JP5578140B2 - Embankment reinforcement structure - Google Patents

Embankment reinforcement structure Download PDF

Info

Publication number
JP5578140B2
JP5578140B2 JP2011149122A JP2011149122A JP5578140B2 JP 5578140 B2 JP5578140 B2 JP 5578140B2 JP 2011149122 A JP2011149122 A JP 2011149122A JP 2011149122 A JP2011149122 A JP 2011149122A JP 5578140 B2 JP5578140 B2 JP 5578140B2
Authority
JP
Japan
Prior art keywords
steel
levee
steel sheet
embankment
sheet pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011149122A
Other languages
Japanese (ja)
Other versions
JP2013014962A (en
Inventor
和孝 乙志
宏征 田中
毅 飯田
充紀 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011149122A priority Critical patent/JP5578140B2/en
Publication of JP2013014962A publication Critical patent/JP2013014962A/en
Application granted granted Critical
Publication of JP5578140B2 publication Critical patent/JP5578140B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)
  • Revetment (AREA)

Description

本発明は、河川等の堤防の補強構造に関する。   The present invention relates to a reinforcement structure for embankments such as rivers.

近年、日本では大地震が頻繁に発生し、さらに、近い将来幾つかの大地震の到来が予測されており、河川等の堤防では、地震により堤体の亀裂や沈下などの被害が懸念される。   In recent years, large earthquakes have frequently occurred in Japan, and several major earthquakes are predicted to arrive in the near future, and there are concerns about damages such as cracks and subsidence of embankments in rivers and other dikes. .

堤防の地震対策としては、堤防法尻(法面下端部)を地盤改良や鋼矢板で締切る補強工法が適用されることが多いが、想定外の集中豪雨などで急激に水位が上昇することによる浸透破壊や、越水による破堤を防止する目的で、堤体内に鋼矢板を設置し複合構造とする研究が行われている。   As countermeasures against earthquakes on the levee, the embankment method bottom (slope lower end) is often applied with ground improvement or steel sheet piles, but the water level rises sharply due to unexpected heavy rains. For the purpose of preventing osmotic breakage due to water and bank breakage due to overflowing water, research is being conducted on a composite structure by installing steel sheet piles inside the levee body.

このような複合構造として、堤体内の左右の法肩部(法面上端部)に、それぞれ、堤体の連続方向に沿って鋼矢板を支持層まで打設することにより、二重の鋼矢板壁を設置し、左右の鋼矢板壁の頭部をタイロッドで結合するものが提案されている(例えば、特許文献1参照)。
この構造によれば、地震時に堤体の沈下を抑制し、さらに、遮水性に優れる鋼矢板が堤体高さを確保することにより、高水時の浸透破壊と越水による破堤を防止できるので、堤防の補強として効果的な構造である。
As such a composite structure, double steel sheet piles are formed by driving steel sheet piles to the support layer along the continuous direction of the bank bodies on the right and left shoulders (upper end of the slope) in the bank body. There has been proposed a structure in which a wall is installed and the heads of the left and right steel sheet pile walls are joined by tie rods (see, for example, Patent Document 1).
According to this structure, subsidence of the levee body is suppressed during an earthquake, and furthermore, the steel sheet pile with excellent water-imperviousness ensures the height of the dam body. It is an effective structure for reinforcing the embankment.

ただし、上述の堤防の補強構造では、河川側の水は、二重の鋼矢板壁の下端を廻り込むように堤内側へ浸透するが、雨水など二重の鋼矢板壁内に流入する水は排水されず貯留することが懸念される。そこで、二重の鋼矢板壁の少なくとも片方の鋼矢板に透水性を持たせることによって、二重の鋼矢板壁内の水を常時排水することを可能とする堤防の補強構造が提案されている(例えば、特許文献2参照)。   However, in the above-mentioned levee reinforcement structure, the water on the river side penetrates inside the levee so as to go around the lower end of the double steel sheet pile wall, but the water flowing into the double steel sheet pile wall such as rainwater is not There is concern about storing without draining. Then, the embankment reinforcement structure which makes it possible to always drain the water in a double steel sheet pile wall by giving water permeability to at least one steel sheet pile of a double steel sheet pile wall is proposed. (For example, refer to Patent Document 2).

特開2003−13451号公報JP 2003-13451 A 特開2010−24745号公報JP 2010-24745 A

ところで、特許文献1,2のような二重の鋼矢板壁を両方とも壁体全長にわたって支持層まで打設する構造は、使用する鋼材量が多くなりその分鋼材費用及び打設工数が多くなる。   By the way, the structure in which both double steel sheet pile walls as in Patent Documents 1 and 2 are driven to the support layer over the entire length of the wall body requires a large amount of steel material to be used, which in turn increases the steel material cost and the man-hour for placing. .

本発明は、上記事情に鑑みてなされたものであり、堤防として求められる性能を備えつつ、鋼材使用量が少なくて済みコスト的に有利な堤防の補強構造を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a dike reinforcement structure that is advantageous in terms of cost because it requires a small amount of steel material while providing performance required as a dike.

堤防に求められる性能の一つとしては、地震が生じた場合に、地震による天端の沈下量が小さく、堤防高さを維持し、越水/高水による堤内側の民家等の被害を抑制することがあげられる。この性能を備える堤防の構造としては、2列の連続する壁体を支持層まで打設する必要はなく、堤内側はたとえば連続する壁状ではなく離散的に配置される構造であってもよく、また、根入れ長さは支持層に達しなくてもよいことを本発明者らは見出し、本発明をするに至った。   One of the performance requirements of the dike is that when an earthquake occurs, the top sinking due to the earthquake is small, the height of the dike is maintained, and damage to private houses inside the dike due to overflow or high water is suppressed. To do. As a structure of the levee having this performance, it is not necessary to drive two rows of continuous wall bodies to the support layer, and the inside of the levee may be a structure that is discretely arranged instead of a continuous wall shape, for example. In addition, the present inventors have found that the penetration depth does not have to reach the support layer, and have come to the present invention.

すなわち、本発明の一態様に係る堤防の補強構造は、河川等の堤防の補強構造であって、前記堤防の堤外側の法肩付近には、当該堤防の延長方向に連続し、下端が地盤の支持層に達する鋼製壁が設けられ、堤内側の法肩付近には、離散的に配置される控え工が設けられ、前記鋼製壁と前記控え工とは前記堤防の天端付近で繋ぎ材により互いに連結され、前記控え工は、前記支持層の上にある液状化層まで根入れされていることを特徴とする。 In other words, the embankment reinforcement structure according to one aspect of the present invention is a reinforcement structure of a bank or the like of a river or the like. A steel wall that reaches the support layer is provided near the shoulder on the inner side of the levee.Discretely arranged guards are provided, and the steel wall and the guard are near the top of the levee. They are connected to each other by a connecting material, and the laying work is embedded in a liquefied layer on the support layer .

この態様の発明においては、地震時に堤体の天端の沈下量を少なく抑え、堤防高さを維持し、越水/高水による堤内側の民家等の被害を抑制することができる。また、本発明では、堤内側では控え工が離散的に配置されることにより、連続的な鋼製壁を設けた場合、すなわち、二列に地盤の支持層に達する鋼製壁を設けた場合に比較して、鋼材量を低減することができる。これにより、鋼材費用の低減と、鋼製壁施工時の工数の低減とを図ることができる。
また、堤体の堤内側は、控え工が分散的に配置されるので、雨水などが堤体内に貯留するのを抑制できる。
In this aspect of the invention, the amount of settlement at the top of the levee body can be kept small during an earthquake, the height of the levee can be maintained, and damage to private houses and the like inside the dam due to overflow / high water can be suppressed. Further, in the present invention, when the steelwork is provided in a double row, that is, when the steel wall reaching the ground support layer is provided in two rows by arranging the laying work in a discrete manner inside the bank, Compared to the above, the amount of steel material can be reduced. Thereby, reduction of steel material cost and reduction of the man-hour at the time of steel wall construction can be aimed at.
Moreover, since the laying work is dispersedly arranged inside the levee body, it is possible to prevent rainwater and the like from being stored in the dam body.

この発明において、前記控え工は、例えば、鋼矢板、鋼管矢板、鋼管杭またはH形鋼からなるものである。この場合、これら一枚(一本)ずつがそれぞれ一つの控え工であってもよいし、或いは鋼矢板や鋼管矢板が数枚連結されたものが一つの控え工となっていてもよい。   In the present invention, the preliminary work is made of, for example, a steel sheet pile, a steel pipe sheet pile, a steel pipe pile, or an H-shaped steel. In this case, each one piece (one piece) may be a single backup work, or a combination of several steel sheet piles or steel pipe sheet piles may be a single backup work.

本発明の別の態様に係る堤防の補強構造は、河川等の堤防の補強構造であって、
当該堤防の堤外側の法肩付近には、当該堤防の延長方向に連続し下端が地盤の支持層に達する鋼製壁が設けられ、堤内側の法肩付近には、離散的に配置される控え工が設けられ、前記鋼製壁と前記控え工とは前記堤防の天端付近で繋ぎ材により互いに連結され、
前記控え工が複数の鋼矢板を連結することによって構成され、当該鋼矢板の一部を前記支持層まで根入れさせ、この鋼矢板に連結される残りの他の鋼矢板を前記堤防の底部まで根入れさせたことを特徴とする。
A dike reinforcement structure according to another aspect of the present invention is a dike reinforcement structure such as a river,
Near the bank outside of law shoulder of the embankment, continuous steel wall lower end is reached to the supporting layer of the ground in the extension direction of the embankment is provided in the vicinity crest inside the law shoulder arranged discretely The steel wall and the keeper are connected to each other by a connecting material near the top of the levee,
The preparatory work is configured by connecting a plurality of steel sheet piles, a part of the steel sheet piles is embedded in the support layer, and the remaining other steel sheet piles connected to the steel sheet piles are connected to the bottom of the levee. It is characterized by having taken root .

この態様の発明においては、地震時に堤体の天端の沈下量を少なく抑え、堤防高さを維持し、越水/高水による堤内側の民家等の被害を抑制することができる
上のことから、この堤防の補強構造は、地震後でも堤防としての機能を略維持可能で、かつ、経済性および施工性に優れている。
また、堤体の堤内側の第2鋼製壁は、堤体底部ぐらいまでの深さ(根入れ長さ)しかないことから雨水などが堤体内に貯留するのを抑制できる。
In this aspect of the invention, the amount of settlement at the top of the levee body can be kept small during an earthquake, the height of the levee can be maintained, and damage to private houses and the like inside the dam due to overflow / high water can be suppressed .
Since on the following, the reinforcing structure of the embankment, the function of the embankment even after seismic substantially be maintained, and is excellent in economy and workability.
Moreover, since the 2nd steel wall inside the bank of a bank body has only the depth (rooting length) to the bottom part of a bank body, it can suppress that rainwater etc. accumulate in a bank body.

この発明において、前記堤防の延長方向の所定長さにおける控え工が設置された長さの合計が25%以上、75%以下とされているのが好ましい。 In this invention, it is preferable that the sum total of the length in which the preparatory work is installed in the predetermined length in the extending direction of the dike is 25% or more and 75% or less.

本発明の堤防の補強構造によれば、比較的少ない鋼材使用量でありながら、地震が生じたとしてもこれによる堤防の天端の沈下量が小さく、また、越水時には鋼製壁が堤防高さを維持し、破堤による堤内側の被害を抑制できるという合理的な堤防の補強構造が得られる。   According to the embankment reinforcement structure of the present invention, even if an earthquake occurs, the amount of subsidence at the top of the embankment is small even when an earthquake occurs. A reasonable embankment reinforcement structure that can maintain the length and suppress damage inside the bank due to the bank breakage is obtained.

(a)は本発明の第1実施形態に係る堤防の補強構造を示す概略断面図であり、(b)は第1実施形態の堤防の補強構造における鋼製壁、控え工、タイロッドの配置を示す概略図である。(A) is a schematic sectional drawing which shows the reinforcement structure of the embankment which concerns on 1st Embodiment of this invention, (b) is arrangement | positioning of the steel wall in the reinforcement structure of a embankment, 1st embodiment, and a tie rod. FIG. (a)は前記第1実施形態の変形例の堤防の補強構造を示す概略断面図であり、(b)は前記変形例の堤防の補強構造における鋼製壁、控え工、タイロッドの配置を示す概略図である。(A) is a schematic sectional drawing which shows the reinforcement structure of the embankment of the modification of the said 1st Embodiment, (b) shows the arrangement | positioning of the steel wall in the reinforcement structure of the said modification, a construction work, and a tie rod. FIG. (a)は前記第1実施形態の別の変形例の堤防の補強構造を示す概略断面図であり、(b)は前記変形例の堤防の補強構造における鋼製壁、控え工、タイロッドの配置を示す概略図である。(A) is a schematic sectional drawing which shows the reinforcement structure of the dike of another modification of the said 1st Embodiment, (b) is arrangement | positioning of the steel wall in the dike reinforcement structure of the said modification, a construction work, and a tie rod FIG. (a)は前記第1実施形態のさらに別の変形例の堤防の補強構造を示す概略断面図であり、(b)は前記変形例の堤防の補強構造における鋼製壁、控え工、タイロッドの配置を示す概略図である。(A) is a schematic sectional drawing which shows the reinforcement structure of the dike of another modification of the said 1st Embodiment, (b) is the steel wall in the reinforcement structure of the said dike, the construction of a tie rod, It is the schematic which shows arrangement | positioning. (a)は本発明の第2実施形態に係る堤防の補強構造を示す概略断面図であり、(b)は第2実施形態の堤防の補強構造における鋼製壁、タイロッドの配置を示す概略図である。(A) is schematic sectional drawing which shows the reinforcement structure of the embankment concerning 2nd Embodiment of this invention, (b) is the schematic which shows arrangement | positioning of the steel wall in the reinforcement structure of the embankment of 2nd Embodiment, and a tie rod It is. 実施例としての実験で用いられる堤防の模型を示す概略平面図である。It is a schematic plan view which shows the model of the embankment used in the experiment as an Example. 前記実験で用いられる堤防の模型を示す概略断面図である。It is a schematic sectional drawing which shows the model of the embankment used in the said experiment. 前記実験の比較例の実験結果として、模型の堤防に振動を加えた場合の模型の各部の最大応答加速度の測定結果を示す図である。It is a figure which shows the measurement result of the maximum response acceleration of each part of a model at the time of applying a vibration to the bank of a model as an experimental result of the comparative example of the said experiment. 前記実験の実施例の実験結果として、模型の堤防に振動を加えた場合の模型の各部の最大応答加速度の測定結果を示す図である。It is a figure which shows the measurement result of the maximum response acceleration of each part of a model at the time of applying a vibration to the bank of a model as an experimental result of the Example of the said experiment. 前記実験の実験結果として、比較例、従来例、実施例である各模型の堤防に振動を加えた場合の堤防の沈下量を示すグラフである。It is a graph which shows the amount of settlement of a dike when vibration is added to the dike of each model which is a comparative example, a conventional example, and an example as an experimental result of the above-mentioned experiment. 前記実験の実験結果として、比較例、従来例、実施例である各模型の堤防に振動を加えた場合の堤防の変形を示すグラフである。It is a graph which shows the deformation | transformation of an embankment when a vibration is added to the embankment of each model which is a comparative example, a prior art example, and an example as an experimental result of the said experiment.

以下、図面を参照しながら本発明の実施の形態について説明する。
図1に示すように、本発明の第1実施形態の堤防の補強構造は、例えば、盛土からなる河川kの堤防1を補強するためのものである。
堤防1は、中央の最も高い部分が水平な上面を有する天端1aになっている。この天端1aの左右には傾斜した法面1bがそれぞれ形成されて、法面1bの上端部側が法肩1cで下端部側が法尻1dとされている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the embankment reinforcement structure of the first embodiment of the present invention is for reinforcing a bank 1 of a river k made of embankment, for example.
The embankment 1 is a top end 1a having a horizontal upper surface at the highest portion in the center. Inclined slopes 1b are formed on the left and right of the top end 1a, respectively, and the upper end side of the slope 1b is a shoulder 1c and the lower end is a slope 1d.

この堤防1の補強構造においては、堤外側(河川k側)Oの法肩1c付近に、鋼矢板2が堤防の延長方向(延在方向)に連結して打設された鋼製壁3が設けられている。また、この補強構造では、堤内側(河川kの反対側)Iの法肩1c付近に、鋼矢板2からなる控え工4が離散的に打設されている。すなわち、例えば、図1に示すように、控え工4が堤防1の延長方向に沿って、互いに間隔をあけて並んで配置されている。   In the reinforcement structure of the levee 1, a steel wall 3 in which a steel sheet pile 2 is connected in the extension direction (extension direction) of the levee in the vicinity of the shoulder 1 c of the outer shore (river k side) O is provided. Is provided. Moreover, in this reinforcement structure, the preparatory work 4 which consists of the steel sheet pile 2 is discretely laid in the vicinity of the shoulder 1c of the bank inner side (opposite side of the river k) I. That is, for example, as shown in FIG. 1, the laying work 4 is arranged side by side along the extending direction of the levee 1 at intervals.

鋼製壁3は、盛土からなる堤防1の堤外側Oの法肩1c付近としての天端1aの高さ位置より少し下から基礎地盤11の下側の支持層12まで根入れされている。また、鋼製壁3を構成する矢板としては、地震による土圧や水圧が矢板(鋼矢板2または鋼管矢板)に作用しても、倒壊しないだけの断面性能を有する矢板が適用される。   The steel wall 3 is embedded from the height position of the top end 1a as the vicinity of the shoulder 1c of the bank outside O of the bank 1 made of embankment to the support layer 12 below the foundation ground 11 from a little below. Moreover, as a sheet pile which comprises the steel wall 3, the sheet pile which has a cross-sectional performance not to collapse even if earth pressure and water pressure by an earthquake act on a sheet pile (steel sheet pile 2 or a steel pipe sheet pile) is applied.

控え工4は上端が堤内側Iの法肩1c付近としての天端1a高さ位置より少し下に配置されている。鋼製壁3と控え工4とは、天端付近(天端より少し下側)の高さで繋ぎ材(タイ材)としてのタイロッド5により結合(連結)されている。   The upper work 4 is arranged with its upper end slightly below the height position of the top end 1a as the vicinity of the shoulder 1c on the inside I of the bank. The steel wall 3 and the preparatory work 4 are connected (connected) by a tie rod 5 as a connecting material (tie material) at a height near the top end (slightly below the top end).

控え工4(堤内側Iの鋼矢板2)は、地震時に堤防1の堤体からの土砂の流出を抑制する役割を有するものである。基礎地盤が液状化し地盤の有効応力が減少すると、堤体は側方に広がるように沈下する。そのため、堤体の法肩1cに鋼製壁3および控え工4を設けることによって、堤外と堤内の法肩間の天端を含む堤体部の沈下が抑制される。この時、控え工4は、図1に示すように、下端が支持層まで到達せず液状化地盤(基礎地盤11)の中にあってもよく、堤体からの土砂の流出を抑制できれば良い。   The preparatory work 4 (steel sheet pile 2 on the dam inner side I) has a role of suppressing the outflow of earth and sand from the dam body of the levee 1 during an earthquake. When the foundation ground liquefies and the effective stress of the ground decreases, the levee body sinks to spread sideways. Therefore, by providing the steel wall 3 and the preparatory work 4 on the slope shoulder 1c of the levee body, the settlement of the levee body portion including the top edge between the outside of the levee and the shoulder in the levee is suppressed. At this time, as shown in FIG. 1, the lower construction 4 may be in the liquefied ground (foundation ground 11) without the lower end reaching the support layer, and only needs to be able to suppress the outflow of earth and sand from the dam body. .

これにより、上述の特許文献1に記載される矢板2重壁による締め切り構造に比べて、控え工4の根入れ長さを短縮することができ、コスト縮減に繋がる。控え工4の根入れ長さの目安としては、堤体下端(堤防の底部)までの長さ程度を有していればよい。また、越水時の洗掘を考慮して、洗掘されると想定された長さ分を根入れさせてもよい。   Thereby, compared with the deadline structure by the sheet pile double wall described in the above-mentioned patent document 1, the length of the base construction 4 can be shortened and it leads to cost reduction. As a guideline for the length of the laying work 4, it is only necessary to have a length up to the bottom of the levee body (bottom of the levee). Moreover, in consideration of scouring at the time of overflowing water, the length assumed to be scoured may be incorporated.

控え工4に鋼矢板2や鋼管矢板を適用する場合、それぞれの控え工4は図1に示すように一つの鋼矢板からなっていても、また、図2に示すように複数が連結されたものでもよい。矢板(鋼矢板2または鋼管矢板)を連結する場合に、矢板の数が多いほど、鋼材使用量は増すものの土砂の流出を抑制する機能は向上する。
地震前や地震後に液状化した地盤内の過剰間隙水圧が消滅した後は、液状化地盤(基礎地盤11)も矢板が変形することに抵抗する地盤としての機能を有する。そのため、控え工4が支持層12まで根入れされず、矢板下端が液状化地盤内に留まっても、根入れ長さが十分であれば、控え工4も土圧や水圧に抵抗できる。
When the steel sheet pile 2 and the steel pipe sheet pile are applied to the backup work 4, each backup work 4 is composed of one steel sheet pile as shown in FIG. 1, and a plurality of them are connected as shown in FIG. It may be a thing. When connecting sheet piles (steel sheet piles 2 or steel pipe sheet piles), the greater the number of sheet piles, the greater the amount of steel used, but the more the function of suppressing the outflow of earth and sand improves.
After the excess pore water pressure in the ground liquefied before or after the earthquake disappears, the liquefied ground (foundation ground 11) also functions as a ground that resists deformation of the sheet pile. Therefore, even if the laying work 4 is not penetrated to the support layer 12 and the bottom end of the sheet pile stays in the liquefied ground, the laying work 4 can also resist the earth pressure and the water pressure as long as the laying length is sufficient.

また、図3に示すように、控え工4の鋼矢板2の一部は、支持層12まで根入れさせ、この鋼矢板2に連結される残りの他の鋼矢板2は、堤体からの土砂の流出を抑制できる程度の根入れ長さにとどめる構造とすることも可能である。たとえば、残りの他の鋼矢板2の下端を堤防1の底部程度の高さ位置としてもよい。   In addition, as shown in FIG. 3, a part of the steel sheet pile 2 of the preparatory work 4 is embedded into the support layer 12, and the other steel sheet piles 2 connected to the steel sheet pile 2 are separated from the dam body. It is also possible to adopt a structure in which the rooting length is limited to a level that can suppress the outflow of earth and sand. For example, it is good also considering the lower end of the remaining other steel sheet pile 2 as the height position about the bottom part of the levee 1.

鋼製壁3を構成する鋼矢板2としては、通常用いられるU形鋼矢板、ハット形鋼矢板等の各種鋼矢板2を用いることができる。また、鋼製壁3は、鋼矢板2に代えて鋼管矢板を上述の鋼矢板2の場合と同様に連結して打設することによって設けるものとしてもよい。さらに、鋼製壁3は、各種鋼矢板2や鋼管矢板に、H形鋼等の鋼材で補剛した組合せ鋼矢板等を用いることができる。これらの各種矢板をその継手部で互いに連結しながら打設することによって地中に鋼製壁3が設けることが可能である。   As the steel sheet pile 2 constituting the steel wall 3, various steel sheet piles 2 such as a U-shaped steel sheet pile and a hat-shaped steel sheet pile that are usually used can be used. Moreover, it replaces with the steel sheet pile 2, and the steel wall 3 is good also as what is provided by connecting and driving a steel pipe sheet pile similarly to the case of the above-mentioned steel sheet pile 2. FIG. Furthermore, the steel wall 3 can use the combination steel sheet pile etc. which stiffened with steel materials, such as H-section steel, to various steel sheet piles 2 and a steel pipe sheet pile. The steel wall 3 can be provided in the ground by driving these various sheet piles while being connected to each other at the joint.

控え工4としての鋼矢板2の形状にも限定はなく、例えば、通常用いられるU形鋼矢板、ハット形鋼矢板等の各種鋼矢板2を用いることができる。また、控え工4に用いられる鋼矢板2は、鋼製壁3を構成する鋼矢板2とは異なる形状の鋼矢板や鋼材であってもよい。また、控え工4として、鋼矢板2ではなく、図4に示すように、鋼管杭6や鋼管矢板を用いてもよい。また、控え工4として、上述のように各種鋼矢板2や鋼管矢板を数枚連結して用いてもよい。
また、鋼管矢板や鋼管杭6を控え工4とする方が鋼矢板2を控え工4とする場合よりも高い剛性が得られるので、使用環境によっては控え工4の間隔をあけることができて、補強構造全体としての鋼材使用量が少なくなる。
There is no limitation also in the shape of the steel sheet pile 2 as the preparatory work 4, For example, various steel sheet piles 2, such as a U-shaped steel sheet pile normally used and a hat-shaped steel sheet pile, can be used. Further, the steel sheet pile 2 used for the laying work 4 may be a steel sheet pile or steel material having a shape different from that of the steel sheet pile 2 constituting the steel wall 3. Moreover, as shown in FIG. 4 instead of the steel sheet pile 2, the steel pipe pile 6 and the steel pipe sheet pile may be used as the laying work 4. Moreover, you may connect and use several steel sheet piles 2 and several steel pipe sheet piles as the preparatory work 4 as mentioned above.
In addition, since the steel pipe sheet pile or the steel pipe pile 6 is used as the preparatory work 4 and the steel sheet pile 2 is used as the preparatory work 4, higher rigidity can be obtained. As a result, the amount of steel used for the entire reinforcing structure is reduced.

控え工4どうしの間隔は、地震等による天端の沈下を抑制する上では、控え工どうしの間隔は小さい方がよい。後述する実験例のように、堤内側Iが連続壁(すなわち控え工同士の間隔が堤防の延長方向全長にわたってゼロ)でなくても、天端の沈下量は無対策(鋼製壁等を設けない)の堤防と比較して格段に小さくすることができる。控え工4どうしの間隔好ましくは5m以下程度とし、かつ、堤防の延長方向の所定長さにおける控え工4が設置された長さの合計が25%以上であるのが好ましい。一方、控え工4同士の間隔を小さくして連続壁に近づければ、必然的に鋼材使用量は多くなる。天端の沈下量が許容される範囲で、鋼材使用量等のバランスで適宜決定されればよいが、たとえば、堤防の延長方向の所定長さにおける控え工4が設置された長さの合計が75%以下とすれば経済的である。   The distance between the laying works 4 should be small in order to suppress the sinking of the top due to an earthquake or the like. Even if the dike inner side I is not a continuous wall (that is, the distance between the preparatory works is zero over the entire length in the extension direction of the levee) as in the experimental example described later, there is no countermeasure for the amount of settlement at the top (providing a steel wall, etc.) It can be much smaller than the dike. It is preferable that the distance between the layers 4 is preferably about 5 m or less, and the total length of the layers 4 installed in a predetermined length in the extending direction of the levee is 25% or more. On the other hand, if the interval between the laying works 4 is reduced and brought closer to the continuous wall, the amount of steel used will inevitably increase. As long as the amount of sinking at the top is allowed, it may be determined as appropriate by the balance of the amount of steel used. For example, the sum of the lengths in which the laying work 4 is installed in a predetermined length in the extending direction of the levee If it is 75% or less, it is economical.

なお、控え工4が間隔をあけて設けられているので、降雨等の際には、天端1aの直下の堤体から堤内側に雨水が排水されるので天端1aの直下の堤体が緩みにくく、地震時等における天端1aの沈下や堤防1の変形に有利に働きうると考えられる。   In addition, since the preparatory work 4 is provided at intervals, rainwater is drained from the dam body immediately below the top end 1a to the inside of the dam when it rains, so that the dam body just below the top end 1a It is difficult to loosen, and it is thought that it can work advantageously for subsidence of the top end 1a or deformation of the levee 1 during an earthquake or the like.

控え工4の下端の位置(打設深さ)は、もちろん支持層12まで根入れされていてもよいが、地震等による天端1aの沈下量が許容される範囲で、上述のように液状化地盤(基礎地盤11)の高さであってもよい。後述する実験例のように、控え工4の下端が液状化地盤の高さであっても、天端の沈下量は無対策(鋼製壁等を設けない)の堤防と比較して格段に小さくすることができる。また、上述のように複数の鋼矢板2が連接されてなる控え工4において、一部の鋼矢板2を支持層12まで根入れし、それ以外の残りの鋼矢板2を堤体底部まで根入れするものとしてもよい。   Of course, the position of the lower end of the preparatory work 4 (the placement depth) may be embedded up to the support layer 12, but it is liquid as described above as long as the sinking amount of the top end 1 a due to an earthquake or the like is allowed. It may be the height of the chemical ground (foundation ground 11). As in the experimental example described later, even if the lower end of the preparatory work 4 is at the height of the liquefied ground, the amount of settlement at the top end is markedly lower than that of a countermeasure (no steel wall etc.). Can be small. Further, in the preparatory work 4 in which a plurality of steel sheet piles 2 are connected as described above, a part of the steel sheet piles 2 are rooted to the support layer 12 and the remaining steel sheet piles 2 are rooted to the bottom of the levee body. It is good also as what to put.

また、繋ぎ材はタイロッドに限定されず、タイワイヤやジオテキスタイルなど引っ張り強度が期待できる材料であればよい。   The connecting material is not limited to a tie rod, and any material that can be expected to have a tensile strength such as a tie wire or a geotextile may be used.

次に、本発明の第2実施形態を説明する。
図5は、河川堤防における本発明の第2実施形態の堤防の補強構造を示している。
この形態では、堤外側O及び堤内側Iの法肩1c付近には、それぞれ鋼矢板2が堤防1の延長方向に連結して打設された鋼製壁3、7が設けられている。このうち、堤外側Oの第1鋼製壁3は、第1実施形態の鋼製壁3と同様に地盤の支持層12まで根入れされており、堤内側Iの第2鋼製壁7は堤防1とほぼ同じ高さになっている。すなわち、第2鋼製壁7は、堤防1の堤内側Iの法肩1c付近の高さ位置から堤防1の略底部まで根入れされている。第1鋼製壁3と第2鋼製壁7とは、天端1a付近の高さで繋ぎ材としてのタイロッド5により結合されている。
Next, a second embodiment of the present invention will be described.
FIG. 5 shows a dike reinforcement structure according to the second embodiment of the present invention in a river dike.
In this embodiment, steel walls 3 and 7 in which steel sheet piles 2 are connected in the extending direction of the dike 1 are provided in the vicinity of the shoulder 1 c on the dike outer side O and the dike inner side I. Among these, the 1st steel wall 3 of the bank outer side O is rooted to the support layer 12 of the ground like the steel wall 3 of 1st Embodiment, and the 2nd steel wall 7 of the bank inner side I is It is almost the same height as levee 1. That is, the second steel wall 7 is embedded from the height position in the vicinity of the shoulder 1 c on the inside I of the bank 1 to the bottom of the bank 1. The 1st steel wall 3 and the 2nd steel wall 7 are couple | bonded by the tie rod 5 as a connection material by the height of the top end 1a vicinity.

第1および第2鋼製壁3,7を構成する矢板(鋼矢板2、鋼管矢板、組合せ鋼矢板)の形状等については、第1実施形態の鋼製壁3と同様のものを用いることができる。
第2鋼製壁7の下端は、堤防1の盛土の底部とほぼ同じ高さとし、その際に液状化地盤(基礎地盤11)まで到達していても、そこまで到達せずその直上の盛土の高さ位置にあってもよい。
About the shape etc. of the sheet pile (steel sheet pile 2, steel pipe sheet pile, combination steel sheet pile) which comprise the 1st and 2nd steel walls 3 and 7, using the thing similar to the steel wall 3 of 1st Embodiment is used. it can.
The lower end of the second steel wall 7 is almost the same height as the bottom of the embankment 1 embankment, and even if it reaches the liquefied ground (foundation ground 11), it does not reach that land It may be in a height position.

第2実施形態の堤防1の補強構造においても、第1実施形態の堤防1の補強構造と同様の作用効果を奏することができる。第2実施形態では、堤防1の堤内側Iが離散的に配置された控え工4ではなく、連続的な第2鋼製壁7になっているが、その根入れ深さが堤防1の略底部の深さになっており、第2鋼製壁7を構成する矢板の根入れ深さが短いことから、従来の二列の鋼製壁を用いた補強構造に対して、鋼材の使用量を減縮することが可能であり、各鋼矢板2を打設する際の施工時間も従来より短縮することができる。すなわち、コストを減縮可能な合理的構造で、かつ、上述の堤防としての性能を満たすことができる。   Also in the reinforcement structure of the embankment 1 of 2nd Embodiment, there can exist an effect similar to the reinforcement structure of the embankment 1 of 1st Embodiment. In the second embodiment, the dam inner side I of the levee 1 is not the preparatory work 4 that is discretely arranged, but is a continuous second steel wall 7. Since the depth of the bottom of the sheet pile constituting the second steel wall 7 is short, the amount of steel used compared to the conventional reinforcing structure using two rows of steel walls Can be reduced, and the construction time for placing each steel sheet pile 2 can also be shortened as compared with the prior art. That is, it is possible to satisfy the above-mentioned performance as a bank with a rational structure capable of reducing the cost.

以下、本発明の堤防1の補強構造の性能について、模型による実験例を用いてさらに説明する。
まず、振動台上に設置した剛な土槽(幅1210×高さ580×奥行き390mm)中に、堤防1を模擬した模型を作製した。地盤材料として珪砂5号を使用し、地盤条件としては表1の通りとした。
Hereinafter, the performance of the reinforcing structure of the embankment 1 of the present invention will be further described using an experimental example using a model.
First, a model simulating the levee 1 was prepared in a rigid earthen tank (width 1210 × height 580 × depth 390 mm) installed on a vibration table. Silica sand No. 5 was used as the ground material, and the ground conditions were as shown in Table 1.

Figure 0005578140
Figure 0005578140

Figure 0005578140
Figure 0005578140

なお、表1における下部地盤は、表2の概略図における地盤の線より下側で、上部地盤は前記概略図における地盤の線より上側になる。下部地盤と上部地盤とを合わせた地盤の高さは300mmである。
この実験における調査対象の構造は、表2に示すような、補強構造として3種類の構造(ケース2〜4)と、比較のため鋼材による補強がなされていない構造(ケース1)とした。なお、ケース2は、地盤の支持層12まで根入れされる鋼製壁を堤外側および堤内側の法肩の両方に設けた従来の堤防の補強構造に対応する従来例であり、ケース3が第1実施形態に対応する実施例であり、ケース4が第2実施形態に対応する実施例であり、ケース1は補強されていない比較例である。なお、この実験の説明において、ケース1〜4をそれぞれ表2の工法欄に記載したように称することがある。また、実験で用いられる模型において、第1及び第2鋼製壁および控え工になる矢板として、後述の鋼板を用いている。
In addition, the lower ground in Table 1 is below the ground line in the schematic diagram of Table 2, and the upper ground is above the ground line in the schematic diagram. The height of the ground combining the lower ground and the upper ground is 300 mm.
The structures to be investigated in this experiment were three types of reinforcing structures (cases 2 to 4) as shown in Table 2, and a structure that was not reinforced with steel for comparison (case 1). Case 2 is a conventional example corresponding to a conventional levee reinforcement structure in which steel walls that are embedded up to the ground support layer 12 are provided on both the outer side of the levee and the shoulder on the inner side of the levee. It is an Example corresponding to 1st Embodiment, Case 4 is an Example corresponding to 2nd Embodiment, and Case 1 is a comparative example which is not reinforced. In the description of this experiment, cases 1 to 4 may be referred to as described in the column of construction method in Table 2, respectively. Moreover, in the model used by experiment, the below-mentioned steel plate is used as a 1st and 2nd steel wall and the sheet pile used as a laying work.

図6は、ケース3およびケース4である模型の概略平面図であり、図7は、ケース3およびケース4の模型の概略断面図である。
ケース2〜4では、一方(堤外側に相当)の法肩には、上下長さ408mm(堤防の天端から土槽底部に到達する長さで、堤防(108mm)部分より下の根入れ深さが300mm)×幅128mm×板厚1.6mmの鋼板を幅方向にほぼ接するように3枚並べて設けた。また、鋼板の下端は、土槽側にピン固定されるものとした。
FIG. 6 is a schematic plan view of a model that is the case 3 and the case 4, and FIG. 7 is a schematic cross-sectional view of the model of the case 3 and the case 4.
In cases 2 to 4, one shoulder (corresponding to the outside of the levee) has a vertical length of 408 mm (the length reaching the bottom of the earth tub from the top of the levee and below the embankment (108 mm). Is 300 mm) × 128 mm in width × 1.6 mm in thickness, and three steel plates are arranged side by side so as to be substantially in contact with each other in the width direction. Moreover, the lower end of the steel plate was pinned to the earth tub side.

もう一方(堤内側に相当)の法肩に、ケース2では、堤外側と同様に、上下長さ408mm×幅128mm×板厚1.6mmの鋼板を並べて設けた。また、鋼板の下端を地盤の支持層に根入れしたことを想定してピン固定とした。   On the other shoulder (corresponding to the inner side of the bank), in the case 2, as in the outer side of the bank, steel plates having a vertical length of 408 mm, a width of 128 mm and a plate thickness of 1.6 mm were arranged side by side. Moreover, it was set as pin fixation supposing that the lower end of the steel plate was rooted in the support layer of the ground.

ケース3では、ケース2で堤内側の中央に配置される鋼板を除き、それ以外の左右2枚の上下長さ258mm(堤防部分より下の根入れ深さが150mm)×幅128mm×板厚1.6mmの鋼板を離散的に設けた。すなわち、左右二枚の鋼板をそれらの間に鋼板1枚分の間隔をあけて設けた。また、鋼板の下端は、上部地盤(軟弱地盤)中に固定せずに配置した。   In case 3, except for the steel plate arranged in the center inside the bank in case 2, the other two left and right vertical lengths of 258 mm (the depth of penetration below the bank is 150 mm) × width 128 mm × sheet thickness 1 A 6 mm steel plate was provided discretely. That is, two steel plates on the left and right sides were provided with an interval of one steel plate between them. Moreover, the lower end of the steel plate was arranged without being fixed in the upper ground (soft ground).

ケース4では、長さ108mm(盛土部高さと同じ長さ)×幅128mm×板厚1.6mmの鋼板を幅方向にほぼ接するように3枚並べて設けた。また、鋼板の下端は、堤防と上部地盤との境界付近に固定せずに配置した。   In case 4, three steel plates each having a length of 108 mm (the same length as the embankment height) × a width of 128 mm × a plate thickness of 1.6 mm were arranged so as to be substantially in contact with each other in the width direction. Moreover, the lower end of the steel plate was arranged without being fixed near the boundary between the embankment and the upper ground.

また、これらケース2からケース4において、堤外側の鋼板と堤内側の鋼板とはタイロッドで連結した。各ケースの地盤と鋼板およびタイロッドの位置関係は、図6および図7に示すとおりである。
このような各ケースの構造について、上述の土槽を載せた振動台を3Hzの正弦波20波で振動させた。振動台の加速度は100、200、400、600、800galとした。各ケースにおいて、図6、図7の「CH…(…は数字)」で示される位置に、巻き取り式変位計、加速度計、歪み計を取り付けておき、その位置における変位や加速度等を測定した。
Further, in these cases 2 to 4, the steel plate outside the bank and the steel plate inside the bank were connected by tie rods. The positional relationship between the ground of each case, the steel plate and the tie rod is as shown in FIGS.
Regarding the structure of each case, the shaking table on which the above-mentioned earth tub was placed was vibrated with 20 sine waves of 3 Hz. The acceleration of the shaking table was 100, 200, 400, 600, 800 gal. In each case, a winding displacement meter, an accelerometer, and a strain meter are attached to the positions indicated by “CH... (... is a number)” in FIGS. 6 and 7, and the displacement, acceleration, and the like at that position are measured. did.

主な実験結果を図8〜図11に示す。
図8および図9は、ケース1(図8)とケース3(図9)における、800galの振動が加わったときの、模型内の各位置における最大応答加速度の測定結果を示したものである。盛土天端部(堤防の天端部分)における最大応答加速度は、ケース1では振動台の加速度の約1.7倍であったのに対し、ケース3では約2.3倍であった。ケース2、4においても、盛土天端部における最大応答加速度は、ケース1よりも高い値を示した。これは、ケース2〜4のような構造は補強されていないケース1の構造よりも堤防としての健全性が高いためと考えられた。
The main experimental results are shown in FIGS.
FIG. 8 and FIG. 9 show the measurement results of the maximum response acceleration at each position in the model when 800 gal vibration is applied in case 1 (FIG. 8) and case 3 (FIG. 9). The maximum response acceleration at the top of the embankment (the top of the embankment) was about 1.7 times the acceleration of the shaking table in Case 1, whereas it was about 2.3 times in Case 3. In cases 2 and 4 as well, the maximum response acceleration at the top of the embankment was higher than in case 1. This is considered to be because the structures such as cases 2 to 4 have higher soundness as a bank than the structure of case 1 that is not reinforced.

図10は、各ケースにおける、振動台の加速度と振動後の天端の沈下量との関係を示したものである。どの構造でも400galまではほとんど沈下が認められず、600gal以上で沈下が認められた。さらに、800galの振動が加わった後は、ケース1では約40mmの大きな沈下量であったのに対し、ケース2ではその約1/8、ケース3では約1/4、ケース4では約1/5であった。   FIG. 10 shows the relationship between the acceleration of the shaking table and the amount of settlement at the top after vibration in each case. In any structure, subsidence was hardly observed up to 400 gal, and subsidence was observed at 600 gal or more. Furthermore, after 800 gal vibrations were applied, in Case 1, the amount of subsidence was about 40 mm, whereas in Case 2, it was about 1/8, Case 3 was about 1/4, Case 4 was about 1 / It was 5.

図11は、各ケースにおける、800galの振動が加わった後の盛土部の変形状況を示したものである。ケース1では盛土天端、堤内側法面ともほぼ完全に崩壊した。ケース2、4では堤内側法面は大きく崩れて鋼板が露出したが、盛土天端高さはほとんど維持された。ケース3では、鋼板が設置されていない中央部で盛土が一部崩れたが、それでも盛土天端高さはほとんど維持された。なお、図11において、矢板+控え工(中央)(ケース3)とは、ケース3で堤内側の法肩における左右の鋼板同士の間の鋼板がない部分での変形量を示すものであり、(矢板+控え工(側面)(ケース3)とは、ケース3で上述の鋼板がある部分での変形量を示すものである。   FIG. 11 shows the deformation state of the embankment after 800 gal vibration is applied in each case. In Case 1, both the embankment top and the slope inside slope collapsed almost completely. In Cases 2 and 4, the slope inside the bank was greatly collapsed and the steel plate was exposed, but the height of the embankment top was almost maintained. In Case 3, the embankment partly collapsed in the center where no steel plate was installed, but the embankment top edge height was almost maintained. In addition, in FIG. 11, sheet pile + preparatory work (center) (case 3) indicates a deformation amount in a portion where there is no steel plate between the left and right steel plates in the shoulder on the inside of the bank in case 3, (Sheet + preparatory work (side surface) (case 3) indicates the amount of deformation in the case 3 where the above-described steel plate is present.

すなわち、ケース3、4の構造は、堤防の天端の沈下の抑制という点でケース2の構造にかなり近いレベルにあり、ケース1に対して大きな改善効果を有した。今回の模型における鋼板の使用量は、ケース2の使用量を1とすると、ケース3では約0.7、ケース4では約0.6であるので、ケース3、ケース4は、経済性、簡便性も考慮するとバランスのとれた合理的な補強構造と言える。   That is, the structures of the cases 3 and 4 are substantially close to the structure of the case 2 in terms of suppressing the settlement of the top of the dike, and have a significant improvement effect with respect to the case 1. The amount of steel used in this model is about 0.7 in case 3 and about 0.6 in case 4 when the amount used in case 2 is 1, so case 3 and case 4 are economical and simple. Considering the characteristics, it can be said that this is a balanced and rational reinforcement structure.

k 河川
1 堤防
1c 法肩
2 鋼矢板
3 鋼製壁(第1鋼製壁)
4 控え工
5 タイロッド(繋ぎ材)
6 鋼管杭
7 第2鋼製壁
k River 1 Embankment 1c Leg shoulder 2 Steel sheet pile 3 Steel wall (1st steel wall)
4 Preliminary work 5 Tie rod (tie material)
6 Steel pipe pile 7 Second steel wall

Claims (3)

河川等の堤防の補強構造であって、
前記堤防の堤外側の法肩付近には、当該堤防の延長方向に連続し、下端が地盤の支持層に達する鋼製壁が設けられ、堤内側の法肩付近には、離散的に配置される控え工が設けられ、前記鋼製壁と前記控え工とは前記堤防の天端付近で繋ぎ材により互いに連結され
前記控え工は、前記支持層の上にある液状化層まで根入れされていることを特徴とする堤防の補強構造。
Reinforcement structure of embankments such as rivers,
Near the shoulder on the outside of the levee, a steel wall that extends in the extension direction of the levee and whose lower end reaches the support layer of the ground is provided. The steel wall and the keeper are connected to each other by a connecting material near the top of the levee ,
The embankment reinforcement structure characterized in that the preparatory work is rooted up to a liquefied layer on the support layer .
河川等の堤防の補強構造であって、
前記堤防の堤外側の法肩付近には、当該堤防の延長方向に連続し、下端が地盤の支持層に達する鋼製壁が設けられ、堤内側の法肩付近には、離散的に配置される控え工が設けられ、前記鋼製壁と前記控え工とは前記堤防の天端付近で繋ぎ材により互いに連結され、
前記控え工が複数の鋼矢板を連結することによって構成され、当該鋼矢板の一部を前記支持層まで根入れさせ、この鋼矢板に連結される残りの他の鋼矢板を前記堤防の底部まで根入れさせたことを特徴とする堤防の補強構造。
Reinforcement structure of embankments such as rivers,
Near the shoulder on the outside of the levee, a steel wall that extends in the extension direction of the levee and whose lower end reaches the support layer of the ground is provided. The steel wall and the keeper are connected to each other by a connecting material near the top of the levee,
The preparatory work is configured by connecting a plurality of steel sheet piles, a part of the steel sheet piles is embedded in the support layer, and the remaining other steel sheet piles connected to the steel sheet piles are connected to the bottom of the levee. Reinforcement structure of the embankment characterized by having been rooted .
前記堤防の延長方向の所定長さにおける控え工が設置された長さの合計が25%以上、75%以下とされていることを特徴とする請求項1または2に記載の堤防の補強構造。 The levee reinforcing structure according to claim 1 or 2, wherein a total length of the preparatory work in a predetermined length in the extending direction of the levee is 25% or more and 75% or less .
JP2011149122A 2011-07-05 2011-07-05 Embankment reinforcement structure Active JP5578140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011149122A JP5578140B2 (en) 2011-07-05 2011-07-05 Embankment reinforcement structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011149122A JP5578140B2 (en) 2011-07-05 2011-07-05 Embankment reinforcement structure

Publications (2)

Publication Number Publication Date
JP2013014962A JP2013014962A (en) 2013-01-24
JP5578140B2 true JP5578140B2 (en) 2014-08-27

Family

ID=47687870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011149122A Active JP5578140B2 (en) 2011-07-05 2011-07-05 Embankment reinforcement structure

Country Status (1)

Country Link
JP (1) JP5578140B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6082916B2 (en) * 2013-01-22 2017-02-22 新日鐵住金株式会社 Underground steel wall structure and construction method of underground steel wall structure
JP6347120B2 (en) * 2014-03-06 2018-06-27 新日鐵住金株式会社 Embankment reinforcement structure
JP7172446B2 (en) * 2018-10-29 2022-11-16 日本製鉄株式会社 embankment structure
JP7183816B2 (en) * 2019-01-25 2022-12-06 日本製鉄株式会社 Embankment reinforcement structure
JP7320362B2 (en) * 2019-03-25 2023-08-03 日本製鉄株式会社 Design method for reinforcement structure of cut-off wall
JP7226725B1 (en) 2022-01-26 2023-02-21 国立大学法人神戸大学 Diagonal support pile type sheet pile quay

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317043A (en) * 2000-05-11 2001-11-16 Kyushu Regional Bureau Ministry Of Land Infrastructure & Transport Sheet-pile wall for separation against settlement
JP2003013451A (en) * 2001-07-02 2003-01-15 Sumitomo Metal Ind Ltd Reinforcing structure of banking
JP5157710B2 (en) * 2008-07-22 2013-03-06 Jfeスチール株式会社 Embankment reinforcement structure
JP5407995B2 (en) * 2010-03-31 2014-02-05 新日鐵住金株式会社 Filling reinforcement structure

Also Published As

Publication number Publication date
JP2013014962A (en) 2013-01-24

Similar Documents

Publication Publication Date Title
JP5578140B2 (en) Embankment reinforcement structure
JP5445351B2 (en) Filling reinforcement structure
JP6171569B2 (en) Embankment reinforcement structure
JP5471797B2 (en) Seismic reinforcement structure of revetment structure and existing revetment structure
JP5347898B2 (en) Strengthening structure and method of existing sheet pile quay
JP2007205077A (en) Temporary coffering method
JP2008190200A (en) Precast retaining wall and construction method therefor
JP5407995B2 (en) Filling reinforcement structure
KR101253410B1 (en) Connecting structure of steel pipe sheet pile
JP5147361B2 (en) Repair and reinforcement structure for floating structures
CN210766842U (en) Reinforced concrete bottom sealing structure for bearing platform of flood plain area
JP4958064B2 (en) Seismic reinforcement structure of quay
JP6881916B2 (en) How to install the structure
JP6287358B2 (en) Embankment reinforcement structure
JP6017302B2 (en) Construction and its construction method
JP2020117962A (en) Levee body seepage destruction suppression structure
JP2008081960A (en) Ocean wave protection structure
JP7359515B2 (en) Liquefaction countermeasure structure for underground structures
JP6291357B2 (en) Side flow prevention structure
JP7396331B2 (en) Improvement structure of existing quay wall and construction method of the improvement structure
JP5348055B2 (en) Filling reinforcement structure
JP5835110B2 (en) Quay-quake-proof structure and quake-quake-proof reinforcement method
JP5912651B2 (en) Breakwater structure and breakwater reinforcement method
JP2002180480A (en) Revetment structure for resisting lateral flow
JP2564819B2 (en) Seismic reinforcement structure of existing caisson

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140623

R151 Written notification of patent or utility model registration

Ref document number: 5578140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350