JP6018804B2 - Cell body water-blocking structure - Google Patents

Cell body water-blocking structure Download PDF

Info

Publication number
JP6018804B2
JP6018804B2 JP2012126906A JP2012126906A JP6018804B2 JP 6018804 B2 JP6018804 B2 JP 6018804B2 JP 2012126906 A JP2012126906 A JP 2012126906A JP 2012126906 A JP2012126906 A JP 2012126906A JP 6018804 B2 JP6018804 B2 JP 6018804B2
Authority
JP
Japan
Prior art keywords
cell
water
revetment
rigidity
water shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012126906A
Other languages
Japanese (ja)
Other versions
JP2013249689A (en
Inventor
和木 多克
多克 和木
折笠 正美
正美 折笠
野々田 充
充 野々田
信人 岡本
信人 岡本
中野 浩
浩 中野
尚洋 濱本
尚洋 濱本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Road Co Ltd
Original Assignee
Nippon Road Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Road Co Ltd filed Critical Nippon Road Co Ltd
Priority to JP2012126906A priority Critical patent/JP6018804B2/en
Publication of JP2013249689A publication Critical patent/JP2013249689A/en
Application granted granted Critical
Publication of JP6018804B2 publication Critical patent/JP6018804B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Revetment (AREA)

Description

本発明は、セル本体どうしをアーク部で連結するセル式遮水護岸における、セル本体の遮水構造に関する。   The present invention relates to a water shielding structure for a cell main body in a cell type water-impervious revetment in which cell main bodies are connected by an arc portion.

従来、廃棄物海面処分場等の遮水護岸を構築するために、連結部を遮水構造としたケーソンやセルを複数連結して海底地盤に設置している。特に、鋼板セルを用いた遮水護岸は、ケーソンを用いた遮水護岸と比較して、工場やヤードで製作された鋼板製のセル殻やアークを、護岸の構築場所まで曳航して運び、現地で簡単に鋼板セルに組み立てて遮水護岸を構築することができるため、工事コストが安く、短期間で工事を完了できる利点がある。   Conventionally, in order to construct a water-impervious revetment such as a waste sea surface disposal site, a plurality of caissons and cells having a water-impervious structure are connected to each other and installed on the seabed. In particular, impermeable revetments using steel plate cells are towed and transported steel cell shells and arcs made at factories and yards to the construction site of the revetment, compared to impermeable revetments using caisson, Since it is possible to construct a water-impervious revetment easily by assembling it into a steel plate cell locally, there is an advantage that the construction cost is low and the construction can be completed in a short period of time.

従来のセル式の遮水護岸は、例えば、特許文献1に記載されているように、海底地盤に鋼板セルを打設して下端部を根入し、セル殻内に中詰材を充填するとともに、鋼板セルどうしの外海側と護岸内側とをそれぞれ海底地盤に根入れしたアークで連結して、これらのアーク間に中詰材を充填する工法によって構築されている。   For example, as described in Patent Document 1, a conventional cell-type impermeable revetment places a steel plate cell on the seabed ground, penetrates the lower end, and fills the cell shell with a filling material. At the same time, the outside sea side and the revetment inside of the steel plate cells are connected by arcs rooted in the seabed ground, respectively, and a construction method in which a filling material is filled between these arcs is constructed.

また、海底地盤が硬くて鋼板セルやアークの打設が困難な場合には、例えば、特許文献2に記載されているように、海底地盤を掘削して形成した凹部内に基礎捨て石の層を形成してその上に鋼板セルを載置してセル殻内に中詰め材を充填し、さらに、鋼板セルどうしの外海側と内側とをそれぞれ2枚のアークで連結してアーク部に中詰め材を充填した後、鋼板セルやアーク部の下端部周辺を埋め戻し材で埋め戻す工法によって構築されている。   In addition, when the seabed ground is hard and it is difficult to place a steel plate cell or an arc, for example, as described in Patent Document 2, a layer of foundation waste stone is placed in a recess formed by excavating the seabed ground. The steel plate cell is placed on the cell shell, and the cell shell is filled with the filling material, and the outside sea side and the inside of the steel plate cells are connected by two arcs to fill the arc part. After filling the material, it is constructed by a method of backfilling the periphery of the steel plate cell and the lower end of the arc part with a backfill material.

図9は、このような海底地盤上の凹部内に設置される従来の鋼板セルにおける、セル本体の断面構造の一例を示す斜視部分図であって、同図に示すように、鋼板セル21は、複数の円筒状のセル本体22と、これらのセル本体22の間を塞ぐアーク部23から構成されている。   FIG. 9 is a perspective partial view showing an example of a cross-sectional structure of a cell body in a conventional steel plate cell installed in a recess on such a submarine ground. As shown in FIG. A plurality of cylindrical cell bodies 22 and arc portions 23 that block between the cell bodies 22 are configured.

それぞれのセル本体22は、下面が開放された鋼板製のセル殻22Aを有しており、海底地盤24に形成された、凹部24A内の基礎捨て石25の上に載置されている。また、セル殻22Aの内部には土砂等の中詰め材26が充填されており、上端はコンクリート製の天蓋27によって塞がれている。   Each cell main body 22 has a cell shell 22A made of a steel plate having an open bottom surface, and is placed on a foundation stone 25 in a recess 24A formed in the seabed ground 24. The cell shell 22A is filled with a filling material 26 such as earth and sand, and the upper end is closed by a concrete canopy 27.

また、それぞれのアーク部23は、隣接するセル本体22のセル殻22Aどうしを連結する一対の鋼板製のアーク23Aを有しており、これらのアーク23Aの下端は凹部24A内の基礎捨て石25の上に載置されている。 Each arc portion 23 has a pair of steel plate arcs 23A that connect the cell shells 22A of the adjacent cell main bodies 22, and the lower ends of these arcs 23A are the basic waste stones 25 in the recesses 24A. It is placed on top.

凹部24A近傍の海底地盤24は不透水性の改良地盤であり、セル殻22Aやアーク23Aの下端近傍部分の外周面と、凹部24Aの垂直な側壁面との隙間は、アスファルトマスチック等の遮水材28によって塞がれて、護岸内側(廃棄物海面処分場側)から外海側への汚染水の漏出が遮断されている。   The seabed ground 24 in the vicinity of the recess 24A is an impermeable improved ground, and the gap between the outer peripheral surface in the vicinity of the lower end of the cell shell 22A or the arc 23A and the vertical side wall surface of the recess 24A is impermeable to water such as asphalt mastic. Blocked by the material 28, leakage of contaminated water from the revetment inside (waste sea surface disposal site side) to the open sea side is blocked.

なお、図9には示されていないが、隣接するセル殻22Aとこれらを連結している一対のアーク23Aによって区画されている空間の内部には、前記中詰め材26と同様な中詰め材が充填されており、また、上端は前記天蓋27と高さを合わせたコンクリート製の天蓋29によって塞がれている。   Although not shown in FIG. 9, a filling material similar to the filling material 26 is provided in the space defined by the adjacent cell shells 22 </ b> A and a pair of arcs 23 </ b> A connecting them. The upper end is closed by a concrete canopy 29 having the same height as the canopy 27.

特許第4139871号公報Japanese Patent No. 4139871 特許第4778460号公報Japanese Patent No. 4778460

前述したような、セル式の遮水護岸に用いられているセル本体のセル殻の厚みは、一般にその直径に比べて極めて薄く作られており、例えば、セル本体の直径が14m程度のものでも、セル殻に使用されている鋼板の厚みは9mm程度しかなく、セル殻の内側に中詰め材を充填することによって、外側から作用する海水の水圧等の外力に耐えられるように設計されている。   As described above, the thickness of the cell shell of the cell body used for the cell-type impermeable revetment is generally made extremely thin compared to its diameter. For example, even if the cell body has a diameter of about 14 m. The thickness of the steel plate used for the cell shell is only about 9 mm, and it is designed to withstand external forces such as seawater pressure acting from the outside by filling the inside of the cell shell with a filling material. .

そのため、海面に露出して常時波風に曝されている、セル殻外周上部のスプラッシュゾーンにおいては、錆びや腐蝕が進行し易く、例えば、図10に示すように、護岸内側に面するセル殻22Aの上部に、錆びや腐蝕によって孔hが開いてしまった場合には、護岸内側の廃棄物海面処分場の汚染水が、この孔hからセル殻22Aの内部に流れ込み、遮水性に乏しい中詰め材26を透過して、底が無いセル殻22Aの下端から基礎捨て石25の中へ浸入する可能性がある。   For this reason, in the splash zone on the outer periphery of the cell shell that is exposed to the sea surface and is constantly exposed to wave winds, rust and corrosion tend to proceed. For example, as shown in FIG. If the hole h is opened at the top of the wall due to rust or corrosion, the contaminated water from the waste sea surface disposal site inside the revetment flows into the inside of the cell shell 22A from the hole h, and is filled with poor water shielding. There is a possibility that the material 26 permeates and enters the foundation discard stone 25 from the lower end of the cell shell 22A having no bottom.

セル殻22Aの外周面下部の外海側と護岸内側はそれぞれ、海底地盤24の凹部24Aに充填されている遮水材28によって両側で2重に遮水されてはいるが、前述したように、セル殻22Aの内側に汚染水が浸入してしまうと、外海に面している側で、セル殻22Aと遮水材28と間に、地盤沈下等によって隙間が生じた場合に、この隙間を通って廃棄物海面処分場の汚染水が外海に漏れ出してしまう危険性がある。   The outer sea side and the revetment inner side of the lower part of the outer peripheral surface of the cell shell 22A are double water-blocked on both sides by the water-blocking material 28 filled in the concave portion 24A of the seabed ground 24. As described above, If contaminated water enters the inside of the cell shell 22A, if there is a gap between the cell shell 22A and the water shielding material 28 due to ground subsidence or the like on the side facing the open sea, There is a risk that the contaminated water from the sea surface disposal site will leak into the open sea.

このような危険性を回避するためには、底の有るセル殻を用いればよいが、セル殻に底を設けると、その製造コストが高くなるとともに、底板を肉厚の薄い円筒状のセル殻の下端に溶接すると、外力によってセル殻22Aに歪みを生じた場合に溶接部分に応力が集中し、この部分から亀裂が生じたり腐蝕が進行する恐れがある。   In order to avoid such a risk, a cell shell with a bottom may be used. However, if the cell shell is provided with a bottom, the manufacturing cost is increased and the bottom plate is made of a thin cylindrical cell shell. If the cell shell 22A is distorted by an external force, the stress concentrates on the welded portion, and there is a possibility that cracking or corrosion proceeds from this portion.

一方、図11に示すように、セル殻22Aの内側に充填される中詰め材26の間に、不透水性の材料を用いた遮水層30を設け、上方と下方との中詰め材26の間をセル殻22Aの内側の水平断面全体に亘って遮水すれば、図10のように、セル殻22Aの内側に汚染水が浸入した場合においても、汚染水は遮水層30で遮断されて、その下方には浸透しないので、これが外海へ漏れ出す危険性を回避できるものと考えられる。   On the other hand, as shown in FIG. 11, a water-impervious layer 30 using a water-impermeable material is provided between the filling materials 26 filled inside the cell shell 22 </ b> A, and the filling materials 26 at the upper side and the lower side are provided. If the water is shielded across the entire horizontal cross section inside the cell shell 22A, the contaminated water is blocked by the water shielding layer 30 even when the contaminated water enters the cell shell 22A as shown in FIG. Since it does not penetrate below, it is considered that the risk of leakage into the open sea can be avoided.

ところで、潮の干満等によって、外海側の水位と護岸内側の水位との間に差が生じたり、護岸内側の埋め立て等によって、護岸内側でセル殻22Aの外周面に大きな土圧が作用すると、外海側と護岸内側では、セル殻22Aの外周面に作用する圧力が不均衡になり、その結果、セル本体22には図11に示すように、垂直方向と、護岸法線に直交する水平方向に、剪断荷重Fが作用することになる。   By the way, when a large earth pressure acts on the outer peripheral surface of the cell shell 22A on the inner side of the revetment due to a difference between the water level on the outer sea side and the water level on the inner side of the revetment due to tides or the like, The pressure acting on the outer peripheral surface of the cell shell 22A becomes unbalanced on the outer sea side and the inner side of the revetment. As a result, the cell body 22 has a vertical direction and a horizontal direction perpendicular to the revetment normal as shown in FIG. Then, the shear load F acts.

前記剪断荷重Fは、図9に示すように、セル殻22Aの内側に中詰め材26のみが緻密に充填されている場合には、主に、この中詰め材26の粒子間摩擦による変形抵抗によって支えられている。   As shown in FIG. 9, when only the filling material 26 is densely filled inside the cell shell 22A, the shear load F is mainly subjected to deformation resistance due to interparticle friction of the filling material 26. Is supported by.

しかしながら、図11に示すように、中詰め材26の間に形成する遮水層30に、アスファルトマスチック等の低剛性の遮水材を用いた場合には、剪断荷重Fが長期的に作用すると、遮水層30にクリープ変形が生じて、この部分では前記剪断荷重Fを担持する力が減少してセル殻22Aに局所的な変形や亀裂等の損傷を生じる恐れがある。 However, as shown in FIG. 11, when a low-rigidity water shielding material such as asphalt mastic is used for the water shielding layer 30 formed between the filling materials 26, the shear load F acts for a long time. Further, creep deformation occurs in the water shielding layer 30, and in this portion, the force for carrying the shear load F is reduced, and there is a possibility that local deformation or damage such as cracks may occur in the cell shell 22A .

一方、遮水層30に、水中コンクリート等の高剛性の遮水材を用いた場合には、前述したようなクリープ変形により抗力の低下は回避できるが、このような高剛性の遮水材は、一般に変形し難い反面、急激に変動する力や衝撃力に対して弱く、地震等の短周期で変動する外力がセル殻22Aに作用すると、遮水層30の内部には局所的に過大な応力が作用し、その結果、遮水層30にひび割れ等が発生して遮水能力が損なわれてしまう恐れがある。   On the other hand, when a highly rigid water shielding material such as underwater concrete is used for the water shielding layer 30, a reduction in drag can be avoided by the creep deformation as described above, but such a highly rigid water shielding material is Although it is generally difficult to deform, it is weak against a rapidly changing force or impact force, and when an external force that changes in a short period such as an earthquake acts on the cell shell 22A, the inside of the water shielding layer 30 is locally excessive. As a result, there is a risk that the water shielding capability may be impaired due to the occurrence of cracks or the like in the water shielding layer 30 due to the stress.

そこで、本発明は、前述したような、従来技術における問題点を解消し、セル本体の強度を低下させること無く、セル殻の内側に遮水層を形成することができ、腐蝕等によってセル殻に漏水が生じた場合にも、護岸内側から外海への汚染水の漏出の危険性を極力回避することのできるセル本体の遮水構造を提供することを目的とする。   Therefore, the present invention eliminates the problems in the prior art as described above, and can form a water shielding layer inside the cell shell without reducing the strength of the cell body. It is an object of the present invention to provide a cell body water-blocking structure that can avoid the risk of leakage of contaminated water from the revetment inside to the open sea as much as possible even when water leaks.

前記目的のため、本発明の第1のものは、セル本体どうしをアーク部で連結するセル式遮水護岸に用いるセル本体の遮水構造であって、高剛性の遮水層と低剛性の遮水層が護岸法線と直交する垂直な境界面で隣接して、護岸法線方向に交互に配列されてなる複合遮水層が、セル殻の内側に、その水平断面全体に亘って垂直方向に所定幅で形成されていることを特徴としている。   For the above purpose, the first of the present invention is a cell body water-blocking structure used for a cell-type impermeable revetment in which cell bodies are connected to each other by an arc portion. A composite impermeable layer, in which the impermeable layers are adjacent to each other at a perpendicular boundary perpendicular to the revetment normal, and are alternately arranged in the direction of the revetment normal, is perpendicular to the inside of the cell shell over the entire horizontal section. It is characterized by being formed with a predetermined width in the direction.

また、本発明の第2のものは、セル本体どうしをアーク部で連結するセル式遮水護岸に用いるセル本体の遮水構造であって、遮水層の中に、護岸法線と直交する水平方向に作用する剪断荷重と、垂直方向に作用する剪断荷重を担持する高剛性部材が埋設されてなる複合遮水層が、セル殻の内側に、その水平断面全体に亘って垂直方向に所定幅で形成されており、前記高剛性部材は、複数本設けられており、これらの長手方向が水平方向であって前記護岸法線方向と直交する方向と一致しており、前記護岸法線方向で等間隔をあけて配置されていることを特徴としている。 Moreover, the 2nd thing of this invention is the water-impervious structure of the cell main body used for the cell-type water-impervious revetment which connects the cell main bodies with an arc part, Comprising: In a water-impervious layer, it is orthogonal to a revetment normal line A composite water-impervious layer formed by embedding a shear load acting in the horizontal direction and a high-rigidity member carrying the shear load acting in the vertical direction is set in the vertical direction over the entire horizontal section inside the cell shell. A plurality of the high-rigidity members are provided, the longitudinal direction of which is a horizontal direction and coincides with a direction orthogonal to the revetment normal direction, and the revetment normal direction It is characterized by being arranged at equal intervals .

請求項1に記載された発明によれば、セル殻の内側に、その水平断面全体に亘って、垂直方向に所定幅で形成した複合遮水層が、護岸法線と直交する垂直な境界面で隣接して、護岸法線方向に交互に配列されている高剛性の遮水層と低剛性の遮水層から構成されていることにより、複合遮水層に作用する剪断荷重は、主に、高剛性の遮水層で抗するため、低剛性の遮水層のクリープ変形を防止することができる。   According to the first aspect of the present invention, the vertical boundary surface perpendicular to the revetment normal is formed by the composite water-impervious layer formed with a predetermined width in the vertical direction over the entire horizontal cross section inside the cell shell. The shear load acting on the composite impermeable layer is mainly composed of a high-rigidity impermeable layer and a low-rigidity impermeable layer that are alternately arranged in the revetment normal direction. Since it resists with a high-rigidity impermeable layer, creep deformation of the low-rigidity impermeable layer can be prevented.

また、地震発生時には、低剛性の遮水層がセル殻の震動を吸収することによって、高剛性の遮水層内に過大な応力が作用することを抑制することができ、高剛性の遮水層をクラック等の損傷から保護することができる。   In addition, when an earthquake occurs, the low-rigidity impermeable layer absorbs the vibration of the cell shell, so that excessive stress can be prevented from acting in the high-rigidity impermeable layer. The layer can be protected from damage such as cracks.

その結果、中詰め材の中に複合遮水層を形成することによって、セル本体の強度の低下を招くことなく、セル殻内側の上方部分と下方部分との間を複合遮水層で遮水することが可能となり、錆びや腐蝕等によってセル殻に漏水が生じた場合にも、汚染水の外海への漏出の危険性を極力回避することができる。   As a result, by forming a composite water-impervious layer in the filling material, the composite water-impervious layer provides water shielding between the upper part and the lower part inside the cell shell without reducing the strength of the cell body. Therefore, even when water leaks in the cell shell due to rust or corrosion, the risk of leakage of contaminated water to the outside sea can be avoided as much as possible.

また、請求項2に記載された発明によれば、セル殻の内側に、その水平断面全体に亘って、垂直方向に所定幅で形成した複合遮水層を形成し、この複合遮水層に作用する剪断荷重は主に、高剛性部材に分担させるとともに、前記高剛性部材が埋設された遮水層が専らセル殻内側の遮水を行うようにしているため、請求項1の発明と同様に、セル本体の強度の低下を招くことなく、セル殻内側の上方部分と下方部分との間を複合遮水層で遮水することが可能となり、汚染水の外海への漏出の危険性を極力回避することができる。   According to the invention described in claim 2, a composite impermeable layer formed with a predetermined width in the vertical direction is formed on the inner side of the cell shell over the entire horizontal cross section thereof. Since the acting shear load is mainly shared by the high-rigidity member, the water-impervious layer in which the high-rigidity member is embedded exclusively performs the water shielding inside the cell shell. In addition, it is possible to block the water between the upper part and the lower part inside the cell shell with a composite water barrier layer without reducing the strength of the cell body, and the risk of leakage of contaminated water to the outside sea is reduced. It can be avoided as much as possible.

本発明の第1の実施形態における、鋼板セルの一部を示す、水平断面図である。It is a horizontal sectional view showing a part of steel plate cell in a 1st embodiment of the present invention. 図1のA−A断面を示す、断面図である。It is sectional drawing which shows the AA cross section of FIG. 図1のB−B断面を示す、断面図である。It is sectional drawing which shows the BB cross section of FIG. 本発明の第1の実施形態の変形例を示す、セル本体部分の断面図である。It is sectional drawing of the cell main-body part which shows the modification of the 1st Embodiment of this invention. 本発明の第1の実施形態の別の変形例を示す、セル本体部分の断面図である。It is sectional drawing of the cell main-body part which shows another modification of the 1st Embodiment of this invention. 本発明の第2の実施形態における、セル本体部分の水平断面図である。It is a horizontal sectional view of a cell body part in a 2nd embodiment of the present invention. 図6のA−A断面を示す断面図である。It is sectional drawing which shows the AA cross section of FIG. 図6のB−B断面を示す断面図である。It is sectional drawing which shows the BB cross section of FIG. 従来の鋼板セルにおける、セル本体の断面構造の一例を示す、斜視部分図である。It is a perspective fragmentary view which shows an example of the cross-section of the cell main body in the conventional steel plate cell. セル殻の腐蝕箇所からセル本体内に侵入した汚染水が外海へ漏れ出す経路を示す、セル本体部分の断面図である。It is sectional drawing of the cell main-body part which shows the path | route which the contaminated water which penetrate | invaded in the cell main body from the corrosion location of the cell shell leaks out to the open sea. セル殻の内側に遮水層を形成した状態を示す、セル本体の断面図である。It is sectional drawing of a cell main body which shows the state which formed the water shielding layer inside the cell shell.

以下、本発明の実施形態について説明する。
図1は、本発明の第1の実施形態を示す、鋼板セルの一部を示す水平断面図、図2は、図1のA−A断面における断面図、図3は、図1のB−B断面における断面図であって、これらの図に示す鋼板セル1は、先に図9で説明した従来のものと同様に、沿岸海域に構築される廃棄物海面処分場の遮水護岸に利用されるものである。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a horizontal sectional view showing a part of a steel plate cell according to the first embodiment of the present invention, FIG. 2 is a sectional view taken along a line AA in FIG. 1, and FIG. It is sectional drawing in B section, Comprising: The steel plate cell 1 shown to these figures is utilized for the impermeable revetment of the waste sea surface disposal site constructed in a coastal sea area like the conventional thing demonstrated previously in FIG. It is what is done.

図1に示すように、鋼板セル1は、護岸法線方向に複数配列された円筒状のセル本体2と、隣合うセル本体2の間に設けられているアーク部3から構成されている。アーク部3は、外海側と護岸内側(廃棄物海面処分場側)にそれぞれ配置されている円弧状の一対のアーク3A、3Bと、これらの内側に形成される空間内に充填されている中詰め材3Cから構成されていて、これらのアーク3A、3Bの両端はそれぞれ、セル本体2の円筒状の外殻を構成するセル殻2Aの外周面に、公知の遮水構造を備えた連結部4を介して連結されている。   As shown in FIG. 1, the steel plate cell 1 includes a cylindrical cell body 2 arranged in a plurality in the revetment normal direction and an arc portion 3 provided between the adjacent cell bodies 2. The arc part 3 is filled in a pair of arc-shaped arcs 3A and 3B respectively disposed on the outer sea side and the revetment inner side (waste sea surface disposal site side), and in a space formed inside these arcs. Each of the arcs 3A and 3B is composed of a stuffing material 3C, and both ends of the arcs 3A and 3B are connected to the outer peripheral surface of the cell shell 2A constituting the cylindrical outer shell of the cell body 2 with a known water-blocking structure. 4 are connected.

図2に示すように、鋼板セル1が設置される不透水性の海底地盤5には、護岸法線方向に延びる横断面矩形状の凹部5Aが掘削形成されていて、それぞれのセル本体2は、前記凹部5A内に敷かれた基礎捨て石6の上に置かれている。   As shown in FIG. 2, a concave portion 5A having a rectangular cross section extending in the direction of the seawall normal is excavated and formed in the impermeable seabed 5 where the steel plate cell 1 is installed. , Is placed on the foundation waste stone 6 laid in the recess 5A.

また、海底地盤5の凹部5Aの中に入り込んでいるセル殻2Aの下部の外周面と、前記凹部5Aの垂直な壁面との間は、遮水材7が充填されて遮水されている。なお、図示していないが、隣合うセル本体2間に設けられているアーク部3の下部も、セル本体2と同様に、凹部5A内に配置されていて、アーク3A、3Bのそれぞれの外周面の下部と凹部5Aの垂直な壁面との間も、前記遮水材7で遮水されている。   Further, a water shielding material 7 is filled between the outer peripheral surface of the lower part of the cell shell 2A entering the concave portion 5A of the submarine ground 5 and the vertical wall surface of the concave portion 5A to block the water. Although not shown, the lower part of the arc part 3 provided between the adjacent cell main bodies 2 is also arranged in the recess 5A in the same manner as the cell main body 2, and the outer periphery of each of the arcs 3A and 3B. The lower portion of the surface and the vertical wall surface of the concave portion 5A are also shielded by the water shielding material 7.

図2及び図3に示すように、セル殻2Aの内側には、その水平断面全体に亘って、垂直方向に所定幅dで複合遮水層8が形成されており、また、複合遮水層8から上方の天蓋9までの間と、複合遮水層8から下方のセル殻2Aの下端までの間には、それぞれ中詰め材10が充填されている。   As shown in FIGS. 2 and 3, a composite water shielding layer 8 having a predetermined width d is formed in the vertical direction across the entire horizontal cross section of the cell shell 2 </ b> A. Filling material 10 is filled between 8 and the upper canopy 9 and between the composite water shielding layer 8 and the lower end of the lower cell shell 2A.

既に図11においても説明したが、外海の潮位変動等によって、セル殻2Aの両側の水位の間に高低差が生じると、セル殻2Aには図2に示すように、護岸法線と直交する水平方向と、垂直方向にそれぞれ剪断荷重Fが作用する。   As already described with reference to FIG. 11, if a difference in level occurs between the water levels on both sides of the cell shell 2A due to tide level fluctuations in the open sea, the cell shell 2A is orthogonal to the revetment normal as shown in FIG. A shear load F acts on the horizontal direction and the vertical direction, respectively.

なお、図2に示す剪断荷重Fの向きは、護岸内側の水位より外海側が低位である場合の向きを示したものであり、護岸内側より外海側の水位が高位になった場合には、同図に示す向きと反対向きに作用する。   The direction of the shear load F shown in FIG. 2 indicates the direction when the outside sea side is lower than the water level inside the revetment, and when the water level on the outside sea side is higher than the inside of the revetment, It acts in the opposite direction to that shown in the figure.

本実施形態のものにおいては、セル殻2Aに作用するこのような剪断荷重Fを、複合遮水層8においても分担できるようにするため、図1及び図3に示すように、前記複合遮水層8は、護岸法線と直交する垂直な境界面Vで隣接して護岸法線方向に交互に配列された、高剛性の遮水層8Aと低剛性の遮水層8Bから構成されている。   In the present embodiment, in order to share such a shear load F acting on the cell shell 2A also in the composite water-impervious layer 8, as shown in FIG. 1 and FIG. The layer 8 is composed of a high-rigidity impermeable layer 8A and a low-rigidity impermeable layer 8B that are adjacent to each other at a perpendicular boundary surface V orthogonal to the revetment normal and are alternately arranged in the direction of the revetment normal. .

ここで、高剛性の遮水層8Aとしては、例えば、コンクリート系の硬質の遮水材を用いることができ、また、低剛性の遮水層8Bとしては、例えば、アスファルトマスチック等の軟質の遮水材を用いることができる。   Here, as the highly rigid water shielding layer 8A, for example, a concrete hard water shielding material can be used, and as the low rigidity water shielding layer 8B, for example, a soft water shielding material such as asphalt mastic is used. Water material can be used.

本実施形態のものにおいては、図2に示すように複合遮水層8に作用する剪断荷重Fを、高剛性の遮水層8Aと低剛性の遮水層8Bで分担して担持するため、高剛性の遮水層8Aによって、低剛性の遮水層8Bのクリープ変形が防止できる。   In the present embodiment, as shown in FIG. 2, the shear load F acting on the composite water shielding layer 8 is shared and supported by the high rigidity water shielding layer 8A and the low rigidity water shielding layer 8B. Creep deformation of the low-rigidity impermeable layer 8B can be prevented by the high-rigidity impermeable layer 8A.

また、地震発生時には、低剛性の遮水層8Bがセル殻2Aの震動を吸収し、高剛性の遮水層8A内に過大な応力が作用することを抑制でき、高剛性の遮水層8Aをクラック等の損傷から保護することができる。   Further, when an earthquake occurs, the low-rigidity impermeable layer 8B absorbs the vibration of the cell shell 2A, and it is possible to suppress an excessive stress from acting in the high-rigidity impermeable layer 8A. Can be protected from damage such as cracks.

その結果、セル本体2の強度を低下させること無く、セル殻2Aの内側の上方部分と下方部分と間を複合遮水層8によって遮水することが可能となる。なお、図示は省略するが、アーク部3の内部においても、前述した複合遮水層8と同様な構造の複合遮水層を形成することができる。   As a result, it is possible to shield water between the upper portion and the lower portion inside the cell shell 2A by the composite water shielding layer 8 without reducing the strength of the cell body 2. In addition, although illustration is abbreviate | omitted, the composite water shielding layer of the structure similar to the composite water shielding layer 8 mentioned above can be formed also in the inside of the arc part 3. FIG.

なお、このような複合遮水層を構成する遮水材は、前述した本実施形態のものに限定するものではなく、例えば、アスファルト系遮水材、コンクリート系遮水材、土質系遮水材の他、アスファルトマットや遮水シートの中から、高剛性の遮水層用のものと、低剛性の遮水層用のものを、それぞれ一種類ずつ、若しくは、複数種類ずつ組み合わせて用いることができる。   Incidentally, the water shielding material constituting such a composite water shielding layer is not limited to that of the above-described embodiment, and for example, an asphalt water shielding material, a concrete water shielding material, and a soil water shielding material. In addition, from among asphalt mats and water shielding sheets, one for high rigidity water shielding layer and one for low rigidity water shielding layer may be used, one each or a combination of several types. it can.

また、高剛性の遮水層は、遮水層の中に、護岸法線と直交する水平方向とに作用する剪断荷重と、垂直方向に作用する剪断荷重を担持できるように構成された鉄筋や鉄骨等の高剛性部材を埋設した、例えば、鉄筋コンクリートや鉄骨コンクリートのような複合体で形成してもよい。   In addition, the high-rigidity impermeable layer includes a reinforcing bar configured to carry a shear load acting in the horizontal direction perpendicular to the seawall normal and a shear load acting in the vertical direction in the impermeable layer. For example, it may be formed of a composite such as reinforced concrete or steel concrete in which a highly rigid member such as a steel frame is embedded.

次に、図4は、前述した実施形態の変形例を示すものであって、この例では、複合遮水層8は、既設の鋼板セル1の護岸内側のセル殻2Aの外周面が、海水や風雨に曝されて腐蝕により孔hが開いた箇所を補修する際、セル殻2Aの内側への汚染水の浸入を阻止するために、後から形成したもので、この複合遮水層8は、天蓋9を開けて上部の中詰め材10を一旦除去してから、孔hを内側から塞ぐように垂直方向に所定幅で形成し、その後、複合遮水層8の上方部分に中詰め材10を再充填したものである。   Next, FIG. 4 shows a modified example of the above-described embodiment. In this example, the composite water shielding layer 8 has an outer peripheral surface of the cell shell 2A inside the revetment of the existing steel plate cell 1 and seawater. This composite impermeable layer 8 is formed later in order to prevent the intrusion of contaminated water into the inside of the cell shell 2A when repairing a portion where the hole h is opened by corrosion due to exposure to wind and rain. Then, after opening the canopy 9 and removing the upper filling material 10 at the top, it is formed with a predetermined width in the vertical direction so as to close the hole h from the inside, and thereafter, the filling material is formed in the upper part of the composite water shielding layer 8. 10 is refilled.

また、図5は、前述した実施形態のさらに別の変形例を示すものであって、この例においては、複合遮水層8はその底面が基礎捨て石6と隣接するように、セル殻2Aの内側底部に形成されている。また、セル殻2Aの内壁面には、複合遮水層8と天蓋9との間で全周に亘って遮水シート11が貼り付けられており、セル殻2Aに腐蝕等によって孔が開いた場合に、前記遮水シート11によって、中詰め材10側への汚染水の浸入が遮断されるようにしてある。   FIG. 5 shows still another modification of the above-described embodiment. In this example, the composite water shielding layer 8 is formed on the cell shell 2A so that the bottom surface thereof is adjacent to the foundation waste stone 6. It is formed on the inner bottom. Further, on the inner wall surface of the cell shell 2A, a water-impervious sheet 11 is affixed over the entire circumference between the composite water-impervious layer 8 and the canopy 9, and a hole is opened in the cell shell 2A due to corrosion or the like. In such a case, the water-impervious sheet 11 prevents entry of contaminated water into the filling material 10 side.

また、万一この遮水シート11が漏水した場合にも、セル殻2Aの内側底部に形成されている複合遮水層8で漏水は阻止されるため、廃棄物海面処分場から漏れ出した汚染水が基礎捨て石6内に浸入する可能性は極めて少ない。   Also, in the event that the water shielding sheet 11 leaks, the composite water shielding layer 8 formed at the inner bottom of the cell shell 2A prevents the water leakage, so that the pollution leaked from the waste sea surface disposal site. There is very little possibility that water will enter the foundation waste stone 6.

なお、以上に説明した第1の実施形態のものにおいては、複合遮水層8の垂直方向の幅d(図2及び図3参照)は高剛性の遮水層8Aと低剛性の遮水層8Bにそれぞれ用いる遮水材の遮水性能等に応じて所望の幅に設定することができる。また、このような複合遮水層8は、セル殻2Aの内側に上下複数段に形成してもよい。   In the first embodiment described above, the vertical width d (see FIGS. 2 and 3) of the composite water shielding layer 8 is the high rigidity water shielding layer 8A and the low rigidity water shielding layer. It can be set to a desired width according to the water shielding performance of the water shielding material used for 8B. Moreover, you may form such a composite water-impervious layer 8 in the upper and lower stages in the cell shell 2A.

次に、図6は、本発明の第2の実施形態における、セル本体部分を示す水平断面図、図7は、図6のA−A断面を示す断面図、図8は、図6のB−B断面を示す断面図である。本実施形態のものは、複合遮水層8’を除き、前述した第1の実施形態のものと構造は同じである。   Next, FIG. 6 is a horizontal sectional view showing the cell main body portion in the second embodiment of the present invention, FIG. 7 is a sectional view showing the AA section of FIG. 6, and FIG. It is sectional drawing which shows -B cross section. The structure of this embodiment is the same as that of the first embodiment described above, except for the composite water shielding layer 8 '.

本実施形態のものにおいては、トラス構造の鋼鉄製の枠組からなる複数の高剛性部材8’Aが遮水層8’Bの中に埋設されて複合遮水層8’が構成されている。これらの高剛性部材8’Aは、図6及び図8に示すように、それぞれの長手方向を、護岸法線と直交する水平方向に平行になるように、セル殻2Aの内側に、護岸法線方向に等間隔に配置されている。   In the present embodiment, a plurality of high-rigidity members 8'A made of a truss-structured steel frame are embedded in the water-impervious layer 8'B to form a composite water-impervious layer 8 '. As shown in FIGS. 6 and 8, these high-rigidity members 8 ′ A are provided on the inner side of the cell shell 2 </ b> A so that their longitudinal directions are parallel to the horizontal direction orthogonal to the seawall normal line. They are arranged at equal intervals in the line direction.

また、これらの高剛性部材8’Aの長手方向の両端部は、セル殻2Aの内壁面とそれぞれ連結されていて、セル殻2Aに作用する護岸法線と直交する水平方向に作用する剪断荷重と、垂直方向に作用する剪断荷重とを分担できる構造になっている。 Further, both ends in the longitudinal direction of these high-rigidity members 8′A are connected to the inner wall surface of the cell shell 2A , respectively, and a shear load acting in the horizontal direction perpendicular to the revetment normal acting on the cell shell 2A. And a shear load acting in the vertical direction.

この実施形態のものにおいては、セル殻2Aに作用する剪断荷重を主に、トラス構造の鋼鉄製の組枠で構成されている高剛性部材8’Aが抗する構造であるため、遮水層8’Bには、例えば、アスファルトマスチック等の低剛性で地震の際の振動減衰効果に優れたものを使用すると効果的である。   In this embodiment, since the high rigidity member 8′A composed mainly of a truss structure steel frame resists the shear load acting on the cell shell 2A, the water shielding layer For 8′B, for example, it is effective to use an asphalt mastic or the like having a low rigidity and an excellent vibration damping effect during an earthquake.

また、この実施形態のもののように、高剛性部材8’Aを鋼鉄製としている場合には、前記剪断荷重によって、複合遮水層8’内に作用する引っ張り応力を、高剛性部材8’Aが分担するため、遮水層8’Bには、引張り荷重に対して脆弱な、コンクリート系等の高剛性の遮水材も使用可能である。   Further, when the high-rigidity member 8′A is made of steel as in this embodiment, the tensile stress acting in the composite water-impervious layer 8 ′ due to the shearing load is increased by the high-rigidity member 8′A. Therefore, a highly rigid water shielding material such as concrete that is fragile to a tensile load can be used for the water shielding layer 8'B.

さらに、前記複合遮水層8’は、先に説明した第1の実施形態のものにおける複合遮水層8と同様に、セル殻2A内での垂直方向の幅dは、遮水層8’Bに用いている遮水材の遮水性能等に応じた幅とすることができる。また、必要に応じて、このような複合遮水層を、セル殻2Aの内側に上下複数段に形成してもよい。   Further, the composite water-impervious layer 8 ′ has a vertical width d within the cell shell 2A, similar to the composite water-impervious layer 8 in the first embodiment described above, and the water-impervious layer 8 ′. The width can be set according to the water shielding performance of the water shielding material used for B. Moreover, you may form such a composite water-impervious layer on the inner side of the cell shell 2A in a plurality of upper and lower stages as necessary.

また、本実施形態のものにおいては、高剛性部材8’Aを複数の独立した鋼鉄製の枠組みで構成しているが、これらの高剛性部材8’Aは、相互に連結部材で連結して一体化してもよい。また、複合遮水層に用いる高剛性部材は、セル殻に作用する護岸法線と直交する水平方向に作用する剪断荷重と、垂直方向に作用する剪断荷重とを分担できる構造でありさえすればよく、例えば、このような複合遮水層を、鉄筋や鉄骨を高剛性部材として防水コンクリートの遮水層中に埋設した、鉄筋コンクリート製や鉄骨コンクリート製、もしくはハイブリッド製としてもよい。   Further, in the present embodiment, the high-rigidity member 8′A is constituted by a plurality of independent steel frames, but these high-rigidity members 8′A are connected to each other by a connecting member. You may integrate. In addition, the high-rigidity member used for the composite water-impervious layer only needs to have a structure capable of sharing the shear load acting in the horizontal direction perpendicular to the seawall normal acting on the cell shell and the shear load acting in the vertical direction. For example, such a composite water shielding layer may be made of reinforced concrete, steel concrete, or a hybrid that is embedded in a water shielding layer of waterproof concrete using reinforcing bars or steel frames as high-rigidity members.

また、アークの鋼板からその内側への漏水対策についてはここでは説明を省略しているが、複合遮水層8’と同様な構造の複合遮水層をアーク部内にも形成することが可能である。   Further, the description of the countermeasure against water leakage from the arc steel plate to the inside thereof is omitted here, but it is possible to form a composite water shielding layer having the same structure as that of the composite water shielding layer 8 'in the arc portion. is there.

なお、第1の実施形態ならびに第2の実施形態のそれぞれのものは、何れも、海底地盤5に掘削形成した凹部5A内に基礎捨て石6を敷設し、その上にセル本体2を置いて、セル殻2Aの外周面下部と凹部5Aの垂直な壁面との間を遮水材7で遮水する構造のものについて説明しているが、本発明のセル本体の遮水構造は、このようなものに限定するものではなく、根入れ鋼板セルにおけるセル本体の遮水構造についても、同様に実施することが可能である。   In each of the first embodiment and the second embodiment, the foundation waste stone 6 is laid in the recessed portion 5A excavated and formed in the seabed ground 5, and the cell body 2 is placed thereon, The structure having a water shielding material 7 between the lower part of the outer peripheral surface of the cell shell 2A and the vertical wall surface of the recess 5A has been described, but the water shielding structure of the cell body of the present invention has such a structure. However, the present invention is not limited to this, and the water shielding structure of the cell body in the rooted steel plate cell can be similarly implemented.

本発明のセル本体の遮水構造は、鋼板セルや根入れ式鋼板セルによって廃棄物海面処分場等のセル式遮水護岸を構築する際に利用することができる。   The water-impervious structure of the cell body of the present invention can be used when building a cell-type water-impervious revetment such as a waste sea surface disposal site by using a steel plate cell or an embedded steel plate cell.

1 鋼板セル
2 セル本体
2A セル殻
3 アーク部
3A、3B アーク
3C 中詰め材
4 連結部
5 海底地盤
5A 凹部
6 基礎捨て石
7 遮水材
8、8’ 複合遮水層
8A 高剛性の遮水層
8B 低剛性の遮水層
8’A 高剛性部材
8’B 遮水層
9 天蓋
10 中詰め材
11 遮水シート
V 境界面
F 剪断荷重
DESCRIPTION OF SYMBOLS 1 Steel plate cell 2 Cell main body 2A Cell shell 3 Arc part 3A, 3B Arc 3C Filling material 4 Connection part 5 Submarine ground 5A Concave part 6 Foundation waste stone 7 Water-insulating material 8, 8 'Composite water-insulating layer 8A High-rigidity water-insulating layer 8B Low rigidity water shielding layer 8'A High rigidity member 8'B Water shielding layer 9 Canopy 10 Filling material 11 Water shielding sheet V Interface F Shear load

Claims (2)

セル本体どうしをアーク部で連結するセル式遮水護岸に用いるセル本体の遮水構造であって、
高剛性の遮水層と低剛性の遮水層が護岸法線と直交する垂直な境界面で隣接して、護岸法線方向に交互に配列されてなる複合遮水層が、セル殻の内側に、その水平断面全体に亘って垂直方向に所定幅で形成されていることを特徴とするセル本体の遮水構造。
A cell body water-blocking structure used for cell-type impermeable revetment where the cell bodies are connected by an arc part,
A composite impermeable layer consisting of a high-rigidity impermeable layer and a low-rigidity impermeable layer adjacent to each other at a perpendicular boundary perpendicular to the revetment normal, and arranged alternately in the direction of the revetment normal, is located inside the cell shell. In addition, the cell body is provided with a predetermined width in the vertical direction over the entire horizontal cross section.
セル本体どうしをアーク部で連結するセル式遮水護岸に用いるセル本体の遮水構造であって、
遮水層の中に、護岸法線と直交する水平方向に作用する剪断荷重と、垂直方向に作用する剪断荷重に抗する高剛性部材が埋設されてなる複合遮水層が、セル殻の内側に、その水平断面全体に亘って垂直方向に所定幅で形成されており、
前記高剛性部材は、複数本設けられており、これらの長手方向が水平方向であって前記護岸法線方向と直交する方向と一致しており、前記護岸法線方向で等間隔をあけて配置されていることを特徴とするセル本体の遮水構造。
A cell body water-blocking structure used for cell-type impermeable revetment where the cell bodies are connected by an arc part,
A composite impermeable layer with a shear load acting in the horizontal direction perpendicular to the seawall normal and a highly rigid member that resists the shear load acting in the vertical direction is embedded inside the cell shell. Furthermore, it is formed with a predetermined width in the vertical direction over the entire horizontal section ,
A plurality of the high-rigidity members are provided, and the longitudinal directions thereof are horizontal and coincide with the direction perpendicular to the revetment normal direction, and are arranged at equal intervals in the revetment normal direction. The water-blocking structure of the cell main body characterized by being made .
JP2012126906A 2012-06-04 2012-06-04 Cell body water-blocking structure Active JP6018804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012126906A JP6018804B2 (en) 2012-06-04 2012-06-04 Cell body water-blocking structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012126906A JP6018804B2 (en) 2012-06-04 2012-06-04 Cell body water-blocking structure

Publications (2)

Publication Number Publication Date
JP2013249689A JP2013249689A (en) 2013-12-12
JP6018804B2 true JP6018804B2 (en) 2016-11-02

Family

ID=49848636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012126906A Active JP6018804B2 (en) 2012-06-04 2012-06-04 Cell body water-blocking structure

Country Status (1)

Country Link
JP (1) JP6018804B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7083656B2 (en) * 2018-02-08 2022-06-13 日立造船株式会社 Installation method of steel plate cell and steel plate cell
JP7209290B2 (en) * 2019-03-05 2023-01-20 エム・エムブリッジ株式会社 Revetment structure and bank protection construction method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147756U (en) * 1983-03-24 1984-10-02 住友金属工業株式会社 Steel plate cellular concrete caisson
JP2002227166A (en) * 2001-02-02 2002-08-14 Nkk Corp Impermeable revetment structure using solidified earth
JP4139871B2 (en) * 2003-06-30 2008-08-27 清水建設株式会社 Steel plate cell revetment

Also Published As

Publication number Publication date
JP2013249689A (en) 2013-12-12

Similar Documents

Publication Publication Date Title
JP5445351B2 (en) Filling reinforcement structure
JP5157710B2 (en) Embankment reinforcement structure
JP5464370B2 (en) Filling reinforcement structure
JP2016148176A (en) Undersea tunnel construction method and land tunnel construction method
JP5024489B1 (en) Embankment
JP2011236657A (en) Earthquake proof reinforced structure for revetment structure and existing revetment structure
JP5846150B2 (en) Construction method of river revetment structure
JP5407995B2 (en) Filling reinforcement structure
JP5488125B2 (en) Filling reinforcement structure
JP6018804B2 (en) Cell body water-blocking structure
KR101253410B1 (en) Connecting structure of steel pipe sheet pile
KR20110046209A (en) Method Of Construction For Scour Prevension And Reinforcement Of Bridge Pier, And Structure Of The Same
US8931976B2 (en) Tsunami breakwater wall of multilayered steel pipe pile structure and its construction method
JP6292028B2 (en) Embankment reinforcement structure
JP6017302B2 (en) Construction and its construction method
JP2012202042A (en) Combination steel sheet pile having drainage function and wall body structure using the steel sheet pile
JP2008081960A (en) Ocean wave protection structure
JP2007105618A (en) Water barrier structure of waste landfill site
JP2014009447A (en) Construction method for impermeable seawall
JP6013889B2 (en) Upper concrete impermeable structure of revetment impermeable wall
JP7362325B2 (en) seawall
JP5348055B2 (en) Filling reinforcement structure
JP7359515B2 (en) Liquefaction countermeasure structure for underground structures
JP7240284B2 (en) Connection structure of steel structure and precast concrete member, structural wall having the connection structure, and connection method of steel structure and precast concrete member
JP5046283B2 (en) Partition revetment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161003

R150 Certificate of patent or registration of utility model

Ref document number: 6018804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250