JP2011528914A - mRNA定量のための改善された溶解および逆転写 - Google Patents

mRNA定量のための改善された溶解および逆転写 Download PDF

Info

Publication number
JP2011528914A
JP2011528914A JP2011520376A JP2011520376A JP2011528914A JP 2011528914 A JP2011528914 A JP 2011528914A JP 2011520376 A JP2011520376 A JP 2011520376A JP 2011520376 A JP2011520376 A JP 2011520376A JP 2011528914 A JP2011528914 A JP 2011528914A
Authority
JP
Japan
Prior art keywords
pcr
sample
present
cells
chaotropic agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011520376A
Other languages
English (en)
Other versions
JP5367078B2 (ja
Inventor
クビスタ,ミヒャエル
シュトレンボン,リンダ
ゾリック,ニーブン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Publication of JP2011528914A publication Critical patent/JP2011528914A/ja
Application granted granted Critical
Publication of JP5367078B2 publication Critical patent/JP5367078B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本発明は、(i)細胞培養槽内で接着細胞集団を培養する工程(ii)前記試料槽内の標的RNAを含むと思われる前記接着細胞集団を、0.05M〜1Mのカオトロピック剤を含む溶解バッファーで溶解させる工程(iii)前記試料槽に、逆転写反応の実施に必要な試薬を、前記カオトロピック剤が前記試料槽内に約10〜60mMの濃度で存在するように添加し、前記標的RNAを逆転写する工程(iv)前記試料を多数回サイクルの熱サイクルプロトコルに供することによって前記第1鎖cDNAを増幅させる工程を含む、標的RNAを増幅するためのRT-PCRの実施方法に関する。

Description

(技術分野)
本発明は、RT-PCRを実施することによる、遺伝子発現モニタリングのための新規の方法を提供する。より正確には、本発明には、接着細胞が培養されるバイアル中で該細胞を溶解し、その後同一バイアル中で溶解物に含まれるRNAを一本鎖cDNAへと逆転写できる可能性が開示される。
(従来技術の背景)
集団状態の細胞は、培養または組織で均一であると思えたとしても、それらの特長において多くの面で特有である。遺伝子発現レベルは、外部(外因性)起源および内部(内因性)起源の要因のために、細胞ごとに大きな違いを示す。同様に、細胞は、同じ刺激に曝された場合、しばしば確率論的にふるまうことがある。この事は、細胞の集団から得られたデータが、個々の細胞のふるまいを反映するとは想定できないことを意味する。細胞は、転写活性のバーストにより刺激に応答し二元的なスイッチとして、すなわち全か無の様式で機能し得るということが示唆されている。
通常、RNAレベルでの遺伝子発現は多段階手順により常套的にモニターされる。第1に、培養容器から個々の細胞試料を取り出す。接着細胞の場合、接着細胞を固相支持体から分離するために、トリプシン化(トリプシン-EDTA溶液による処理)により回収を補助してもよい。第2に、回収された細胞をペレット化し、細胞溶解にかける。第3工程として、通常、試料中に存在するRNAまたはmRNAを少なくとも部分的に精製する必要がある(EP 0 389 063)。その後、AMV(Roche Applied Science、カタログ番号:11 495 062)またはMMuLV(Roche 11 062 603)逆転写酵素などのRNA依存型DNAポリメラーゼを使用して、第一鎖cDNA合成工程を行う。
続いて、生成されたcDNAの量が、定量的PCR(Sagner, G., and Goldstein, C., BIOCHEMICA 3 (2001) 15-17)または代替的に増幅およびその後DNAマイクロアレイへのハイブリダイゼーション(Kawasaki, E.S., Ann. N.Y. Acad. Sci. 1020 (2004) 92-100)のいずれかによって定量される。PCRの場合、第一鎖cDNA合成とその後の増幅がT.thポリメラーゼ(Roche Applied Science、カタログ番号11 480 014)などの同一のポリメラーゼにより触媒されることを特徴とする、一工程RT-PCRを行ってもよい。
従来のリアルタイムRT-PCRまたはqRT-PCRでは、最初にRNAを細胞から時間のかかる手順で単離し、これにより材料のロスが生じ得る。CellsDirect cDNA合成システム(Invitrogen、カタログ番号11737-030)を使用することで、取り扱いが最小で試料を損失せずに、単一のチューブ中で細胞を溶解し、溶解物からcDNAを生成する。第一鎖合成の前に、DNase Iを添加してゲノムDNAを除去する。合成後、第一鎖cDNAは、中間有機抽出またはエタノール沈殿を行うことなく、直接qPCR反応に移すことができる。このキットは、10,000細胞から一細胞の範囲の少ない細胞試料に適している。同様のプロトコルが(WO 08/135197)に開示される。
これに関連して、本発明の基礎をなす技術的な課題は、遺伝子発現モニタリング解析プロトコルのさらなる簡易化を可能にするハイスループット方法およびキットを提供することであった。
(簡単な説明)
従って、本発明は、
a) 細胞培養容器中で接着細胞の集団を培養する工程
b) 前記試料容器中の、標的RNAを含むと思われる前記接着細胞の集団を、0.05M〜1Mのカオトロピック剤を含む溶解バッファで溶解する工程
c) 前記カオトロピック剤が約10〜60mMの濃度で前記試料容器中に存在するように、逆転写反応を行うために必要な試薬を前記試料容器に添加し、前記標的RNAを第一鎖cDNAに逆転写する工程
d) 多サイクルのサーモサイクリングプロトコルを行うことにより、前記第一鎖cDNAを増幅する工程
を含む、標的RNAを増幅するためのRT-PCRを実行する方法に関する。
主要な一態様において、増幅する工程はリアルタイムでモニターされる。
好ましくは、カオトロピック剤はグアニジンチオシアネートである。
また好ましくは、溶解バッファは、約0.2〜0.5Mのカオトロピック剤を含む。
本発明の工程c)中に、カオトロピック剤は、約30〜50mM、好ましくは約40mMの濃度で存在する。
また好ましくは、この新規な方法の工程b)は、例えばNP40であり得る非イオン性界面活性剤の存在下で実施される。工程c)中に、前記非イオン性界面活性剤は0.1〜2V/V%である。
また好ましくは、工程a)は、糖またはデキストランであり得る炭水化物の添加を含む。
特定の態様において、工程b)とc)の間に、または工程c中にDNAseを添加する。好ましくは、前記DNAseは、主に二本鎖特異的DNAse、好ましくはDNAse IまたはShrimpヌクレアーゼである。
先に開示された態様と互いに排他的でない別の特定の態様において、工程b)中、または工程c)中のいずれかにプロテイナーゼKが添加される。
第二の局面において、本発明はまた、
- 少なくとも1つの細胞試料を培養するための使い捨て容器、
- 溶解バッファ、および
- 逆転写酵素活性を含むDNAポリメラーゼ
を含むキットを提供する。
また、かかるキットはさらに、非イオン性界面活性剤、炭水化物、DNAseおよびプロテアーゼからなる群より選択される少なくとも1つのさらなる成分を含み得る。
全ての図面は、qPCR増幅曲線を表す上パネルと融解曲線解析を表す下パネルを含む。左側にある増幅曲線は、反復測定に相当し、右側にある増幅曲線はTransscriptor酵素を添加しない対照に相当する。右側の融解ピークは反復の特異的転写産物に相当し、左側の融解ピークはTranscriptor酵素なしの対照におけるプライマー二量体形成に相当する。
図1は、実施例1の態様である本発明による、マウス星状細胞におけるACTB発現のqPCRおよび融解曲線解析である(1:1試料希釈)。 図1は、実施例1の態様である本発明による、マウス星状細胞におけるACTB発現のqPCRおよび融解曲線解析である(1:1試料希釈)。 図2は、実施例1の態様である本発明による、マウス星状細胞におけるACTB発現のqPCRおよび融解曲線解析である(1:4試料希釈)。 図2は、実施例1の態様である本発明による、マウス星状細胞におけるACTB発現のqPCRおよび融解曲線解析である(1:4試料希釈)。 図3は、実施例1の態様である本発明による、マウス星状細胞におけるTUBB5発現のqPCRおよび融解曲線解析である(1:1希釈)。 図3は、実施例1の態様である本発明による、マウス星状細胞におけるTUBB5発現のqPCRおよび融解曲線解析である(1:1希釈)。 図4は、実施例1の態様である本発明による、HeLA細胞におけるACTB発現のqPCRおよび融解曲線解析である(1:1希釈)。 図4は、実施例1の態様である本発明による、HeLA細胞におけるACTB発現のqPCRおよび融解曲線解析である(1:1希釈)。
(詳細な説明)
本発明によれば、接着性の真核細胞または原核細胞でさえも、特定の培養容器において、同一の培養容器中で溶解を実施し、一本鎖cDNAを生成するために逆転写酵素反応を実施することが可能である。
従ってより正確には、本発明は、
a) 細胞培養容器中で接着細胞の集団を培養する工程
b) 前記試料容器中の、標的RNAを含むと思われる前記接着細胞の集団を、0.05M〜1Mのカオトロピック剤を含む溶解バッファで溶解する工程
c) 前記カオトロピック剤が約10〜60mMの濃度で前記試料容器中に存在するように、逆転写反応を実施するために必要な全ての試薬を前記試料容器に添加し、前記標的RNAを第一鎖cDNAに逆転写する工程
d) 多サイクルのサーモサイクルプロトコルを行うことにより、前記第一鎖cDNAを増幅する工程
を含む、標的RNAを増幅するためのRT-PCRを実施する方法に関する。
従って、細胞培養、溶解および逆転写反応、すなわち工程a)〜c)は全て、同一の容器中で行われる。結果的に、ほとんどの先行技術の方法とは対照的に、逆転写反応を行なう前の溶解物の精製が必要なくなる。言い換えると、中間精製工程なしで工程b)の後に工程c)を行う。
工程a)、すなわち細胞培養容器中の接着細胞の集団の培養は、前記接着細胞の集団を、適切な培養条件下で、細胞が分裂能力を有し、生細胞の全体数が少なくとも2倍増加するような所定の時間増殖させる工程として規定される。
さらに、当該技術分野に使用されるプロトコルは、接着細胞を固相支持体から分離させるために、細胞培養物を市販のトリプシン-EDTAを含む適切なバッファ溶液(例えば、Invitrogen、カタログ番号25200 056、Genaxxon、カタログ番号4260.0500)でインキュベートすることを意味する、トリプシン化工程を必要とすることに注意することが重要である。対照的に、本発明は、細胞がインサイチュで直接溶解されるので、トリプシンによる固相支持体からの細胞の分離を必要としない。
工程d)の増幅は、通常、特異的cDNA種の検出を可能にするように設計された増幅プライマーの特異的ペアを使用するPCR反応の形態で実施される。
本発明の方法は、種々の異なる定性的および定量的な用途に使用され得る。原則的に、任意の種類のRNAが転写および増幅され得る。最も重要なこととして、本発明の方法は、定性的および定量的な様式でのmRNAの増幅および検出に適用できる。従って、本発明は、特に、遺伝子発現のモニタリングに適用できる。
回収、細胞溶解および逆転写のプロセスを調節するために、試料を対照RNAでスパイクしてもよい。好ましくは、対照RNAは、逆転写の工程の間にcDNAへと転写される、試料のRNAと識別され得る人工RNAである。逆転写工程に特異的プライマーを使用する場合、人工RNAは、解析される挿入物を含むか、または標的配列のごく一部に相当するかのいずれかである遺伝子改変されたDNA鋳型のインビトロ転写により誘導され得る。
好ましくは、生物試料は、接着真核細胞からなり、すなわち該細胞は培養容器の一部である固相支持体に接着することで培養および増殖される。本発明の方法には、任意の種類の培養容器を使用することができる。例は、本発明の範囲を限定するものではないが、接着細胞の増殖のための固相支持体となるのに適した内表面を有するペトリ皿および培養ビンである。これらの種類の培養ビンにより、特定の種類のcDNAの大量調製が可能になる。
他の例は、当該技術分野で一般的に使用されるような6ウェル、24ウェル、96ウェル、384ウェルまたは1536ウェル形式のマイクロタイタープレートである。本発明の方法をかかるマイクロタイタープレートで実施する場合、多数の試料を並行して培養、溶解および逆転写することが可能である。より正確には、細胞培養、細胞溶解、希釈、任意の添加剤の添加および逆転写酵素反応は同一の反応容器中で行われる。そのため、本発明の方法は、自動化されたプロセスで、接着細胞の多数の試料のハイスループット解析に特に有用である。反応容器が、当該技術分野で確立された基準に従って24、96、384または1536ウェルマイクロタイタープレートの形態で一緒に整列される場合、溶解試薬、種々の添加剤および逆転写酵素反応の実施に必要な試薬は、液体取り扱いロボット装置により試料に添加することができる。
従って、特定の局面において、本発明は、
a) 接着細胞の多数の集団を、マイクロタイタープレートの別々のウェルで培養する工程
b) 多数の試料を生成するために、前記マイクロタイタープレートの前記ウェル中で、標的RNAを含むと思われる前記接着細胞の多数の集団を、0.05M〜1Mのカオトロピック剤を含む溶解バッファで溶解する工程
c) 前記カオトロピック剤が約10〜60mMの濃度で前記マイクロタイタープレートの前記ウェル中に存在するように、逆転写反応を実施するために必要な全ての試薬を前記ウェル中の前記多数の試料のそれぞれに添加し、それぞれの試料中に存在する前記標的RNAを第一鎖cDNAに逆転写する工程、
d) 多サイクルのサーモサイクリンプロトコルを実施することにより、それぞれの試料に含まれる前記第一鎖cDNAを増幅する工程
を含む、少なくとも1つの標的RNAを並行して増幅するための、多数のRT-PCR反応を実施する方法に関する。
本発明の範囲においては、好ましくは6、24、96、384または1536もの集団を並行して処理することができる。再度、工程d)の増幅は、通常、特異的cDNA種の検出を可能にするように設計された増幅プライマーの特異的ペアを使用して、PCR反応の形態で実施される。一態様において、複数のマルチウェルは、異なる細胞株または異なる条件下で前処理された同一の細胞株に由来する異なる細胞集団を含み得る。この場合、異なる条件下での特異的な遺伝子の発現を調べるために、同一のペアの増幅プライマーを使用して、多数のPCR増幅を行う。
代替的に、大部分のウェルは、同一起源由来の同じ種類の細胞集団を含み得る。この場合、並行して多くの異なる遺伝子の発現を調べるために、多数の異なるペアの増幅プライマーを選択し得る。しかしながら、互いに排他的でなく、解析される科学的疑問に基づいて、開示される両方のアプローチは、それぞれのマイクロタイタープレートにあるウェルの総数の最適な使用を達成するために異なる細胞の種類が適切な数で、かつ異なるPCRプライマーペアが適切な数であるようにアッセイ設定を設計し得ることが当業者には理解されよう。
また、かかる並行解析の可能性は、異なるcDNA種の増幅のための多数のプライマーペアを同一の試料に使用することを特徴とするマルチプレックスPCRによりさらに改善することができる。特に、かかる設計は、特定の遺伝子の発現が同等レベルで構成的に発現するいわゆるハウスキーピング遺伝子の発現に対して相対的にモニターされることを特徴とする相対的RT-PCR定量実験に有利である。かかるハウスキーピング遺伝子の主な例は、PBDG、GAPDHおよびACTBならびに18Sおよび26S RNA遺伝子である。
本発明によれば、接着細胞の溶解は、溶解バッファを直接添加することにより達成されるが、細胞は固相支持体表面に接着されたままである。これは、溶解バッファがカオトロピック試薬を含む場合に限り可能となる。当該技術分野の一般的な理解によると、カオトロピック試薬は、タンパク質、DNA、またはRNAなどの巨大分子の三次元構造を破壊し、それらを変性させる物質である。カオトロピック剤は、水素結合、ファンデルワールス力および疎水性効果などの非共有結合力により仲介される分子間相互作用の安定化を阻害する。カオトロピック試薬としては、限定されないが、尿素、過塩素酸リチウムなどのいくつかのリチウム塩、および塩化グアニジニウムなどのグアニジニウム塩が挙げられる。本発明に関して、特に好ましい剤はグアニジンチオシアネートである。
中間精製工程を行うことなく溶解物中で直接逆転写酵素反応を実施できるようにするために、工程b)の間に逆転写酵素の活性が大きく影響を受けないように、細胞試料の溶解のために限られた量の前記カオトロピック剤だけを使用する必要がある。そのため、工程b)に添加される溶解バッファは、好ましくは約0.2〜0.5Mのカオトロピック剤を含む。さらに、工程c)の開始時にさらなる試薬の添加後、カオトロピック剤は、約30〜50mM、好ましくは約40mMの濃度で存在する。
一態様において、本発明の工程b)は、NP40などの非イオン性界面活性剤の存在下で実施される。代替的に、少量の試料だけを処理する必要がある場合に、工程b)は、蒸発効果を有効に回避するPCR適合性湿潤剤の添加を含む。好ましくは、糖またはデキストランなどの炭水化物を本発明に関する湿潤剤として使用し得る。NP40または別の非イオン性界面活性剤を添加する場合、界面活性剤の量は、工程c)の間に前記界面活性剤が0.1〜2%のV/V量で存在するように選択されるべきである。
本発明の細胞回収および溶解は、種々の温度で行なわれ得る。本発明の方法の工程b)は、通常、16℃〜24℃で少なくとも5分間実施される。これらの状況下での溶解に必要な最長時間は約30分である。同様に、工程b)は、室温よりも低いが5℃よりも高い温度で少なくとも10分間実施することができる。これらの状況下での溶解に必要な最長時間は約60分である。少量の試料を処理する場合に、これらの条件は任意の蒸発効果を回避するために非常に好ましい。加熱の必要性も除かれる。
しかし、培養された接着細胞の溶解を加速および改善するために、溶解バッファにプロテイナーゼKを補充してもよい。この場合、工程b)は、約0.05〜5mg/ml、好ましくは0.1〜1mg/mlの濃度のプロテイナーゼKの存在下で、約55℃〜85℃の温度で少なくとも5分間実施される。任意に、前記プロテイナーゼKは、工程b)と工程c)の間、または工程c)と工程d)の間のいずれかに、約80℃〜90℃の温度で少なくとも5分間であるが通常は30以内、その後のインキュベーションにより、不可逆的に不活性化されてもよい。
本発明によれば、細胞溶解および逆転写は同一反応容器中で実施され、これは、溶解された細胞に含まれるゲノムDNAを選択的に除去でき、細胞RNAが完全なまま残る場合に非常に有利であることが明らかである。この効果を達成するための最も有効な可能性は、DNAse消化工程を含むことによる酵素的な除去である。従って、本発明の主要な一態様において、工程b)は、二本鎖特異的DNAseの存在下で実施される。好ましくは、かかるDNAseは、主に約0.1単位/50μl反応液(USB、カタログ番号73814)の濃度のDNAse I(Roche Applied Science、カタログ番号04 716 728)またはShrimp DNAse(US 6,541,204)などの二本鎖特異的DNAsである。しかしながら、工程d)の間に、一本鎖cDNAをPCR反応などのDNAポリメラーゼ触媒増幅反応にさらに供するので、増幅反応の前に前記DNAseを不活性化することは非常に有利である。従って、特定の態様において、DNAse活性の不活性化のために工程b)と工程c)の間または工程c)と工程d)の間に約80℃〜90℃の温度で少なくとも5分間であるが60分以内、試料をインキュベートする。代替的に、DNAseがShrimp DNAseである場合は、通常、工程d)のPCR反応の第1サイクル中の変性で充分である。
第一鎖cDNA合成には、アンチセンス配列を有するプライマーを使用する。これらのプライマーは特異的プライマー、mRNAのポリAテイルに結合するオリゴdTプライマー、またはランダムヘキサマープライマーなどのランダムプライマーのいずれかである。その後のPCRには、センス方向の配列特異的プライマーをフォワードプライマーとして使用する。リバースプライマーは、特異的プライマーであり、第一鎖cDNA合成反応に使用した特異的プライマーと同一であり得る。代替的に、リバースプライマーは、逆転写酵素反応に使用したプライマーの結合部位(side)の上流に位置する配列にハイブリダイズする。
本発明は、実施可能な5kbまでの任意のアンプリコンサイズの配列の一工程RT-PCRの実施に適用できる。
本発明は、2工程RT PCRを行なうために特に有用である、すなわち、第1反応では、RNAは単鎖cDNAに逆転写される。この工程に使用され得るRNA依存性DNAポリメラーゼの例は、AMV逆転写酵素(Roche Applied Scienceカタログ番号11 495 062)、MMuLV逆転写酵素(Roche Applied Scienceカタログ番号011 062 603)、および組換えTranscriptor逆転写酵素(Roche Applied Scienceカタログ番号03 531 317)である。続いて、熱安定性DNA依存性DNAポリメラーゼならびに標的特異的フォワードおよびリバース増幅プライマーなどの、生成された単鎖cDNAをPCRによって増幅するのに必要なすべての試薬を添加する。
また、本発明の方法は、RT-PCRに必要なすべての試薬および酵素を逆転写前に工程c)で添加することを特徴とする、1工程PCR行なうためにも使用され得る。例えば、Carboxydothermus hydrogenoformansのDNAポリメラーゼは、1工程PCRを行なうことができる(Roche Applied Scienceカタログ番号12016338001)。あるいは、本発明による1工程RT-PCR法は、PCR反応を行なうことができるDNA鋳型依存性熱安定性DNAポリメラーゼおよびAMV逆転写酵素などの1工程RT-PCR反応の逆転写酵素工程を行なうことができるRNA鋳型依存性DNAポリメラーゼを含む酵素混合物を用いて行なわれる。
しかしながら、通常、接着細胞の培養に使用されるほとんどの細胞培養槽の材質は熱安定性ではなく、それぞれのバイアルは熱サイクル機器に適合していない。したがって、1工程RT-PCRプロトコルでは、逆転写工程後、生成された第1鎖cDNAの試料は培養槽から反応槽に移され、さらなる試薬を途中で添加することなく、サーモサイクラー機器と共に使用され得る。だが、前記接着細胞の培養に使用される細胞培養槽の材質が熱安定性である場合は、工程d)も前記槽内で行なわれ得る。特に、細胞培養槽がマイクロタイタープレート形式で配置されている場合、前記マイクロタイタープレートを、かかるプレートが回収されるように構成されたサーモサイクラー機器に直接移してもよい。
主要な一態様において、増幅工程はリアルタイムでモニタリングされる。リアルタイムでのかかるモニタリングは、前記1工程RT-PCR反応の進行をリアルタイムでモニタリングすることを特徴とする。当該技術分野で種々の検出形式が公知である。後述する検出形式は、RT-PCRに有用であることが示され、したがって、容易で単純な遺伝子発現解析の可能性を提供する。
a)TaqMan加水分解プローブ形式:
単鎖のハイブリダイゼーションプローブを2つの成分で標識する。第1成分を適当な波長の光で励起すると、吸収されたエネルギーは、蛍光共鳴エネルギー移動の原理に従って、いわゆるクエンチャーである第2成分に移動する。PCR反応のアニーリング工程中、ハイブリダイゼーションプローブは標的DNAに結合し、その後の伸長期の間にTaqポリメラーゼの5'-3'エキソヌクレアーゼ活性によって分解される。その結果、励起された蛍光成分およびクエンチャーは、互いに空間的に離れており、したがって、第1成分の蛍光放射が測定され得る。TaqManプローブアッセイは、US 5,210,015、US 5,538,848、およびUS 5,487,972に、より詳細に開示されている。TaqManハイブリダイゼーションプローブおよび試薬混合物は、US 5,804,375に開示されている。
b)分子ビーコン:
これらのハイブリダイゼーションプローブはまた、第1成分およびクエンチャーで標識され、標識は、好ましくはプローブの両端に位置する。プローブの二次構造の結果、両方の成分は溶液中で空間的に近接する。標的核酸へのハイブリダイゼーション後、両方の成分は互いに離れ、そのため、適当な波長の光での励起後、第1成分の蛍光放射が測定され得る(US 5,118,801)。
c)FRETハイブリダイゼーションプローブ:
FRETハイブリダイゼーションプローブ試験形式は、すべての種類の均一系ハイブリダイゼーションアッセイに特に有用である(Matthews,J.A.およびKricka,L.J.,Analytical Biochemistry 169(1988)1-25)。これは、同時に使用され、同じ鎖の増幅対象の標的核酸との隣接部位に相補的な2つの単鎖ハイブリダイゼーションプローブを特徴とする。両方のプローブは異なる蛍光成分で標識される。適当な波長の光で励起されると、第1成分は、吸収されたエネルギーを、蛍光共鳴エネルギー移動の原理に従って第2成分に移動させ、そのため、両方のハイブリダイゼーションプローブが、検出対象の標的分子の隣接位置に結合すると、第2成分の蛍光放射が測定され得る。FRETアクセプター成分の蛍光の増大をモニタリングする代わりに、ハイブリダイゼーション事象の定量的尺度として、FRETドナー成分の蛍光の減少をモニタリングすることも可能である。
特に、FRETハイブリダイゼーションプローブ形式が、増幅された標的DNAを検出するために、リアルタイムPCRに使用され得る。リアルタイムPCRの技術分野で公知のすべての検出形式の中でも、FRET-ハイブリダイゼーションプローブ形式は、高感度で、正確で信頼性があることが示されている(WO 97/46707;WO 97/46712;WO 97/46714)。2種類のFRETハイブリダイゼーションプローブの使用の代替法として、蛍光標識プライマーと1種類だけの標識オリゴヌクレオチドプローブを使用することも可能である(Bernard,P. S.,et al.,Analytical Biochemistry 255(1998)101-107)。これに関連して、プライマーをFRETドナーで標識するか、FRETアクセプター化合物で標識するかは自由裁量で選択され得る。
d)SybrGreen形式
また、増幅産物が二本鎖核酸結合部分を用いて検出される場合に、リアルタイムPCRが本発明による添加剤の存在下で行なわれる場合も本発明の範囲に含まれる。例えば、それぞれの増幅産物はまた、本発明に従って、適当な波長の光での励起後、二本鎖核酸と相互作用すると、対応する蛍光シグナルを放出する蛍光DNA結合色素によっても検出され得る。色素SybrGreenIおよびSybrGold(Molecular Probes)は、この適用に特に適していることが示された。インターカレート色素が代替的に使用され得る。しかしながら、この形式では、異なる増幅産物を識別するため、それぞれの融解曲線解析を行なうことが必要である(US6,174,670)。
本発明によるキット
別の局面において、本発明はまた、
(i)少なくとも1つの細胞試料を培養するための使い捨て容器、
(ii)溶解バッファー、および
(iii)逆転写酵素活性を含むDNAポリメラーゼ(逆転写酵素)
を含むキットを提供する。
使い捨て容器(i)は、少なくとも1つの細胞集団の培養に適した任意の種類の使い捨て容器であり得る。好ましくは、かかる使い捨て容器は、好ましくは6、24、96、384または1535個のウェルを有するマイクロタイタープレートである。特定の態様において、かかる使い捨て容器は熱安定性で、サーモサイクラー機器に適合している。
溶解バッファー(ii)は、0.05M〜1Mのカオトロピック剤を含むバッファーである。該薬剤自体は、好ましくはチオシアン酸グアニジンである。任意に、キットは、プロテイナーゼKを、溶解バッファー中に約0.05〜5mg/ml、好ましくは0.1〜1mg/mlの濃度で、または少なくとも5倍高いストック濃度を有する独立した試薬として含み得る。また、任意に、キットは、デキストランまたは好ましくはNPである非イオン性界面活性剤を、溶解バッファー中に0.1〜2V/V% の量で、あるいは、別個のバイアル内に少なくとも5倍高いストック濃度のいずれかで含み得る。また、任意に、キットは、DNAse IまたはShrimpヌクレアーゼなどの主に二本鎖特異的DNAseを別個のバイアル内に少なくとも0.02単位の濃度で含むものであってもよい。
逆転写酵素(iii)は、AMV逆転写酵素(Roche Applied Scienceカタログ番号11 495 062)、MMuLV逆転写酵素(Roche Applied Scienceカタログ番号011 062 603)、および組換えTranscriptor逆転写酵素(Roche Applied Scienceカタログ番号03 531 317)などのいずれかの排他的にRNA依存性のDNAポリメラーゼである。成分(iii)はまた、Carboxydothermus hydrogenoformansのDNAポリメラーゼ、またはリバーストランスクリプターゼ酵素と熱安定性DNA依存性DNAポリメラーゼの混合物などの1工程RT PCR酵素であり得る。
本発明によるキットは、バッファー、第1鎖cDNA合成に必要とされるデオキシヌクレオシド三リン酸、ならびにオリゴ-dTプライマー、ランダムヘキサマープライマーまたはさらには特異的プライマーなどのそれぞれのプライマーを含み得る。該ポリメラーゼとともに、これらの試薬の1つ、いくつかまたはすべてを、1つのバイアル内にそれぞれのマスターミックスとして合わせてもよい。
さらに、本発明によるかかるキットは、Taqポリメラーゼなどの熱安定性DNAポリメラーゼならびに増幅反応を行なうのに必要なすべての他の試薬、例えば限定されないが、バッファー試薬、さらなるデオキシヌクレオシド三リン酸および配列特異的増幅プライマーを含み得る。また、キットは、qPCR中に少なくとも1種類の蛍光標識ハイブリダイゼーションプローブ、または二本鎖蛍光色素などのアンプリコンの検出に必要な試薬を含み得る。
実施例1:
マウス星状細胞を、2つの異なる濃度(1:1、1:4)でバイアル1つあたり、ほぼ1000個または250個の細胞を用いて384ウェル細胞培養プレート内に播種し、増殖させた。約96時間後、培養培地を除去し、細胞を冷PBSで洗浄した。2μlの溶解バッファーを添加し、細胞を室温で10分間インキュベートした。溶解バッファーの組成は以下のとおり:
0.2Mチオシアン酸グアニジン
10ng/ulポリイノシン酸
であった。
Transcriptor RT試薬(Roche Applied Scienceカタログ番号03 531 317を最終RT容量20μlまで添加した。RTなしの対照では、逆転写酵素をRTミックスから省いた。RT反応液を含む細胞培養プレートを以下の熱サイクルプロトコル:
25℃で10分間
55℃で30分間
85℃で5分間
氷上で冷却
に従ってインキュベートした。
続いて、cDNAをヌクレアーゼ無含有水中で50μlまで希釈した。2μlのcDNAを10μlのPCR液において、LightCycler 480 SYBR Green I Masterプレミックス(Roche Applied Scienceカタログ番号04 707 516)ならびにACTBおよび18S rRNA(TATAA Biocenter、内在対照遺伝子パネル)の増幅に適当なプライマーを用いて解析した。製造業者の使用説明書に従い、ACTBおよび18S rRNA遺伝子の発現をLightCycler 480リアルタイムPCR機器(Roche Applied Scienceカタログ番号05 015 278)において定量し、Ct値を測定した。低いCt値は高度の発現に対応する。
表から推論され得るように、4つのそれぞれで得られたCt値は再現性が高く、特許請求の範囲に記載の発明の高性能品質を示す。
また、ACTB遺伝子のqPCRおよびその後の融解曲線解析の結果を、図1(1:1)および2(1:4)に示す。
実施例2:
マウスの星状細胞を、バイアル1つあたり平均ほぼ125個の細胞を用いて、384ウェル細胞培養プレート内に播種し、増殖させた。約96時間後、培養培地を除去し、細胞を冷PBSバッファーで洗浄した。次いで、PBSバッファーをRNA later(Ambion、カタログ番号7020)と交換し、細胞を冷蔵庫に11日間保存した。次いで、RNA laterを除去し、細胞を冷PBSで1回または2回洗浄した。0.2Mのチオシアン酸グアニジンおよび5ng/ulのポリイノシン酸を含む4μlの溶解バッファーを添加し、細胞を室温で10分間インキュベートした。Transcriptor RT試薬を最終RT容量20μlまで添加した。RTなしの対照では、逆転写酵素をRTミックスから省いた。RT反応液を含む細胞培養プレートを以下のプロトコル:
25℃で10分間
50℃で30分間
85℃で5分間
氷上で冷却
に従ってインキュベートした。
cDNAをヌクレアーゼ無含有水中で50μlまで希釈した。実施例1と同様に、2μlのcDNAを10μlのPCR液において、LightCycler 480 SYBR Green I Masterプレミックスを用いて解析した。18S rRNA、ACTB、GAPDHおよびTUBB5遺伝子を適切なプライマー(TATAA Biocenter、内在対照遺伝子パネル)で測定するリアルタイムPCRをLightCycler 480リアルタイムPCR機器において行なった。得られたCt値の結果を表3に示す。
再度、3つで得られた非常に類似したCt値は、解析する遺伝子とは無関係に、本発明の方法の卓越した性能を示す。また、性能を、TUBB 5遺伝子で得られた増幅および融解曲線を示す図3にも示す。
実施例3:
ヒト培養HeLa細胞を、バイアル1つあたりほぼ4000個の細胞を用いて96ウェル細胞培養プレート内に播種し、増殖させた。約48時間後、培養培地を除去し、RNA laterと交換し、細胞を冷蔵庫内に24時間保存した。次いで、RNA laterを除去し、細胞を冷PBSで洗浄した。12,5μlの実施例1による溶解バッファーを添加し、細胞を室温で10分間インキュベートした。Transcriptor RT試薬を、最終RT容量50μlまで添加した。RTなしの対照では、逆転写酵素をRTミックスから省いた。RT反応液を含む細胞培養プレートを以下のプロトコル:
25℃で10分間
50℃で30分間
85℃で5分間
氷上で冷却
に従ってインキュベートした。
実施例1と同様に、2μlのcDNAを、10μlのPCR反応中で、LightCycler 480 SYBR Green I Masterプレミックスを用いて解析した。ACTB、GAPDH、RPLP0およびHPRT1遺伝子を適切なプライマー(TATAA Biocenter、内在対照遺伝子パネル)で測定するリアルタイムPCRを、LightCycler 480リアルタイムPCR機器において行なった。得られたCt値を表4に示す。
5つで得られた非常に類似したCt値は、解析する細胞型とは無関係に、本発明の方法の卓越した性能を示す。また、性能を、ACTB遺伝子で得られた増幅および融解曲線を示す図4にも示す。

Claims (9)

  1. a)細胞培養槽内で接着細胞集団を培養する工程
    b)前記試料槽内の標的RNAを含むと思われる前記接着細胞集団を、0.05M〜1Mのカオトロピック剤を含む溶解バッファーで溶解させる工程
    c)前記試料槽に、逆転写反応を行なうのに必要な試薬を、前記カオトロピック剤が前記試料槽内に約10〜60mMの濃度で存在するように添加し、前記標的RNAを第1鎖cDNAに逆転写する工程
    d)多数回サイクルの熱サイクルプロトコルを行なうことによって前記第1鎖cDNAを増幅させる工程
    を含む、標的RNAを増幅するためのRT-PCRの実施方法。
  2. 増幅工程がリアルタイムでモニタリングされる、請求項1記載の方法。
  3. 前記カオトロピック剤がチオシアン酸グアニジンである、請求項1〜2記載の方法。
  4. 前記溶解バッファーが約0.2〜0.5Mのカオトロピック剤を含む、請求項1〜4記載の方法。
  5. 工程b)が、好ましくはNP40である非イオン界面活性剤の存在下で行なわれ、工程c)中の前記非イオン界面活性剤が0.1〜2%V/Vである、請求項1〜4記載の方法。
  6. DNAseが工程b)とc)の間に添加される、請求項1〜5記載の方法。
  7. プロテイナーゼKが、工程b)中または工程c)の前のいずれかで添加される、請求項1〜6記載の方法。
  8. - 少なくとも1つの細胞試料を培養するための使い捨て容器、
    - 任意にカオトロピック剤を含む溶解バッファー
    - 逆転写酵素活性を含むDNAポリメラーゼ
    を含む、キット。
  9. さらに、非イオン界面活性剤、炭水化物、DNAseおよびプロテアーゼからなる群より選択される少なくとも1種類のさらなる成分を含む、請求項8記載のキット。
JP2011520376A 2008-08-01 2009-07-30 mRNA定量のための改善された溶解および逆転写 Active JP5367078B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08013816 2008-08-01
EP08013816.7 2008-08-01
PCT/EP2009/005516 WO2010012464A1 (en) 2008-08-01 2009-07-30 Improved lysis and reverse transcription for mrna quantification

Publications (2)

Publication Number Publication Date
JP2011528914A true JP2011528914A (ja) 2011-12-01
JP5367078B2 JP5367078B2 (ja) 2013-12-11

Family

ID=39884115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011520376A Active JP5367078B2 (ja) 2008-08-01 2009-07-30 mRNA定量のための改善された溶解および逆転写

Country Status (7)

Country Link
US (2) US8623602B2 (ja)
EP (1) EP2310527B1 (ja)
JP (1) JP5367078B2 (ja)
CN (1) CN102112631A (ja)
CA (1) CA2730761C (ja)
ES (1) ES2539856T3 (ja)
WO (1) WO2010012464A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017209036A (ja) * 2016-05-24 2017-11-30 東洋紡株式会社 改良されたウイルス検出方法
JP2021052598A (ja) * 2019-09-27 2021-04-08 東洋紡株式会社 非特異的な核酸増幅を抑制する方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE510932T1 (de) * 2007-05-03 2011-06-15 Hoffmann La Roche Mrna-quantifizierung einer einzelzelle mittels echtzeit-rt-pcr
GB2528344B (en) 2014-02-28 2018-10-31 Gen Probe Inc Method of isolating nucleic acid from specimens in liquid-based cytology preservatives containing formaldehyde
EP3250716B1 (en) * 2015-01-30 2021-07-07 President and Fellows of Harvard College Microscope-free imaging
US11266730B2 (en) 2015-09-29 2022-03-08 The General Hospital Corporation Methods of treating and diagnosing disease using biomarkers for BCG therapy
WO2018132392A2 (en) 2017-01-10 2018-07-19 President And Fellows Of Harvard College Multiplexed signal amplification
CN106867993A (zh) * 2017-02-17 2017-06-20 唐旌生物科技(上海)有限公司 一种逆转录方法、逆转录试剂盒及其应用
GB201803654D0 (en) 2018-03-07 2018-04-25 Arcticzymes As Thermolabile proteinases
EP3940073A4 (en) 2019-03-13 2023-03-01 Toyobo Co., Ltd. PRODUCTION AND AMPLIFICATION OF NUCLEIC ACIDS
CN113564159A (zh) * 2021-07-22 2021-10-29 山东大学 一种分子信标探针、试剂盒及其体外转录荧光定量实时示踪检测方法和应用
US20230416724A1 (en) * 2022-06-24 2023-12-28 Purigen Biosystems, Inc. Lysis Buffers Comprising Cyanate or Thiocyanate and a Detergent
US20240026339A1 (en) * 2022-07-10 2024-01-25 Vilnius University Composition and the use of cell lysis reagents

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310652A (en) * 1986-08-22 1994-05-10 Hoffman-La Roche Inc. Reverse transcription with thermostable DNA polymerase-high temperature reverse transcription
US5118801A (en) 1988-09-30 1992-06-02 The Public Health Research Institute Nucleic acid process containing improved molecular switch
NL8900725A (nl) 1989-03-23 1990-10-16 Az Univ Amsterdam Werkwijze en combinatie van middelen voor het isoleren van nucleinezuur.
US5210015A (en) 1990-08-06 1993-05-11 Hoffman-La Roche Inc. Homogeneous assay system using the nuclease activity of a nucleic acid polymerase
EP0584238A1 (en) * 1991-05-17 1994-03-02 Chiron Corporation INHIBITOR OF NF-$g(k)B TRANSCRIPTIONAL ACTIVATOR AND USES THEREOF
US5538848A (en) 1994-11-16 1996-07-23 Applied Biosystems Division, Perkin-Elmer Corp. Method for detecting nucleic acid amplification using self-quenching fluorescence probe
AU5885196A (en) * 1995-06-06 1996-12-24 T Cell Diagnostics, Inc. Universal chemistry enzyme-linked immunosorbent assay for de tection of mrna expression
JP4281877B2 (ja) 1996-06-04 2009-06-17 ユニバーシティ オブ ユタ リサーチ ファウンデーション 生物学的プロセスを実行し且つモニタリングするためのシステムと方法
PT912766E (pt) 1996-06-04 2009-07-16 Univ Utah Res Found Monitorização da hibridização durante a pcr
GB9716664D0 (en) * 1997-08-06 1997-10-15 Norwegian Inst Of Fisheries & A method of removing nucleic acid contamination reactions
US6248535B1 (en) * 1999-12-20 2001-06-19 University Of Southern California Method for isolation of RNA from formalin-fixed paraffin-embedded tissue specimens
EP1476573B1 (en) * 2002-01-28 2010-01-06 Ambion, Inc. Crude biological derivatives competent for nucleic acid detection
JP4836795B2 (ja) 2003-05-19 2011-12-14 ブランデイズ ユニバーシティー 核酸プロセシング方法、キット、及び装置
JP3714940B2 (ja) * 2003-11-07 2005-11-09 株式会社日立ハイテクノロジーズ Rna抽出方法、および生体材料の分析方法
AU2005200670B2 (en) * 2004-02-20 2007-05-03 F. Hoffmann-La Roche Ag Adsorption of nucleic acids to a solid phase
US20050208501A1 (en) * 2004-03-16 2005-09-22 Ambion, Inc. Process and reagents for extraction of RNA from fractionated blood leukocytes
DE102004026744A1 (de) * 2004-05-28 2005-12-29 Philipps-Universität Marburg Erfindung betreffend cDNA-Herstellung aus Zellen nach Laser-Mikrodissektion
EP1707623A1 (de) * 2005-04-01 2006-10-04 Qiagen GmbH Reverse Transkription und Amplifikation von RNA bei simultaner Degradierung von DNA
EP1863908B1 (de) * 2005-04-01 2010-11-17 Qiagen GmbH Reverse transkription und amplifikation von rna bei simultaner degradierung von dna
US20060286557A1 (en) * 2005-06-15 2006-12-21 Basehore Lee S Combined lysis and PCR buffer
EP1988654A1 (en) 2007-05-02 2008-11-05 Matsushita Electric Industrial Co., Ltd. Communication scheme for channel quality information
ATE510932T1 (de) 2007-05-03 2011-06-15 Hoffmann La Roche Mrna-quantifizierung einer einzelzelle mittels echtzeit-rt-pcr

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013003565; BMC Mol. Biol., (2008), 9, [1], p.63 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017209036A (ja) * 2016-05-24 2017-11-30 東洋紡株式会社 改良されたウイルス検出方法
JP2021052598A (ja) * 2019-09-27 2021-04-08 東洋紡株式会社 非特異的な核酸増幅を抑制する方法

Also Published As

Publication number Publication date
EP2310527B1 (en) 2015-04-29
US20140212958A1 (en) 2014-07-31
JP5367078B2 (ja) 2013-12-11
US9714448B2 (en) 2017-07-25
EP2310527A1 (en) 2011-04-20
US20110111463A1 (en) 2011-05-12
WO2010012464A1 (en) 2010-02-04
CN102112631A (zh) 2011-06-29
CA2730761A1 (en) 2010-02-04
CA2730761C (en) 2016-04-19
ES2539856T3 (es) 2015-07-06
US8623602B2 (en) 2014-01-07

Similar Documents

Publication Publication Date Title
JP5367078B2 (ja) mRNA定量のための改善された溶解および逆転写
JP6169660B2 (ja) 試料中の核酸配列を定量するための組成物および方法
JP5409360B2 (ja) 酵素反応における試料中のcDNAの合成方法
US20090111170A1 (en) Nucleic acid processing methods, kits and devices
JP5191041B2 (ja) 急速ワンステップrt−pcr
US9090926B2 (en) Method for cell lysis and PCR within the same reaction chamber
CA2810291C (en) Method for cell lysis and amplification of rna in a rt-pcr reaction buffer
JP6174999B2 (ja) Pcr反応緩衝液中での細胞溶解のための方法
JP5887078B2 (ja) 合成siRNA検出方法
EP2446061A1 (en) Method for quantitative pcr amplification of deoxyribonucleic acids from a sample containing pcr inhibitors

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130910

R150 Certificate of patent or registration of utility model

Ref document number: 5367078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250