JP2012000630A - Laser welding apparatus - Google Patents

Laser welding apparatus Download PDF

Info

Publication number
JP2012000630A
JP2012000630A JP2010136761A JP2010136761A JP2012000630A JP 2012000630 A JP2012000630 A JP 2012000630A JP 2010136761 A JP2010136761 A JP 2010136761A JP 2010136761 A JP2010136761 A JP 2010136761A JP 2012000630 A JP2012000630 A JP 2012000630A
Authority
JP
Japan
Prior art keywords
welding
laser
welded
welding apparatus
laser welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010136761A
Other languages
Japanese (ja)
Other versions
JP5419807B2 (en
Inventor
Sho Tarasawa
湘 多羅沢
Eiji Ashida
栄次 芦田
Xudong Zhang
旭東 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2010136761A priority Critical patent/JP5419807B2/en
Publication of JP2012000630A publication Critical patent/JP2012000630A/en
Application granted granted Critical
Publication of JP5419807B2 publication Critical patent/JP5419807B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laser welding apparatus capable of continuous lamination welding, especially whose welding quality is stable in a laser welding method in which a welding part of a material to be welded is irradiated with a laser beam and laminate welding is applied to a groove part while supplying a welding wire to an irradiation part of the laser beam.SOLUTION: The laser welding apparatus includes: a machining head 8 for irradiating the material to be welded with a collected laser beam; a feeding means 16 for feeding the welding wire to the irradiation part of the laser beam; a shielding gas supply means 6 for protecting a molten pool formed by the irradiation of the laser beam and the vicinity; a means for moving the machining head or the material to be welded; a machining head protection means for protecting an optical component of the machining head from a welding product generated from a molten part; a sucking means 19 for sucking fume produced in welding; a protection means 18 for protecting the machining head from the reflected laser beam and radiation heat from the welding part; and a cleaning means 20 for removing the welding product deposited on a surface of welding metal lamination-welded.

Description

本発明は、被溶接材の溶接部にレーザ光を照射し、レーザ光の照射部に溶接ワイヤを供給しながら開先部を積層溶接するレーザ溶接において、特に溶接品質が高くかつ安定し、しかも連続的な積層溶接が可能なレーザ溶接装置に関する。   The present invention is particularly suitable for laser welding in which a welded portion of a material to be welded is irradiated with a laser beam and the groove portion is laminated and welded while supplying a welding wire to the irradiated portion of the laser beam, and the welding quality is particularly high and stable. The present invention relates to a laser welding apparatus capable of continuous lamination welding.

レーザ溶接は、熱源のレーザビームのエネルギー密度が高いため、通常のアーク溶接に比べて深い溶込みが得られる。さらに、低歪みで高精度の溶接部が高速度で得られることから、各方面で使用されている。一方、レーザ溶接では、レーザビームの集光スポットサイズが小さいため、溶接部のギャップに対する裕度が低いという難点を有する。従って、突合せ溶接において溶接のギャップが避けられない場合には、溶接ワイヤを供給しながらレーザ溶接が行われている。   In laser welding, since the energy density of the laser beam of the heat source is high, deep penetration can be obtained as compared with ordinary arc welding. Furthermore, since a highly accurate welded portion with low distortion can be obtained at a high speed, it is used in various directions. On the other hand, laser welding has a difficulty in that the tolerance to the gap of the welded portion is low because the condensing spot size of the laser beam is small. Therefore, when a welding gap cannot be avoided in butt welding, laser welding is performed while supplying a welding wire.

さらに、レーザ溶接は高エネルギー密度を有するが、厚板の鋼板を貫通溶接で接合することは容易ではない。世間一般で広く使用されている最大出力数kWから十数kWのレーザにおいても、厚さ25mmを超える厚板の溶接を行うためには、突合せ溶接の際に開先を設けて、レーザと溶接ワイヤとを併用することにより多層溶接が行われている。   Furthermore, although laser welding has a high energy density, it is not easy to join thick steel plates by through welding. In order to weld a thick plate exceeding 25 mm in thickness, even with a laser with a maximum output of several kW to several tens of kW widely used in general, a groove is provided at the time of butt welding, and the laser and the weld Multi-layer welding is performed by using a wire together.

特許文献1には、被溶接部をより狭い開先幅に設定し、溶接ワイヤを供給しつつレーザビームを溶接ワイヤに照射する積層溶接方法が開示されている。   Patent Document 1 discloses a lamination welding method in which a welded portion is set to a narrower groove width and a laser beam is applied to the welding wire while supplying the welding wire.

特許文献2には、溶接ワイヤを添加する開先レーザ溶接方法において、溶接ワイヤを予熱して溶接ワイヤを溶融させるのに必要なエネルギーと溶接時間を低減し、溶接部形状が約2以上のアスペクトを有するレーザ溶接方法が開示されている。   In Patent Document 2, in a groove laser welding method in which a welding wire is added, the energy and welding time required for preheating the welding wire and melting the welding wire are reduced, and the aspect of the welded portion is about 2 or more. A laser welding method is disclosed.

特許文献3には、突合せ部に狭開先を設けることと共に、開先の底部に曲率およびルート面を設け、かつ、溶接金属の溶け込み幅に対する溶け込み深さの比は、1以上1.4以下であるレーザ溶接方法が開示されている。   In Patent Document 3, a narrow groove is provided at the butt portion, a curvature and a root surface are provided at the bottom of the groove, and the ratio of the penetration depth to the penetration width of the weld metal is 1 or more and 1.4 or less. A laser welding method is disclosed.

特許文献4には、加工ヘッドの保護ガラスに溶融部から発生する煙およびスパッタの付着を防止するために、保護ガラスの下部にエア流出手段と、流出されるエアをフィルターを通して吸引する吸引装置を備えたレーザ溶接装置が開示されている。   In Patent Document 4, in order to prevent the smoke and spatter generated from the melting portion on the protective glass of the processing head, an air outflow means and a suction device for sucking out the air flowing out through a filter are provided below the protective glass. A laser welding apparatus is provided.

特許文献5には、連続波またはパルス波の熱加工レーザとパルス波の表面処理用レーザ光を射出する発振器を備えたレーザ加工装置が開示されている。   Patent Document 5 discloses a laser processing apparatus including an oscillator that emits a continuous wave or pulse wave thermal processing laser and a pulse wave surface treatment laser beam.

非特許文献1には、COレーザを用いた開先レーザ溶接方法において、レーザ照射部の溶接進行方向の前方に内径1mmのプラズマ除去サイドノズルを配置し、ガスを吹付けると共に、レーザ照射部に溶接ワイヤを供給しながら溶接するレーザ溶接方法が開示されている。 Non-Patent Document 1 discloses that in a groove laser welding method using a CO 2 laser, a plasma removal side nozzle having an inner diameter of 1 mm is arranged in front of the laser irradiation portion in the welding progress direction, and a gas is blown. Discloses a laser welding method for welding while supplying a welding wire.

特開平9−201687号公報JP-A-9-201687 特表2005−515895号公報JP 2005-515895 A 特開2007−190586号公報JP 2007-190586 A 特開昭59−16692号公報JP 59-16692 A 特開2008−254006号公報JP 2008-254006 A

Yoshiaki Arata、 Hiroshi Maruo、 Isamu Miyamoto、 Ryoji Nishio. High Power CO2 Laser Welding of Thick Plate. Transactions of JWRI、 15(2)、 1986、 27-34Yoshiaki Arata, Hiroshi Maruo, Isamu Miyamoto, Ryoji Nishio.High Power CO2 Laser Welding of Thick Plate.Transactions of JWRI, 15 (2), 1986, 27-34

原子力発電プラント用炉心シュラウド等のような円筒形の厚板の大型構造物の溶接において、溶接開先を形成して積層溶接を行う場合、多層溶接は多くの時間を必要とするため連続的に溶接することが望ましい。しかし出力が数kW以上の大出力のレーザ溶接では、溶接部から発生するヒューム(金属蒸気が凝固することによって発生する金属の微粒子及び金属化合物微粒子)やスパッタ(溶融金属飛散物)等の溶接生成物、および溶融部からの輻射熱及び反射光が多く生じ、長時間の連続溶接が実現されていない。   In the welding of large structures of thick cylindrical plates such as core shrouds for nuclear power plants, when welding is performed by forming a welding groove, multilayer welding requires a lot of time and is continuously It is desirable to weld. However, in high-power laser welding with an output of several kW or more, welding generation such as fumes (metal fine particles and metal compound fine particles generated by solidification of metal vapor) and spatter (molten metal scattered matter) generated from the welded part A lot of radiant heat and reflected light are generated from the object and the melted part, and continuous welding for a long time is not realized.

レーザの多層溶接は図7に示すように被溶接材1a、1bを突合せ、突合せ部に開先2を形成し、開先2に溶接ワイヤ3を給送しながらレーザ光4を照射し、溶接金属5を積層して溶接を行う。レーザ溶接においては、被溶接材側への溶込みを確保し溶接ワイヤ3を安定的に溶融させるために、レーザ光4は焦点位置をずらしてディフォーカス条件で照射することが行われている。また、開先2を埋める溶接金属量を増加するために、高出力の条件が用いられている。6はシールドガスノズル、7は光学系保護筒、8はレーザ光を集光する光学系を有する加工ヘッド、9はヒューム、10はレーザ光の反射光、11は光ファイバである。   As shown in FIG. 7, laser multi-layer welding is performed by butting the welded materials 1a and 1b, forming a groove 2 at the butted portion, and irradiating laser beam 4 while feeding a welding wire 3 to the groove 2. Metal 5 is laminated and welded. In laser welding, the laser beam 4 is irradiated under defocus conditions while shifting the focal position in order to ensure penetration into the workpiece and to melt the welding wire 3 stably. Further, in order to increase the amount of weld metal filling the groove 2, a high output condition is used. 6 is a shield gas nozzle, 7 is an optical system protection cylinder, 8 is a processing head having an optical system for condensing laser light, 9 is a fume, 10 is reflected light of the laser light, and 11 is an optical fiber.

レーザ溶接はエネルギー密度が高いので、レーザ照射により被溶接材表面で金属蒸発や溶融金属の飛散が生じ、多量のヒュームやスパッタが発生する。このヒュームやスパッタは、レーザ出力が高い場合やディフォーカス条件では発生量がさらに増加する傾向にある。   Since laser welding has a high energy density, the laser irradiation causes metal evaporation and molten metal scattering on the surface of the material to be welded, and a large amount of fume and spatter are generated. The amount of generation of fumes and sputtering tends to further increase when the laser output is high or under defocus conditions.

特にヒュームについて説明すると、ヒュームは溶融凝固した溶接金属の表面や開先壁に付着する。ヒュームが付着した状態で次層の積層を行うと、融合不良やポロシティ等の溶接欠陥が発生する。ヒュームの溶接金属表面への付着を防止するため、溶接部を空気から遮断し溶接金属の酸化を防止するため、シールド用ガスを溶接部に供給している。   When fume is explained in particular, fume adheres to the surface of the weld metal that has been melted and solidified and to the groove wall. When the next layer is laminated with fume attached, welding defects such as poor fusion and porosity occur. In order to prevent fume from adhering to the surface of the weld metal, a shielding gas is supplied to the weld in order to shield the weld from the air and prevent oxidation of the weld metal.

しかし、開先が深い場合にはヒュームの完全な付着防止が困難である。そこで、溶接後にブラシ等で溶接金属及び開先壁に付着したヒュームの溶接生成物を物理的に除去した後で、次層の溶接を行っている。このため、円筒物の周溶接のような場合には、1パス溶接ごとに、溶接金属表面及び開先壁の清掃作業が必要となるため、連続溶接が行えず溶接能率が悪い。また、ヒュームは金属蒸気が凝固することによって発生する金属の微粒子及び金属化合物微粒子であり、吸湿等により一層除去しにくくなるという問題がある。   However, when the groove is deep, it is difficult to completely prevent fume adhesion. Then, after welding, the welding product of the fumes adhering to the weld metal and the groove wall is physically removed with a brush or the like, and then the next layer is welded. For this reason, in the case of circumferential welding of a cylindrical object, since the welding metal surface and the groove wall need to be cleaned for each pass welding, continuous welding cannot be performed and welding efficiency is poor. Further, fumes are metal fine particles and metal compound fine particles generated by solidification of metal vapor, and there is a problem that it becomes more difficult to remove due to moisture absorption or the like.

また、ヒュームやスパッタが加工ヘッドのレーザ光の集光光学系またはその保護ガラス、フィルタ等に付着すると、レーザ出力、ビーム形状等が変化するので安定した溶接が出来ない。そのため、従来は特許文献4のように、保護ガラスの下部にエアを噴出させ、光学系へのヒューム及びスパッタの付着を防止する対策が行われている。しかし、集光光学系を有する加工ヘッドは、溶融金属部からのレーザ光の反射や溶融部ならの輻射熱の影響も受けるため、連続溶接等の長時間溶接においては加工ヘッド並びにヘッド駆動系の温度上昇、反射光による損傷等を生じやすいという課題がある。   Further, if fume or spatter adheres to the laser light condensing optical system of the processing head or its protective glass, filter, etc., the laser output, beam shape, etc. change, so stable welding cannot be performed. For this reason, conventionally, as disclosed in Patent Document 4, air is blown out below the protective glass to prevent fume and spatter from adhering to the optical system. However, since the processing head having a condensing optical system is also affected by the reflection of laser light from the molten metal part and the radiant heat of the molten part, the temperature of the processing head and head drive system during long-time welding such as continuous welding. There exists a subject that it is easy to produce the damage by a raise, reflected light, etc.

本発明は、上記の課題に鑑みてなされたものであり、連続的に積層溶接を行っても、安定して高品質な溶接部が得られるレーザ溶接装置を提供するものである。   The present invention has been made in view of the above-described problems, and provides a laser welding apparatus that can stably obtain a high-quality welded portion even when continuous lamination welding is performed.

上記課題を解決するための本発明のレーザ溶接装置は、レーザ光集光のための光学系を有しレーザ光を被溶接材に照射する加工ヘッドと、前記被溶接材のレーザ光照射部に溶接ワイヤを給送するワイヤ給送手段と、レーザ光の照射により前記被溶接材に形成された溶融部及びその近傍をシールドするシールドガス供給手段と、前記加工ヘッド及び被溶接材を相対的に移動させる移動手段とを有し、被溶接材の接合部に形成された開先にレーザ光を照射し溶接ワイヤを給送しつつ前記被溶接材および溶接ワイヤを溶融させ、前記開先を積層溶接するレーザ溶接装置において、前記レーザ溶接装置は、溶接により生じた溶接生成物を吸引する吸引手段と、前記レーザ光の反射光及び溶接部の輻射熱から前記加工ヘッドを保護する加工ヘッド保護手段と、積層溶接された溶接金属の表面に堆積した溶接生成物を除去するクリーニング手段を有することを特徴とする。   A laser welding apparatus of the present invention for solving the above-described problems includes a processing head that has an optical system for condensing laser light and irradiates the workpiece with laser light, and a laser beam irradiation portion of the workpiece. A wire feeding means for feeding a welding wire, a shield gas supply means for shielding the melted portion formed in the welded material and its vicinity by irradiation of laser light, and the processing head and the welded material are relatively A moving means that moves the laser beam to the groove formed at the joint of the material to be welded to feed the welding wire, melt the material to be welded and the welding wire, and stack the groove In the laser welding apparatus for welding, the laser welding apparatus includes a suction means for sucking a welding product generated by welding, and a machining head protecting hand for protecting the machining head from reflected light of the laser beam and radiation heat of a welded portion. When, characterized in that it has a cleaning means for removing the welded products deposited laminated welded surface of the weld metal.

また、レーザ溶接装置において、前記溶融部から生ずる溶接生成物から前記加工ヘッドの光学系を保護する光学系保護手段を有することを特徴とする。   The laser welding apparatus may further include an optical system protection unit that protects the optical system of the processing head from a weld product generated from the melted portion.

また、レーザ溶接装置において、前記溶接生成物はヒューム及びスパッタの少なくとも一つを含むことを特徴とする。   In the laser welding apparatus, the welding product includes at least one of fume and spatter.

また、レーザ溶接装置において、前記レーザ光を照射する加工ヘッドと前記溶接生成物の吸引手段の間に、溶接金属を大気から保護し前記溶接生成物の吸引手段による吸引を案内するトレーラ部材を有することを特徴とする。   Further, in the laser welding apparatus, a trailer member is provided between the processing head for irradiating the laser beam and the welding product suction means to protect the weld metal from the atmosphere and guide the suction by the welding product suction means. It is characterized by that.

また、レーザ溶接装置において、前記加工ヘッド保護手段は、前記加工ヘッドと被溶接材の間に設置され、前記加工ヘッド及びその付属装置をレーザ反射光及び溶接部輻射熱から保護する板状部材からなることを特徴とする。   Further, in the laser welding apparatus, the machining head protection means is a plate-like member that is installed between the machining head and the material to be welded and protects the machining head and its accessory device from laser reflected light and welding part radiant heat. It is characterized by that.

また、レーザ溶接装置において、前記加工ヘッド保護手段は、凹面状の湾曲面を有することを特徴とする。   In the laser welding apparatus, the machining head protection means has a concave curved surface.

また、レーザ溶接装置において、前記加工ヘッド保護手段はシールドガス供給手段と水冷構造を有することを特徴とするレーザ溶接装置。   Further, in the laser welding apparatus, the processing head protection means has a shield gas supply means and a water cooling structure.

さらに、レーザ溶接装置において、前記積層溶接された溶接金属の表面に堆積した溶接生成物を除去するクリーニング手段は、パルスレーザ照射手段を備えたことを特徴とする。   Furthermore, in the laser welding apparatus, the cleaning means for removing the weld product deposited on the surface of the weld metal laminated and welded includes pulse laser irradiation means.

さらに、レーザ溶接装置において、前記積層溶接された溶接金属の表面に堆積した溶接生成物を除去するクリーニング手段は、機械的除去手段を備えたことを特徴とする。   Further, in the laser welding apparatus, the cleaning means for removing the weld product deposited on the surface of the weld metal laminated and welded includes a mechanical removal means.

さらに、レーザ溶接装置において、前記クリーニング手段の機械的除去手段は、溶接金属の表面に堆積した溶接生成物を除去する回転ブラシと、ガス吹付手段と、除去した溶接生成物を吸引する吸引手段を有することを特徴とする。   Further, in the laser welding apparatus, the mechanical removal means of the cleaning means includes a rotating brush for removing the weld product deposited on the surface of the weld metal, a gas spraying means, and a suction means for sucking the removed weld product. It is characterized by having.

さらに、レーザ溶接装置において、前記積層溶接された溶接金属の表面に堆積した溶接生成物を除去するクリーニング手段は、パルスレーザ照射手段と機械的除去手段を備えたことを特徴とする。   Further, in the laser welding apparatus, the cleaning means for removing the weld product deposited on the surface of the weld metal laminated and welded includes a pulse laser irradiation means and a mechanical removal means.

本発明によれば、被溶接材の接合部に形成された開先にレーザ光を照射し溶接ワイヤを給送しつつ前記被溶接材および溶接ワイヤを溶融させ、開先を積層溶接するレーザ溶接装置において、レーザ溶接装置は、溶接により生じた溶接生成物を吸引する吸引手段と、前記レーザ光の反射光及び溶接部の輻射熱から前記加工ヘッドを保護する加工ヘッド保護手段と、積層溶接された溶接金属の表面に堆積した溶接生成物を除去するクリーニング手段を有することにより、溶接の進行とともに、溶接金属表面及び開先壁面に付着したヒュームやスパッタ等の溶接生成物を除去できるので、高品質のレーザ溶接が可能となる。   According to the present invention, laser welding is performed by laminating and welding the welded material and the welding wire while irradiating the laser beam to the groove formed at the joint portion of the welded material and feeding the welding wire. In the apparatus, the laser welding apparatus is laminated and welded with suction means for sucking a weld product generated by welding, processing head protection means for protecting the processing head from reflected light of the laser beam and radiant heat of the welded portion. By having a cleaning means that removes weld products deposited on the surface of the weld metal, it is possible to remove weld products such as fumes and spatters adhering to the weld metal surface and groove wall surface along with the progress of welding. Laser welding is possible.

また、溶融金属部からのレーザ光の反射、溶融部ならの輻射熱の影響による加工ヘッド並びにその駆動系への影響を排除できるので、長時間の連続溶接が可能となる。   Further, since it is possible to eliminate the influence on the machining head and its drive system due to the reflection of the laser beam from the molten metal part and the radiant heat of the molten part, continuous welding for a long time is possible.

本発明の実施例1のレーザ溶接装置を示す斜視図The perspective view which shows the laser welding apparatus of Example 1 of this invention 本発明実施例1の溶接構造物を示す模式図The schematic diagram which shows the welded structure of this invention Example 1. 本発明実施例1の溶接構造物の溶接開先の模式図Schematic diagram of the welding groove of the welded structure of Example 1 of the present invention 本発明実施例1の溶接ビード断面の模式図Schematic diagram of a weld bead cross section of Example 1 of the present invention 本発明実施例1のレーザ溶接装置の溶接ヘッド周りの斜視図The perspective view around the welding head of the laser welding apparatus of Example 1 of this invention 本発明の実施例2を示す模式図Schematic diagram showing Example 2 of the present invention 従来例のレーザ多層溶接装置の溶接ヘッド周りの斜視図Perspective view around the welding head of the conventional laser multi-layer welding apparatus

以下、本発明のレーザ溶接装置の実施形態を図を用いて説明する。   Hereinafter, embodiments of the laser welding apparatus of the present invention will be described with reference to the drawings.

図1に本発の実施例1の溶接装置の斜視図を示す。レーザ発振器12から発振されたレーザ光4は光ファイバー11により伝送され加工ヘッド8に送られる。加工ヘッド8で図示しない集光光学系により集光されたレーザ光4は、被溶接材1aと1bにより形成された開先2内に照射され、被溶接材1aと1b及び溶接ワイヤ3が溶融して溶融プール13を形成しながら溶接を行い、溶接ビード5が形成される。   FIG. 1 shows a perspective view of the welding apparatus of the first embodiment of the present invention. The laser beam 4 oscillated from the laser oscillator 12 is transmitted by the optical fiber 11 and sent to the machining head 8. The laser beam 4 condensed by the processing head 8 by a condensing optical system (not shown) is irradiated into the groove 2 formed by the materials to be welded 1a and 1b, and the materials to be welded 1a and 1b and the welding wire 3 are melted. Then, welding is performed while forming the molten pool 13, and the weld bead 5 is formed.

溶接ワイヤ3はワイヤ給送制御装置17により制御されるワイヤ給送装置16によって、溶接進行方向の前方から溶融プール13内に給送される。溶融プール13及びその近傍は、シールドガスノズル6から噴出されたシールドガスにより大気からシールドされる。シールドガスはガスボンベ14からガス流量制御装置15を通してシールドガスノズル6に供給される。   The welding wire 3 is fed into the molten pool 13 from the front in the welding progress direction by a wire feeding device 16 controlled by a wire feeding control device 17. The molten pool 13 and the vicinity thereof are shielded from the atmosphere by the shielding gas ejected from the shielding gas nozzle 6. The shield gas is supplied from the gas cylinder 14 to the shield gas nozzle 6 through the gas flow rate control device 15.

レーザ光4の被溶接材1aと1bへの照射により被溶接材が溶融されるが、その際ヒューム9、及びレーザ光4の反射光10や溶融部分からの輻射熱が生ずる。加工ヘッド8の集光光学系へのヒューム9付着を防止するために、加工ヘッド8の図示しない集光光学系の集光レンズと保護ガラスの下部に、レーザ光4に対しほぼ直交する方向にエアノズル36によりエアを流す。さらに加工ヘッド8の集光光学系には、ヒューム9の光学系への付着を防止する光学系保護筒7が取り付けられている。   The welding material is melted by irradiating the materials to be welded 1a and 1b with the laser beam 4. At that time, the radiant heat is generated from the fumes 9, the reflected light 10 of the laser beam 4 and the melted portion. In order to prevent the fume 9 from adhering to the condensing optical system of the processing head 8, the condensing lens of the condensing optical system (not shown) of the processing head 8 and the lower part of the protective glass are arranged in a direction substantially perpendicular to the laser beam 4. Air is passed through the air nozzle 36. Further, an optical system protection cylinder 7 for preventing the fume 9 from adhering to the optical system is attached to the condensing optical system of the processing head 8.

また、光学系保護筒7の先端にはレーザ光の反射光及び溶接部からの輻射熱から加工ヘッド8を保護する保護板18が取り付けられている。保護板18はほぼ皿状の凹面形状をしており、かつ全体が図示しない冷却装置で水冷されている。保護板18は溶融部から生ずる輻射熱及び溶融プールから反射されたレーザ光の反射光をブロックし、加工ヘッド8及びその周辺の駆動部等を保護する機能を有している。保護板18は平板状その他任意の形状を持つことができ、その大きさは加工ヘッド8及びその付属設備を十分に保護できる大きさとする。   A protective plate 18 that protects the machining head 8 from reflected light of laser light and radiant heat from the welded portion is attached to the tip of the optical system protection cylinder 7. The protection plate 18 has a substantially dish-like concave shape, and is entirely cooled with water by a cooling device (not shown). The protection plate 18 has a function of blocking the radiant heat generated from the melting portion and the reflected light of the laser beam reflected from the melting pool, and protecting the processing head 8 and its peripheral driving portion. The protective plate 18 may have a flat plate shape or any other shape, and the size thereof is sufficient to sufficiently protect the processing head 8 and its attached equipment.

また、レーザ溶接ではヒュームが発生するが、長時間溶接では特にヒュームの発生量が多量となるので、保護板18はヒュームの拡散を抑え、かつヒュームの吸引を補助する役目も有している。シールドガスノズル6は保護板18よりレーザ照射部に近いところに取り付けられ反射光及び輻射熱の影響を受けるので、水冷構造を有している。   Further, although fume is generated in laser welding, the amount of generated fume is particularly large in long-time welding. Therefore, the protective plate 18 also has a role of suppressing fume diffusion and assisting suction of the fume. Since the shield gas nozzle 6 is attached closer to the laser irradiation part than the protective plate 18 and is affected by reflected light and radiant heat, it has a water cooling structure.

開先内及び溶接部近傍のヒューム9はヒューム吸引ノズル19により吸引される。ヒューム吸引ノズル19の後部には積層された溶接金属表面及び開先壁面をクリーニングするレーザクリーニングヘッド20が取り付けられている。レーザクリーニングヘッド20は高さ方向と前後左右方向への動作が可能な可動関節構造を有し、ヒュームが付着した開先表面を十分に清掃できるように構成する。レーザクリーニングヘッド20はファイバーを介してパルスレーザ発振器23に接続されており、レーザクリーニングヘッド20からパルス状レーザを開先内に照射し、積層された溶接金属及びその周囲の開先壁面に付着しているヒューム9による溶接生成物を除去する。   The fume 9 in the groove and in the vicinity of the weld is sucked by the fume suction nozzle 19. A laser cleaning head 20 for cleaning the laminated weld metal surface and groove wall surface is attached to the rear portion of the fume suction nozzle 19. The laser cleaning head 20 has a movable joint structure capable of moving in the height direction, front and rear, left and right directions, and is configured to sufficiently clean the groove surface to which the fume adheres. The laser cleaning head 20 is connected to a pulse laser oscillator 23 through a fiber, and the laser cleaning head 20 irradiates a pulsed laser beam into the groove, and adheres to the laminated weld metal and the surrounding groove wall surface. The welding product by the fume 9 is removed.

ヒューム吸引ノズル19によるヒュームの吸引とレーザクリーニングヘッド20からのパルスレーザの照射クリーニングを組み合わせることにより、積層された溶接金属及びその周囲の開先壁面に付着しているヒュームによる溶接生成物をほぼ完全に除去することが出来る。ヒュームの吸引あるいはパルスレーザ照射によるクリーニングのいずれか一方のみでも、ほとんどの溶接生成物は除去可能であるが、融合不良及びポロシティ等の溶接欠陥の無い溶接部を得るには、両者を組み合わせて用いることが最も有効である。   By combining the suction of the fume by the fume suction nozzle 19 and the irradiation cleaning of the pulse laser from the laser cleaning head 20, the welded product by the fumes adhering to the laminated weld metal and the surrounding groove wall surface is almost completely obtained. Can be removed. Most welding products can be removed by either fume suction or cleaning by pulsed laser irradiation, but in order to obtain welds free from welding defects such as poor fusion and porosity, a combination of both is used. Is most effective.

レーザ発振器12、ワイヤ給送制御装置17、ガス流量制御装置15及び被溶接材1aと1bを回転制御するポジショナー21、パルスレーザ発振器23、ヒューム吸引装置35は溶接制御装置22に接続されており、レーザ出力、溶接速度及びワイヤ給送速度等の溶接条件並びに動作タイミング等が制御され溶接が行われる。   The laser oscillator 12, the wire feed control device 17, the gas flow rate control device 15, the positioner 21 for controlling rotation of the workpieces 1a and 1b, the pulse laser oscillator 23, and the fume suction device 35 are connected to the welding control device 22. Welding is performed by controlling welding conditions such as laser output, welding speed and wire feed speed, operation timing, and the like.

実施例1の溶接装置により、図2に示す円筒形の被溶接材1aと1bを突き合せ溶接を行った。円筒被溶接材1a、1bは直径約6m、板厚50mmのオーステナイト系ステンレス鋼SUS316L材である。この円筒物は図示しない溶接ポジショナーに載置されて回転しながら円周溶接が出来るように構成されている。溶接は横向き姿勢で両側から溶接を実施した。   The cylindrical workpieces 1a and 1b shown in FIG. 2 were butt welded by the welding apparatus of Example 1. The cylindrical workpieces 1a and 1b are austenitic stainless steel SUS316L having a diameter of about 6 m and a plate thickness of 50 mm. This cylindrical object is placed on a welding positioner (not shown) so that it can perform circumferential welding while rotating. Welding was performed from both sides in a horizontal posture.

図4に突き合せ部24に形成した溶接開先の断面形状を示す。溶接開先は被溶接材1aと1bを突き合せて形成される。溶接開先の中央部には、お互いの被溶接材表面を合わせたルートフェース25が形成されており、その両側に開先溝部26が形成されている。ルートフェース25の長さLは、15mmとした。これは、実施例1で用いたレーザ出力でルートフェース25の突き合せ面が両面から溶接して完全に溶融できる長さである。ルートフェース25部分以外の開先溝部26は、開先底幅Wが3mm、開先角度θが4°の狭開先である。開先の底幅Wは開先両側面の延長線と開先底部の延長線との交点間の距離である。なお、開先底面の端部は曲率を有している。   FIG. 4 shows a cross-sectional shape of the weld groove formed in the butt portion 24. The welding groove is formed by abutting the materials to be welded 1a and 1b. At the center of the welding groove, a root face 25 is formed by combining the surfaces of the welded materials, and groove grooves 26 are formed on both sides thereof. The length L of the root face 25 was 15 mm. This is the length that the butt face of the root face 25 can be welded from both sides and completely melted by the laser output used in the first embodiment. The groove groove portion 26 other than the root face 25 is a narrow groove having a groove bottom width W of 3 mm and a groove angle θ of 4 °. The bottom width W of the groove is the distance between the intersections of the extension lines on both sides of the groove and the extension lines of the groove bottom. In addition, the edge part of a groove bottom face has a curvature.

図1では、溶接装置は1組しか図示されていないが、同様な構成の設備が円筒物の反対側の面にも設置されており、レーザ発振器12から出力されたレーザ光を切替えて、表面方向及び裏面方向から交互に溶接をおこなった。実施例1の被溶接材は円筒物なので、図4上方が円筒物外側、図4下方が内側となる。   In FIG. 1, only one set of welding apparatus is shown, but the equipment having the same configuration is also installed on the opposite surface of the cylindrical object, and the laser beam output from the laser oscillator 12 is switched to change the surface. Welding was alternately performed from the direction and the back surface direction. Since the material to be welded in Example 1 is a cylindrical object, the upper side in FIG. 4 is the outer side of the cylindrical object, and the lower side in FIG. 4 is the inner side.

レーザ発振器は、波長1030nmのレーザ光を発振させるディスクレーザ装置を用いた。レーザはCO2レーザのように発振波長の長いレーザの場合、溶接装置が大型となると共に、プラズマが発生しやすいため溶接部に欠陥を生じやすいので、設備の小型化が可能で、高品質の溶接部が得られ易いYAGレーザ、半導体レーザ、ファイバーレーザ、ディスクレーザ等のファイバー伝送が可能な波長が1μm程度のレーザを用いるのが好ましい。   As the laser oscillator, a disk laser device that oscillates laser light having a wavelength of 1030 nm was used. In the case of a laser having a long oscillation wavelength, such as a CO2 laser, the welding apparatus becomes large in size, and since plasma is easily generated, defects are likely to occur in the welded portion, so that the equipment can be downsized and high-quality welding is possible. It is preferable to use a laser having a wavelength capable of fiber transmission of about 1 μm, such as a YAG laser, a semiconductor laser, a fiber laser, or a disk laser, which can easily obtain a part.

また、溶接ワイヤ給送装置16には抵抗発熱等により加熱手段を付加し、加熱された溶接ワイヤを給送する設備を用いても良い。   Further, the welding wire feeding device 16 may be provided with a heating means by resistance heating or the like, and a facility for feeding the heated welding wire.

溶接は、図3の形状に開先組み立てを行った後、外側から開先溝部26の底部の中心に集光されたレーザ光4を照射し、図4に示すような細く長い形状の溶込み27を形成し、ルートフェース25の接合された面の約60%から70%を溶融接合させ、次に反対側の内側から同様な方法でルートフェース25にルートフェース長さLの60%から70%長さの細く長い形状の溶込み27を形成させ、外側から形成した溶け込みビードと内側から形成した溶込みビードをルートフェース25の中央付近でラップさせるようにして、ルートフェース25の突き合せ部を完全溶融接合させる。ルートフェース25を溶接後、狭開先内に溶接ワイヤ3を給送し、レーザ光4でワイヤを溶融させて積層溶接金属28で開先を埋めることにより被溶接材同士を溶融接合させる。   In the welding, after assembling the groove into the shape shown in FIG. 3, the laser beam 4 focused on the center of the bottom of the groove groove portion 26 is irradiated from the outside, and the long and thin shape penetration as shown in FIG. 27 and melt-bond approximately 60% to 70% of the bonded face of the root face 25, then from the inside of the opposite side to the root face 25 in a similar manner to 60% to 70% of the root face length L. % Of the long and long shaped penetration 27, the penetration bead formed from the outside and the penetration bead formed from the inside are wrapped around the center of the root face 25, and the butted portion of the root face 25 Are completely melt bonded. After welding the root face 25, the welding wire 3 is fed into the narrow groove, the wire is melted with the laser beam 4, and the groove is filled with the laminated weld metal 28, so that the materials to be welded are melt-bonded.

この開先溝部の溶接は、溶接ワイヤ3及び被溶接材の溶融により形成された積層溶接金属28の積層を繰り返すことにより行い、最終的に図4のような溶接部が形成される。この積層は、外側の開先溝部と内側の開先溝部の積層溶接を交互に繰り返して溶接を行っても、どちらか片方の開先溝部の積層を終了した後に、もう一方の開先溝部の積層溶接を行っても良いが、好ましくは溶接変形の点から、内側と外側の積層溶接を交互に行うのが望ましい。   The welding of the groove portion is performed by repeating the lamination of the laminated weld metal 28 formed by melting the welding wire 3 and the material to be welded, and finally a welded portion as shown in FIG. 4 is formed. This lamination is performed by alternately repeating the lamination welding of the outer groove groove and the inner groove groove, and after the lamination of one of the groove grooves is completed, the other groove groove Laminate welding may be performed, but it is preferable to alternately perform inner and outer laminate welding in terms of welding deformation.

ルートフェース25及び開先溝部26の溶接とも、溶融部及びその近傍を保護するシールドガスは窒素ガスを用いた。本実施例の溶接設備を用いて連続的に積層溶接を行った結果、溶接欠陥の無い良好な溶接部を得ることができた。   In welding the root face 25 and the groove groove 26, nitrogen gas was used as a shielding gas for protecting the melted portion and the vicinity thereof. As a result of continuous lamination welding using the welding equipment of this example, it was possible to obtain a good weld with no welding defects.

実施例1のレーザ溶接装置を用いれば、溶接時に発生する輻射熱及び反射光による加工ヘッド及び駆動部等の損傷がなく、溶接進行に併せての溶接金属および開先面へ付着した溶接生成物の除去を行うことが出来、長時間の連続溶接が可能で、高品質な溶接部が得られるレーザ溶接装置を得ることが出来る。   If the laser welding apparatus of Example 1 is used, there is no damage to the machining head and the drive unit due to the radiant heat and reflected light generated during welding, and the weld metal attached to the weld metal and the groove surface as welding progresses. A laser welding apparatus that can be removed, can be continuously welded for a long time, and a high-quality welded part can be obtained.

さらに図5のように、加工ヘッド8のレーザ照射部とヒューム吸引ノズル19の間に、高温部の溶接金属の酸化抑制のために、加工ヘッドの移動に追従してシールドガスを供給するトレーラー部材29を設置してもよい。トレーラー部材29は溶接金属の酸化の抑制のみならず、ヒュームの吸引促進にも有効なので、溶接金属表面及び開先壁面に付着する溶接生成物を低減させることが出来る。トレーラー部材29は、レーザ光の反射光及び溶接部からの輻射熱の影響を受けるので、水冷構造とすることが好ましい。また、トレーラー部材29はシールドガスの供給を行わない単純な板状のガイド部材でも良い。この場合でもトレーラー部材29はヒュームの吸引通路を形成するガイド部材として作用することができる。   Further, as shown in FIG. 5, a trailer member that supplies a shielding gas following the movement of the machining head between the laser irradiation part of the machining head 8 and the fume suction nozzle 19 in order to suppress oxidation of the weld metal in the high temperature part. 29 may be installed. Since the trailer member 29 is effective not only for suppressing oxidation of the weld metal but also for promoting fume suction, it is possible to reduce weld products adhering to the weld metal surface and the groove wall surface. Since the trailer member 29 is affected by the reflected light of the laser beam and the radiant heat from the welded portion, it is preferable to have a water cooling structure. The trailer member 29 may be a simple plate-shaped guide member that does not supply shield gas. Even in this case, the trailer member 29 can act as a guide member that forms a suction passage for fume.

図6は本発明の実施例2を示す。図1に示す実施例1では、ヒュームを除去するヒューム吸引ノズル19の直後に溶接金属表面および開先壁面に付着した溶接生成物除去手段としてレーザクリーニングヘッド20を構成した。一方、実施例2では、溶接する加工ヘッド8、シールドガスノズル6及びヒューム吸引ノズル19等から構成される溶接ヘッド部から離して、溶接金属表面および開先壁面に付着した溶接生成物を除去する溶接生成物除去手段を設けている。   FIG. 6 shows a second embodiment of the present invention. In Example 1 shown in FIG. 1, the laser cleaning head 20 is configured as a welding product removing means attached to the weld metal surface and the groove wall surface immediately after the fume suction nozzle 19 for removing the fume. On the other hand, in Example 2, welding which removes the welding product adhering to the surface of the weld metal and the groove wall surface is separated from the welding head portion composed of the processing head 8 to be welded, the shield gas nozzle 6 and the fume suction nozzle 19 and the like. Product removal means are provided.

実施例2では溶接生成物除去手段を、加工ヘッド8の後方で円筒被溶接物中心に対し約90度の位置に配置した。加工ヘッド8と溶接生成物除去手段を離すことにより、溶接生成物除去手段は溶接部からの輻射熱及び反射光の影響を受けにくくする効果がある。実施例2では、溶接金属表面および開先壁面に付着した溶接生成物は回転ブラシを用いた機械的物理的方法により除去する。   In the second embodiment, the weld product removing means is disposed at a position of about 90 degrees with respect to the center of the cylindrical work piece behind the machining head 8. By separating the processing head 8 and the weld product removing means, the weld product removing means has an effect of making it less susceptible to the influence of radiant heat and reflected light from the welded portion. In Example 2, the weld product adhering to the weld metal surface and the groove wall surface is removed by a mechanical physical method using a rotating brush.

溶接生成物除去手段において、回転ブラシ30はブラシ押付装置31に取り付けられ、回転しながら溶接金属表面及び開先壁面に押付られ、溶接生成物が除去される。回転ブラシ30の前面にはガス吹付ノズル32からガスが噴射される、回転ブラシ30により剥離された溶接生成物は、ガス吹付ノズル32から噴射されたガスにより運ばれ、回転ブラシ30の後部に設置された吸引ノズル33に吸引され除去される。   In the welding product removing means, the rotating brush 30 is attached to the brush pressing device 31 and is pressed against the surface of the weld metal and the groove wall surface while rotating, and the welding product is removed. Gas is jetted from the gas spray nozzle 32 to the front surface of the rotary brush 30, and the welded product peeled off by the rotary brush 30 is carried by the gas jetted from the gas spray nozzle 32, and is installed at the rear part of the rotary brush 30. The suction nozzle 33 is sucked and removed.

吸引ノズル33には、溶接生成物の吸引を補助するために開先内に挿入される吸引補助板34が取り付けられている。   The suction nozzle 33 is provided with a suction auxiliary plate 34 that is inserted into the groove to assist the suction of the weld product.

回転ブラシ30は、スリットを有する樹脂フィルムを複数枚束ねたものを使用する。実施例2では、溶接金属表面および開先壁面に付着した溶接生成物除去手段を1台有する構成であるが、これを複数台設けても良い。本構成の装置を用いて板厚30mm、直径600mmのオーステナイト系ステンレス鋼SUS304配管材の円周の連続積層溶接を行った結果、溶接装置が損傷されること無く、安定した溶接が行われ、高品質の溶接部が得られた。   The rotating brush 30 uses a bundle of a plurality of resin films having slits. In Example 2, although it is the structure which has one welding product removal means adhering to the weld metal surface and a groove wall surface, you may provide multiple this. As a result of continuous lamination welding of the circumference of an austenitic stainless steel SUS304 piping material having a plate thickness of 30 mm and a diameter of 600 mm using the apparatus of this configuration, stable welding is performed without damaging the welding apparatus. A quality weld was obtained.

このように、本発明のレーザ溶接装置を用いることにより、開先を有する大型構造物の溶接部の積層溶接において、長時間の連続的な積層溶接が可能となる。また溶接品質の安定した溶接部を得ることが出来る。   Thus, by using the laser welding apparatus of the present invention, continuous lamination welding for a long time is possible in the lamination welding of a welded portion of a large structure having a groove. In addition, a weld with stable welding quality can be obtained.

本発明の実施例では、オーステナイト系ステンレス鋼の円筒物に適用して結果について説明したが、本発明の溶接装置はこれに限定されるものではない。   In the examples of the present invention, the results were explained by applying to a cylindrical body of austenitic stainless steel, but the welding apparatus of the present invention is not limited to this.

1…被溶接材、 2…開先、 3…溶接ワイヤ、 4…レーザ光、 7…光学系保護筒、8…加工ヘッド、9…ヒューム、10…反射光、11…光ファイバ、12…レーザ発振器、13…溶融プール、18…保護板、19…ヒューム吸引ノズル、20…レーザクリーニングヘッド、22…溶接制御装置、23…パルスレーザ発振器、29…トレーラー部材、30…回転ブラシ、31…ブラシ押付装置、32…ガス吹付ノズル、33…吸引ノズル、34…吸引補助板、35…ヒューム吸引装置、36…エアノズル DESCRIPTION OF SYMBOLS 1 ... Material to be welded, 2 ... Groove, 3 ... Welding wire, 4 ... Laser beam, 7 ... Optical system protection cylinder, 8 ... Processing head, 9 ... Fume, 10 ... Reflected light, 11 ... Optical fiber, 12 ... Laser Oscillator 13 ... Melting pool 18 ... Protection plate 19 ... Fume suction nozzle 20 ... Laser cleaning head 22 ... Welding control device 23 ... Pulse laser oscillator 29 ... Trailer member 30 ... Rotating brush 31 ... Brush pressing Device: 32 ... Gas spray nozzle, 33 ... Suction nozzle, 34 ... Suction auxiliary plate, 35 ... Fume suction device, 36 ... Air nozzle

Claims (11)

レーザ光集光のための光学系を有しレーザ光を被溶接材に照射する加工ヘッドと、前記被溶接材のレーザ光照射部に溶接ワイヤを給送するワイヤ給送手段と、レーザ光の照射により前記被溶接材に形成された溶融部及びその近傍をシールドするシールドガス供給手段と、前記加工ヘッド及び被溶接材を相対的に移動させる移動手段とを有し、被溶接材の接合部に形成された開先にレーザ光を照射し溶接ワイヤを給送しつつ前記被溶接材および溶接ワイヤを溶融させ、前記開先を積層溶接するレーザ溶接装置において、
前記レーザ溶接装置は、溶接により生じた溶接生成物を吸引する吸引手段と、前記レーザ光の反射光及び溶接部の輻射熱から前記加工ヘッドを保護する加工ヘッド保護手段と、積層溶接された溶接金属の表面に堆積した溶接生成物を除去するクリーニング手段を有することを特徴とするレーザ溶接装置。
A processing head having an optical system for condensing laser light and irradiating the welding material with laser light, wire feeding means for feeding a welding wire to the laser light irradiating portion of the welding material, A welded gas joining means for shielding the melted part formed in the welded material by irradiation and the vicinity thereof; and a moving means for moving the working head and the welded material relative to each other. In a laser welding apparatus for irradiating a laser beam to a groove formed on the groove and melting the welding material and the welding wire while feeding a welding wire, and laminating and welding the groove,
The laser welding apparatus includes a suction unit that sucks a weld product generated by welding, a processing head protection unit that protects the processing head from the reflected light of the laser beam and radiant heat of the welded portion, and a weld metal that is laminated and welded A laser welding apparatus having a cleaning means for removing a weld product deposited on the surface of the laser.
請求項1に記載のレーザ溶接装置において、前記溶融部から生ずる溶接生成物から前記加工ヘッドの光学系を保護する光学系保護手段を有することを特徴とするレーザ溶接装置。   2. The laser welding apparatus according to claim 1, further comprising optical system protection means for protecting the optical system of the processing head from a weld product generated from the melted portion. 請求項1または2に記載のレーザ溶接装置において、前記溶接生成物はヒューム及びスパッタの少なくとも一つを含むことを特徴とするレーザ溶接装置。   3. The laser welding apparatus according to claim 1, wherein the welding product includes at least one of fume and spatter. 請求項1または2に記載のレーザ溶接装置において、前記レーザ光を照射する加工ヘッドと前記溶接生成物の吸引手段の間に、溶接金属を大気から保護し前記溶接生成物の吸引手段による吸引を案内するトレーラ部材を有することを特徴とするレーザ溶接装置。   3. The laser welding apparatus according to claim 1, wherein the weld metal is protected from the atmosphere between the processing head for irradiating the laser beam and the welding product suction means, and suction by the welding product suction means is performed. A laser welding apparatus comprising a trailer member for guiding. 請求項1又は2に記載のレーザ溶接装置において、前記加工ヘッド保護手段は、前記加工ヘッドと被溶接材の間に設置され、前記加工ヘッド及びその付属装置をレーザ反射光及び溶接部輻射熱から保護する板状部材からなることを特徴とする請求項1及び2記載のレーザ溶接装置。   3. The laser welding apparatus according to claim 1, wherein the processing head protection means is installed between the processing head and a material to be welded, and protects the processing head and its accessory device from laser reflected light and welded portion radiant heat. 3. The laser welding apparatus according to claim 1, wherein the laser welding apparatus is made of a plate-like member. 請求項5に記載のレーザ溶接装置において、前記加工ヘッド保護手段は、凹面状の湾曲面を有することを特徴とするレーザ溶接装置。   6. The laser welding apparatus according to claim 5, wherein the machining head protection means has a concave curved surface. 請求項5または6に記載のレーザ溶接装置において、前記加工ヘッド保護手段はシールドガス供給手段と水冷構造を有することを特徴とするレーザ溶接装置。   7. The laser welding apparatus according to claim 5, wherein the machining head protection means has a shield gas supply means and a water cooling structure. 請求項1乃至7の少なくとも1項に記載のレーザ溶接装置において、前記積層溶接された溶接金属の表面に堆積した溶接生成物を除去するクリーニング手段は、パルスレーザ照射手段を備えたことを特徴とするレーザ溶接装置。   The laser welding apparatus according to at least one of claims 1 to 7, wherein the cleaning means for removing the weld product deposited on the surface of the weld metal laminated and welded includes pulse laser irradiation means. Laser welding equipment. 請求項1乃至7の少なくとも1項に記載のレーザ溶接装置において、前記積層溶接された溶接金属の表面に堆積した溶接生成物を除去するクリーニング手段は、機械的除去手段を備えたことを特徴とするレーザ溶接装置。   8. The laser welding apparatus according to claim 1, wherein the cleaning means for removing the weld product deposited on the surface of the weld metal laminated and welded includes mechanical removal means. Laser welding equipment. 請求項9に記載のレーザ溶接装置において、前記クリーニング手段の機械的除去手段は、溶接金属の表面に堆積した溶接生成物を除去する回転ブラシと、ガス吹付手段と、除去した溶接生成物を吸引する吸引手段を有することを特徴とするレーザ溶接装置。   10. The laser welding apparatus according to claim 9, wherein the mechanical removal means of the cleaning means is a rotary brush for removing a weld product accumulated on the surface of the weld metal, a gas spraying means, and a suction of the removed weld product. A laser welding apparatus comprising suction means for performing 請求項1乃至7の少なくとも1項に記載のレーザ溶接装置において、前記積層溶接された溶接金属の表面に堆積した溶接生成物を除去するクリーニング手段は、パルスレーザ照射手段と機械的除去手段を備えたことを特徴とするレーザ溶接装置。   8. The laser welding apparatus according to claim 1, wherein the cleaning means for removing the weld product deposited on the surface of the weld metal laminated and welded includes a pulse laser irradiation means and a mechanical removal means. A laser welding apparatus characterized by that.
JP2010136761A 2010-06-16 2010-06-16 Laser welding equipment Expired - Fee Related JP5419807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010136761A JP5419807B2 (en) 2010-06-16 2010-06-16 Laser welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010136761A JP5419807B2 (en) 2010-06-16 2010-06-16 Laser welding equipment

Publications (2)

Publication Number Publication Date
JP2012000630A true JP2012000630A (en) 2012-01-05
JP5419807B2 JP5419807B2 (en) 2014-02-19

Family

ID=45533244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010136761A Expired - Fee Related JP5419807B2 (en) 2010-06-16 2010-06-16 Laser welding equipment

Country Status (1)

Country Link
JP (1) JP5419807B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140008339A1 (en) * 2012-07-06 2014-01-09 Lincoln Global, Inc. Method and system for removing material from a cut-joint
US20140104417A1 (en) * 2012-10-12 2014-04-17 Samsung Electro-Mechanics Co., Ltd. System of measuring warpage and method of measuring warpage
JP2015120188A (en) * 2013-12-25 2015-07-02 日立Geニュークリア・エナジー株式会社 Narrow Gap laser welding method
CN104801854A (en) * 2014-01-23 2015-07-29 通用汽车环球科技运作有限责任公司 Suppressing laser-induced plume for laser edge welding of zinc coated steels
JP2016016420A (en) * 2014-07-08 2016-02-01 日立Geニュークリア・エナジー株式会社 Weld-target plate material butt laser welding method
JP2016087631A (en) * 2014-10-31 2016-05-23 三菱重工業株式会社 Welding system and welding method for columnar structure
JP2017189485A (en) * 2016-04-15 2017-10-19 株式会社ビアーチェ Welding method of accessory or jewel
KR20180074167A (en) * 2016-12-23 2018-07-03 주식회사 포스코 Laser welding apparatus
JP2019188411A (en) * 2018-04-20 2019-10-31 住友重機械工業株式会社 Processing system
CN110434502A (en) * 2019-07-18 2019-11-12 南京中车浦镇城轨车辆有限责任公司 A kind of 6 line aluminium alloy profile welders and method based on laser cleaning
JP2021045932A (en) * 2019-09-20 2021-03-25 株式会社Screenホールディングス Printer and liquid circulation method in printer
JP2021129341A (en) * 2020-02-10 2021-09-02 日本発條株式会社 Method of manufacturing lamination iron core
CN113382817A (en) * 2019-01-25 2021-09-10 本田技研工业株式会社 Soldering apparatus and soldering method
CN113814535A (en) * 2021-10-09 2021-12-21 江苏科技大学 Welding method of heterogeneous titanium alloy T-shaped joint
CN113993654A (en) * 2019-07-05 2022-01-28 株式会社Lg新能源 Welding equipment with smoke removing function
WO2022259796A1 (en) 2021-06-09 2022-12-15 株式会社神戸製鋼所 Suction apparatus, suction method, welding system, welding method, and additive manufacturing method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04157078A (en) * 1990-10-16 1992-05-29 Mitsubishi Heavy Ind Ltd Laser beam welding method
JPH0557468A (en) * 1991-09-02 1993-03-09 Toyota Motor Corp Laser beam welding method for rust preventive steel sheets
JPH06335791A (en) * 1993-05-27 1994-12-06 Toshiba Corp Laser beam converging device
JPH081360A (en) * 1994-06-15 1996-01-09 Hitachi Ltd Welding method and welded structure using high energy beam of dissimilar material
JPH09234583A (en) * 1996-02-29 1997-09-09 Matsushita Electric Ind Co Ltd Lens stain preventing device
JPH10225770A (en) * 1997-02-14 1998-08-25 Sangyo Souzou Kenkyusho Welding equipment
JP2000117481A (en) * 1998-10-12 2000-04-25 Suzuki Motor Corp Laser beam welding device
JP2002307177A (en) * 2001-04-13 2002-10-22 Mitsubishi Heavy Ind Ltd Laser beam machining head and laser beam machining device furnished with the same
JP2003290949A (en) * 2002-04-01 2003-10-14 Honda Motor Co Ltd Process and equipment for yag laser induced arc filler wire complex welding
JP2007283363A (en) * 2006-04-17 2007-11-01 Nippon Steel Corp Method of manufacturing uoe steel pipe
JP2008284588A (en) * 2007-05-17 2008-11-27 Hitachi-Ge Nuclear Energy Ltd Equipment and method for combined welding of laser and arc
JP2010023096A (en) * 2008-07-23 2010-02-04 Ihi Corp Welding apparatus

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04157078A (en) * 1990-10-16 1992-05-29 Mitsubishi Heavy Ind Ltd Laser beam welding method
JPH0557468A (en) * 1991-09-02 1993-03-09 Toyota Motor Corp Laser beam welding method for rust preventive steel sheets
JPH06335791A (en) * 1993-05-27 1994-12-06 Toshiba Corp Laser beam converging device
JPH081360A (en) * 1994-06-15 1996-01-09 Hitachi Ltd Welding method and welded structure using high energy beam of dissimilar material
JPH09234583A (en) * 1996-02-29 1997-09-09 Matsushita Electric Ind Co Ltd Lens stain preventing device
JPH10225770A (en) * 1997-02-14 1998-08-25 Sangyo Souzou Kenkyusho Welding equipment
JP2000117481A (en) * 1998-10-12 2000-04-25 Suzuki Motor Corp Laser beam welding device
JP2002307177A (en) * 2001-04-13 2002-10-22 Mitsubishi Heavy Ind Ltd Laser beam machining head and laser beam machining device furnished with the same
JP2003290949A (en) * 2002-04-01 2003-10-14 Honda Motor Co Ltd Process and equipment for yag laser induced arc filler wire complex welding
JP2007283363A (en) * 2006-04-17 2007-11-01 Nippon Steel Corp Method of manufacturing uoe steel pipe
JP2008284588A (en) * 2007-05-17 2008-11-27 Hitachi-Ge Nuclear Energy Ltd Equipment and method for combined welding of laser and arc
JP2010023096A (en) * 2008-07-23 2010-02-04 Ihi Corp Welding apparatus

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140008339A1 (en) * 2012-07-06 2014-01-09 Lincoln Global, Inc. Method and system for removing material from a cut-joint
US9470635B2 (en) * 2012-10-12 2016-10-18 Samsung Electro-Mechanics Co., Ltd. System of measuring warpage and method of measuring warpage
US20140104417A1 (en) * 2012-10-12 2014-04-17 Samsung Electro-Mechanics Co., Ltd. System of measuring warpage and method of measuring warpage
KR20140047367A (en) * 2012-10-12 2014-04-22 삼성전기주식회사 System of measuring warpage and mentod of measuring warpage
KR101952847B1 (en) * 2012-10-12 2019-02-27 삼성전기주식회사 System of measuring warpage and mentod of measuring warpage
JP2015120188A (en) * 2013-12-25 2015-07-02 日立Geニュークリア・エナジー株式会社 Narrow Gap laser welding method
CN104801854A (en) * 2014-01-23 2015-07-29 通用汽车环球科技运作有限责任公司 Suppressing laser-induced plume for laser edge welding of zinc coated steels
JP2016016420A (en) * 2014-07-08 2016-02-01 日立Geニュークリア・エナジー株式会社 Weld-target plate material butt laser welding method
JP2016087631A (en) * 2014-10-31 2016-05-23 三菱重工業株式会社 Welding system and welding method for columnar structure
JP2017189485A (en) * 2016-04-15 2017-10-19 株式会社ビアーチェ Welding method of accessory or jewel
KR20180074167A (en) * 2016-12-23 2018-07-03 주식회사 포스코 Laser welding apparatus
JP2019188411A (en) * 2018-04-20 2019-10-31 住友重機械工業株式会社 Processing system
JP7423178B2 (en) 2018-04-20 2024-01-29 住友重機械工業株式会社 processing system
CN113382817A (en) * 2019-01-25 2021-09-10 本田技研工业株式会社 Soldering apparatus and soldering method
CN113993654A (en) * 2019-07-05 2022-01-28 株式会社Lg新能源 Welding equipment with smoke removing function
CN113993654B (en) * 2019-07-05 2024-03-29 株式会社Lg新能源 Welding equipment with smoke and dust removal function
CN110434502A (en) * 2019-07-18 2019-11-12 南京中车浦镇城轨车辆有限责任公司 A kind of 6 line aluminium alloy profile welders and method based on laser cleaning
JP2021045932A (en) * 2019-09-20 2021-03-25 株式会社Screenホールディングス Printer and liquid circulation method in printer
JP2021129341A (en) * 2020-02-10 2021-09-02 日本発條株式会社 Method of manufacturing lamination iron core
JP7466323B2 (en) 2020-02-10 2024-04-12 日本発條株式会社 Manufacturing method of laminated core
WO2022259796A1 (en) 2021-06-09 2022-12-15 株式会社神戸製鋼所 Suction apparatus, suction method, welding system, welding method, and additive manufacturing method
KR20230154259A (en) 2021-06-09 2023-11-07 가부시키가이샤 고베 세이코쇼 Suction device, suction method, welding system, welding method and additive manufacturing method
CN113814535A (en) * 2021-10-09 2021-12-21 江苏科技大学 Welding method of heterogeneous titanium alloy T-shaped joint

Also Published As

Publication number Publication date
JP5419807B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP5419807B2 (en) Laser welding equipment
US8546720B2 (en) Hybrid welding apparatus and system and method of welding
EP3750665B1 (en) Hybrid-welding method and device for continuous welding
JP5219959B2 (en) T-joint welding method and apparatus
WO2003024658A1 (en) Work welding method
US8890030B2 (en) Hybrid welding apparatuses, systems and methods
JP2014531324A (en) Apparatus and method for laser cleaning of coated material prior to welding
JP5495118B2 (en) Laser lap welding method of galvanized steel sheet
CN104907696B (en) A kind of laser-arc hybrid welding in industry method considering welding current value
KR20120104325A (en) A welding process and a welding arrangement
JP6155183B2 (en) Narrow groove laser welding method
Victor Hybrid laser arc welding
RU2547987C1 (en) Laser welding method
JP6625886B2 (en) Laser-arc hybrid welding head and laser-arc hybrid welding method
JP5341538B2 (en) Laser welding equipment
JP2017164757A (en) Laser welding method
JP5600838B2 (en) Laser welding method
EP3498417A1 (en) Welding apparatus with laser cleaning device and method of welding and cleaning
US20050211688A1 (en) Method for hybrid multiple-thickness laser-arc welding with edge welding
CN107081528A (en) A kind of method for laser welding of high-grade pipe line steel
JP5122986B2 (en) Laser welding method and apparatus for steel plate
JP5741663B2 (en) Laser welding method and apparatus for steel plate
JP2014024078A (en) Laser welding apparatus
JP3591630B2 (en) Laser-arc combined welding method and welding apparatus
JP5396941B2 (en) Laser welding method and laser welding apparatus for metal plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131119

R150 Certificate of patent or registration of utility model

Ref document number: 5419807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees