JP2012007394A - Embankment reinforcement structure - Google Patents

Embankment reinforcement structure Download PDF

Info

Publication number
JP2012007394A
JP2012007394A JP2010144787A JP2010144787A JP2012007394A JP 2012007394 A JP2012007394 A JP 2012007394A JP 2010144787 A JP2010144787 A JP 2010144787A JP 2010144787 A JP2010144787 A JP 2010144787A JP 2012007394 A JP2012007394 A JP 2012007394A
Authority
JP
Japan
Prior art keywords
embankment
steel wall
wall body
underground steel
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010144787A
Other languages
Japanese (ja)
Other versions
JP5445351B2 (en
Inventor
Kazutaka Otoshi
和孝 乙志
Naoya Nagao
直也 永尾
Hiromasa Tanaka
宏征 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2010144787A priority Critical patent/JP5445351B2/en
Publication of JP2012007394A publication Critical patent/JP2012007394A/en
Application granted granted Critical
Publication of JP5445351B2 publication Critical patent/JP5445351B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an embankment reinforcement structure, when an embankment is used for a dike, capable of making cost for steel member more reasonable than a conventional structure while maintaining such a function of the dike as to prevent water from flowing inside the dike when subjected to an action of an earthquake and a high flood water level as well as overflow due to concentrated heavy rain.SOLUTION: An embankment reinforcement structure of the present invention has at least one or more rows of an underground steel wall body 14 made of sheet piles 13 along a continuous embankment 1 within a range of an approximate levee crown 6 thereof. The underground steel wall body 14 is constructed with an embedded depth which is shallower than a bearing layer 9 and protects the underground steel wall body from being collapsed at times of an earthquake and overflow. Upper sections of the sheet piles 13 are fixed each other by welding or the like.

Description

本発明は、河川等の堤防、道路・鉄道盛土等の河川、道路、鉄道等に沿って長く延在する盛土の補強構造に関する。   The present invention relates to a reinforcement structure for embankments extending long along rivers, rivers such as rivers, railway embankments, roads, railways, and the like.

近年、日本では大地震が頻繁に発生し、さらに、近い将来幾つかの大地震の到来が予測されており、河川堤防などの盛土構造物では、地震により基礎地盤が液状化することによる堤体の亀裂や沈下などの被害が懸念される。盛土構造物の地震対策としては、図13に示すように、盛土1において、盛土法尻(法面7の下端部)2を鋼矢板3からなる地中鋼製壁体4で締切る補強工法や、法尻2を地盤改良する補強工法が適用されることが多い。   In recent years, large earthquakes have frequently occurred in Japan, and several major earthquakes are predicted to arrive in the near future. In embankment structures such as river embankments, the basement due to liquefaction of the foundation ground due to the earthquake There are concerns about damage such as cracks and subsidence. As an earthquake countermeasure for the embankment structure, as shown in FIG. 13, as shown in FIG. 13, in the embankment 1, a reinforcement construction method in which the embankment method bottom (lower end portion of the slope 7) 2 is tightened with an underground steel wall body 4 made of steel sheet piles 3. In many cases, a reinforcement method for improving the ground of the butt 2 is applied.

また、想定外の集中豪雨などで急激に水位が上昇することによる浸透破壊や越水による破堤を防止する目的で、堤体(盛土1)内に鋼矢板3を設置し複合構造とする研究が行われている(例えば、特許文献1参照)。特許文献1に記載されているような工法として、図14に示すように堤体(盛土1)内の左右の法肩部(法面7の上端部)5に鋼矢板3を連続した地中鋼製壁体4を配置することや、盛土1の天端6の中央部に鋼矢板3を連続した地中鋼製壁体4を配置することにより、越水時にも地中鋼製壁体4が天端6の高さを確保し、破堤により堤外側(河川側)から堤内側(民家などが存在する側)へ水が一気に流入することを防止することができるため、盛土構造物の補強として効果的である。
なお、従来の盛土の補強構造の概略を示す図13および図14において、盛土1は、上述のように河川堤防であり、図中盛土1の左側が河川10となっている。また、盛土1が設置される地盤においては、地震時に液状化する虞がある液状化層8の下側が支持層9となっている。
In addition, a steel sheet pile 3 is installed in the embankment (bank 1) to create a composite structure in order to prevent seepage failure due to sudden rise of water level due to unexpected heavy rain, etc. (For example, refer to Patent Document 1). As a construction method as described in Patent Document 1, as shown in FIG. 14, the steel sheet pile 3 is continuously connected to the left and right shoulder portions (upper end portion of the slope 7) 5 in the embankment (fill 1). By placing the steel wall body 4 or by placing the underground steel wall body 4 in which the steel sheet pile 3 is continuous at the center of the top edge 6 of the embankment 1, the underground steel wall body even at the time of flooding 4 ensures the height of the top 6 and prevents the water from flowing all at once from the outside of the bank (river side) to the inside of the bank (side where private houses exist) due to the bank breakage. It is effective as a reinforcement.
13 and 14 showing the outline of the conventional embankment reinforcement structure, the embankment 1 is a river bank as described above, and the left side of the embankment 1 is a river 10 in the figure. Moreover, in the ground where the embankment 1 is installed, the lower side of the liquefied layer 8 which may be liquefied at the time of an earthquake is the support layer 9.

ところで、河川堤防などの盛土構造物を上述のように鋼矢板3および/または鋼管矢板(以下、鋼矢板3と鋼管矢板とを総称して「矢板」と称する場合がある。)で補強する対策では、矢板の倒壊や滑動、回転などが生じないように、矢板の根入れ長さを十分に確保する必要がある(例えば、非特許文献1参照)。
非特許文献1には、液状化時対策としての根入れ長の計算方法として、「「フリーアースサポート法」による計算方法」と、「『鋼矢板2重式仮締切設計マニュアル』の参考資料1による方法」の2通りが示されている。
By the way, measures to reinforce the embankment structure such as a river dike with the steel sheet pile 3 and / or the steel pipe sheet pile (hereinafter, the steel sheet pile 3 and the steel pipe sheet pile may be collectively referred to as “sheet pile”). Therefore, it is necessary to secure a sufficient length of the sheet pile so that the sheet pile is not collapsed, slid, or rotated (see, for example, Non-Patent Document 1).
Non-Patent Document 1 includes “Calculation Method by“ Free Earth Support Method ”” and “Reference Sheet 1 of“ Steel Sheet Pile Double Deadline Design Manual ”as a calculation method of the penetration length as a countermeasure for liquefaction. Two ways of "method by" are shown.

前者は、根入れ下端が塑性的に移動してしまわないことを照査するために、鋼矢板3の地中鋼製壁体4で仕切られた外側の液状化層8の受働抵抗を無視して非液状化層(支持層9)における受働抵抗のみを考慮し、堤体(盛土1)内部から鋼矢板3に作用する土圧との釣り合いにより根入れ長を決定する方法が示されている。
後者においても同様に受働側の抵抗としては、非液状化層のみを考慮する方法が示されている。これら二つの方法では、鋼矢板3は非液状化層(支持層9)にまで根入れされることが想定されている。
The former ignores the passive resistance of the outer liquefied layer 8 partitioned by the underground steel wall body 4 of the steel sheet pile 3 in order to verify that the bottom end of the penetration does not move plastically. Only the passive resistance in the non-liquefaction layer (support layer 9) is considered, and a method for determining the penetration length by balancing with the earth pressure acting on the steel sheet pile 3 from the inside of the bank (bank 1) is shown.
In the latter case as well, a method in which only the non-liquefied layer is considered as the resistance on the passive side is shown. In these two methods, it is assumed that the steel sheet pile 3 is embedded in the non-liquefied layer (support layer 9).

特開2003−13451号公報JP 2003-13451 A

堤防補強研究委員会編集「鋼矢板芯壁堤 鋼矢板による河川堤防補強工法 設計の手引き(案)」鋼管杭協会、堤防補強研究委員会(2002.3)23〜27頁Edited by the Levee Reinforcement Research Committee “River dike reinforcement method using steel sheet piles, steel sheet pile design guide (draft)” Steel Pipe Pile Association, Levee Reinforcement Research Committee (2002.23) pp. 23-27

しかしながら、矢板を支持層まで根入れするには、支持層に達するのに十分な矢板の長さが必要である。また、地震時においては、支持層から壁体へ加速度が伝達されて鋼矢板に大きな歪みが発生しうるので、矢板も歪みに耐え得る断面(強度、剛性)が必要になり、そのため矢板の型式が大きくなる。したがって、施工には、上述の矢板の根入れ長や、矢板の型式(断面)に応じて、コスト(鋼材費)がかかることになる。
多くの盛土で地震等に対する対策を行う必要があり、盛土の補強にかかるコストの低減が求められている。
However, in order to penetrate the sheet pile to the support layer, a sufficient length of the sheet pile is required to reach the support layer. Also, during an earthquake, acceleration is transmitted from the support layer to the wall body, which can cause large distortions in the steel sheet pile, so the sheet pile also requires a cross section (strength, rigidity) that can withstand the distortion. Becomes larger. Therefore, the construction requires a cost (steel material cost) depending on the above-mentioned length of the sheet pile and the type (cross section) of the sheet pile.
It is necessary to take countermeasures against earthquakes in many embankments, and there is a demand for cost reduction for embankment reinforcement.

本発明は、前記事情に鑑みてなされたものであり、たとえば、盛土を堤防に利用した場合に、地震等の作用を受けた際や、集中豪雨による高水時や越水時に、堤内側に水が流れ込むのを防ぐという堤防の機能を維持しつつ、従来よりも鋼材コストを合理化し得る盛土の補強構造を提供することを目的とする。   The present invention has been made in view of the above circumstances. For example, when embankment is used for a dike, when it is subjected to an action such as an earthquake, or when it is high or overflowed by heavy rain, It aims at providing the reinforcement structure of the embankment which can rationalize steel materials cost than before, maintaining the function of the embankment which prevents water from flowing in.

本発明者らは、検討の結果、地中鋼製壁体を構成する矢板が支持層に達していなくても、高水状態において液状化層が壁体を支持する層として機能し、壁体の倒壊は生じないことを確認した。また、実験により、地震時に液状化層が液状化した際に、鋼矢板下端と支持層との間に存在する液状化層が免震効果を果たし、地中鋼製壁体への伝達加速度が低減され、地中鋼製壁体に発生する曲げひずみが低減されることが見出された。そのため、支持層まで根入れした場合と比較して、必要な矢板断面が小さくて済み、使用する鋼材のコストが低減される可能性がある。   As a result of the study, the inventors have studied that the liquefied layer functions as a layer that supports the wall body in a high water state even if the sheet pile constituting the underground steel wall body does not reach the support layer. It was confirmed that no collapse occurred. In addition, when the liquefaction layer liquefies during an earthquake, the liquefaction layer existing between the steel sheet pile bottom and the support layer has a seismic isolation effect, and the transmission acceleration to the underground steel wall body is It has been found that the bending strain generated in the underground steel wall is reduced. Therefore, compared with the case where the support layer is embedded, the necessary sheet pile cross-section is small, and the cost of the steel material to be used may be reduced.

そこで、請求項1に記載の盛土の補強構造は、連続する盛土の略天端の範囲内に、鋼矢板および/または鋼管矢板からなる地中鋼製壁体が、前記盛土の連続方向に沿って一列以上設けられ、
前記地中鋼製壁体は、支持層より浅い深さで、かつ、地震時や越水時に前記地中鋼製壁体が倒壊しない深さまで根入れされていることを特徴とする。
Therefore, the embankment reinforcing structure according to claim 1 is configured such that an underground steel wall body made of steel sheet piles and / or steel pipe sheet piles extends in a continuous direction of the embankment within a range of a substantially top end of continuous embankments. More than one row,
The underground steel wall body has a depth shallower than that of the support layer, and is deeply embedded to a depth at which the underground steel wall body does not collapse during an earthquake or water overflow.

請求項1に記載の発明においては、地中鋼製壁体(矢板)の根入れ深さが支持層より浅くとも、地中鋼製壁体が倒壊しない深さを実験やシミュレーションで求めることが可能である。したがって、地盤の支持層より浅く、かつ、地震時や越水時に倒壊してしまう深さより深く、地中鋼製壁体を構成する矢板を打設することにより、盛土の補強を図ることができる。
このような深さまで根入れされた矢板は、支持層まで根入れされている矢板より長さが短くなる。また、上述のように、鋼矢板下端と支持層との間に存在する液状化層が免震効果を果たし、地中鋼製壁体に発生する曲げひずみが低減されるので、矢板の断面を低減することが可能である。これらのことから、地中鋼製壁体の構築にかかる鋼材費を低減することができる。
In invention of Claim 1, even if the penetration depth of an underground steel wall body (sheet pile) is shallower than a support layer, the depth which an underground steel wall body does not collapse can be calculated | required by experiment or simulation. Is possible. Therefore, the embankment can be reinforced by placing the sheet piles that make up the underground steel wall body, which is shallower than the ground support layer and deeper than the depth that collapses during an earthquake or water overflow. .
The sheet pile rooted to such a depth is shorter than the sheet pile rooted to the support layer. In addition, as described above, the liquefied layer existing between the lower end of the steel sheet pile and the support layer plays a seismic isolation effect, and the bending strain generated in the underground steel wall body is reduced. It is possible to reduce. From these things, the steel material cost concerning construction of an underground steel wall body can be reduced.

また、支持層の上を例えば液状化層とした場合に、一般的に支持層より液状化層の方が透水性が高いので、矢板の根入れ深さが支持層に至らず、矢板の下端と支持層との間に液状化層がある状態では、地中鋼製壁体が浸透水の流れを遮断せず、支持層と地中鋼製壁体の下端との間で盛土周辺へ通じる浸透の流れを十分確保しながら盛土を補強できる。
したがって、壁体が支持層まで根入れされていない構造では、地下水の流れを確保しながら盛土を補強することができる可能性が高い。よって、地下水の流れを確保するために、矢板に透水孔などを設けなくてもよく、開孔に係る加工コストが削減できる。
In addition, when the support layer is, for example, a liquefied layer, the liquefied layer is generally more permeable than the support layer, so the depth of the sheet pile does not reach the support layer, and the lower end of the sheet pile Under the condition that there is a liquefied layer between the support layer and the underground layer, the underground steel wall does not block the flow of the permeated water and leads to the embankment between the support layer and the lower end of the underground steel wall. The embankment can be reinforced while ensuring sufficient infiltration flow.
Therefore, in a structure in which the wall body is not rooted up to the support layer, there is a high possibility that the embankment can be reinforced while ensuring the flow of groundwater. Therefore, in order to ensure the flow of groundwater, it is not necessary to provide a water-permeable hole or the like in the sheet pile, and the processing cost related to the opening can be reduced.

請求項2に記載の盛土の補強構造は、請求項1に記載の発明において、前記地中鋼製壁体が前記盛土の連続方向に沿って一列設けられ、
当該地中鋼製壁体は、当該地中鋼製壁体で仕切られた片側の盛土が無くなった状態を仮定した場合に、前記地中鋼製壁体の両側からそれぞれ作用する土圧および水圧による水平力が釣り合う深さ以下で、かつ、支持層より上の位置まで根入れされていることを特徴とする。
The embankment reinforcement structure according to claim 2 is the invention according to claim 1, wherein the underground steel wall body is provided in a row along a continuous direction of the embankment,
When the underground steel wall body is assumed to have no embankment on one side partitioned by the underground steel wall body, earth pressure and water pressure acting from both sides of the underground steel wall body, respectively. The depth is equal to or less than the depth at which the horizontal force is balanced, and is embedded to a position above the support layer.

請求項2に記載の発明においては、盛土に一列に地中鋼製壁体を設けた場合で、かつ、盛土を例えば河川等の水域の堤防とした場合に、越水時に、地中鋼製壁体の片側(堤内側)の土砂が越水した水に流されることになり、地中鋼製壁体で仕切られた片側(堤内側)の盛土が無くなる虞がある。
この状態で、地中鋼製壁体が倒壊しないように、地中鋼製壁体の両側からそれぞれ作用する土圧および水圧による水平力が釣り合う深さ以下まで地中鋼製壁体を構成する矢板を根入れする必要がある。
このような深さは、地盤調査と、それに基づくシミュレーションや実験により求めることができる。
前記深さまで地中鋼製壁体を根入れするものとしても、支持層より根入れ深さが上となっているので、上述のように鋼材費の低減を図ることができる。
In the invention according to claim 2, when the underground steel wall body is provided in a row in the embankment, and the embankment is used as a bank of a water area such as a river, it is made of underground steel. The earth and sand on one side of the wall (inner side of the bank) will be washed away by the overflowed water, and there is a risk that the embankment on one side (inner side of the bank) partitioned by the underground steel wall will be lost.
In this state, in order to prevent the underground steel wall body from collapsing, the underground steel wall body is configured to a depth below which the horizontal force due to earth pressure and water pressure acting from both sides of the underground steel wall body is balanced. It is necessary to put in a sheet pile.
Such depth can be obtained through ground surveys and simulations and experiments based thereon.
Even if the underground steel wall body is embedded to the depth, the steel material cost can be reduced as described above because the root depth is higher than the support layer.

請求項3に記載の盛土の補強構造は、連続する盛土の略天端の範囲内に、鋼矢板および/または鋼管矢板からなる地中鋼製壁体が、前記盛土の連続方向に沿って一列以上設けられ、
前記地中鋼製壁体は、支持層より浅い深さで、かつ、地震時や越水時に前記地中鋼製壁体が倒壊しない深さまで根入れされている第1領域と、前記支持層まで根入れされている第2領域とが交互に形成され、
各第1領域の盛土の延長方向の長さが、各第2領域の盛土の延長方向の長さよりも長いことを特徴とする。
The reinforcing structure for embankment according to claim 3, wherein the underground steel wall body made of steel sheet piles and / or steel pipe sheet piles is arranged in a line along the continuous direction of the embankment within the range of the approximate top end of the continuous embankment. Provided
The underground steel wall has a depth that is shallower than the support layer and is deeply embedded to a depth at which the underground steel wall does not collapse during an earthquake or a flood, and the support layer And second regions that are rooted in are alternately formed,
The length in the extending direction of the embankment in each first region is longer than the length in the extending direction of the embankment in each second region.

請求項3に記載の発明においては、請求項1の発明と同様の効果を備えつつ、支持層より根入れ深さが浅い第1領域が、支持層に達する根入れ深さの第2領域に支持され、地震時に地中鋼製壁体が沈下するのを防止することができる。   In the third aspect of the present invention, the first region having a depth deeper than that of the support layer is changed to the second region of the depth of penetration reaching the support layer while providing the same effect as the first aspect of the invention. It is supported and can prevent the underground steel wall from sinking during an earthquake.

請求項4に記載の盛土の補強構造は、請求項3に記載の発明において、
前記地中鋼製壁体が前記盛土の連続方向に沿って一列設けられ、
当該地中鋼製壁体の第1領域は、当該地中鋼製壁体で仕切られた片側の盛土が無くなった状態を仮定した場合に、前記地中鋼製壁体の両側からそれぞれ作用する土圧および水圧による水平力が釣り合う深さ以下で、かつ、支持層より上の位置まで根入れされていることを特徴とする。
The embankment reinforcing structure according to claim 4 is the invention according to claim 3,
The underground steel wall body is provided in a row along the continuous direction of the embankment,
The first region of the underground steel wall body acts from both sides of the underground steel wall body, assuming that there is no embankment on one side partitioned by the underground steel wall body. The depth is equal to or less than the depth at which the horizontal force due to the earth pressure and the water pressure is balanced, and is rooted to a position above the support layer.

請求項4に記載の発明においては、請求項2に記載の発明と同様に、地中鋼製壁体を一列とし、地中鋼製壁体で仕切られた片側の盛土が無くなった状態を仮定した場合に、前記地中鋼製壁体の両側からそれぞれ作用する土圧および水圧による水平力が釣り合う深さ以下で、かつ、支持層より上の位置まで根入れされていることにより、第1領域の倒壊を抑制し、盛土の補強が可能である。   In the invention described in claim 4, as in the invention described in claim 2, it is assumed that the underground steel wall bodies are arranged in a row, and there is no embankment on one side partitioned by the underground steel wall bodies. In this case, the depth is equal to or less than the depth at which the horizontal force due to earth pressure and water pressure acting from both sides of the underground steel wall body is balanced, and is rooted to a position above the support layer. The collapse of the area is suppressed, and embankment can be reinforced.

請求項5に記載の盛土の補強構造は、請求項1から4のいずれか1項に記載の発明において、前記地中鋼製壁体は、盛土の幅方向の位置として、通常時にはこの地中鋼製壁体の両側にかかる土圧が均衡する位置に配置されていることを特徴とする。   The embankment reinforcing structure according to claim 5 is the invention according to any one of claims 1 to 4, wherein the underground steel wall body is normally in the ground as a position in the width direction of the embankment. It is arrange | positioned in the position where the earth pressure concerning both sides of a steel wall body balances.

請求項5に記載の発明においては、地中鋼製壁体の両側で矢板に生じる土圧が不均衡な場合と比較して矢板断面を抑制でき、さらに鋼材費の低減を図ることができる。   In invention of Claim 5, a sheet pile cross section can be suppressed compared with the case where the earth pressure which arises in a sheet pile on both sides of underground steel wall bodies is unbalanced, and also reduction of steel material cost can be aimed at.

請求項6に記載の盛土の補強構造は、請求項1から請求項5のいずれか1項に記載の発明において、隣り合う前記鋼矢板および/または前記鋼管矢板の上端部またはこの上端部近傍が互いに固定されていることを特徴とする。   The embankment reinforcement structure according to claim 6 is the invention according to any one of claims 1 to 5, wherein an upper end portion of the adjacent steel sheet pile and / or the steel pipe sheet pile or the vicinity of the upper end portion is provided. It is characterized by being fixed to each other.

支持層まで根入れされていない地中鋼製壁体(又はそのうちの第1領域)は、地震が発生した場合に、壁体が倒壊することはないが、液状化層が液状化することにより沈下する可能性があり、そのとき矢板同士が固定されていないと矢板ごとに沈下量が異なってしまう虞がある。
請求項6の発明においては、各矢板の上端部もしくはその近傍で互いに固定することによって、各矢板が個々に異なる深さに沈下せず、ほぼ一様に沈下する。また、支持層まで達している第2領域の矢板にまで固定されていれば、ほとんど沈下しない。したがって、例えば、地震後の復旧作業時に盛土の天端を道路として使用することが容易である。
The underground steel wall body (or the first region of them) that is not rooted up to the support layer will not collapse when the earthquake occurs, but the liquefied layer liquefies. If the sheet piles are not fixed at that time, the amount of settlement may be different for each sheet pile.
In the invention of claim 6, by fixing each other at the upper end portion of each sheet pile or in the vicinity thereof, each sheet pile does not sink to different depths but sinks substantially uniformly. Moreover, if it fixes to the sheet pile of the 2nd area | region which has reached the support layer, it will hardly sink. Therefore, for example, it is easy to use the top of the embankment as a road during restoration work after an earthquake.

請求項7に記載の盛土の補強構造は、請求項1から請求項6のいずれか1項に記載の発明において、盛土の少なくとも一方の法尻部分に、地中鋼製壁体が設けられていることを特徴とする。   The embankment reinforcement structure according to claim 7 is the invention according to any one of claims 1 to 6, wherein an underground steel wall body is provided on at least one of the bottom edges of the embankment. It is characterized by being.

請求項7に記載の発明においては、地震時の地中鋼製壁体の沈下を抑制できるので、地震時および地震後の高水時や越水時に盛土天端の沈下を抑制することが可能であり、効果的な対策である。   In the invention according to claim 7, since the settlement of the underground steel wall body at the time of the earthquake can be suppressed, it is possible to suppress the settlement at the top of the embankment at the time of the earthquake and at the time of high water or overflow. It is an effective measure.

本発明によれば、堤防等の盛土の補強に用いられる地中鋼製壁体の倒壊が生じない構造でありながら、従来よりも鋼材コストの面で有利な盛土の補強構造とすることができる。   ADVANTAGE OF THE INVENTION According to this invention, it can be set as the embankment reinforcement structure more advantageous in terms of steel materials than before, although it is a structure which does not cause collapse of the underground steel wall body used for reinforcement of embankments, such as embankments. .

本発明の実施形態に係る盛土の補強構造を示す概略断面図である。It is a schematic sectional drawing which shows the reinforcement structure of the embankment which concerns on embodiment of this invention. 実験において比較例としての盛土の補強構造を示す概略断面図である。It is a schematic sectional drawing which shows the reinforcement structure of the embankment as a comparative example in experiment. 実験において実施例としての盛土の補強構造を示す概略断面図である。It is a schematic sectional drawing which shows the reinforcement structure of the embankment as an Example in experiment. 盛土の補強構造の加振実験における、加振波形を示す図である。It is a figure which shows an excitation waveform in the excitation experiment of the reinforcement structure of a banking. 盛土の補強構造の加振実験時の地中鋼製壁体の応答加速度の測定結果を示した図である。It is the figure which showed the measurement result of the response acceleration of the underground steel wall body at the time of the vibration test of the reinforcement structure of embankment. 盛土の補強構造の加振実験時の地中鋼製壁体の応答曲げ歪みの測定結果を示した図である。It is the figure which showed the measurement result of the response bending distortion of the underground steel wall body at the time of the vibration test of the reinforcement structure of embankment. (a)および(b)は、盛土の補強構造における矢板の根入れ深さの考え方を示す図である。(A) And (b) is a figure which shows the idea of the penetration depth of a sheet pile in the reinforcement structure of a banking. (a)および(b)は、盛土の補強構造における矢板の根入れ深さの考え方を示す図である。(A) And (b) is a figure which shows the idea of the penetration depth of a sheet pile in the reinforcement structure of a banking. 盛土の補強構造の変形例を示す概略断面図である。It is a schematic sectional drawing which shows the modification of the reinforcement structure of a banking. 盛土の補強構造の別の変形例を示す概略断面図である。It is a schematic sectional drawing which shows another modification of the reinforcement structure of a banking. 盛土の補強構造のまた別の変形例を示す概略断面図である。It is a schematic sectional drawing which shows another modification of the reinforcement structure of a banking. 盛土の補強構造のさらに別の変形例を示す概略断面図である。It is a schematic sectional drawing which shows another modification of the reinforcement structure of a banking. 従来の盛土の補強構造の一例を示す図である。It is a figure which shows an example of the reinforcement structure of the conventional embankment. 従来の盛土の補強構造の別の一例を示す図である。It is a figure which shows another example of the reinforcement structure of the conventional embankment.

以下、本発明の実施形態を図面を参照して説明する。
図1に示すように、この実施形態の盛土の補強構造は、例えば、河川の堤防、道路・鉄道盛土等の盛土を補強するためのものであるが、河川の堤防を例に取って説明する。
盛土1の構造は、上述の従来の盛土の補強構造における盛土と同様であり、下端部が法尻2で上端部が法肩5である法面7を左右に有し、左右の法面7の間の上端部が天端6となっている。また、堤内側の盛土1の法尻2には浸透破壊を防止するためにドレーン材15が設けられていてもよい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the embankment reinforcement structure of this embodiment is for reinforcing a bank embankment such as a river embankment or a road / railway embankment, and will be described by taking a river embankment as an example. .
The structure of the embankment 1 is the same as the embankment in the above-described conventional embankment reinforcement structure. The embankment 1 has a slope 7 whose lower end is the slope 2 and whose upper end is the shoulder 5, and the left and right slopes 7. The upper end between the two is the top end 6. Moreover, the drain material 15 may be provided in the slope 2 of the embankment 1 inside the bank in order to prevent a seepage failure.

この盛土の補強構造においては、盛土1の略天端6の範囲内に矢板13(鋼矢板および/または鋼管矢板)を連結した矢板壁からなる地中鋼製壁体14が設置されている。なお、略天端6の範囲内には、天端6より少し外側の法肩5部分も含まれる。
また、この実施の形態では、盛土1に一列に設けられた地中鋼製壁体14は、盛土1の幅方向(盛土1の長手方向に直交する水平な方向)の中央部、すなわち、天端6の幅方向の中央部に配置されている。
In this embankment reinforcement structure, an underground steel wall body 14 composed of a sheet pile wall in which sheet piles 13 (steel sheet piles and / or steel pipe sheet piles) are connected in the range of the approximate top end 6 of the fill 1 is installed. It should be noted that the shoulder 5 portion slightly outside the top end 6 is also included in the range of the approximate top end 6.
Moreover, in this embodiment, the underground steel wall bodies 14 provided in a row in the embankment 1 are the central part in the width direction of the embankment 1 (the horizontal direction orthogonal to the longitudinal direction of the embankment 1), that is, the ceiling. The end 6 is disposed at the center in the width direction.

地中鋼製壁体14を構成する矢板13は盛土1を貫通し、その下の地震時に液状化する虞のある液状化層8に打設されている。また、地中鋼製壁体14は、盛土1の連続方向(長さ方向)に沿って連続的に設置されている。
地中鋼製壁体14の頭部(上端部)は、盛土1の天端6と同じ高さもしくはそれより少し下に位置している。
A sheet pile 13 constituting the underground steel wall body 14 penetrates the embankment 1 and is placed in a liquefied layer 8 which may be liquefied at the time of an earthquake. Moreover, the underground steel wall body 14 is continuously installed along the continuous direction (length direction) of the embankment 1.
The head (upper end) of the underground steel wall 14 is located at the same height as the top edge 6 of the embankment 1 or slightly below it.

盛土1の下側の基礎部分から下には、上述のように液状化層8が形成され、その下側に支持層9が形成されているが、この実施の形態の地中鋼製壁体14の下端は、支持層9に達していない。すなわち、地中鋼製壁体14(矢板13)は、支持層9に根入れされておらず、根入れ深さが支持層9より浅くされている。すなわち、矢板13の下端は、支持層9より上に配置されている。したがって、地中鋼製壁体14の下端と、支持層9との間には、間隔があいている。   A liquefied layer 8 is formed below the foundation portion on the lower side of the embankment 1 as described above, and a support layer 9 is formed on the lower side thereof, but the underground steel wall body of this embodiment The lower end of 14 does not reach the support layer 9. That is, the underground steel wall body 14 (the sheet pile 13) is not embedded in the support layer 9, and the depth of installation is shallower than that of the support layer 9. That is, the lower end of the sheet pile 13 is disposed above the support layer 9. Therefore, there is a space between the lower end of the underground steel wall body 14 and the support layer 9.

地中鋼製壁体14の根入れ深さは、上述のように支持層9より浅い深さで、かつ、地震時や越水時に地中鋼製壁体が倒壊しない深さまで根入れされている。
この倒壊しない根入れ深さとは、例えば、盛土の基礎地盤の状態、すなわち、液状化層8の状態により変化するものであるが、例えば、地盤調査の結果に基づくシミュレーションや実験等に基づいて決定することができる。
The depth of penetration of the underground steel wall body 14 is set to a depth shallower than the support layer 9 as described above, and to a depth at which the underground steel wall body does not collapse at the time of an earthquake or water overflow. Yes.
The inset depth that does not collapse, for example, changes depending on the state of the foundation ground of the embankment, that is, the state of the liquefied layer 8, but is determined based on, for example, simulations or experiments based on the results of the ground investigation can do.

また、上述のように堤防として用いられる盛土1に一列に地中鋼製壁体14を設けた場合に、地中鋼製壁体14が倒壊しない深さとは、地中鋼製壁体14で仕切られた片側の盛土が無くなった状態を仮定した場合に、地中鋼製壁体の両側からそれぞれ作用する土圧および水圧による水平力が釣り合う深さである。なお、越水時には、盛土1の堤内側の土砂が越水により流されてしまう虞があり、盛土1の地中鋼製壁体14で仕切られた片側の土砂が無くなる状態を想定する必要がある。   Moreover, when the underground steel wall body 14 is provided in a row on the embankment 1 used as a bank as described above, the depth at which the underground steel wall body 14 does not collapse is the underground steel wall body 14. When it is assumed that there is no banking on one side of the partition, it is the depth at which the horizontal force due to earth pressure and water pressure acting from both sides of the underground steel wall body is balanced. In addition, at the time of overflowing, there is a possibility that the earth and sand inside the embankment of the embankment 1 may be washed away by overwater, and it is necessary to assume a state where there is no soil on one side partitioned by the underground steel wall body 14 of the embankment 1. is there.

このような盛土の補強構造の作用効果を検証するために以下の実験を行った。
1.実験模型
実験に用いた模型は、幅2800mm×高さ900mm×奥行き695mmの剛な土槽11(図2、図3に図示)に、模型地盤として、締固め層12(支持層9に相当する)、液状化層8、盛土層(盛土1)の3層を作製した。さらに、土槽11の側壁には所定位置に開閉調節が可能なバルブ付きの孔が設けられ、盛土1の左右それぞれで水位調節が可能となっている。
In order to verify the effect of the embankment reinforcement structure, the following experiment was conducted.
1. Experimental Model The model used in the experiment corresponds to a compact earth layer 11 (shown in FIGS. 2 and 3) having a width of 2800 mm, a height of 900 mm, and a depth of 695 mm, and a compaction layer 12 (support layer 9) as a model ground. ), 3 layers of liquefied layer 8 and embankment layer (embankment 1) were produced. Furthermore, a hole with a valve that can be opened and closed is provided at a predetermined position on the side wall of the soil tank 11, and the water level can be adjusted on the left and right sides of the embankment 1.

締固め層12については、鹿島ケイ砂7号(Gs=2.64,D50=0.13mm)を用い、水中落下法で作製した後、吸水バイブロ機を用いて締固めを行った。締固め層12の層厚は250mmで、目標相対密度はDr=90%程度とした。   The compacted layer 12 was made by Kashima Kei sand No. 7 (Gs = 2.64, D50 = 0.13 mm) by the underwater dropping method, and then compacted by using a water absorption vibrator. The layer thickness of the compaction layer 12 was 250 mm, and the target relative density was about Dr = 90%.

液状化層8については、鹿島ケイ砂5号(Gs=2.53,D50=0.34mm)を用い、水中落下法で作製した。液状化層の層厚は250mmで、目標相対密度はDr=30〜35%程度とした。加振実験時に土槽側面のアクリル板を通して地盤の挙動を確認するため、黒色に着色したケイ砂5号を格子状に配置した。   The liquefied layer 8 was produced by the underwater dropping method using Kashima Kei sand No. 5 (Gs = 2.53, D50 = 0.34 mm). The layer thickness of the liquefied layer was 250 mm, and the target relative density was about Dr = 30 to 35%. In order to confirm the behavior of the ground through the acrylic plate on the side of the soil tank during the vibration experiment, silica sand No. 5 colored in black was arranged in a grid pattern.

盛土層については、締固め層12で用いた鹿島ケイ砂7号にカオリン粘土を乾燥質量比率5:1で混合し、含水比が15%になるように調整した材料を用いて構築した。盛土形状は、全ケースとも天端幅300mm、下端幅1200mm、高さ250mm、法面勾配1:1.8とした。   The embankment layer was constructed using a material prepared by mixing kaolin clay with No. 7 Kashima sand used in the compaction layer 12 at a dry mass ratio of 5: 1 and adjusting the water content to 15%. The embankment shape was 300 mm in the top edge, 1200 mm in the lower edge, 250 mm in height, and a slope of 1: 1.8 in all cases.

さらに、河川堤防など実構造物では、上述のように、堤内側の盛土1の法尻2には浸透破壊を防止するためにドレーン材15が設置されることがあるため、本実験では堤内側の盛土法尻に透水性の高いφ約5〜10mmの砂利16を幅50mm程度の範囲で設置した。   Furthermore, in the actual structure such as a river dike, as described above, the drain material 15 may be installed on the slope 2 of the embankment 1 inside the dike to prevent seepage breakage. A gravel 16 having a high water permeability of about 5 to 10 mm and a width of about 50 mm was installed on the bottom of the embankment method.

さらに、この模型地盤に、地中鋼製壁体(矢板)を模擬するための鉄板17,18を設置した。設置位置は、図2のCase1および図3のCase2の2通りとした。Case1では、盛土1の幅方向中央部に、2.3mm厚さの鉄板17を、締固め層12へ150mm根入れした。鉄板17上端は、盛土1の天端6の地表面とした。Case2では、同じく盛土1の幅方向中央部に、1.6mm厚さの鉄板18を、締固め層12上端より30mm上方の液状化層8内まで根入れした。鉄板18の上端は、盛土1の天端6より50mm下方とした。   Furthermore, iron plates 17 and 18 for simulating underground steel wall bodies (sheet piles) were installed on this model ground. There are two installation positions, Case 1 in FIG. 2 and Case 2 in FIG. In Case 1, an iron plate 17 having a thickness of 2.3 mm was embedded in the compaction layer 12 by 150 mm in the center in the width direction of the embankment 1. The upper end of the iron plate 17 was the ground surface of the top edge 6 of the embankment 1. In Case 2, similarly, an iron plate 18 having a thickness of 1.6 mm was embedded in the central portion of the embankment 1 in the width direction into the liquefied layer 8 30 mm above the upper end of the compaction layer 12. The upper end of the iron plate 18 was 50 mm below the top end 6 of the embankment 1.

2.実験手順
以下の3種類の実験を行った。
実験1;加振実験
地震時を想定し、盛土両側の水位を地表面に保った状態でレベル2地震動を想定した水平加振を行い、盛土の挙動を調査した。加振波形を図4に示す。この加振波形は、1995年兵庫県南部地震の際に神戸海洋気象台で観測された加速度記録(NS成分)を用いたが、実際よりも模型の寸法が小さいことを考慮して、卓越周波数が実際よりも高い5Hz程度になるように継続時間を調整した。
2. Experimental procedure The following three types of experiments were performed.
Experiment 1; Excitation test Assuming an earthquake, horizontal excitation was conducted assuming level 2 ground motion with the water levels on both sides of the embankment kept on the ground surface, and the behavior of the embankment was investigated. An excitation waveform is shown in FIG. This excitation waveform uses acceleration records (NS component) observed at the Kobe Ocean Meteorological Observatory during the 1995 Hyogoken-Nanbu Earthquake, but considering that the model dimensions are smaller than actual, the dominant frequency is The duration was adjusted to be about 5 Hz, which is higher than the actual level.

実験2;越水実験および越水後加振実験
想定外の集中豪雨により河川水位が計画水位よりも上昇したケースを想定したもので、盛土1の片側の水位を上昇させて越流を生じさせたときの盛土1の挙動を調査した。さらに、越水後の高水状態で余震が生じる最も厳しい条件を想定し、越水実験後に水位を保ったまま上記の加振条件で加振実験を行い、盛土1の挙動を調査した。
Experiment 2: Overflow experiment and post-overflow vibration experiment This scenario assumes a case where the river water level has risen above the planned water level due to unexpected torrential rain. The overflow level is increased by raising the water level on one side of the embankment 1 The behavior of the embankment 1 was investigated. Furthermore, assuming the most severe conditions in which aftershocks occur in the high water state after overtopping, we conducted an excitation test under the above-described excitation conditions while maintaining the water level after overtopping experiment, and investigated the behavior of embankment 1.

実験3;浸透実験
まず、地震の影響を受けない高水状態を想定し、一方の水位を水平地盤部の地表面位置に保ちながら、反対側の水位を地表面から毎分10mmの速度で上昇させ、定常流の状態における浸透流量の計測を行った。次に、地震の影響を受けた直後に高水が生じた場合を想定し、前述の加振実験で堤防が損傷を受けた状態のまま、越流が生じない程度まで加振前の浸透実験と同様に、片側の水位を毎分10mmの速度で上昇させ、定常流の状態における浸透流量の計測を行った。
Experiment 3: Infiltration experiment First, assuming a high water condition that is not affected by an earthquake, the water level on the opposite side rises at a speed of 10 mm / min from the ground surface while keeping one water level at the ground surface position of the horizontal ground part. The osmotic flow rate in a steady flow state was measured. Next, assuming a case where high water is generated immediately after the impact of the earthquake, the infiltration experiment before excitation to the extent that overflow does not occur while the embankment is damaged in the aforementioned excitation experiment Similarly, the water level on one side was increased at a speed of 10 mm per minute, and the osmotic flow rate in a steady flow state was measured.

3.実験結果
実験1;加振実験
Case2では、盛土1中央部の天端6は約50mm沈下する結果であった。一方、地中鋼製壁体14を模擬した鉄板18は、約10mm沈下したものの倒壊などの不安定現象が生じず、天端高さを概ね維持した。
3. Experimental Results Experiment 1; Excitation Experiment In Case 2, the top edge 6 of the central portion of the embankment 1 was settled by about 50 mm. On the other hand, the iron plate 18 simulating the underground steel wall body 14 sunk about 10 mm but did not cause instability such as collapse, and maintained the height at the top.

また、Case1およびCase2における、土槽11下端から300mm位置(液状化層8下端から50mm上の位置)での応答加速度の比較を図5に示す。また、盛土層(盛土1)と液状化層8の境界部における鉄板17(Case1)、鉄板18(Case2)の応答曲げひずみの比較を図6に示す。Case2の方が鉄板18の応答加速度が低減される結果であった。また、Case2の方が使用した鉄板18の板厚が薄いにもかかわらず、Case1に比べてCase2の方が鉄板18に発生する曲げひずみが低減される結果であった。これらの原因としては、鉄板18の下端と締固め層12の間に液状化層8が存在するため、加振により地盤が液状化したことにより免震効果が得られ、鉄板18へ伝わる締固め層12からの加速度が低減されたためと考えられる。   Moreover, in Case 1 and Case 2, the comparison of the response acceleration in the 300 mm position from the lower end of the earth tub 11 (position 50 mm above the lower end of the liquefaction layer 8) is shown in FIG. Moreover, the comparison of the response bending strain of the iron plate 17 (Case 1) and the iron plate 18 (Case 2) in the boundary part of the embankment layer (embankment 1) and the liquefaction layer 8 is shown in FIG. In Case 2, the response acceleration of the iron plate 18 was reduced. Moreover, although the plate | board thickness of the iron plate 18 used by Case2 was thinner, the bending strain which generate | occur | produced in the iron plate 18 was reduced compared with Case1. As these causes, since the liquefied layer 8 exists between the lower end of the iron plate 18 and the compaction layer 12, the ground is liquefied by the vibration, so that the seismic isolation effect is obtained and the compaction transmitted to the iron plate 18 is obtained. This is probably because the acceleration from the layer 12 was reduced.

この結果より、矢板13を支持層9にまで根入れされていない構造とすることによって、矢板13の根入れ長さを短くできる上に加えて必要断面を低減でき、構造の合理化に繋がることが示された。   From this result, by making the sheet pile 13 into the structure not rooted in the support layer 9, in addition to shortening the root insertion length of the sheet pile 13, it is possible to reduce the necessary cross section, leading to rationalization of the structure. Indicated.

実験2;越水実験および越水後加振実験
次に、Case2において、盛土の片側の水位を上昇させて越水を生じさせた際には、越流水は、水位を上昇させた高水位側から低水位側に向かって(図3で左から右に向って)越水する。河川堤防を想定すれば、堤外側から堤内側に越水する。
Experiment 2: Overflow experiment and post-overflow vibration experiment Next, in Case 2, when the water level on one side of the embankment was raised to cause overflow, the overflow water was on the high water level side where the water level was raised. From the bottom, the water overflows (from left to right in Fig. 3). If a river embankment is assumed, water will flow from the outside of the bank to the inside of the bank.

越流水は、徐々に堤内側の盛土1を侵食した。しかし、盛土1中央部に鉄板18が配置されたことによって破堤には至らず、堤外側に貯留する水が一気に堤内側に流れ込むことは防止された。また、堤内側の盛土が侵食にさらされ高水状態で偏水圧がかかる条件においても、鉄板18は倒壊しなかった。   The overflow water gradually eroded the embankment 1 inside the bank. However, since the iron plate 18 was arranged in the central portion of the embankment 1, the bank did not break, and water stored on the outside of the bank was prevented from flowing into the bank at once. Also, the iron plate 18 did not collapse even under conditions where the embankment inside the bank was exposed to erosion and was subject to uneven water pressure in a high water state.

さらに、Case2について、越水後の高水状態で余震が生じる最も厳しい条件を想定し、越水実験後に水位を保ったまま加振実験を行った。
加振時の状態は、両側で水位差があり偏荷重状態であることに加え、越水実験により堤内側の盛土1は崩壊していることから、盛土1部分での受働抵抗が期待できない状態となっている。よって、鉄板18にとって大変厳しい条件であったが、鉄板18の頭部は水平方向に100mm程度変位したものの鉄板18は倒壊に至らなかった。また、鉄板18の上端の高さが確保されることにより、堤外側に貯留する水が堤内側に流れ込むことは防止された。これは、加振により上昇した過剰間隙水圧が消散した後は、液状化層も地盤剛性が回復し矢板13を支持する層として機能したためと考えられる。
Furthermore, for Case 2, an excitation experiment was performed with the water level maintained after the overflow experiment, assuming the most severe conditions in which aftershocks occur in the high water state after overflow.
The state at the time of excitation is in a state where there is a difference in the water level on both sides and the state of unbalanced load, and the embankment 1 inside the levee has collapsed due to the overtopping experiment, so passive resistance at the embankment 1 part cannot be expected. It has become. Therefore, although the conditions were very severe for the iron plate 18, the iron plate 18 did not collapse although the head of the iron plate 18 was displaced about 100 mm in the horizontal direction. Moreover, by ensuring the height of the upper end of the iron plate 18, the water stored on the outside of the bank was prevented from flowing into the bank. This is considered to be because after the excess pore water pressure raised by the vibration was dissipated, the liquefied layer also recovered as the ground rigidity and functioned as a layer supporting the sheet pile 13.

これらの結果より、矢板13(地中鋼製壁体14)が支持層9にまで根入れされていない構造であっても、地中鋼製壁体14が倒壊せず地中鋼製壁体14の上端高さが確保され、堤防機能を維持しうることが示された。   From these results, even if the sheet pile 13 (underground steel wall body 14) has a structure that is not embedded in the support layer 9, the underground steel wall body 14 does not collapse, and the underground steel wall body. It was shown that the upper end height of 14 was secured and the dike function could be maintained.

実験3;浸透実験
Case1およびCase2における、加振前および加振後の浸透流量の一覧を、表1に示す。
Experiment 3; Penetration Experiment Table 1 shows a list of permeation flow rates before and after excitation in Case 1 and Case 2.

Figure 2012007394
Figure 2012007394

鉄板17の下端を支持層9(締固め層12)まで根入れしたCase1では、加振前・後ともに支持層9内の鉄板17下端を廻り込むような浸透挙動を示した。浸透流量は加振前・後ともに約0.3(l/min)であり、加振履歴を受けた後も浸透特性は変化しなかった。   In Case 1 in which the lower end of the iron plate 17 was rooted to the support layer 9 (consolidation layer 12), the permeation behavior was shown to go around the lower end of the iron plate 17 in the support layer 9 both before and after excitation. The permeation flow rate was about 0.3 (l / min) both before and after vibration, and the permeation characteristics did not change even after receiving the vibration history.

一方、Case2では、加振前・後ともに鉄板18の下端と支持層9(締固め層12)の上端の間の液状化層8を廻り込むような浸透挙動を示し、浸透流量は加振前が約1.1(l/min)であり、加振後が約0.7(l/min)であった。Case2の浸透流量は、加振後においてもCase1よりも大きかった。つまり、Case2の構造の方がCase1の構造よりも、浸透水の流れを遮断せずに盛土1周辺へ通じる浸透の流れを十分確保しながら盛土1を補強できていた。   On the other hand, Case 2 shows a permeation behavior that surrounds the liquefied layer 8 between the lower end of the iron plate 18 and the upper end of the support layer 9 (consolidation layer 12) both before and after vibration. Was about 1.1 (l / min), and after excitation was about 0.7 (l / min). The permeation flow rate of Case 2 was larger than that of Case 1 even after vibration. That is, the structure of Case 2 was able to reinforce the embankment 1 while ensuring a sufficient flow of permeation leading to the periphery of the embankment 1 without blocking the flow of permeate water than the structure of Case 1.

この結果から、地中鋼製壁体14が支持層9まで根入れされていない構造とすれば、地下水の流れを確保しながら盛土1を補強することができる。そのため、矢板13に透水孔などを設けなくてもよく、開孔に係る加工コストが削減できる。
なお、Case2で加振後に浸透流量が減少した理由としては、加振により液状化層8で根入れを留めた鉄板18が約10mm沈下したためと考えられる。これは、加振前は鉄板18の下端と支持層9との間に30mmのクリアランスがあり、加振により約10mm沈下したことにより、鉄板18の下端を浸透する通水面積が初期の約2/3となっており、浸透流量が加振後に約2/3に減少したこととも整合している。
From this result, if it is set as the structure where the underground steel wall body 14 is not rooted to the support layer 9, the embankment 1 can be reinforced, ensuring the flow of groundwater. Therefore, it is not necessary to provide a water permeable hole etc. in the sheet pile 13, and the processing cost concerning opening can be reduced.
In addition, it is thought that the reason why the permeation flow rate decreased after the vibration in Case 2 was that the iron plate 18, which was fixed in the liquefied layer 8 by the vibration, sank about 10 mm. This is because, before vibration, there is a clearance of 30 mm between the lower end of the iron plate 18 and the support layer 9, and the water passage area penetrating the lower end of the iron plate 18 is about 2 at the initial stage because of sinking by about 10 mm by vibration. This is consistent with the fact that the osmotic flow rate decreased to about 2/3 after vibration.

<具体的態様>
(壁体(矢板)の根入れ深さ)
本発明では、地中鋼製壁体14(矢板13)は、支持層9に到達しない範囲でかつ地震時や越水時にも倒壊しないような深さにまで根入れされる。根入れ深さの決定方法について以下に説明する。以下の説明での具体的な数値は、上記実験例におけるものである。
<Specific embodiment>
(Inner depth of wall (sheet pile))
In the present invention, the underground steel wall body 14 (the sheet pile 13) is embedded in such a depth that it does not reach the support layer 9 and does not collapse even during an earthquake or overflow. A method for determining the penetration depth will be described below. Specific numerical values in the following description are those in the above experimental example.

まず、越水時を想定して、図7(a)の盛土1の状態から図7(b)に示すように、堤内側の盛土1が無くなった状態を仮定する。この状態では、図8(a),(b)に示すように、地中鋼製壁体14には、堤外側の盛土層および液状化層8から主働土圧および水圧が作用し、堤内側の液状化層から受働土圧が作用すると考えられる。表2における土質条件を仮定すると、液状化層8における根入れ長さを220mm(すなわち矢板下端は支持層から30mm上)とした場合に、両者による水平力がほぼ釣り合う。   First, assuming a time of overflow, assume a state in which the embankment 1 on the inside of the embankment has disappeared from the state of the embankment 1 in FIG. 7 (a) as shown in FIG. 7 (b). In this state, as shown in FIGS. 8 (a) and 8 (b), the main earth pressure and the water pressure act on the underground steel wall body 14 from the embankment layer and the liquefied layer 8 on the outside of the bank, and the inside of the bank It is considered that passive earth pressure acts from the liquefied layer. Assuming the soil conditions in Table 2, when the penetration depth in the liquefied layer 8 is 220 mm (that is, the lower end of the sheet pile is 30 mm above the support layer), the horizontal force between the two is substantially balanced.

Figure 2012007394
Figure 2012007394

実験例で示したように、地中鋼製壁体14の根入れ深さが支持層9まで到達していなくても、この深さまで根入れされていれば、地震時や越水時にも地中鋼製壁体14(矢板13)の倒壊は生じない。なお、上述の根入れ長さは、実験例をもとにしたものであるが、実際の施工に当たっては、地盤調査を行い、堤外側の盛土層および液状化層8からの主働土圧および水圧による水平力と、堤内側の液状化層8からの受働土圧の水平力とが釣り合う根入れ深さを求めることができる。   As shown in the experimental example, even if the depth of the underground steel wall 14 does not reach the support layer 9, if the depth of the underground wall 14 is not reached the support layer 9, The collapse of the medium steel wall body 14 (the sheet pile 13) does not occur. The above-mentioned penetration depth is based on an experimental example. However, in actual construction, ground survey is conducted, and the main earth pressure and water pressure from the embankment layer and liquefaction layer 8 outside the bank are measured. It is possible to determine the depth of penetration that balances the horizontal force due to the horizontal force of the passive earth pressure from the liquefied layer 8 inside the bank.

この盛土の補強構造にあっては、支持層9まで地中鋼製壁体14を根入れしなくとも、地震時や越水時に地中鋼製壁体14が倒壊せず、盛土が地中鋼製壁体14に保持される。したがって、越水時に地震が発生したり、地震後に河川が高水位となったり、越水したりしても、盛土1が破堤するのを防止するとともに、地中鋼製壁体14により高さを保持し、堤内側に一気に水が流入するのを防止することができる。   In this embankment reinforcement structure, the underground steel wall body 14 does not collapse during an earthquake or water overflow even if the underground steel wall body 14 is not embedded up to the support layer 9, and the embankment is underground. It is held by the steel wall 14. Therefore, even if an earthquake occurs at the time of flooding, the river becomes high after the earthquake, or the river overflows, the embankment 1 is prevented from being broken, and the underground steel wall body 14 is It is possible to prevent the water from flowing into the bank at a stretch.

また、地中鋼製壁体14を支持層9まで、根入れしないことにより、地中鋼製壁体14を短くすることができる。また、地中鋼製壁体14の下端と、支持層9との間に液状化層8が存在する状態では、地震時にこの液状化層8が免震効果を奏する。
したがって、地中鋼製壁体14に用いられる矢板13の長さを短くできるとともに、断面を低減でき、地中鋼製壁体14に必要とされる鋼材費を低減することができる。
Moreover, the underground steel wall body 14 can be shortened by not putting the underground steel wall body 14 up to the support layer 9. Further, in a state where the liquefied layer 8 exists between the lower end of the underground steel wall body 14 and the support layer 9, the liquefied layer 8 exhibits a seismic isolation effect during an earthquake.
Therefore, while the length of the sheet pile 13 used for the underground steel wall body 14 can be shortened, a cross section can be reduced and the steel material cost required for the underground steel wall body 14 can be reduced.

上述のように、地中鋼製壁体14と支持層9との間に液状化層8が存在する状態では、この液状化層8に浸透水(地下水)を流すことが可能となり、地中鋼製壁体14に透水性を持たせなくても、地下水の流れを確保することができ、地中鋼製壁体14に透水性を持たせるために、矢板13に透孔を設けるような必要がなく、コストの低減を図ることができる。   As described above, in the state where the liquefied layer 8 exists between the underground steel wall body 14 and the support layer 9, it becomes possible to flow permeated water (groundwater) into the liquefied layer 8, Even if the steel wall body 14 is not made water permeable, the flow of ground water can be secured, and in order to make the underground steel wall body 14 water permeable, a through hole is provided in the sheet pile 13. This is not necessary, and the cost can be reduced.

なお、地中鋼製壁体14は、隣り合う矢板13が継手で接合された構造なので、地震時に地盤が液状化することで、それぞれの矢板13が互いに相対的に上下動する虞がある。そこで、隣り合う矢板13同士の頭部を溶接などで固定しておくことにより、隣り合う矢板13がばらばらに沈下せず、各矢板13が一様に沈下する。これにより、例えば、地震後に盛土1の天端6を、復旧作業用の車両や緊急車両等用の道路として使用する際に、比較的容易に道路として使用可能とすることができる。   In addition, since the underground steel wall body 14 has a structure in which adjacent sheet piles 13 are joined by joints, there is a possibility that the respective sheet piles 13 may move up and down relative to each other when the ground liquefies during an earthquake. Therefore, by fixing the heads of the adjacent sheet piles 13 by welding or the like, the adjacent sheet piles 13 do not sink separately, and each sheet pile 13 sinks uniformly. Thereby, for example, when the top end 6 of the embankment 1 is used as a road for a vehicle for restoration work, an emergency vehicle, or the like after an earthquake, it can be used as a road relatively easily.

図9は、地中鋼製壁体14の別の態様を示す。図9の地中鋼製壁体14aは、上述のように、支持層9より浅い深さで、かつ、地震時や越水時に前記地中鋼製壁体14が倒壊しない深さまで根入れされている第1領域14bと、従来と同様に支持層9まで根入れされている第2領域14cとが交互に形成されている。さらに、矢板13の上端部またはこの上端部近傍が溶接等により互いに固定されていれば好ましい。   FIG. 9 shows another embodiment of the underground steel wall body 14. As described above, the underground steel wall body 14a in FIG. 9 has a depth shallower than that of the support layer 9, and is deeply embedded to such a depth that the underground steel wall body 14 does not collapse at the time of an earthquake or water overflow. The first regions 14b and the second regions 14c rooted up to the support layer 9 are formed alternately as in the prior art. Furthermore, it is preferable that the upper end portion of the sheet pile 13 or the vicinity of the upper end portion is fixed to each other by welding or the like.

このようにすれば、支持層9まで根入れされている第2領域14cにより、地中鋼製壁体14aが支持され、支持層9に根入れされていない第1領域14bを有する地中鋼製壁体14の沈下を抑制することができる。
盛土の延長方向の第2領域14cを設けるピッチ(第1領域14bの長さ)および第2領域14cの長さは抑制したい沈下の程度や検討条件により決定すればよいが、鋼材コストおよび浸透水の流れを十分確保する面からは、第2領域14cが少ない方ほど好ましいのはいうまでもない。したがって、各第1領域は各第2領域よりも長くし、例えば、目安としては、盛土1の延長方向に沿って第1領域14bの10〜20mごとに第2領域14cを構成する長い矢板13aを1枚〜数枚設ける程度が適当と考えられる。
If it does in this way, the underground steel wall body 14a is supported by the 2nd area | region 14c rooted to the support layer 9, and the underground steel which has the 1st area | region 14b not rooted in the support layer 9 will be mentioned. The sinking of the wall-making body 14 can be suppressed.
The pitch (the length of the first region 14b) for providing the second region 14c in the extending direction of the embankment and the length of the second region 14c may be determined according to the degree of subsidence to be suppressed and the examination conditions. Needless to say, the smaller the second region 14c is, the more secure the flow is. Therefore, each 1st field is made longer than each 2nd field, for example, as a standard, long sheet pile 13a which constitutes 2nd field 14c every 10-20m of 1st field 14b along the extension direction of embankment 1 It is considered appropriate to provide one to several sheets.

地中鋼製壁体14の盛土1の幅方向位置は、盛土の幅方向の位置として、通常時にはこの地中鋼製壁体14の両側にかかる土圧が均衡する位置に配置されているのが好ましい。
地中鋼製壁体14を一列とする場合、幅方向におおむね対称である多くの盛土1においては、盛土1の幅方向中央部に配置すれば、通常時に地中鋼製壁体14の左右で矢板13に生じる土圧を均衡させることができる。地中鋼製壁体14を盛土1の法肩5付近に設けてもよいが、地中鋼製壁体14片側からは盛土1の土圧が作用し、反対側は地中鋼製壁体14を支持する側方からの土圧が期待できないため、地震時に矢板13に水平変位が生じないように、必要な矢板13の断面が大きくなって必要コストが増加する恐れがある。
The position in the width direction of the embankment 1 of the underground steel wall body 14 is arranged at a position where the earth pressure applied to both sides of the underground steel wall body 14 is balanced as a position in the width direction of the embankment. Is preferred.
When the underground steel wall bodies 14 are arranged in a row, in many embankments 1 that are generally symmetric in the width direction, the left and right sides of the underground steel wall bodies 14 are normally disposed if arranged at the center in the width direction of the embankment 1. Thus, the earth pressure generated in the sheet pile 13 can be balanced. The underground steel wall body 14 may be provided near the shoulder 5 of the embankment 1, but the earth pressure of the embankment 1 acts from one side of the underground steel wall body 14 and the opposite side is the underground steel wall body. Since the earth pressure from the side which supports 14 cannot be expected, the necessary cross section of the sheet pile 13 becomes large and the necessary cost may increase so that the horizontal displacement of the sheet pile 13 does not occur at the time of an earthquake.

ただし、盛土1の天端6部分に道路などが敷設されており、交通を阻害せずに対策工を講じる必要がある場合には、地中鋼製壁体14が盛土1の法肩5付近に設置されていた方が天端6上の道路交通を遮断せずに対策が可能である。   However, when roads are laid on the top 6 of the embankment 1 and it is necessary to take countermeasures without obstructing traffic, the underground steel wall 14 is near the shoulder 5 of the embankment 1 It is possible to take measures without blocking the road traffic on the top 6.

地中鋼製壁体14は、2列以上であってもよく、たとえば図10の変形例に示すように両方の法肩5付近に計2列の地中鋼製壁体14を設けてもよい。それぞれの地中鋼製壁体14は、上述の地中鋼製壁体14と同様に支持層9まで根入れされることなく、支持層9より上の液状化層8に根入れされている。また、地中鋼製壁体14は、上述のように液状化層8の倒壊しない深さまで根入れされている。符号20は、タイロッド等の連結部材であり、二列の地中鋼製壁体14を連結するもので、地中鋼製壁体14の長さ方向に沿って所定間隔毎に配置されている。   The underground steel wall bodies 14 may be in two or more rows. For example, as shown in the modified example of FIG. 10, a total of two rows of underground steel wall bodies 14 may be provided near both shoulders 5. Good. Each underground steel wall body 14 is rooted in the liquefied layer 8 above the support layer 9 without being rooted to the support layer 9 similarly to the above-mentioned underground steel wall body 14. . Moreover, the underground steel wall body 14 is embedded to the depth which the liquefied layer 8 does not collapse as mentioned above. Reference numeral 20 denotes a connecting member such as a tie rod, which connects two rows of underground steel wall bodies 14 and is arranged at predetermined intervals along the length direction of the underground steel wall bodies 14. .

また、盛土1の補強構造において、前述の盛土1の略天端6の範囲内に設けられる地中鋼製壁体14に加えて、図11および図12に示す変形例のように、さらに盛土1の左右の法尻2の部分、または、堤外側の盛土1の法尻2の部分に地中鋼製壁体21を配置するのが好ましい。   Moreover, in the reinforcement structure of the embankment 1, in addition to the underground steel wall body 14 provided in the range of the substantially top end 6 of the embankment 1, further embankment is carried out like the modification shown in FIG. 11 and FIG. It is preferable to arrange the underground steel wall body 21 at the left and right nose butt 2 portions of 1 or the nose butt 2 portion of the embankment 1 outside embankment.

盛土1の法尻2の部分に地中鋼製壁体21を配置することにより、地震時の盛土1の沈下を抑制できる上、地中鋼製壁体21が堤外側の盛土1の法尻2の部分に配置されていれば、盛土1の基盤漏水対策にもなる。なお、既設の堤防等では、基盤漏水対策や地震時の盛土の沈下対策の観点から,盛土の法尻に既に地中鋼製壁体が設けられているものもある。このような既設の堤防がある場合には、天端の範囲内にさらに前述の地中鋼製壁体を打設すれば,効果的で合理的な堤防の災害対策が可能となる。   By disposing the underground steel wall body 21 in the portion of the hoop 2 of the embankment 1, the settlement of the embankment 1 at the time of an earthquake can be suppressed, and the subsurface steel wall body 21 is the hull of the embankment 1 outside the bank. If it is arranged in the portion 2, it also serves as a measure against base water leakage of the embankment 1. In some existing dikes, underground steel walls are already provided on the embankment of the embankment from the viewpoint of measures for base water leakage and embankment settlement during an earthquake. If there is such an existing levee, an effective and rational dyke disaster countermeasure can be achieved by placing the above-mentioned underground steel wall in the range of the top.

また、堤内側にあたる法尻2には、ドレーン材15を設置する等の排水対策が講じられている方が、浸透破壊を防止する上で好ましい。   In addition, it is preferable to take measures against drainage such as installing a drain material 15 on the bottom edge 2 corresponding to the inside of the bank in order to prevent osmotic damage.

また、本発明に使用する矢板13は、ハット形鋼矢板、U形鋼矢板、Z形鋼矢板、直線形鋼矢板、鋼管矢板、あるいは鋼矢板をH形鋼等で補剛した組合せ鋼矢板等を用いることができる。   The sheet pile 13 used in the present invention is a hat-shaped steel sheet pile, a U-shaped steel sheet pile, a Z-shaped steel sheet pile, a linear steel sheet pile, a steel pipe sheet pile, or a combined steel sheet pile obtained by stiffening a steel sheet pile with an H-shaped steel or the like. Can be used.

1 盛土
2 法尻
6 天端
8 液状化層
9 支持層
12 締固め層(支持層)
13 矢板(鋼矢板および/または鋼管矢板)
14,14a 地中鋼製壁体
14b 第1領域
14c 第2領域
1 Embankment 2 Method bottom 6 Top edge 8 Liquefaction layer 9 Support layer 12 Compaction layer (support layer)
13 sheet pile (steel sheet pile and / or steel pipe sheet pile)
14, 14a Underground steel wall body 14b First region 14c Second region

Claims (7)

連続する盛土の略天端の範囲内に、鋼矢板および/または鋼管矢板からなる地中鋼製壁体が、前記盛土の連続方向に沿って一列以上設けられ、
前記地中鋼製壁体は、支持層より浅い深さで、かつ、地震時や越水時に前記地中鋼製壁体が倒壊しない深さまで根入れされていることを特徴とする盛土の補強構造。
Within the range of the approximate top edge of the continuous embankment, underground steel wall bodies made of steel sheet piles and / or steel pipe sheet piles are provided in one or more rows along the continuous direction of the embankment,
Reinforcement of embankment characterized in that the underground steel wall body has a depth shallower than the support layer and is deeply embedded so that the underground steel wall body does not collapse during an earthquake or a flood. Construction.
前記地中鋼製壁体が前記盛土の連続方向に沿って一列設けられ、
当該地中鋼製壁体は、当該地中鋼製壁体で仕切られた片側の盛土が無くなった状態を仮定した場合に、前記地中鋼製壁体の両側からそれぞれ作用する土圧および水圧による水平力が釣り合う深さ以下で、かつ、支持層より上の位置まで根入れされていることを特徴とする請求項1に記載の盛土の補強構造。
The underground steel wall body is provided in a row along the continuous direction of the embankment,
When the underground steel wall body is assumed to have no embankment on one side partitioned by the underground steel wall body, earth pressure and water pressure acting from both sides of the underground steel wall body, respectively. 2. The embankment reinforcing structure according to claim 1, wherein the embedding structure has a depth equal to or less than a depth at which the horizontal force is balanced, and is embedded to a position above the support layer.
連続する盛土の略天端の範囲内に、鋼矢板および/または鋼管矢板からなる地中鋼製壁体が、前記盛土の連続方向に沿って一列以上設けられ、
前記地中鋼製壁体は、支持層より浅い深さで、かつ、地震時や越水時に前記地中鋼製壁体が倒壊しない深さまで根入れされている第1領域と、前記支持層まで根入れされている第2領域とが交互に形成され、
各第1領域の盛土の延長方向の長さが、各第2領域の盛土の延長方向の長さよりも長いことを特徴とする盛土の補強構造。
Within the range of the approximate top edge of the continuous embankment, underground steel wall bodies made of steel sheet piles and / or steel pipe sheet piles are provided in one or more rows along the continuous direction of the embankment,
The underground steel wall has a depth that is shallower than the support layer and is deeply embedded to a depth at which the underground steel wall does not collapse during an earthquake or a flood, and the support layer And second regions that are rooted in are alternately formed,
The length of the extending direction of the embankment of each 1st area | region is longer than the length of the extending direction of the embankment of each 2nd area | region, The reinforcement structure of the embankment characterized by the above-mentioned.
前記地中鋼製壁体が前記盛土の連続方向に沿って一列設けられ、
当該地中鋼製壁体の第1領域は、当該地中鋼製壁体で仕切られた片側の盛土が無くなった状態を仮定した場合に、前記地中鋼製壁体の両側からそれぞれ作用する土圧および水圧による水平力が釣り合う深さ以下で、かつ、支持層より上の位置まで根入れされていることを特徴とする請求項3に記載の盛土の補強構造。
The underground steel wall body is provided in a row along the continuous direction of the embankment,
The first region of the underground steel wall body acts from both sides of the underground steel wall body, assuming that there is no embankment on one side partitioned by the underground steel wall body. 4. The embankment reinforcing structure according to claim 3, wherein the structure is embedded to a position below a depth at which horizontal forces due to earth pressure and water pressure are balanced and to a position above the support layer.
前記地中鋼製壁体は、盛土の幅方向の位置として、通常時にはこの地中鋼製壁体の両側にかかる土圧が均衡する位置に配置されていることを特徴とする請求項1〜4のいずれか1項に記載の盛土の補強構造。   The said underground steel wall body is arrange | positioned in the position where the earth pressure concerning both sides of this underground steel wall body equilibrates as a position of the width direction of embankment at normal time. 5. The embankment reinforcement structure according to any one of 4 above. 隣り合う前記鋼矢板および/または前記鋼管矢板の上端部またはこの上端部近傍が互いに固定されていることを特徴とする請求項1から請求項5の何れかに記載の盛土の補強構造。   6. The embankment reinforcing structure according to claim 1, wherein upper ends of the steel sheet piles and / or the steel pipe sheet piles adjacent to each other are fixed to each other. 盛土の少なくとも一方の法尻部分に、地中鋼製壁体が設けられていることを特徴とする請求項1から請求項6のいずれか1項に記載の盛土の補強構造。   The embankment reinforcing structure according to any one of claims 1 to 6, wherein an underground steel wall is provided on at least one of the embankment of the embankment.
JP2010144787A 2010-06-25 2010-06-25 Filling reinforcement structure Active JP5445351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010144787A JP5445351B2 (en) 2010-06-25 2010-06-25 Filling reinforcement structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010144787A JP5445351B2 (en) 2010-06-25 2010-06-25 Filling reinforcement structure

Publications (2)

Publication Number Publication Date
JP2012007394A true JP2012007394A (en) 2012-01-12
JP5445351B2 JP5445351B2 (en) 2014-03-19

Family

ID=45538234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010144787A Active JP5445351B2 (en) 2010-06-25 2010-06-25 Filling reinforcement structure

Country Status (1)

Country Link
JP (1) JP5445351B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014066070A (en) * 2012-09-26 2014-04-17 Giken Seisakusho Co Ltd Reinforcing structure of existent bank body and reinforcing method of existent bank body
JP2014141777A (en) * 2013-01-22 2014-08-07 Nippon Steel & Sumitomo Metal Underground steel bearing wall structure and method for constructing the same
JP2015168953A (en) * 2014-03-06 2015-09-28 新日鐵住金株式会社 Banking reinforcement structure
JP2015168954A (en) * 2014-03-06 2015-09-28 新日鐵住金株式会社 Banking reinforcement structure
JP2015168952A (en) * 2014-03-06 2015-09-28 新日鐵住金株式会社 Banking reinforcement structure
JP2017197951A (en) * 2016-04-27 2017-11-02 戸田建設株式会社 Countermeasure wall against drawn-in subsidence and construction method thereof
JP2019143439A (en) * 2018-02-23 2019-08-29 清水建設株式会社 Tide embankment
JP2019183627A (en) * 2018-04-02 2019-10-24 Jfeスチール株式会社 Reinforcing structure for seawall
JP2020117960A (en) * 2019-01-25 2020-08-06 日本製鉄株式会社 Levee body reinforcement structure
JP2020143536A (en) * 2019-03-08 2020-09-10 日本製鉄株式会社 Reinforcement structure for levee body
JP2020153069A (en) * 2019-03-18 2020-09-24 Jfeスチール株式会社 Banking reinforcement structure
CN114737428A (en) * 2022-04-13 2022-07-12 中交第一公路勘察设计研究院有限公司 Foundation-embankment-pavement integrated design method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105002789A (en) * 2015-08-11 2015-10-28 铁道第三勘察设计院集团有限公司 High speed railway roadbed structure passing through fault zone

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6087236U (en) * 1983-11-17 1985-06-15 川崎製鉄株式会社 Bulkheads in steel sheet pile type seawall structures
JP2001317043A (en) * 2000-05-11 2001-11-16 Kyushu Regional Bureau Ministry Of Land Infrastructure & Transport Sheet-pile wall for separation against settlement
JP2003013451A (en) * 2001-07-02 2003-01-15 Sumitomo Metal Ind Ltd Reinforcing structure of banking
JP2004244983A (en) * 2003-02-17 2004-09-02 Nippon Steel Corp Wall body structure having infilling material
JP2005139757A (en) * 2003-11-07 2005-06-02 Nippon Steel Corp Wall body forming member and wall body
JP2008031722A (en) * 2006-07-28 2008-02-14 Railway Technical Res Inst Banking structure and reinforcing method of banking structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6087236U (en) * 1983-11-17 1985-06-15 川崎製鉄株式会社 Bulkheads in steel sheet pile type seawall structures
JP2001317043A (en) * 2000-05-11 2001-11-16 Kyushu Regional Bureau Ministry Of Land Infrastructure & Transport Sheet-pile wall for separation against settlement
JP2003013451A (en) * 2001-07-02 2003-01-15 Sumitomo Metal Ind Ltd Reinforcing structure of banking
JP2004244983A (en) * 2003-02-17 2004-09-02 Nippon Steel Corp Wall body structure having infilling material
JP2005139757A (en) * 2003-11-07 2005-06-02 Nippon Steel Corp Wall body forming member and wall body
JP2008031722A (en) * 2006-07-28 2008-02-14 Railway Technical Res Inst Banking structure and reinforcing method of banking structure

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014066070A (en) * 2012-09-26 2014-04-17 Giken Seisakusho Co Ltd Reinforcing structure of existent bank body and reinforcing method of existent bank body
JP2014141777A (en) * 2013-01-22 2014-08-07 Nippon Steel & Sumitomo Metal Underground steel bearing wall structure and method for constructing the same
JP2015168953A (en) * 2014-03-06 2015-09-28 新日鐵住金株式会社 Banking reinforcement structure
JP2015168954A (en) * 2014-03-06 2015-09-28 新日鐵住金株式会社 Banking reinforcement structure
JP2015168952A (en) * 2014-03-06 2015-09-28 新日鐵住金株式会社 Banking reinforcement structure
JP2017197951A (en) * 2016-04-27 2017-11-02 戸田建設株式会社 Countermeasure wall against drawn-in subsidence and construction method thereof
JP2019143439A (en) * 2018-02-23 2019-08-29 清水建設株式会社 Tide embankment
JP2019183627A (en) * 2018-04-02 2019-10-24 Jfeスチール株式会社 Reinforcing structure for seawall
JP2020117960A (en) * 2019-01-25 2020-08-06 日本製鉄株式会社 Levee body reinforcement structure
JP2020143536A (en) * 2019-03-08 2020-09-10 日本製鉄株式会社 Reinforcement structure for levee body
JP7172754B2 (en) 2019-03-08 2022-11-16 日本製鉄株式会社 Embankment reinforcement structure
JP2020153069A (en) * 2019-03-18 2020-09-24 Jfeスチール株式会社 Banking reinforcement structure
JP7037124B2 (en) 2019-03-18 2022-03-16 Jfeスチール株式会社 Embankment reinforcement structure
CN114737428A (en) * 2022-04-13 2022-07-12 中交第一公路勘察设计研究院有限公司 Foundation-embankment-pavement integrated design method
CN114737428B (en) * 2022-04-13 2024-03-22 中交第一公路勘察设计研究院有限公司 Foundation-embankment-pavement integrated design method

Also Published As

Publication number Publication date
JP5445351B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5445351B2 (en) Filling reinforcement structure
JP5157710B2 (en) Embankment reinforcement structure
Terzaghi Stability and stiffness of cellular cofferdams
KR20210029069A (en) Underwater concrete block structure and construruction method therefor
JP5817272B2 (en) Embankment reinforcement structure
JP5471797B2 (en) Seismic reinforcement structure of revetment structure and existing revetment structure
JP5578140B2 (en) Embankment reinforcement structure
JP2007262815A (en) Floating inhibiting structure for floating of underground structure due to liquefaction
JP5846150B2 (en) Construction method of river revetment structure
JP4987652B2 (en) Reinforcement structure and method of embankment and linear embankment
JP5407995B2 (en) Filling reinforcement structure
JP2021139162A (en) Levee reinforcement structure and levee reinforcement method
JP6881916B2 (en) How to install the structure
JP5348054B2 (en) Filling reinforcement structure
JP6292028B2 (en) Embankment reinforcement structure
JP6287358B2 (en) Embankment reinforcement structure
JP6333597B2 (en) Waterbed structure with scour resistance
JP2018044337A (en) Structure and method for reinforcing embankment
JP6018804B2 (en) Cell body water-blocking structure
JP4183137B2 (en) Seismic structure
Shirlaw et al. Design issues related to jet grouted slabs at the base of excavations
JP7469608B2 (en) Support structure, gravity breakwater and construction method of gravity breakwater
JP2020117962A (en) Levee body seepage destruction suppression structure
JP7396331B2 (en) Improvement structure of existing quay wall and construction method of the improvement structure
KR100487933B1 (en) load reduction on conduits construction method using EPS block and geosynthetics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R151 Written notification of patent or utility model registration

Ref document number: 5445351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350