JP2019143439A - Tide embankment - Google Patents

Tide embankment Download PDF

Info

Publication number
JP2019143439A
JP2019143439A JP2018030968A JP2018030968A JP2019143439A JP 2019143439 A JP2019143439 A JP 2019143439A JP 2018030968 A JP2018030968 A JP 2018030968A JP 2018030968 A JP2018030968 A JP 2018030968A JP 2019143439 A JP2019143439 A JP 2019143439A
Authority
JP
Japan
Prior art keywords
seawall
steel pipe
tide
embankment
pipe sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018030968A
Other languages
Japanese (ja)
Inventor
本島 禎二
Teiji Motojima
禎二 本島
古川 治
Osamu Furukawa
治 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2018030968A priority Critical patent/JP2019143439A/en
Publication of JP2019143439A publication Critical patent/JP2019143439A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Landscapes

  • Revetment (AREA)

Abstract

To provide a tide embankment which exhibits desired overflow prevention performance without being higher than an existing embankment and which makes it possible to protect halophilous marsh environment at an embankment land side in the future.SOLUTION: A tide embankment comprises: a tide barrier portion 2 constituted of a plurality of connected steel pipe sheet piles 1 at an upper part; and a support pile portion 3 in which steel pipe sheet piles 1 configuring the tide barrier portion 2 are extended to and are made to penetrate into a bearing ground, every several piles.SELECTED DRAWING: Figure 1

Description

本発明は、防潮堤に関する。   The present invention relates to a seawall.

防潮堤には、巨大地震発生時に最大津波が堤防を越流しないようにすることで、人命の保護、および建物、家屋、陸地内設備の損傷を防ぐことなどが求められている。また、防潮堤には、通常時や地震後の高潮、高波による越波量を許容値以下に抑えることも求められている(例えば、特許文献1参照)。   Seawalls are required to protect human lives and prevent damage to buildings, houses, and land facilities by preventing the largest tsunami from overflowing the bank when a large earthquake occurs. Moreover, it is also required for the tide embankment to suppress the amount of overtopping due to storm surges and high waves during normal times or after an earthquake to an allowable value or less (see, for example, Patent Document 1).

特開2016−65429号公報JP, 2006-65429, A

ここで、大地震の発生によって基礎地盤が液状化した場合に、従来の防潮堤や既設堤防が沈下・崩壊するおそれがある。また、沈下して堤防所要高さが確保されていないと、地震後に津波が到達する場合に防潮機能が発揮されない。このため、従来、津波を想定し、堤防本体の嵩上げ等が計画されてはいるが、やはり、既設堤防の地震による沈下によって十分に機能が確保できないおそれがある。   Here, when the foundation ground is liquefied due to the occurrence of a large earthquake, there is a risk that the conventional seawall and existing bank will sink or collapse. In addition, if the required height of the dike is not secured after sinking, the tide function will not be exhibited when a tsunami arrives after the earthquake. For this reason, the levee body has been planned to be raised in the past, assuming a tsunami, but there is still a possibility that the function cannot be secured sufficiently due to the settlement of the existing levee due to the earthquake.

一方、堤防からの海水の浸透を妨げず、堤防陸側の塩生湿地環境を将来的に守ることが求められるケースがある。また、景観の観点から、防潮堤が既存堤防より高くならないようにすることが求められるケースもある。   On the other hand, there are cases where it is required in the future to protect the salt marsh environment on the side of the levees without disturbing the penetration of seawater from the levees. In addition, there are cases where it is required to prevent the seawall from becoming higher than the existing bank from the viewpoint of landscape.

本発明は、上記事情に鑑み、既存堤防より高くすることなく所望の越流防止性能を発揮し、また、堤防陸側の塩生湿地環境を将来的に護ることを可能にする防潮堤を提供することを目的とする。   In view of the above circumstances, the present invention provides a tide bank that exhibits desired overflow prevention performance without increasing the height of an existing dyke, and that can protect the salt marsh environment on the shore land side in the future. For the purpose.

上記の目的を達するために、この発明は以下の手段を提供している。   In order to achieve the above object, the present invention provides the following means.

本発明の防潮堤は、上部に複数の鋼管矢板を接続してなる防潮壁部を備えるとともに、前記防潮壁部を構成する前記鋼管矢板を数本おきに支持地盤まで延ばし根入れしてなる支持杭部を備えることを特徴とする。   The tide embankment according to the present invention includes a tide wall portion formed by connecting a plurality of steel pipe sheet piles at the top, and supports the steel pipe sheet piles constituting the tide wall portion by extending to the support ground every few lines. It is provided with a pile part.

本発明の防潮堤においては、既存堤防より高くすることなく所望の越流防止性能を発揮させることができ、また、堤防陸側の塩生湿地環境を将来的に護ることが可能になる。   The tide embankment of the present invention can exhibit desired overflow prevention performance without increasing the height of the existing levee, and can protect the salt marsh environment on the shore land side in the future.

本発明の一実施形態に係る防潮堤を示す図である。It is a figure which shows the seawall according to one Embodiment of this invention. 本発明の一実施形態に係る防潮堤を示す図であり、図1のX1−X1線矢視図である。It is a figure which shows the seawall according to one Embodiment of this invention, and is a X1-X1 line arrow directional view of FIG. 本発明の一実施形態に係る防潮堤の設計フローを示す図である。It is a figure which shows the design flow of the seawall according to one Embodiment of this invention. 本発明の一実施形態に係る防潮堤の設計フローを示す図である。It is a figure which shows the design flow of the seawall according to one Embodiment of this invention.

以下、図1から図4を参照し、本発明の一実施形態に係る防潮堤について説明する。   Hereinafter, a seawall according to an embodiment of the present invention will be described with reference to FIGS. 1 to 4.

本実施形態の防潮堤Aは、図1及び図2に示すように、上部に複数の鋼管矢板1を接続してなる防潮壁部2を備えるとともに、防潮壁部2を構成する鋼管矢板(鋼管杭)1を数本おきに支持地盤まで延ばして根入れしてなる支持杭部3を備えて構成されている。   As shown in FIGS. 1 and 2, the seawall A of the present embodiment includes a seawall portion 2 formed by connecting a plurality of steel pipe sheet piles 1 to the upper portion, and a steel pipe sheet pile (steel pipe) constituting the seawall portion 2. It is configured to include a support pile portion 3 that is formed by extending several piles 1 to the support ground every other.

また、この防潮堤Aは、従来の堤防4に隣接して構築/設置されている。   Further, the seawall A is constructed / installed adjacent to the conventional bank 4.

すなわち、本実施形態の防潮堤は、地震時に堤防が沈下した場合であっても堤防に従動せず、沈下しないように構成されている。   That is, the tide embankment of the present embodiment is configured so that it does not follow the levee and does not sink even when the levee sinks during an earthquake.

ここで、本実施形態の防潮堤A、堤防4を設計する際には、図3に示すように、想定される高潮・高波、地震及び津波の設定を行い、現地の測量調査、地盤調査結果に基づき、堤防の地震による変形量、防潮堤断面力の算定を行う。次に、高潮・高波に対する防潮堤の必要高さ及び構造仕様の設計を行うとともに、津波に対する防潮堤の必要高さ及び構造仕様の設計を行う。そして、防潮堤天端高さや鋼管矢板の仕様など、防潮堤の基本設計、防潮堤構造の決定を行い、鋼管矢板の割り付け、上部工配筋設計などの防潮堤の細部・実施設計を行う。   Here, when designing the tide embankment A and levee 4 of this embodiment, as shown in Fig. 3, set the assumed storm surges / high waves, earthquakes and tsunamis, and conduct the results of field surveys and ground surveys. Based on the above, the deformation of the dike due to the earthquake and the cross-sectional force of the seawall will be calculated. Next, we design the necessary height and structural specifications of the seawall against storm surges and waves, and design the necessary height and structural specifications of the seawall against tsunamis. Then, the basic design of the seawall and the structure of the seawall, such as the height of the seawall top and the specifications of the steel pipe sheet pile, are determined, and the details and implementation design of the seawall, such as the allocation of the steel pipe sheet pile and the design of the upper work reinforcement, are performed.

さらに、防潮堤の構造設計の決定は、図4に示すように、想定地震動及び波力の条件などの想定する作用の設定を行い、鋼管矢板・鋼管杭の肉厚や長さ等の仕様を仮定し、FLIPによる堤防地盤・防潮堤(鋼管矢板・鋼管杭)の二次元FEM地震応答解析を行う。さらに、FLIP−DISによる液状化後の堤防地盤・防潮堤構造の二次元FEMか過剰間隙水圧消散解析を行い、堤防地盤の沈下量を算定してボイリング現象を抑制する鋼管矢板の長さを決定する。これとともに、鋼管杭の鉛直荷重に対して安全な杭長を決定し、発生断面力に対して必要な鋼管杭仕様を決定する。   Furthermore, as shown in Fig. 4, the structural design of the seawall is determined by setting the assumed actions such as the assumed ground motion and wave force conditions, and specifying the specifications such as the thickness and length of the steel pipe sheet piles and steel pipe piles. Assuming two-dimensional FEM seismic response analysis of levee ground and seawall (steel sheet pile and steel pipe pile) by FLIP. In addition, two-dimensional FEM or excess pore water pressure dissipation analysis of the levee ground and tide embankment structure after liquefaction by FLIP-DIS is performed, and the length of the steel pipe sheet pile that suppresses the boiling phenomenon is determined by calculating the subsidence amount of the levee ground. To do. Along with this, a safe pile length is determined for the vertical load of the steel pipe pile, and a necessary steel pipe pile specification is determined for the generated sectional force.

そして、上記のように構成した本実施形態の防潮堤Aにおいては、地震で堤防4が沈下した際に鋼管矢板1で構成される防潮壁部2が現れ、地震後の津波を防護することが可能となる。   And in the seawall A of this embodiment comprised as mentioned above, when the seawall 4 sinks by an earthquake, the seawall part 2 comprised with the steel pipe sheet pile 1 appears, and it can protect the tsunami after an earthquake. It becomes possible.

また、防潮堤Aの高さを既設堤防4の高さ以下に抑えることにより、景観を損ねることはない。さらに、防潮壁部2の高さを調整することで、堤防4からの海水の浸透を妨げず、堤防陸側の塩生湿地環境を将来的に護ることができる。これにより、環境にやさしい構造を実現することが可能になる。   Moreover, a landscape is not spoiled by restraining the height of the seawall A below the height of the existing bank 4. Furthermore, by adjusting the height of the tide wall 2, it is possible to protect the salt marsh environment on the levee land side in the future without disturbing the penetration of seawater from the levee 4. As a result, an environment-friendly structure can be realized.

よって、本実施形態の防潮堤Aによれば、堤防陸側の塩生湿地環境を将来的に護ることができ、また、既存堤防4より高くすることなく所望の越流防止性能を発揮することが可能になる。   Therefore, according to the seawall A of the present embodiment, the salt marsh environment on the side of the bank can be protected in the future, and desired overflow prevention performance can be exhibited without making it higher than the existing bank 4. It becomes possible.

以上、本発明に係る防潮堤の実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。   As mentioned above, although embodiment of the seawall according to the present invention was described, the present invention is not limited to the above-mentioned embodiment, and can be suitably changed within the range which does not deviate from the meaning.

1 鋼管矢板(鋼管杭)
2 防潮壁部
3 支持杭部
4 堤防
A 防潮堤
1 Steel pipe sheet pile (steel pipe pile)
2 Seawall 3 Support pile 4 Bank A Seawall

Claims (1)

上部に複数の鋼管矢板を接続してなる防潮壁部を備えるとともに、前記防潮壁部を構成する前記鋼管矢板を数本おきに支持地盤まで延ばし根入れしてなる支持杭部を備えることを特徴とする防潮堤。   It is provided with a tide wall part formed by connecting a plurality of steel pipe sheet piles to the upper part, and provided with a support pile part formed by extending the steel pipe sheet piles constituting the tide wall part to the support ground every few. The seawall.
JP2018030968A 2018-02-23 2018-02-23 Tide embankment Pending JP2019143439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018030968A JP2019143439A (en) 2018-02-23 2018-02-23 Tide embankment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018030968A JP2019143439A (en) 2018-02-23 2018-02-23 Tide embankment

Publications (1)

Publication Number Publication Date
JP2019143439A true JP2019143439A (en) 2019-08-29

Family

ID=67773607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018030968A Pending JP2019143439A (en) 2018-02-23 2018-02-23 Tide embankment

Country Status (1)

Country Link
JP (1) JP2019143439A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004108142A (en) * 2002-08-28 2004-04-08 World Engineering Kk Method for construction of a control type revetment
JP2011236657A (en) * 2010-05-11 2011-11-24 Nippon Steel Corp Earthquake proof reinforced structure for revetment structure and existing revetment structure
JP2012007394A (en) * 2010-06-25 2012-01-12 Sumitomo Metal Ind Ltd Embankment reinforcement structure
JP2013060769A (en) * 2011-09-14 2013-04-04 Kurenai Sugiyama Breakwater for seismic sea wave
JP2014066070A (en) * 2012-09-26 2014-04-17 Giken Seisakusho Co Ltd Reinforcing structure of existent bank body and reinforcing method of existent bank body
JP2017110385A (en) * 2015-12-16 2017-06-22 田中 和雄 Breakwater toughening construction method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004108142A (en) * 2002-08-28 2004-04-08 World Engineering Kk Method for construction of a control type revetment
JP2011236657A (en) * 2010-05-11 2011-11-24 Nippon Steel Corp Earthquake proof reinforced structure for revetment structure and existing revetment structure
JP2012007394A (en) * 2010-06-25 2012-01-12 Sumitomo Metal Ind Ltd Embankment reinforcement structure
JP2013060769A (en) * 2011-09-14 2013-04-04 Kurenai Sugiyama Breakwater for seismic sea wave
JP2014066070A (en) * 2012-09-26 2014-04-17 Giken Seisakusho Co Ltd Reinforcing structure of existent bank body and reinforcing method of existent bank body
JP2017110385A (en) * 2015-12-16 2017-06-22 田中 和雄 Breakwater toughening construction method

Similar Documents

Publication Publication Date Title
Gazetas et al. Seismic analysis of tall anchored sheet-pile walls
JP4866308B2 (en) Transmission type sea area control structure and construction method thereof
JP2016211312A (en) Construction of hybrid tsunami embankment
JP6007388B2 (en) Fluid force reducing structure and method of constructing fluid force reducing structure
JP2015086675A (en) System for filling specified sea area with air bubbles in order to prevent and mitigate high tide and tsunami disasters
JP2009114636A (en) Wave dissipating structure
JP2013023874A (en) Breakwater water structure
JP2021139162A (en) Levee reinforcement structure and levee reinforcement method
JP2019143439A (en) Tide embankment
JP6511671B2 (en) Construction method of coastal soil structure against huge tsunami by high-rigidity geosynthetic reinforced soil retaining wall with rigid integrated wall work
JP6881916B2 (en) How to install the structure
JPH07113219A (en) Multistage tsunami breakwater
JP5983436B2 (en) Gravity breakwater
Figlus et al. Conceptual Design and Physical Model Study of Core-Enhanced Dunes as Hybrid Coastal Defence Structures
JP5949643B2 (en) Reinforcement structure of caisson type hybrid bank and method for constructing the reinforcement structure
JP2012062750A (en) Coastal dyke
AU2012392206A1 (en) A versatile erosion control system
JP2017206851A (en) Coastal structure
JP7066651B2 (en) Reinforcement structure of seawall
Takeshita et al. Experiment on Coastal Dike Resiliency Against Unexpected Wave Overtopping
JP2008081960A (en) Ocean wave protection structure
Zehro Specifications and types of seawall structures needed to protect beaches from sand erosion and storm disasters
JP2013019133A (en) Breakwater
JP5983435B2 (en) Gravity breakwater
JP6769730B2 (en) Connection structure and connection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220524