). (FIG. 1A). Thereafter, the seed crystal is pulled up, and gradually expanded until the final desired diameter is reached (FIG. 1B). After reaching the desired diameter by the diameter expansion, the pulling is further continued to maintain the diameter (FIG. 1C).

このようにして製造された単結晶体は、図2に示すように、種結晶体に由来する棒状部(a)、該棒状部よりも径の大きな円柱状の直胴部(b)及び該棒状部と直胴部とを繋ぐ拡径部(c)とを有するものとなる。さらに通常は、直胴部の下部に縮径していく凸部を有する。   As shown in FIG. 2, the single crystal produced in this way has a rod-shaped portion (a) derived from the seed crystal, a cylindrical straight body portion (b) having a diameter larger than that of the rod-shaped portion, and the It has an enlarged diameter part (c) which connects a rod-shaped part and a straight body part. Furthermore, normally, it has a convex part which reduces in diameter at the lower part of the straight body part.

本発明においては、このような単結晶体を製造するに際して、上記拡径部の高さhと、直胴部の直径rとを、その比(h/r)が0.35以下となるように拡径部を形成することによって、直胴部の中心部と周縁部との結晶配向方位の差を極めて小さくすることができる(なお以下ではこの比を「拡径比」と称す場合がある)。当該拡径比が大きくなるほど、中心部と周縁部との結晶配向方位の差が大きくなる傾向がある。その差を、例えばArFレーザー光を用いるリソグラフィー装置用の光学部材として満足できる値以下とするために、好ましくは拡径比を0.25以下、より好ましくは0.20以下とする。   In the present invention, when manufacturing such a single crystal body, the ratio (h / r) of the height h of the enlarged diameter portion and the diameter r of the straight body portion is 0.35 or less. The difference in crystal orientation between the central part and the peripheral part of the straight body part can be made extremely small by forming the diameter-expanded part in the above (this ratio may be referred to as “the diameter-expanding ratio” hereinafter) ). As the diameter expansion ratio increases, the difference in crystal orientation between the central portion and the peripheral portion tends to increase. In order to make the difference equal to or less than a value satisfactory for an optical member for a lithography apparatus using ArF laser light, for example, the diameter expansion ratio is preferably 0.25 or less, more preferably 0.20 or less.

なお下限は特に定められるものではないが0とすることは製造技術上、極めて困難である。拡径部の形成のし易さの観点から当該拡径比は0.02以上とすることが好ましく、0.05以上とすることがより好ましい。   The lower limit is not particularly defined, but it is extremely difficult to make it 0 in terms of manufacturing technology. From the viewpoint of easy formation of the expanded diameter portion, the expanded diameter ratio is preferably 0.02 or more, and more preferably 0.05 or more.

拡径部の形成の際の形状(拡径比)制御方法は、チョクラルスキー法によるシリコン単結晶や酸化物単結晶の製造方法等において周知であり、本発明においても新規な特殊な手段を要するものではない。具体的には、例えばロードセル等により成長する拡径部の単結晶体の重量増加をモニターしつつ、引き上げ速度を調整して所望の拡径割合とすればよい。   The shape (expansion ratio) control method for forming the expanded portion is well known in the manufacturing method of silicon single crystals and oxide single crystals by the Czochralski method, and a new special means is also used in the present invention. It is not necessary. Specifically, for example, while monitoring the increase in the weight of the single crystal of the expanded diameter portion grown by a load cell or the like, the pulling speed may be adjusted to obtain a desired expanded diameter ratio.

また直胴部の直径制御の方法もやはりチョクラルスキー法による各種単結晶体の製造方法等において周知であり、これら公知の方法を適宜採用すればよい。具体的には、やはり例えばロードセル等により成長する単結晶体の重量増加をモニターしつつ、引き上げ速度やヒーター出力(炉内温度)を調整して所望の直径とすればよい。   Also, the method of controlling the diameter of the straight body is well known in the production methods of various single crystals by the Czochralski method, and these known methods may be adopted as appropriate. Specifically, it is only necessary to adjust the pulling speed and the heater output (furnace temperature) to a desired diameter while monitoring the increase in the weight of the single crystal grown by, for example, a load cell.

なおチョクラルスキー法等による直胴部の直径制御、特に金属フッ化物単結晶体では、成長する単結晶体の直胴部が完全に直径の均一な円筒となることが少なく、通常は若干ながらも各種の要因により経時的に径の拡大や縮小が起こり、測定部位により実測される径は目的制御径と異なる部分が多い。   In addition, the diameter control of the straight body part by the Czochralski method or the like, especially in the case of a metal fluoride single crystal, the straight body part of the growing single crystal rarely becomes a cylinder with a uniform diameter. However, the diameter increases or decreases over time due to various factors, and the diameter actually measured by the measurement site is often different from the target control diameter.

このため、本発明における直胴部の直径rとは製造時における目的制御径であるが、実際に得られる単結晶体には該rより大きな部分も小さな部分も生じる。本発明において円柱状の直胴部とは当該rに対して±5%の範囲にある部分をいうものとする(ただし拡径部を除く)。   For this reason, the diameter r of the straight body portion in the present invention is a target control diameter at the time of manufacture, but the actually obtained single crystal body includes a portion larger or smaller than the r. In the present invention, the cylindrical straight body portion refers to a portion within a range of ± 5% with respect to r (except for the enlarged diameter portion).

また同様の理由により、拡径部から直胴部への移行部も図1、2に示したように明確な角部を持ったものとなることは殆どなく、丸みを帯びたものとなるのが通常である。本発明においては、成長させた単結晶体の目的制御径(直胴部の直径r)の95%以上の径を有し、且つ、成長軸方向(鉛直方向)に対しての傾きが5°以下となった部分を境に、該部位より上方を拡径部、下方を直胴部とする(図3)。なおこの場合の傾きは、単結晶体の当該部の形状が曲線を描いている場合には接線の傾きである。また周縁部すべての傾きが5°以下となっていることを要する。   For the same reason, the transition part from the enlarged diameter part to the straight body part hardly has a clear corner as shown in FIGS. 1 and 2 and is rounded. Is normal. In the present invention, the grown single crystal has a diameter of 95% or more of the target controlled diameter (diameter r of the straight body portion), and the inclination with respect to the growth axis direction (vertical direction) is 5 °. With the following portion as a boundary, the diameter-upward part is above the part and the straight body part is below (FIG. 3). Note that the inclination in this case is an inclination of a tangent line when the shape of the portion of the single crystal has a curved line. Further, it is necessary that the inclination of all the peripheral portions is 5 ° or less.

上述の拡径比を特定の値以下とすることを除けば、本発明の製造方法は、従来公知の方法と特に変わるところがなく、用いる製造装置も公知の装置を適宜選択して採用すればよい。   The manufacturing method of the present invention is not particularly different from a conventionally known method, except that the above-mentioned diameter expansion ratio is not more than a specific value, and a manufacturing apparatus to be used may be appropriately selected and adopted. .

以下、チョクラルスキー法を代表例として本発明の製造方法をより詳しく説明する。   Hereinafter, the production method of the present invention will be described in more detail using the Czochralski method as a representative example.

図4は本発明の製造方法で用いる製造装置の一例(模式図)である。図4に示した装置には、原料フッ化金属を溶融させる坩堝が外坩堝101と内坩堝102からなる二重構造坩堝であり、該内坩堝102の壁部(底壁及び/又は側壁)には、該壁部を貫通して内坩堝内と外坩堝内とで原料フッ化金属溶融液104の流通可能な貫通孔103が設けられている。結晶を引上げると、引上げた結晶量に相当する分だけ、坩堝内の原料溶融液が減少、即ち、坩堝内における原料溶融液面が低下する。図示した態様では内坩堝は所定の位置(高さ)に固定されており、原料溶融液面の相対的な下降分に相当するだけ外坩堝を上昇させる。これにより内坩堝内の原料溶融液を一定とし、原料溶融液面(=結晶成長界面)位置が変化しないようにすることが可能である。   FIG. 4 is an example (schematic diagram) of a manufacturing apparatus used in the manufacturing method of the present invention. In the apparatus shown in FIG. 4, the crucible for melting the raw material metal fluoride is a double structure crucible composed of an outer crucible 101 and an inner crucible 102, and the wall (bottom wall and / or side wall) of the inner crucible 102 is provided. Is provided with a through-hole 103 through which the raw material metal fluoride melt 104 can flow in the inner crucible and the outer crucible through the wall. When the crystal is pulled up, the raw material melt in the crucible is reduced by an amount corresponding to the pulled crystal amount, that is, the raw material melt level in the crucible is lowered. In the illustrated embodiment, the inner crucible is fixed at a predetermined position (height), and the outer crucible is raised by an amount corresponding to the relative lowering of the raw material melt surface. As a result, the raw material melt in the inner crucible can be kept constant, and the position of the raw material melt surface (= crystal growth interface) can be prevented from changing.

これら坩堝、特に内坩堝は、安定して結晶を成長させるという観点から水平(横)方向の断面が円形となっていることが特に好ましい。   These crucibles, particularly the inner crucible, are particularly preferably circular in cross section in the horizontal (lateral) direction from the viewpoint of stably growing crystals.

外坩堝の上昇及び回転は、上下動及び回転が可能な外坩堝支持軸105により行われる。   The outer crucible is raised and rotated by an outer crucible support shaft 105 that can move up and down and rotate.

坩堝の加熱は、ヒーター109により行われる。結晶引上げ炉のチャンバー108とヒーター109の間には、断熱壁110が、ヒーター109を環囲するように配設され、さらに通常は、断熱壁は坩堝の下方にも設けられる。この断熱壁110を配設することによって、ヒーター109の輻射熱からチャンバー108を保護するとともに、熱が外部へ散逸するのを防ぎ、坩堝周辺の温度を保ちやすくしている。   The crucible is heated by the heater 109. A heat insulating wall 110 is disposed between the crystal pulling furnace chamber 108 and the heater 109 so as to surround the heater 109, and more usually, the heat insulating wall is also provided below the crucible. By disposing the heat insulating wall 110, the chamber 108 is protected from the radiant heat of the heater 109, the heat is prevented from being dissipated to the outside, and the temperature around the crucible is easily maintained.

図示した態様では、該断熱壁110の上部の開口部は該断熱壁の上端に接触するように配設された天井板119で覆われている。この天井板119を設置することにより、(1)上方への熱の散逸を抑制し、断熱壁110と天井板119とで囲繞された単結晶引上げ室の保温性を向上させるとともに単結晶引上げ室内に適度な温度勾配を与え、(2)溶融液や引上げ中の単結晶体からの輻射熱がチャンバー108に直接到達することを防ぎ、さらには(3)上方からゴミ等が落下して溶融液に混入することを防ぐことができる。一方、原料フッ化金属やスカベンジャーが揮発したものが天井板の下面に凝結し、これが結晶育成中に溶融液内などに落下してくることを抑制するために、断熱壁上端と天井板との間に若干の隙間を設けることも好ましい一態様である。   In the illustrated embodiment, the opening at the top of the heat insulating wall 110 is covered with a ceiling plate 119 disposed so as to be in contact with the upper end of the heat insulating wall. By installing the ceiling plate 119, (1) heat dissipation in the upper direction is suppressed, the heat retention of the single crystal pulling chamber surrounded by the heat insulating wall 110 and the ceiling plate 119 is improved, and the single crystal pulling chamber is (2) Prevents radiant heat from the melt and the single crystal being pulled directly from reaching the chamber 108, and (3) Dust falls from above to the melt. Mixing can be prevented. On the other hand, in order to prevent material fluoride metal and scavenger volatilized from condensing on the bottom surface of the ceiling plate and falling into the melt during crystal growth, It is also a preferable aspect to provide a slight gap therebetween.

なおこの天井板119には、単結晶引上げ棒115を挿入するための挿入孔120が穿孔されている。また必要に応じて、引上げ中の単結晶体や坩堝内の溶融液の状態を観察するための窓穴122が穿孔される場合もある。また放熱性の制御等の目的で天井板は2重にするなどしてもよい。   The ceiling plate 119 has an insertion hole 120 through which the single crystal pulling rod 115 is inserted. Further, if necessary, a window hole 122 for observing the state of the single crystal being pulled up or the state of the melt in the crucible may be drilled. Further, the ceiling plate may be doubled for the purpose of controlling heat dissipation.

坩堝の中心軸上に、種結晶体116を保持する種結晶保持具117と、該保持具を上下動かつ回転可能に支持する結晶引上げ軸115が配置されている。   On the central axis of the crucible, a seed crystal holder 117 that holds the seed crystal body 116 and a crystal pulling shaft 115 that supports the holder so as to move up and down and rotate are arranged.

原料として用いるフッ化金属は、通常、各種スカベンジャーを用いて金属不純物や酸素(酸化物)等を可能な限り除去、精製したものを用い、この精製原料を坩堝内に装入する。該精製原料は加熱することにより原料溶融液とするが、溶融させるに先立って減圧〜真空排気下で加熱処理を施してさらに吸着水分を除去することが好ましい。さらに一般的には該加熱・溶融はスカベンジャーの存在下に行われ、酸素等の不純物のさらなる低減が図られる。   The metal fluoride used as a raw material is usually one obtained by removing metal impurities, oxygen (oxide) and the like as much as possible using various scavengers, and charging this purified raw material into a crucible. The refined raw material is heated to obtain a raw material melt, and it is preferable to further remove adsorbed moisture by subjecting it to a heat treatment under reduced pressure to evacuation prior to melting. More generally, the heating / melting is carried out in the presence of a scavenger to further reduce impurities such as oxygen.

用いるスカベンジャーとしては、固体スカベンジャー、気体スカベンジャーのいずれでもよく、また複数種を併用してもよい。固体スカベンジャーとしてはフッ化亜鉛、フッ化鉛、フッ化銀、フッ化銅などのフッ化金属や、ポリ(パーフルオロエチレン)等が挙げられ、気体スカベンジャーとしては、CFやCOF、HF、F、NF、C等が例示される。取扱い性や、高純度のものの入手のし易さ、スカベンジャーとしての効率等を考慮すると、フッ化亜鉛及び/又はCFガスが特に好ましい。 As a scavenger to be used, either a solid scavenger or a gas scavenger may be used, or a plurality of types may be used in combination. Examples of solid scavengers include metal fluorides such as zinc fluoride, lead fluoride, silver fluoride, copper fluoride, and poly (perfluoroethylene). Examples of gas scavengers include CF 4 , COF 2 , HF, Examples include F 2 , NF 3 , C 2 F 6 and the like. Zinc fluoride and / or CF 4 gas is particularly preferable in consideration of handling properties, availability of high-purity products, efficiency as a scavenger, and the like.

上記加熱及び溶融に際しては、原料を外坩堝内に装入することが好ましい。この場合、外坩堝101は下方に引き下げておき、内坩堝002の外壁と閉塞部材107により形成される半密閉空間中で加熱、溶融することが好ましい。   During the heating and melting, it is preferable to charge the raw material into the outer crucible. In this case, the outer crucible 101 is preferably pulled down and heated and melted in a semi-enclosed space formed by the outer wall of the inner crucible 002 and the closing member 107.

原料が十分に溶融した後、外坩堝101を上昇させ、貫通孔103から内坩堝102の内部へ原料溶融液104を流入させる。その後、結晶引上げ軸115先端の種結晶保持具117に装着された種結晶を該原料溶融液面に接触させ、ついで徐々に引上げて単結晶体118を成長させる。   After the raw material is sufficiently melted, the outer crucible 101 is raised, and the raw material melt 104 is caused to flow from the through hole 103 into the inner crucible 102. Thereafter, the seed crystal mounted on the seed crystal holder 117 at the tip of the crystal pulling shaft 115 is brought into contact with the raw material melt surface, and then gradually pulled to grow a single crystal body 118.

図示した態様では、貫通孔103は内坩堝下端部に一つだけ存在しているが、例えば、シャワーヘッド状に多数の小孔が内坩堝全体に削孔されていてもよい。   In the illustrated embodiment, there is only one through hole 103 at the lower end of the inner crucible, but, for example, a large number of small holes may be drilled in the entire inner crucible like a shower head.

単結晶の引き上げの際の温度は、対象となるフッ化金属に応じて決定され、例えば、外坩堝底部の測定温度において、フッ化カルシウムの場合は、1440℃以上、好適には1440〜1520℃の温度で実施することが好ましく、フッ化バリウムの場合は、1300〜1400℃の温度で実施することが好ましい。また、該温度への昇温速度は10〜500℃/時間であることが好ましい。   The temperature at which the single crystal is pulled is determined in accordance with the target metal fluoride. For example, at the measurement temperature at the bottom of the outer crucible, in the case of calcium fluoride, 1440 ° C. or higher, preferably 1440-1520 ° C. In the case of barium fluoride, it is preferably carried out at a temperature of 1300 to 1400 ° C. Moreover, it is preferable that the temperature increase rate to this temperature is 10-500 degreeC / hour.

引き上げ法に用いる種結晶116は、フッ化金属の単結晶であり、種結晶の育成面は、製造するアズグロウン単結晶の結晶主成長面に応じて、〔111〕面、〔100〕面等を原料溶融液との接触面とすればよい。該種結晶体は原料溶融液面に接触させる棒状部(例えば、円柱、四角柱など)と、その上方に保持具で保持するための拡大部及び/又はくびれ部を有するのが一般的である。   The seed crystal 116 used in the pulling method is a single crystal of metal fluoride, and the growth surface of the seed crystal is the [111] plane, the [100] plane, etc., depending on the main crystal growth plane of the as-grown single crystal to be produced. A contact surface with the raw material melt may be used. The seed crystal generally has a rod-shaped portion (for example, a cylinder, a quadrangular column, etc.) to be brought into contact with the raw material melt surface, and an enlarged portion and / or a constricted portion for holding it with a holder above it. .

種結晶を原料溶融液面に接触させた後、本発明で規定する拡径比となるよう、引き上げ速度等を制御して拡径部を形成し、所望の結晶径まで拡径させた後、当該結晶径を維持するように引き上げを行う。   After bringing the seed crystal into contact with the raw material melt surface, forming a diameter-enlarged portion by controlling the pulling speed and the like so as to achieve the diameter expansion ratio defined in the present invention, Pulling up is performed so as to maintain the crystal diameter.

拡径してどの程度の大きさにするかは、どのような大きさの単結晶体を製造するのかにより決定されるが、本発明の効果は直胴部の直径が大きいほど顕著である。本発明の製造方法は、直胴部直径が100mm以上の場合に適用することが効果的であり、150mm以上でより効果的であり、200mm以上で特に効果的である。一方、大きな結晶ほど結晶配向方位以外にも様々な欠陥が入りやすい傾向があるため、直胴部直径が500mmを超えるような結晶に本発明の製造方法を適用しても、他の欠陥要因により実用性を有する単結晶体を得ることは困難である。よりいっそう現実的には直胴部直径が300mm以下である。   The size of the expanded diameter is determined depending on the size of the single crystal to be manufactured, but the effect of the present invention is more remarkable as the diameter of the straight body portion is larger. The production method of the present invention is effective when applied to a straight body diameter of 100 mm or more, more effective when the diameter is 150 mm or more, and particularly effective when the diameter is 200 mm or more. On the other hand, since a larger crystal tends to have various defects other than the crystal orientation, even if the manufacturing method of the present invention is applied to a crystal having a straight body diameter exceeding 500 mm, other defects cause. It is difficult to obtain a practical single crystal. Even more realistically, the diameter of the straight body portion is 300 mm or less.

なお引き上げは通常、0.1〜20mm/hの速度で行うことができる。前述のとおり、単結晶体118が成長するにつれて、内坩堝102中の原料溶融液が消費されるが、外坩堝101を上昇させることにより、当該減少分に想到する量の原料溶融液を、貫通孔103を通して徐々に内坩堝中に供給することにより、溶融液表面、即ち結晶成長面の位置を一定とすることができる。   The pulling up can usually be performed at a speed of 0.1 to 20 mm / h. As described above, the raw material melt in the inner crucible 102 is consumed as the single crystal body 118 grows. By raising the outer crucible 101, the amount of the raw material melt that reaches the reduced amount is penetrated. By gradually supplying into the inner crucible through the hole 103, the position of the melt surface, that is, the crystal growth surface can be made constant.

単結晶の育成中、種結晶116は、引上げ軸115を中心として回転させることが好ましく、回転速度は5〜30回/分であることが好ましい。また、上記種結晶の回転に併せて外坩堝も、該種結晶の回転方向と反対又は同じ方向に同様の回転速度で回転させてもよい。   During the growth of the single crystal, the seed crystal 116 is preferably rotated about the pulling shaft 115, and the rotation speed is preferably 5 to 30 times / minute. In addition to the rotation of the seed crystal, the outer crucible may be rotated at the same rotational speed in the opposite direction or the same direction as the rotation direction of the seed crystal.

単結晶体引上げ中の炉内圧力は、加圧下、常圧下、減圧下のいずれでもよいが、減圧下に行うことが好ましい。減圧下に結晶成長を行わせる場合には、炉内圧力を0.5〜70kPaとすることが好ましく、5〜50kPaとすることがより好ましい。雰囲気としてはAr等の不活性ガスや、前記ガススカベンジャー雰囲気とすることができる。さらに炉内は密閉下においても良いし、Arやガススカベンジャーを少量ずつ流しながら(炉内への供給と排気を行いながら)でもよい。   The furnace pressure during the pulling of the single crystal may be any of increased pressure, normal pressure, and reduced pressure, but is preferably performed under reduced pressure. When crystal growth is performed under reduced pressure, the furnace pressure is preferably 0.5 to 70 kPa, and more preferably 5 to 50 kPa. The atmosphere may be an inert gas such as Ar or the gas scavenger atmosphere. Further, the inside of the furnace may be sealed, or Ar or a gas scavenger may be supplied little by little (while supplying into the furnace and exhausting).

本発明においては、直胴部の育成中は、原料溶融液面の直径をRとしたとき、r/Rが0.2〜0.6の範囲となるようにすることが、横方向の配向方位のずれをよりいっそう小さくできる点で好ましい。よりこの好ましくは0.3〜0.5である。ここで、原料溶融液面の直径とは、断面形状が円形の坩堝内の原料フッ化金属の最上面の直径である。また図4に示したような多重坩堝を用いる際には、最も内側(直胴部に近い側)の坩堝で区画される原料溶融液面の直径である。   In the present invention, during the growth of the straight body portion, when the diameter of the raw material melt surface is R, r / R is in the range of 0.2 to 0.6. This is preferable in that the deviation in orientation can be further reduced. More preferably, it is 0.3-0.5. Here, the diameter of the raw material melt surface is the diameter of the uppermost surface of the raw metal fluoride in the crucible having a circular cross-sectional shape. Moreover, when using a multiple crucible as shown in FIG. 4, it is the diameter of the raw material melt surface divided by the innermost crucible (side closer to the straight body).

なお前述したように、図4に示したような二重構造坩堝を採用すれば結晶成長中の溶融液表面の位置は一定としておくことができ、そのため、用いる内坩堝102の内径及び用いる原料フッ化金属の量を適切な範囲としておけば、直胴部直径rとの関係を上記0.2〜0.6の範囲とすることは極めて容易である。   As described above, if a double structure crucible as shown in FIG. 4 is employed, the position of the surface of the melt during crystal growth can be kept constant. Therefore, the inner diameter of the inner crucible 102 used and the raw material hook used. If the amount of the metal halide is set within an appropriate range, it is very easy to set the relationship with the straight body diameter r to the above range of 0.2 to 0.6.

このようにして所望の長さと直胴部径を有する単結晶体118を引き上げた後、炉内から取り出せる程度の温度まで降温する。降温速度としては、0.01〜3℃/分が好ましい。降温速度が速いほうが結晶育成炉を占有する時間が短く育成の生産性を上げることができるが、速すぎると残留歪みが大きくなり加工等が困難になる虞がある。   In this way, after pulling up the single crystal body 118 having a desired length and a straight body diameter, the temperature is lowered to a temperature at which it can be taken out from the furnace. The rate of temperature reduction is preferably 0.01 to 3 ° C./min. The faster the temperature drop rate, the shorter the time required to occupy the crystal growth furnace, and the growth productivity can be improved. However, if the rate is too high, the residual strain increases and machining may become difficult.

このようにして単結晶体を引き上げた後、必要に応じて研磨・研削加工や熱処理加工を行って、レンズブランク、レンズ、窓材等の最終製品とすることができる。   After pulling up the single crystal in this manner, polishing / grinding or heat treatment can be performed as necessary to obtain final products such as lens blanks, lenses, window materials, and the like.

以下、本発明を以下の実施例、比較例により、より詳細に示すが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to the following examples and comparative examples, but the present invention is not limited to these examples.

なお、以下の実験において、アズグロウン単結晶体の直胴部の配向方位の傾きは、それぞれ以下の方法により測定した。   In the following experiments, the inclination of the orientation direction of the straight body portion of the as-grown single crystal was measured by the following methods.

<配向方位の傾きの測定>
アズグロウン単結晶体の直胴部について、上部及び下部から厚み6.5cmの円柱体を切断加工により得た。次いで、側面の円筒研削及び切断面の研削研磨を行い、ディスク状円柱体を得た。
<Measurement of orientation orientation tilt>
About the straight body part of the as-grown single crystal body, a 6.5 cm thick cylindrical body was obtained by cutting from the upper part and the lower part. Next, the cylindrical grinding of the side surface and the grinding / polishing of the cut surface were performed to obtain a disk-like columnar body.

得られたディスク状円柱体を、X線方位測定装置を用いて、主配向方位からの傾き角度[単位:度(°)]を測定した。なお、測定点は図5に示すように、ディスク状円柱体の中心部(測定点1)及び外周部(直径の90%の位置)を60度毎に6点(測定点2〜7)とし、測定点2から7と測定点1の差をディスク状円柱体面における配向方位からの傾きとした(1−2、1−3、1−4、1−5、1−6、1−7の6点)。   The obtained disk-shaped cylindrical body was measured for the tilt angle [unit: degree (°)] from the main orientation direction using an X-ray direction measuring device. In addition, as shown in FIG. 5, the central part (measurement point 1) and the outer peripheral part (position of 90% of the diameter) of the disk-shaped cylindrical body are 6 points every 60 degrees (measurement points 2 to 7) as shown in FIG. The difference between the measurement points 2 to 7 and the measurement point 1 was defined as the inclination from the orientation direction in the disk-shaped cylindrical surface (1-2, 1-3, 1-4, 1-5, 1-6, 1-7 6 points).

実施例1
図4に示すような二重構造坩堝の単結晶体製造用引上げ装置を用いて、フッ化カルシウム単結晶体の製造を行った。
Example 1
A calcium fluoride single crystal was manufactured using a pulling apparatus for manufacturing a single crystal of a double structure crucible as shown in FIG.

この単結晶体製造用引き上げ装置において、チャンバー内に設置された高純度グラファイト製の外坩堝は、内直径50cm(外直径52cm)、高さ24cmであった。この外坩堝内に吊り具114によりリッド材113に固定された状態で収納される内坩堝は、内直径44cm(外直径45.2cm)、高さ25cmであり、傾斜壁102の水平面に対する角度は30度であった。   In this single crystal production pulling apparatus, the high-purity graphite outer crucible installed in the chamber had an inner diameter of 50 cm (outer diameter of 52 cm) and a height of 24 cm. The inner crucible accommodated in the outer crucible while being fixed to the lid material 113 by the lifting tool 114 has an inner diameter of 44 cm (outer diameter of 45.2 cm) and a height of 25 cm, and the angle of the inclined wall 102 with respect to the horizontal plane is It was 30 degrees.

内坩堝は、その中心部に口径が6mmの円筒状の貫通孔103が1個と、中心部から傾斜壁面に沿って上方へ18.4cmおよび20.4cm離れた位置の円周状に均等間隔で各々60個、口径が0.8mmの円筒状の貫通孔が各形成されていた。   The inner crucible has one cylindrical through-hole 103 with a diameter of 6 mm at the center, and is equally spaced circumferentially at positions 18.4 cm and 20.4 cm away from the center along the inclined wall surface. In each case, 60 cylindrical through holes each having a diameter of 0.8 mm were formed.

断熱材壁は、ピッチ系グラファイト成型断熱材であり、厚み方向の放熱能力は9W/m・Kのものであり、他方、天井板はグラファイト製であり、厚み方向の放熱能力は500W/m・Kのものであった。 The heat insulating material wall is a pitch-based graphite molded heat insulating material, and the heat dissipation capacity in the thickness direction is 9 W / m 2 · K, while the ceiling plate is made of graphite, and the heat dissipation capacity in the thickness direction is 500 W / m. It was 2 · K.

フッ化亜鉛の存在下に炉内を十分に空焼きした後、内坩堝外壁、外坩堝内壁及び遮蔽部材とで構成される空間内に原料フッ化カルシウム塊70kgと、スカベンジャーとしてのフッ化亜鉛10gを装入し、真空引きを開始した。内圧が5×10−3Pa以下に達した時点で、真空引きを継続しながらヒーターに通電し原料の加熱を開始した。約50℃/Hrで坩堝底部の温度が250℃になるまで昇温し、この温度で24時間保持した。そのときのチャンバー内の真空度は5×10−4Paであった。その後、約50℃/Hrで再び昇温を開始し、600℃に達した後、さらに12時間保持し、その後に真空排気ラインを遮断して高純度アルゴンをチャンバー内に供給し、内圧(炉内雰囲気圧力)を30kPa(abs)まで復圧して、引上げが終了して室温付近に降温するまでガスの導入を行わなかった。 After the furnace is fully baked in the presence of zinc fluoride, 70 kg of raw material calcium fluoride mass and 10 g of zinc fluoride as a scavenger are formed in the space formed by the outer wall of the inner crucible, the inner wall of the outer crucible and the shielding member. And evacuation was started. When the internal pressure reached 5 × 10 −3 Pa or less, the heater was energized while evacuation was continued to start heating the raw material. The temperature was raised at about 50 ° C./Hr until the temperature at the bottom of the crucible reached 250 ° C., and this temperature was maintained for 24 hours. The degree of vacuum in the chamber at that time was 5 × 10 −4 Pa. Thereafter, the temperature was raised again at about 50 ° C./Hr, and after reaching 600 ° C., the temperature was further maintained for 12 hours. Thereafter, the vacuum exhaust line was shut off, and high-purity argon was supplied into the chamber. The gas was not introduced until the internal pressure was reduced to 30 kPa (abs) and the pulling was completed and the temperature was lowered to around room temperature.

30kPaへの復圧後、1500℃付近まで昇温して3時間保持して原料を溶融させた。この状態で外坩堝の位置を上昇させて溶融液の一部を、貫通孔103を通じて内坩堝の内空部に流入させ、内坩堝内にもフッ化カルシウム原料の溶融液が収容された状態とした。このとき該内坩堝内の原料溶融液面の直径Rを44cmになるように調整した。   After returning to 30 kPa, the temperature was raised to around 1500 ° C. and held for 3 hours to melt the raw material. In this state, the position of the outer crucible is raised and a part of the molten liquid is caused to flow into the inner space of the inner crucible through the through-hole 103, and the molten liquid of the calcium fluoride raw material is also stored in the inner crucible. did. At this time, the diameter R of the raw material melt in the inner crucible was adjusted to 44 cm.

原料溶融液面の温度がフッ化カルシウムの溶融温度とほぼ等しくなるまで融液の温度を低下させた後、7rpmの速度で回転させた種結晶を溶融液表面に接触させ、肩部が2mm/H、直胴部が4mm/Hrの引き上げ速度で育成を行った。このとき肩部長さhが5.1cm、直胴部の直径rが22.5cmとなるように調整した(h/r=0.23、r/R=0.5)。上記引き上げ中において、外坩堝支持軸105を、内坩堝内の溶融液の深さが前記10cmに維持されるように、連続的に上昇させた。引き上げ終了後、結晶を融液から切り離し、常温まで降温した。   After the temperature of the melt is lowered until the temperature of the raw material melt becomes substantially equal to the melt temperature of calcium fluoride, the seed crystal rotated at a speed of 7 rpm is brought into contact with the melt surface, and the shoulder is 2 mm / H, the straight body part was grown at a pulling rate of 4 mm / Hr. At this time, the shoulder length h was adjusted to 5.1 cm, and the diameter r of the straight body portion was adjusted to 22.5 cm (h / r = 0.23, r / R = 0.5). During the above pulling, the outer crucible support shaft 105 was continuously raised so that the depth of the melt in the inner crucible was maintained at 10 cm. After the completion of the pulling, the crystal was separated from the melt and cooled to room temperature.

以上の操作により、直胴部の直径rが22.5cm、直胴部長さが25cmのフッ化カルシウムのアズグロウン単結晶体(直胴部の体積10380cm3、直胴部の重量32.9kg)が得られた。底部の形状は下に下凸の対称形状であった。   As a result of the above operation, an as-grown single crystal of calcium fluoride having a diameter r of the straight body portion of 22.5 cm and a length of the straight body portion of 25 cm (a volume of the straight body portion of 10380 cm 3 and a weight of the straight body portion of 32.9 kg) is obtained. It was. The shape of the bottom was a symmetric shape with a downward projection.

この単結晶体について、直胴部上下から厚み6.5cmのディスク状円柱体を得て、ディスク状円柱体面における配向方位からの傾き[°]を測定した。その結果は以下の表1の通りとなった。   With respect to this single crystal, a disk-shaped cylinder having a thickness of 6.5 cm was obtained from the top and bottom of the straight body portion, and the inclination [°] from the orientation direction on the surface of the disk-shaped cylinder was measured. The results are shown in Table 1 below.

Figure 2012012244
Figure 2012012244

実施例2、3
実施例1で使用した単結晶体製造用引き上げ装置において、実施例1と同じ条件でさらに2回フッ化カルシウム単結晶体の引き上げを行い、単結晶体を得た。
Examples 2 and 3
In the pulling apparatus for producing a single crystal used in Example 1, the calcium fluoride single crystal was pulled twice further under the same conditions as in Example 1 to obtain a single crystal.

この単結晶体について、直胴部上下から厚み6.5cmのディスク状円柱体を得て、ディスク状円柱体面における配向方位からの傾き[°]を測定した。その結果は以下の表2の通りとなった。   With respect to this single crystal, a disk-shaped cylinder having a thickness of 6.5 cm was obtained from the top and bottom of the straight body portion, and the inclination [°] from the orientation direction on the surface of the disk-shaped cylinder was measured. The results are shown in Table 2 below.

Figure 2012012244
Figure 2012012244

実施例4
実施例1で使用した単結晶体製造用引き上げ装置を用い、肩部長さhが3.7cm(h/r=0.16)となるように拡径部を形成した以外は、実施例1と同様にしてフッ化カルシウム単結晶体の引き上げを行い、単結晶体を得た。
Example 4
Example 1 is the same as Example 1 except that the diameter-increased part is formed so that the shoulder length h is 3.7 cm (h / r = 0.16) using the single crystal production pulling apparatus used in Example 1. Similarly, the calcium fluoride single crystal was pulled up to obtain a single crystal.

この単結晶体について、直胴部上下から厚み6.5cmのディスク状円柱体を得て、ディスク状円柱体面における配向方位からの傾き[°]を測定した。その結果は以下の表3の通りとなった。   With respect to this single crystal, a disk-shaped cylinder having a thickness of 6.5 cm was obtained from the top and bottom of the straight body portion, and the inclination [°] from the orientation direction on the surface of the disk-shaped cylinder was measured. The results are shown in Table 3 below.

Figure 2012012244
Figure 2012012244

実施例5、6、7
実施例1で使用した単結晶体製造用引き上げ装置を用い、実施例1と同様にして、3回フッ化カルシウム単結晶体の引き上げを行い単結晶体を得た。但し、内坩堝は、内直径32cm(外直径33.2cm)、高さ13cmのものを用い、
これにより内坩堝内の原料溶融液面の直径Rが32cm(r/R=0.7)を維持するように融液面高さを調整して結晶成長を行わせた。
Examples 5, 6, and 7
Using the single crystal production pulling apparatus used in Example 1, the calcium fluoride single crystal was pulled three times in the same manner as in Example 1 to obtain a single crystal. However, the inner crucible having an inner diameter of 32 cm (outer diameter of 33.2 cm) and a height of 13 cm is used.
Thus, the crystal growth was performed by adjusting the melt surface height so that the diameter R of the raw material melt surface in the inner crucible was maintained at 32 cm (r / R = 0.7).

この単結晶体について、直胴部上下から厚み6.5cmのディスク状円柱体を得て、ディスク状円柱体面における配向方位からの傾き[°]を測定した。その結果は以下の表4の通りとなった。   With respect to this single crystal, a disk-shaped cylinder having a thickness of 6.5 cm was obtained from the top and bottom of the straight body portion, and the inclination [°] from the orientation direction on the surface of the disk-shaped cylinder was measured. The results are shown in Table 4 below.

Figure 2012012244
Figure 2012012244

実施例8
実施例1で使用した単結晶体製造用引き上げ装置において、肩部長さhが4.1cm、直胴部の直径rが12.5cm(h/r=0.33、r/R=0.3)とした以外は、実施例1と同様にしてフッ化カルシウム単結晶体の引き上げを行い、単結晶体を得た。
この単結晶体について、直胴部上下から厚み6.5cmのディスク状円柱体を得て、ディスク状円柱体面における配向方位からの傾き[°]を測定した。その結果は以下の表5の通りとなった。
Example 8
In the single crystal manufacturing pulling apparatus used in Example 1, the shoulder length h is 4.1 cm, and the diameter r of the straight body portion is 12.5 cm (h / r = 0.33, r / R = 0.3). ) Except that the calcium fluoride single crystal was pulled up in the same manner as in Example 1 to obtain a single crystal.
With respect to this single crystal, a disk-shaped cylinder having a thickness of 6.5 cm was obtained from the top and bottom of the straight body portion, and the inclination [°] from the orientation direction on the surface of the disk-shaped cylinder was measured. The results are shown in Table 5 below.

Figure 2012012244
Figure 2012012244

比較例1、2
実施例1で使用した単結晶体製造用引き上げ装置において、肩部長さhが10.2cmとなるように拡径部を形成して、直胴部の直径rが22.5cmの単結晶体の引き上げを行った(h/r=0.45)。但し、内坩堝は実施例5〜7と同様、内直径32cm(外直径33.2cm)、高さ13cmのものを用い、
これにより内坩堝内の原料溶融液面の直径Rが32cmを維持するように融液面高さを調整して結晶成長を行わせた(r/R=0.7)。
Comparative Examples 1 and 2
In the pulling apparatus for producing a single crystal used in Example 1, an enlarged diameter portion is formed so that the shoulder length h is 10.2 cm, and the diameter of the straight body portion is 22.5 cm. Raising was performed (h / r = 0.45). However, as in Examples 5 to 7, the inner crucible had an inner diameter of 32 cm (outer diameter of 33.2 cm) and a height of 13 cm.
Thus, crystal growth was performed by adjusting the melt surface height so that the diameter R of the raw material melt surface in the inner crucible was maintained at 32 cm (r / R = 0.7).

得られた単結晶体について、直胴部上下から厚み6.5cmのディスク状円柱体を得て、ディスク状円柱体面における配向方位からの傾き[°]を測定した。その結果は以下の表の通りとなった。   With respect to the obtained single crystal, a disk-like cylinder having a thickness of 6.5 cm was obtained from the top and bottom of the straight body part, and the inclination [°] from the orientation direction on the disk-like cylinder surface was measured. The results are shown in the table below.

Figure 2012012244
Figure 2012012244

101:外坩堝
102:内坩堝
103:内坩堝壁の貫通孔
104:原料溶融液
105:外坩堝支持軸
106:受け皿
107:開口部閉塞部材
108:チャンバー
109:溶融ヒーター
110:断熱壁
111:隔離壁
112:リッド材
113:連結部材
114:内坩堝吊り下げ棒
115:結晶引き上げ軸
116:種結晶
117:種結晶保持具
118:単結晶体
119:天井板
120:結晶引き上げ軸挿入孔
121:覗き窓
122:窓孔
DESCRIPTION OF SYMBOLS 101: Outer crucible 102: Inner crucible 103: Through-hole of inner crucible wall 104: Raw material melt 105: Outer crucible support shaft 106: Receptacle 107: Opening block member 108: Chamber 109: Melting heater 110: Insulating wall 111: Isolation Wall 112: Lid material 113: Connecting member 114: Inner crucible hanging rod 115: Crystal pulling shaft 116: Seed crystal 117: Seed crystal holder 118: Single crystal 119: Ceiling plate 120: Crystal pulling shaft insertion hole 121: Peep Window 122: Window hole

Claims (2)

坩堝中の原料溶融液面に上方から種結晶体を接触させ、該種結晶体と同じ結晶配向方位を有する結晶を成長させて、該種結晶体に由来する棒状部、該棒状部よりも径の大きな円柱状の直胴部、及び棒状部と直胴部とを繋ぐ拡径部とを有する単結晶体を得るフッ化金属単結晶体の製造方法において、
前記拡径部の高さhと、直胴部の直径rとの比h/rが0.35以下となるように拡径部を形成することを特徴とするフッ化金属単結晶体の製造方法。
A seed crystal is brought into contact with the raw material melt surface in the crucible from above, and a crystal having the same crystal orientation as the seed crystal is grown, so that the diameter of the rod-shaped portion derived from the seed crystal is larger than that of the rod-shaped portion. In a method for producing a metal fluoride single crystal having a large cylindrical straight body portion and a single crystal body having a rod-shaped portion and a diameter-expanding portion connecting the straight body portion,
A diameter-expanded portion is formed so that a ratio h / r of a height h of the diameter-expanded portion and a diameter r of the straight body portion is 0.35 or less. Method.
坩堝の横断面形状が円形であり、該坩堝中の原料溶融液面の直径をRとしたとき、直胴部形成中は、r/Rが0.2〜0.6の範囲であるように直胴部を形成する請求項1記載のフッ化金属単結晶体の製造方法。   When the cross-sectional shape of the crucible is circular and the diameter of the raw material melt surface in the crucible is R, r / R is in the range of 0.2 to 0.6 during the formation of the straight body part. The manufacturing method of the metal fluoride single crystal of Claim 1 which forms a straight body part.
JP2010149307A 2010-06-30 2010-06-30 Method for producing metal fluoride single crystal body Pending JP2012012244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010149307A JP2012012244A (en) 2010-06-30 2010-06-30 Method for producing metal fluoride single crystal body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010149307A JP2012012244A (en) 2010-06-30 2010-06-30 Method for producing metal fluoride single crystal body

Publications (1)

Publication Number Publication Date
JP2012012244A true JP2012012244A (en) 2012-01-19

Family

ID=45599125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010149307A Pending JP2012012244A (en) 2010-06-30 2010-06-30 Method for producing metal fluoride single crystal body

Country Status (1)

Country Link
JP (1) JP2012012244A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285898A (en) * 1990-04-02 1991-12-17 Nikko Kyodo Co Ltd Production of yttrium fluoride lithium-based single crystal
JP2004231502A (en) * 2003-02-03 2004-08-19 Tokuyama Corp As-grown single crystal body of barium fluoride
JP2005272219A (en) * 2004-03-25 2005-10-06 Nikon Corp Nonlinear optical crystal, its producing method and wavelength conversion element
JP2006117494A (en) * 2004-10-25 2006-05-11 Tokuyama Corp Method for producing metal fluoride single crystal and as-grown single crystal of metal fluoride produced by the method
WO2006068062A1 (en) * 2004-12-22 2006-06-29 Tokuyama Corporation Metal fluoride single crystal pulling apparatus and process for producing metal fluoride single crystal with the apparatus
JP2008201644A (en) * 2007-02-22 2008-09-04 Tokuyama Corp MANUFACTURE PROCESS OF BaLiF3 SINGLE CRYSTAL
JP2008230958A (en) * 2007-02-22 2008-10-02 Tokuyama Corp METHOD FOR PRODUCING BaLiF3 SINGLE CRYSTAL
JP2009132576A (en) * 2007-11-30 2009-06-18 Tokuyama Corp BaLiF3 SINGLE CRYSTAL

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285898A (en) * 1990-04-02 1991-12-17 Nikko Kyodo Co Ltd Production of yttrium fluoride lithium-based single crystal
JP2004231502A (en) * 2003-02-03 2004-08-19 Tokuyama Corp As-grown single crystal body of barium fluoride
JP2005272219A (en) * 2004-03-25 2005-10-06 Nikon Corp Nonlinear optical crystal, its producing method and wavelength conversion element
JP2006117494A (en) * 2004-10-25 2006-05-11 Tokuyama Corp Method for producing metal fluoride single crystal and as-grown single crystal of metal fluoride produced by the method
WO2006068062A1 (en) * 2004-12-22 2006-06-29 Tokuyama Corporation Metal fluoride single crystal pulling apparatus and process for producing metal fluoride single crystal with the apparatus
JP2008201644A (en) * 2007-02-22 2008-09-04 Tokuyama Corp MANUFACTURE PROCESS OF BaLiF3 SINGLE CRYSTAL
JP2008230958A (en) * 2007-02-22 2008-10-02 Tokuyama Corp METHOD FOR PRODUCING BaLiF3 SINGLE CRYSTAL
JP2009132576A (en) * 2007-11-30 2009-06-18 Tokuyama Corp BaLiF3 SINGLE CRYSTAL

Similar Documents

Publication Publication Date Title
JP4863710B2 (en) Pulling apparatus for producing metal fluoride single crystal and method for producing metal fluoride single crystal using the apparatus
JP4668068B2 (en) Metal fluoride single crystal pulling apparatus and method for producing metal fluoride single crystal using the apparatus
TWI580827B (en) Sapphire single crystal nucleus and its manufacturing method
JP2006342029A (en) Annealing furnace used for heat-treating metal fluoride single crystal and annealing method of metal fluoride single crystal
JP2011225423A (en) Double crucible structure used for metal fluoride single crystal growing furnace, and metal fluoride single crystal growing furnace
JP2008207993A (en) Method for producing sapphire single crystal
JP4463730B2 (en) Method for producing metal fluoride single crystal
JP6409955B2 (en) Method for producing SiC single crystal
JP4425181B2 (en) Method for producing metal fluoride single crystal
JP5136278B2 (en) Method for producing silicon single crystal
JP2012012244A (en) Method for producing metal fluoride single crystal body
JP2007284324A (en) Manufacturing device and manufacturing method for semiconductor single crystal
JP4484208B2 (en) Method for producing metal fluoride single crystal
KR20040044146A (en) Single crystal pulling apparatus for metal fluoride
JP2011057460A (en) Method for growing silicon single crystal
JP2007284323A (en) Manufacturing device and manufacturing method for semiconductor single crystal
JP2004231502A (en) As-grown single crystal body of barium fluoride
JP4500531B2 (en) As-grown single crystal of alkaline earth metal fluoride
EP1422321A1 (en) As-grown single crystal of calcium fluoride
JP4456849B2 (en) As-grown single crystal of calcium fluoride
JP2012006786A (en) Method for producing metal fluoride single crystal
JP2009102194A (en) Metal fluoride single crystalline body pulling apparatus and method of manufacturing metal fluoride single crystalline body using the same apparatus
JP4859785B2 (en) Method for producing metal fluoride single crystal using apparatus for pulling metal fluoride single crystal
JP2014189413A (en) Production method of sapphire ingot
JP2003119095A (en) Method of producing fluoride single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140107