JP2011514873A - 触媒反応モジュール - Google Patents

触媒反応モジュール Download PDF

Info

Publication number
JP2011514873A
JP2011514873A JP2010546404A JP2010546404A JP2011514873A JP 2011514873 A JP2011514873 A JP 2011514873A JP 2010546404 A JP2010546404 A JP 2010546404A JP 2010546404 A JP2010546404 A JP 2010546404A JP 2011514873 A JP2011514873 A JP 2011514873A
Authority
JP
Japan
Prior art keywords
combustion
reaction
reactor
flow
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2010546404A
Other languages
English (en)
Inventor
マイケル ジョセフ ボウ
クライヴ デレク リー−タフネル
ロバート ピート
Original Assignee
コンパクトジーティーエル パブリック リミテッド カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0802726A external-priority patent/GB0802726D0/en
Priority claimed from GB0820281A external-priority patent/GB0820281D0/en
Application filed by コンパクトジーティーエル パブリック リミテッド カンパニー filed Critical コンパクトジーティーエル パブリック リミテッド カンパニー
Publication of JP2011514873A publication Critical patent/JP2011514873A/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/249Plate-type reactors
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/31Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen thermal, non catalytic conversion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/0004Processes in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • B01J2219/00259Preventing runaway of the chemical reaction
    • B01J2219/00265Preventing flame propagation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2453Plates arranged in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2456Geometry of the plates
    • B01J2219/2459Corrugated plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2461Heat exchange aspects
    • B01J2219/2465Two reactions in indirect heat exchange with each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2469Feeding means
    • B01J2219/247Feeding means for the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2477Construction materials of the catalysts
    • B01J2219/2479Catalysts coated on the surface of plates or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2491Other constructional details
    • B01J2219/2497Size aspects, i.e. concrete sizes are being mentioned in the classified document
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2491Other constructional details
    • B01J2219/2498Additional structures inserted in the channels, e.g. plates, catalyst holding meshes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)

Abstract

蒸気-メタン改質等の吸熱反応を行うための触媒反応モジュール(10)は、分離反応器ブロック(12)を含み、各反応器ブロックは、該ブロック内で交互に配列された多数の第一および第二流動チャンネル(15、16)を画成して、該第一および第二流動チャンネル間の熱的な接触を確実なものとしている。該反応器ブロック(12a、12b)は、該第一流動チャンネル(15)内の燃焼ガス混合物が連続的に流動するように、また該第二流動チャンネル(16)内で該吸熱反応を行うためのガス混合物が連続的に流動するように、配列しかつ接続することができる。これは、該燃焼工程を段階的に行い、場合によっては段階間で該燃焼ガスを冷却し、また追加の燃料および追加の空気の導入を可能とする。

Description

本発明は、蒸気改質等の吸熱化学反応を行うためのチャンネルを備えた、触媒反応モジュールに関するものであり、該モジュールにおいて、熱は、隣接チャンネルにおける燃焼反応によって与えられ、また本発明は、このようなモジュールを用いて吸熱化学反応を行う方法およびこのようなモジュールの制御にも係る。
メタンを水蒸気と反応させて、第一の触媒反応器内で一酸化炭素および水素を生成するプラントおよび方法が、WO 2005/102511 (GTLマイクロシステムズ(Microsystems) AG)に記載されており、次いで得られる該ガス混合物は、第二の触媒反応機内でフィッシャー-トロプシュ(Fischer-Tropsch)合成を行うために使用される。この改質反応は、典型的には約800℃の温度にて行われ、またそこで必要な熱は、改質を実施しているチャンネルと隣接するチャンネル内での接触的燃焼により生成することができ、該燃焼チャンネルは触媒を含み、該触媒は、金属支持体上の薄い被膜の形状にある、アルミナ担体に担持させたパラジウムまたはパラジウム/白金を含むことができる。易燃性ガス混合物、例えばメタンと空気との混合物を、該燃焼チャンネルに供給する。燃焼は、炎を発することなしに、該触媒の表面にて起る。しかし、該燃焼反応は、該燃焼チャンネルの始点近傍にて最も激しく起る傾向があり、この激しい燃焼は、該チャンネルに沿った不適切な温度分布に導く恐れがあることが分かった。この問題は、該燃焼チャンネルに沿った、燃料の注入を多段化することによって克服できるが、別の解決策が望ましいであろう。
本発明によれば、吸熱反応を行うための触媒反応モジュールが提供され、該モジュールは、複数の分離反応器ブロックを含み、該各反応器ブロックは、該ブロック内で交互に配列された多数の第一および第二流動チャンネルを画成して、該第一および第二流動チャンネル間の熱的な接触を保証しており、該反応器ブロックは、該第一流動チャンネル内で該吸熱反応を行うためのガス混合物の連続的流動に適するように、かつまた該第二の流動チャンネル内での燃焼ガス混合物の流動に適するように、配列かつ接続されていて、結果として該吸熱反応混合物が、該反応器ブロックを通して連続的に流動する。
該反応器ブロックは、これらが、該ガス混合物に対して、明確に分離された入口および出口を持つという意味において、分離状態にあるものといわれる。該反応器ブロックは、また物理的に分離されたものであり得、即ち相互に隔置されていてもよく、あるいはこれらは、例えばスタックとして一緒に結合されていてもよい。
該モジュールは、一つの反応器ブロックに供給される該燃焼ガス混合物が、その自己発火温度以下の高い温度となるように配列されることが好ましく、該温度は、少なくとも部分的に、1またはそれ以上の該反応器ブロック内での該燃焼ガス混合物の燃焼の結果として高められる。事実、該モジュールにおける各反応器ブロックに供給される該燃焼ガス混合物は、このような高温状態にあることが好ましい。該ブロックの少なくとも幾つかについては、1またはそれ以上の該反応器ブロックの該第二のガス流動チャンネルから出てくるガスとの熱交換によって、その温度を高めることができる。好ましい一態様において、該燃焼ガス混合物は、該吸熱ガス混合物と同一の順序で、該反応器ブロックを通して連続的に流動するように配列されている。この場合において、第二のまたはその次の反応器ブロックに供給される該燃焼ガス混合物は、該シリーズの前の反応器ブロックにおいて少なくとも部分的に行われた燃焼の結果として、高温状態とされる。
該燃焼ガス混合物は、燃料(例えば、メタン)および酸素源(例えば、空気)を含む。好ましくは、連続する反応器ブロック間に、燃焼した後の流出ガス混合物を処理するための、例えばその温度を変更し、あるいは該混合物を追加の燃料中に導入し、混合するための手段を設ける。また、連続する反応器ブロック間に、燃焼の結果生じる該流出ガス混合物内に、追加の空気を導入する手段を設けることも望ましいことであり得る。異なる反応器ブロック間への燃料の供給を段階化することにより、また空気の導入を段階化することによって、該温度分布に対するより高い制御性が達成できる。例えば、直列式の2つの反応器ブロックが存在する場合、該第一の段階において与えられる燃料の割合は、好ましくは必要とされる全燃料の50%〜70%なる範囲にあり、残部は該第二段階において供給される。
本発明は、また吸熱反応を行う方法をも提供し、該方法では、該吸熱反応に必要とされる熱は、隣接するチャンネル内での燃焼反応により該吸熱反応に供給され、該吸熱反応は、複数の連続する段階において行われる。該吸熱反応は、蒸気によるメタンの改質であり得、またこの場合、好ましくは該吸熱反応チャンネル内の温度は、第一段階を通して675〜700℃なる範囲の温度、好ましくは約690℃に高められ、また第二段階を通して730〜800℃なる範囲の温度、好ましくは約760℃に高められる。好ましい一態様において、該燃焼反応は、また少なくとも2つの連続する段階において行われ、一段階から流出する該燃焼ガス混合物の、次の段階への導入に先立つ、該ガス混合物の処理を伴う。
該連続する段階間の、該燃焼ガス混合物の処理は、好ましくはその温度の変更および追加の燃料の添加を含む。追加の燃料を添加する前に、ガス温度を低下させることにより、自己発火を回避することができる。
分離反応器ブロックを用いて、多数の段階において該燃焼工程を行うことにより、段階化燃料注入の利益、例えば該反応器モジュールに沿ったより均一な温度分布等が得られ、一方で起り得る問題が回避される。これは、特に追加の燃料を導入する前に、連続する段階間での該燃焼ガス混合物の冷却を可能とし、この冷却は、自己発火が起らないことを保証する。連続する段階間での該燃焼ガス混合物の処理は、該モジュール内で起るが、該反応器ブロック内で起る訳ではない。
好ましくは、該第一流動チャンネルおよび該第二流動チャンネルは、一つの反応器ブロック内で平行方向に伸びており、また該燃焼ガス混合物および該吸熱反応混合物は、同一方向に流れる(順流)。好ましくは、これらの流動チャンネルは、少なくとも300mm、より好ましくは少なくとも500mmであるが、好ましくは1,000mm以下の長さを持つものである。好ましいその長さは、500mm〜700mmなる範囲、例えば600mmである。該順流式操作は、より良好な温度制御性を与え、またホットスポット発生の危険性をより低くする。
該好ましい態様において、各第一流動チャンネル(該吸熱反応用のチャンネル)および各第二流動チャンネル(該燃焼反応用のチャンネル)は、該各反応を触媒するための取出し可能な触媒構造体を含み、各触媒構造体は、好ましくは金属支持体を含み、また適当な触媒物質が組込まれている。好ましくは、このような各触媒構造体は、該流動チャンネルを多数の並流式サブ-チャンネルに細分するような形状とされている。好ましくは、各触媒構造体は、該触媒に対する支持材を与える、該金属支持体上にセラミックス製の担持物質を含んでいる。
該金属支持体は、該触媒構造体に強度を与え、また伝導による熱伝達を増強する。好ましくは、該金属支持体は、加熱された場合に酸化アルミニウムの接着性表面を生成する鋼合金、例えばアルミニウムを配合したフェライト鋼合金(例えば、フェクラロイ(Fecralloy(TM))製のものである。該支持体は箔、ワイヤメッシュまたはフェルトシートであり得、これは波形、ディンプル付きまたは襞付きであり得、好ましい支持体は、例えば100μm未満の厚みを持つ薄い金属箔であり、これは長手方向のサブ-チャンネルを画成するように波形が付されている。
各反応器ブロックは、プレートのスタックを含むことができる。例えば、該第一および第二流動チャンネルは、各プレート内の溝によって画成することができ、該プレートは、重ね合わされ、次いで一緒に結合される。あるいはまた、該流動チャンネルは、キャステレーションされた(castellated)、また平坦なシートと共に交互に重ね合わされた、薄い金属シートにより画成することができ、該流動チャンネルの端部は、封止ストリップにより画成することができる。必要とされる良好な熱的接触状態を保証するために、該第一および第二流動チャンネル両者は、10mm〜2mmなる範囲の高さ(断面内の)を持つことができ、また各チャンネルは、約3mm〜25mmなる範囲の幅を持つことができる。該反応器ブロックを構成する該プレートのスタックは、例えば拡散結合、ロウ付け、または高温静水圧圧縮成型(hot isostatic pressing)により、一緒に結合される。
好ましくは、燃焼用の各流動チャンネルの入口部に火炎防止装置を設けて、該燃焼チャンネルに供給されている該燃焼ガス混合物への、炎の伝搬が起り得ないことを保証する。該装置は、各燃焼チャンネルの入口部分内に設けることができ、例えば非-触媒性挿入物の形状にあり、該挿入物は、該入口に隣接する燃焼チャンネルを多数の狭い流路に細分しており、該流路は、火炎の伝搬を防止するために、最大ギャップサイズよりも小さな幅を持つ。例えば、このような非-触媒性挿入物は、長手方向の波形を持つ箔またはスタック状の、複数の長手方向に波形を持つ箔であり得る。あるいはまた、もしくは付随的に、該燃焼ガスがヘッダーを通して供給される場合には、このような火炎防止装置は、該ヘッダー内に設けることができる。
本発明は、また吸熱反応、例えば水蒸気改質を、このような反応モジュールを用いて行う方法をも提供する。追加の燃料を添加する前に、燃焼の結果として発生する該流出ガス混合物と空気とを組合せることによって、該燃焼混合物の温度を、その自己発火温度以下に維持して、(該ガス相において起るのではなく寧ろ)該触媒構造体の表面において不均質反応として燃焼が起ることを保証することが可能である。
このようにして蒸気によるメタンの改質を行うことによって、各ブロック内で高い空間速度、例えば10,000〜60,000/時にて操作を行い、一方で90%を越える平衡転化率(equilibrium conversion)を達成することが可能となる。同様に、該燃焼反応は、20,000〜70,000/時なる範囲の空間速度にて行うことが好ましい。本件において該空間速度とは、対応する反応器チャンネルの自由体積の倍数として、標準温度および圧力(0℃および0.1013MPa(1気圧))にて測定された、1時間当たりに反応器に供給されたガスの体積を意味する。
本発明は、更に燃焼を制御する方法をも提供し、また小型で機能的な触媒反応器における熱応力の発生を最小化する方法をも提供する。
以下、添付図面を参照しつつ、例示の目的でのみ、更にまたより一層具体的に本発明を説明する。ここで、各図面は以下の通りである。
図1は、本発明の反応モジュールの概略的な側面図である。 図2は、図1の反応器モジュール全体を通しての温度変化、および蒸気-メタン反応における転化率の対応する変化を、グラフで示したものである。 図3は、図1のモジュールに、蒸気-メタン混合物を供給するためのシステムを示す図である。 図4は、図1のモジュールを組込んだシステムを示す図である。 図5は、本発明のもう一つの反応モジュールに関する工程系統図を示す。
該メタンの蒸気改質反応は、蒸気とメタンとを混合し、また高温にてこの混合物を適当な触媒と接触させることにより起こり、結果として該蒸気とメタンとが反応して、一酸化炭素および水素(これは、合成ガスまたはシンガス(syngas)と呼ぶことができる)を生成する。この蒸気改質反応は、吸熱反応であり、また熱は、例えば空気と混合したメタンの接触的燃焼により与えられる。この燃焼は、改質反応器内の隣接する流動チャンネル内で、燃焼触媒上で起る。好ましくは、該蒸気/メタン混合物は、該反応器に導入される前に、例えば600℃を越える温度まで予備加熱される。従って、該改質反応器内の温度は、典型的にその入口における約600℃なる温度から、その出口における約750-800℃なる温度まで増大する。
必要な燃料(例えば、メタン)の全量は、該吸熱反応用の熱を供給するのに必要とされる熱、該ガスの温度増加に必要な熱(顕熱)、および環境に対するあらゆる熱損失を補償するに要する熱であり、必要な空気の量は、上記量の燃料との反応に必要とされる量を、10%まで越える量である。
そこで、先ず図1を参照すると、蒸気改質反応器として使用するのに適した反応モジュール10が示されている。この反応モジュール10は、2つの反応器ブロック12aおよび12bからなり、その各々は、平面図においては矩形の、プレートのスタックからなっており、各プレートは、耐腐食性の耐熱合金製である。平坦なプレートが、キャステレーションされたプレートと交互に配列されて、該スタックの対向端部間でストレートチャンネルを画成し、各チャンネルは長さ600mmの活性部分を持つ。例示のために、該キャステレーション(castellation)の長さ(典型的には2-10mmなる範囲にある)は、第一の例では3mmであり、あるいは第二の例では10mmであり、一方で該キャステレーションの波長は、連続する襞が、第一の例においては20mm離され、あるいは該第二の例においては3mm離されるような値である。該チャンネル全ては相互に平行に伸びており、ヘッダーがあって、結果として蒸気/メタン混合物は、第一群のチャンネル15に供給され、また空気/メタン混合物は、第二群のチャンネル16に供給され、該第一および第二群のチャンネルは、該スタックにおける上部および底部のチャンネルが、両者共に燃焼チャンネル16となるように、該スタック内で交互に配置されている(該チャンネル15および16は図式的に示されている)。各反応にとって適した触媒が、該チャンネル15および16の該活性部分における波形の箔(図示せず)上に与えられており、従ってその空隙率は約0.9である。火炎防止装置17が、各燃焼チャンネル16の入口部に設けられている。
一例として、各スタック内には、50個を越える上記の如きキャステレーションされたプレートが存在し得る。
該蒸気/メタン混合物は、直列式の反応器ブロック12aおよび12bを通して流動し、該第一の反応器ブロック12aのチャンネル15の出口と、該第二反応器ブロック12bのチャンネル15の入口とを接続しているダクト20がある。同様に、該燃焼混合物も、直列式の反応器ブロック12aおよび12bを通して流動し、該第一の反応器ブロック12aのチャンネル16の出口と、該第二反応器ブロック12bのチャンネル16の入口とを接続しているダクト22がある。該ダクト22は、静的ミキサ25を伴う追加の空気用の入口24およびこれに続く、もう一つの静的ミキサ27を伴う追加の燃料用入口26を含む。
該反応モジュール10の使用に際して、該蒸気/メタン混合物は、620℃に予備加熱され、また該反応モジュール10に供給され、該反応器ブロック12aおよび12bを通して流動する。必要とされる空気の80%と必要とされる(燃料としての)メタンの60%とを含む混合物が、この組成物に関する自己発火温度以下の、550℃に予備加熱され、次いで該第一反応器ブロック12aに供給される。これら両者の場合において、該予備加熱は、該モジュール10内での燃焼の結果得られる廃ガスとの熱交換により行うことができる。該触媒における燃焼の結果として温度が上昇し、この燃焼の結果生じるガスは、約700℃なる温度にて流出する。これらは、該必要とされる空気の残りの20%と、(該入口24および該静的ミキサ25によって)混合され、次いで該必要とされるメタンの40%と、(該入口26および該静的ミキサ27によって)混合され、その結果該第二の反応器ブロック12bの該燃焼チャンネル16に供給された該ガス混合物は、この場合にも約600℃なる温度となり、この温度は、この混合物(これは、第一段階の燃焼の結果として、水蒸気および二酸化炭素を含む)の自己発火温度以下である。該入口24において供給される該追加の空気の温度を調節することによって、該得られる混合物の温度を、該自己発火温度以下に調節することができる。
一例として、該ガスの流量は、その空間速度を、該蒸気-メタン改質チャンネルに対して(該反応モジュール10を全体として考慮して)、好ましくは14,000〜20,000/時なる範囲および可能ならばより特定的に15,000〜18,000/時なる範囲、および該燃焼チャンネルに対して(該反応モジュール10を全体として考慮して)、好ましくは19,000〜23,000/時なる範囲とするような値であり得る。
次に図2を参照すると、該燃焼チャンネル16の長さLに沿った温度Tにおける変動(図中のA)および該改質チャンネル15に沿った温度の変動(図中のB)が、グラフで示されている。このグラフのL=0とL=0.6mとの間の部分は、該第一反応器ブロック12aに対応し、一方このグラフのL=0.6mとL=1.2mとの間の部分は、該第二反応器ブロック12bに対応する。一旦燃焼が開始された際の、改質チャンネル15における温度Tは、隣接する燃焼チャンネル16の温度Tよりも常に低いことに注意すべきである。該燃焼ガス温度は、該第一反応器ブロック12aと該第二反応器ブロック12bとの間(L=0.6mにおける位置)で添加された空気(入口24を介して)のために、下向きの階段状の変化を示す。長さLを持つ該蒸気-改質反応におけるメタンの転化率Cの変動は、グラフにおいてPで指定した曲線によって示されている。該転化率は、該反応モジュール10を通して連続的に増大し、約80%なる値に達し、これは、該反応条件下での平衡転化率に近い値である。
該燃焼チャンネルおよび該改質チャンネルにおける空間速度を調節し、また燃焼のために各反応器ブロックに供給される燃料および空気の割合を調節することによって、満足な温度分布が、確実に該反応器ブロック全体に渡り達成され、また各反応器ブロック内の熱応力の発生が、確実に最小化される。このことは、該反応器モジュールが、該反応器モジュールを損う恐れなしに、安全限界内で動作することを保証する。また、図2に示された温度および転化率における変動は、単なる例示であり、また該温度分布およびその結果としての転化率は、例えば該燃焼触媒を変えた場合、または燃料対空気の比率を変更した場合には、僅かに異なることも理解されよう。
上に与えた説明は、単なる例示であり、また本発明の範囲を維持したまま多くの変更を加えることが可能であることを理解するであろう。例えば、該チャンネル15および16並びに該反応器ブロック12の寸法は、上記値とは異なっていてもよい。該第一反応器ブロック12aに供給される空気およびメタンの割合は、上記の割合と異なっていてもよい。最初に供給される燃料の割合は、50%〜65%なる範囲、より好ましくは55%であり得、残りの35%〜50%なる範囲、好ましくは45%の燃料は、該ブロック12aと12bとの間で供給される。例えば、該必要な空気の100%および該必要な燃料の65%が最初に供給され、また該燃料の残りの35%は、該ブロック12aと12bとの間に供給されるが、その場合、熱交換器(図示せず)を設けることが、流出してくるガスを冷却して、その温度を確実に自己発火温度以下にする上で望ましいことであり得る。何れの場合においても、ガス混合物の自己発火温度以下の該ガス混合物に、ガス組成および圧力に関して広く利用されている条件下で、該追加の燃料を添加することが好ましい。上記の如く、該空気の一部のみが最初に供給される場合、この割合は、好ましくは少なくとも50%、および好ましくは90%以下、より好ましくは75%〜85%なる範囲、および最も好ましくは上記例におけるように80%である。
該チャンネル15および16内の該触媒-担持箔は、該火炎防止装置17で占められている該燃焼チャンネル16の初めの部分は別として、各チャンネルの全長に渡って伸びていることを理解すべきである。一態様において、各改質チャンネル15の初めの部分には、改質触媒が全く与えられておらず、この初めの触媒を含まない部分は、該火炎防止装置17の長さよりも長く、従って改質を行う該ガス混合物は、該改質触媒に至る前に予備加熱される。
該燃料ガスが、高濃度(即ち、>5%)の、メタンに比して高い燃焼速度を持つ、H2およびCO等の種からなるか、あるいはこれらを含む場合、3つ以上の反応器ブロックおよび段階間混合位置を、該反応器モジュールにおける温度プロフィールを調節し、またホットスポットの生成および有害な温度勾配の発生を回避するために利用することができる。各段階に供給すべき燃料および空気の割合を調節する能力を、触媒活性の経時的な低下を補償するのに利用することも可能である。この配列に係る更なる改良は、該燃焼触媒の経時的な失活に伴う、該反応器モジュールにおける温度プロフィールの変動を回避するために、該生成するシンガスの幾分かを該燃料混合段階にリサイクルできることにある。
理解されるように、蒸気-メタン改質は、メタンを長鎖炭化水素に転化する方法の一部を構成するものであり得、改質により生成される該合成ガスは、次いでフィッシャー-トロプシュ合成操作に付される。あるいはまた、該合成ガスを、メタノールを製造するための接触的方法に付すこともできる。あらゆるこの種のプラントにおける該蒸気-メタン改質は、1またはそれ以上の上記の如き反応モジュール10を使用して行うことができる。好ましいプラントでは、並列関係で配列された数個のこのような反応モジュールが組込まれており、従って該プラントの能力は、使用する反応モジュールの数を変更することによって調節することができる。
図1に示された反応モジュール10において、また該燃焼チャンネル16のみを考慮して、白金-パラジウム触媒は、反応器ブロック12aおよび12b両方に設けることができる。あるいはまた、該触媒は、これら2種の反応器ブロック12aおよび12bにおいて異なっていてもよい。例えば、該第一反応器ブロック12aにおける該触媒は、白金-パラジウム触媒であり得、また該第二反応器ブロック12bにおける該触媒は、寧ろ白金のみであり得る。該第二反応器ブロック12bにおける酸素分圧は、燃焼が起きたために、該第一反応器ブロック12aにおける酸素分圧よりも低いことが理解されよう。白金-パラジウム触媒を該第二反応器ブロック12bにおいて使用する場合には、ある問題が生じる恐れがある。というのは、この低い酸素分圧が、酸化パラジウムの金属パラジウムへの変換を促進し、またパラジウム金属が、酸化パラジウムよりも燃焼触媒としての効果が劣るからである。従って、該第二反応器ブロック12bにおいて白金単独触媒を使用したことに由来する、あるいは該第二反応器ブロック12bにおいて高い比率で白金を含む白金-パラジウム混合物を使用したことに由来する利益を得ることができる。白金は、その酸化物状態よりも寧ろその金属状態において触媒的に活性であり、従って該触媒の活性は、該第二反応器ブロック12b内の低い酸素分圧によって悪影響を受ける。もう一つの代替法として、白金単独触媒を、該反応器ブロック12aおよび12b両者において使用することができる。しかし、白金触媒は、白金-パラジウム触媒よりも低い着火温度を有し、そのためこれは該第一反応器ブロック12aにおいて使用するのに適したものではなく、また更に該酸素分圧は、該第一反応器ブロック12aにおいてより高く、従って該白金単独触媒は、該第二反応器ブロック12bにおいて期待される利益を与えない。
別の一つのモジュール100が、次に参照する図5に示されており、該図において上記モジュール10と同一の構成部品は、同一の参照番号によって表されている。該反応モジュール100は、模式的に表された2つの反応器ブロック12aおよび12bからなり、また蒸気/メタン混合物は、上記のようにダクト20を介して、直列式に該反応器ブロック12a、12bを通って流動する。別の燃焼混合物が、該反応器ブロック12aおよび12b各々に供給され、これら反応器ブロック12aおよび12b両者の燃焼チャンネル16から流出してくる廃ガスは、共通の排気ベント102(あるいは2つの分離排気ベント)に供給される。該第二反応器ブロック12bに供給される該燃焼混合物は、該ベント102内の廃棄ガスによって加熱される熱交換器104および105内で、該空気および燃料を予備加熱することによって、該混合物の自己発火温度以下の550℃に予備加熱され、該予備加熱された空気および燃料は、次いでミキサ27において混合される。(該第一反応器ブロック12aに供給される該燃焼混合物も、同様に予備加熱することができる)。
該モジュール100の該第一反応器ブロック12aに供給される該燃焼混合物は、該第二反応器ブロック12bに供給されるものと同一の組成を持つことができる。従って、必要とされる全燃料の50%を、該第一反応器ブロック12aに供給し、またその残部の50%を該第二反応器ブロック12bに供給することができ、ここで各ブロックには、同一体積の空気が供給される。しかし、該第一反応器ブロック12aに供給される燃料の体積は、該モジュール100の該第一反応器ブロックに供給される燃料の体積と同一であってもよいことに注意すべきである。結局、該モジュール100に供給される燃料の全量は、該モジュール10に供給される燃料の量よりも大きくてもよい。
あるいはまた、必要とされる全燃料の幾分高い割合を、例えば55%を該第一反応器ブロック12aに供給し、該全量の残りの45%を、該第二反応器ブロック12bに供給することができる。上記第一段階の燃焼反応を由来とする該廃ガスの少なくとも一部を抜き出すことにより、該第二反応器ブロック12bのチャンネル内の生成ガスとしての水蒸気および二酸化炭素の割合は、図1の割合に比して減じられる。これは、結果として該第二反応器ブロック12b内の高い酸素分圧に寄与する。結局、白金-パラジウム触媒が、該反応器ブロック12aおよび12b両者の燃焼チャンネル16において使用するのに適している。該モジュール100を通しての温度分布は、図2との関連で記載された該モジュール10における温度分布と実質的に同一であり、また該蒸気-メタン改質チャンネルにおいて達成される全体としての転化率は、実質的に同一である。
次に図3を参照すると、天然ガス処理用プラントの一部としての、上記の如き改質モジュール10、または改質モジュール100に蒸気-メタン混合物を供給するためのシステム30の工程系統図が示されている。この例における該処理プラントは、天然ガスを長鎖炭化水素製品に転化する。該天然ガスは、水銀または硫黄等の不純物を除去するために、初めに状態調節されて、典型的には約90%のメタンと低比率の他のアルカンとを含む、清浄な天然ガスの供給原料流を与える。これは、蒸気-メタン改質によって合成ガスを製造するのに使用される。該合成ガスはフィッシャー-トロプシュ合成に付されて、長鎖炭化水素を生成し、残留するテールガスを残し、このテールガスは、主として短鎖アルカン、一酸化炭素、水蒸気、および水素からなるものであり得る。
該システム30は、このような処理プラントにおいて使用するためのものであり、またこの例においては、3つの流入する流れ、即ち清浄な天然ガスの該供給原料流31、蒸気32の供給流、および該フィッシャー-トロプシュ合成プラントからリサイクルされたテールガス33を含む。該システム30は、天然ガスと蒸気とを含む混合物を生成し、またこの混合物を、予備改質器35において、例えばニッケル触媒を用いた予備改質処理に付し、あらゆるC2+炭化水素(エタン、プロパン等)を、メタン、一酸化炭素および水素に転化する。これらの流れは、理想的には、予備改質後の蒸気:メタンモル比を、1.4:1〜1.6:1なる範囲とするようなものである。得られる該ガス混合物36は、主としてメタンおよび蒸気からなり、また上記の如く1またはそれ以上の改質反応器モジュール10に供給される。
該システム30は、該予備改質器35に供給される蒸気対炭素(メタン内の炭素であれ、または他のアルカンの炭素であれ)の比を調節するための、制御システム38を含む。通常の操作中は、該蒸気:炭素比は、約1.4:1であるが、始動の際には、より高い割合の蒸気を用いて、該改質器モジュール10における該触媒のコーキングを回避し、一方で触媒温度をその目標値まで高める。流量伝送器40は、該流入する流れ31、32および33の流量を測定し、燃料流制御装置42にそのデータを供給する。該燃料流制御装置42は、制御弁44を動作させて、該蒸気の流量を調節し、また結果として所定の蒸気対炭素比を保証する。該供給原料ガス流31を測定する該流量伝送器40からのシグナルは、またガス抜き弁48を動作させる流量伝送器46に伝達されて、該システム30からの該供給ガス流量におけるあらゆるピークを、例えばフレア(図示せず)に迂回させる。
熱交換器50が、該リサイクルされたテールガス流33を、該蒸気32および供給ガス31と同一の温度に加熱するために設けられており、該蒸気および供給ガスは、このプラントにおいては、予め高温度に加熱されている。該ガス流31、32および33は、次いで混合され、また得られる該ガス混合物は、次に該予備改質器35に対する所定の入力温度(input temperature)、典型的には約425℃まで、予備加熱器52によってさらに加熱される。
対応する該流量伝送器40によって測定される、該供給ガス31およびテールガス33の流量は、該ガス抜き弁48の効力発生を可能とするが、該流量は、該蒸気-メタン改質モジュール10を制御するために計算され(以下において説明する)、かつ54において伝送される。
該予備改質器35における反応は、予備還元され、かつ安定化されたニッケルを主成分とする触媒によって促進することができる。該テールガス33は、該ガス混合物に導入され、該ガス混合物は一酸化炭素および二酸化炭素を含み、また結果的に該予備改質器内の反応は僅かに発熱性であり、しかも得られる流出流(output flow)36の温度は約540℃である。
該予備改質器35に供給される該混合物の温度および組成の調節は、該予備改質器35および該改質反応器モジュール10における触媒を保護するために必要とされる。例えば、蒸気は、凝縮条件が存在する場合、例えば該予備改質器35内の温度が180℃未満である場合には、導入すべきではない。また、蒸気を、15分を越える期間に渡り、単独で該予備改質器35を通して流すべきではなく、あるいは該触媒は、不可逆的な酸化反応を受け始める恐れがある。該触媒の酸化を防止するためには、該蒸気32は、少なくとも低率の、例えば10モル%の水素または天然ガスと混合すべきである。該予備改質器35は、不利益なしに200℃までの温度にて、天然ガスを通すことができるが、天然ガスを250℃以上の温度にて該触媒上に通した場合には、該触媒は約20秒以内にコーキングにより破壊されるであろう。従って、該蒸気の供給32を停止した場合には、該天然ガスの供給流31を遮断することが重要であり、また該テールガス33の供給も遮断すべきである。該予備改質器35は、該触媒の損傷を回避するために、0.1MPa(1bar)/分を越える速度にて圧力解除すべきではなく、また1℃/分を越える速度にて加熱または冷却すべきではない。
次に図4を参照すると、図1に示したような蒸気改質モジュール10の動作を制御するための、システム60に関する工程系統図が示されている。この場合における該ガス供給物は、燃料としての脱硫天然ガス61;該予備改質器35からのガス混合物36;および吹込空気62である。主として蒸気およびメタンからなる該ガス混合物36は、該ガス混合物36の圧力に関するデータを圧力制御装置65に与える圧力伝送器64を含む、制御ループに掛けられ、該圧力制御装置65は、制御弁66を用いて該流量を調節することができ、またガス抜き弁67を開放して、該ガス混合物36の圧力が、該反応器モジュール10の予め定められた安全閾値圧を越えた場合に、該ガス混合物36をフレアに迂回させることができる。該ガス混合物36は、次いで予備加熱器68を介して該反応器モジュール10に供給される。
該反応器モジュール10は、また蒸気燃焼反応のために、吹込空気62と脱硫された天然ガス61との混合物の供給を受ける。該吹込空気62は、まず予備加熱器604により加熱され、次いでその温度は、温度センサ605によって測定される。該モジュール10に供給される空気の流量は、制御装置70からの制御シグナルに応答して、弁606によって調節される。該制御装置70は、該第二モジュール12bからの燃焼ガス用の出口において、該温度センサ605および酸素センサ607両者からのデータを受取る。
該吹込空気62は、該弁606を通過した後、熱交換器610を介して、該第一反応器モジュール12aの入口において静的ミキサ618(燃料ガスとの混合のために)に供給される第一の空気流、および熱交換器611を介して、該第一反応器モジュール12aの出口において該静的ミキサ25に供給される第二の空気流に分離される。該第一吸気流対該第二空気流の比は、該第二空気流の流路における弁608によって調節される。この弁608は、該静的ミキサ25からの出口における温度センサ609、および該弁608の入口における流量センサ74からの入力シグナルを受取る制御装置72によって調節される。上記熱交換機610および611は、別々に制御され、該熱交換機610は、該空気を約500℃なる温度に加熱し、一方該第二の段階ヒータ611は、該空気をほぼ300℃なる温度に加熱する。
燃焼用の燃料である該脱硫されたガス61は、該吹込空気と同様な方法で制御されるが、上で説明したように、該第一反応器ブロック12aに供給される該混合物は、80%の該必要とされる空気および55%または60%の該必要とされる燃料で構成されるものであり得る。該必要とされる空気の残部および該必要とされる燃料の残部は、該静的ミキサ25および27を介して、該第一反応器ブロック12aと該第二反応器ブロック12bとの間に導入される。該燃料の流れ61は、2つの流れに分離される。その第一の流れは、制御弁614および熱交換機616を介して、該第一反応器ブロック12aの入口部において、該静的ミキサ618に送られ、一方でその第二の流れは、制御弁615および熱交換機617を介して、該静的ミキサ27の入口部26に送られる。該第一の流れは、該熱交換機616により約500℃または550℃に加熱され、また該第二の流れは、該熱交換機617により約300℃に加熱される。
該システム60の全体としての制御は、制御装置612によってもたらされる。該制御装置612は、改質すべきメタンの流れを演繹することを可能とする、天然ガス31およびテールガス33の流れを表すシグナル54を受取る(図3参照)。該制御装置612は、また該第二反応器ブロック12bの出口において、温度センサ613からのデータを受取る。これは、また該制御装置70からの吹込空気62の流れに関するデータをも受取る。該制御装置612は、流量センサ77および79からの流量に関するデータをも受取る、各弁制御装置76および78にシグナルを供給することによって、該弁614および615を通る該燃料の流れを調節する。該制御装置612は、また該制御装置70に制御シグナルを与えることにより、該弁606を通る吹込空気62の流量をも調節する。
このようにして、該システム60の動作において、該モジュール10への空気の供給、即ち該吹込空気62の流れは、改質すべきメタンの量に応じて、該制御装置612および該制御装置70によって調節される。該モジュール10の出口において該センサ607によって検知された酸素濃度が減少した場合には、該弁606を調節して、該モジュール10への該吹込空気62の流れを多くする。該酸素濃度が増大した場合には、該モジュール10への該吹込空気62の流れを少なくし、また該燃料61の流量をもそれに応じて減じる。
また、該燃料61の流量は、改質すべきメタンの量に応じて調節される。更に、該モジュール10の出口において該センサ613によって検知された温度が、過度に高くなった場合、該反応器ブロック12aおよび12b両者に対する該燃料61の流量は減じられる。他方、該静的ミキサ25の出口において該センサ609によって検知された温度が上昇した場合には、該静的ミキサ25の入口への空気の供給量を高める(あるいはまた、より低い温度を達成するように、該熱交換機611を調節する)。これにより、該ミキサ27内の該ガス混合物の温度は、確実にその自己発火温度以下に調節される。
図5に示した如き蒸気改質モジュール100の動作を制御するためのシステムは、該第一反応器ブロック12aの燃焼チャンネルの出口部においてガス抜きされており、また新たな空気と燃料との混合物が供給される点を除いて、上記したシステム60と類似のものであり得る。従って、上記静的ミキサ25は必要とされず、上記ミキサ27のみが必要とされる。該モジュール100においては、該二段階で導入されるガスの温度および量を、独立に調節することができ、また夫々熱交換機611、617(これらは、図5の熱交換機105および104に相当する)により制御される、該第二反応器ブロック12bに対する該空気および燃料の温度は、(上記の如く300℃ではなく寧ろ)500℃または550℃までであり得る。
該制御システム30は、2つの炭化水素減、即ち天然ガス31およびテールガス33を受取るものとして記載されている。これは、単なる例であることが理解されるであろう。というのは、炭化水素を含む少なくとも1種のガス供給物、典型的には天然ガス供給物が存在しなければならないことが、唯一の要件であるからである。ガス状炭化水素の第二の源が利用できる場合には、これもまた同様な方法で該テールガス33に供給することができる。例えば、このような予備改質器35および関連する制御システム30が、異なる処理プラント、例えば長鎖炭化水素を製造するためのプラントではなく、寧ろメタノールを製造するための処理プラントに関連して設けられている場合、該予備改質器35に対して唯一つのこのようなガス供給物があればよく、あるいはまた上記したものとは異なる組成を持つテールガスが存在すればよい。
10・・触媒反応モジュール
12a、12b・・反応器ブロック
15・・第一流動チャンネル
16・・第二流動チャンネル
17・・火炎防止装置
20、22・・ダクト
24、26・・入口
25、27、618・・静的ミキサ
30・・制御システム
31・・供給原料ガス流
32・・蒸気
33・・テールガス流
35・・予備改質器
36・・ガス混合物
44・・制御弁
48、67・・ガス抜き弁
54・・シグナル
60・・システム
61・・脱硫天然ガス
62・・吹込空気
64・・圧力伝送器
65・・圧力制御装置
66・・制御弁
68、604・・予備加熱器
70、72、612・・制御装置
74、77、79・・流量センサ
76、78・・弁制御装置
100・・蒸気改質モジュール
102・・排気ベント
104、105、610、611、616、617・・熱交換器
605、609、613・・温度センサ
606、608・・弁
607・・酸素センサ
614、615・・制御弁

Claims (16)

  1. 吸熱反応を行うための触媒反応モジュールであって、該モジュールが、複数の分離反応器ブロックを含み、該各反応器ブロックが、該ブロック内で交互に配列された多数の第一および第二流動チャンネルを画成して、該第一および第二流動チャンネル間の熱的な接触を保証しており、該反応器ブロックが、該第一流動チャンネル内で該吸熱反応を行うために、ガス混合物の連続的流動に適するように、かつまた該第二の流動チャンネル内での燃焼ガス混合物の流動に適するように配列かつ接続されていて、該吸熱反応混合物が、該反応器ブロックを通して連続的に流動することを特徴とする、前記触媒反応モジュール。
  2. 追加の燃料を導入するための手段を、連続する反応器ブロック間に含む、請求項1記載の反応モジュール。
  3. 前記追加の燃料が、燃焼により生じる流出ガス混合物中に導入される、請求項2記載の反応モジュール。
  4. 前記モジュールが、一つの反応器ブロックに供給された前記燃焼ガス混合物が、その自己発火温度以下の高温度下にあり、また該温度が、少なくとも部分的に、1またはそれ以上の前記反応器ブロック内での前記燃焼ガス混合物の燃焼の結果として高められるように、配列されている、請求項2または3記載の反応モジュール。
  5. 前記モジュールにおける各反応器ブロックに供給された前記燃焼ガス混合物が、前記の高温度状態となるように配列されている、請求項4記載の反応モジュール。
  6. また、燃焼により生じる前記流出ガス混合物中に、追加の酸素-含有ガスを導入するための手段を、連続する反応器ブロック間に含む、請求項3記載の反応モジュール。
  7. 一つの反応器ブロック内で、前記第一流動チャンネルおよび前記第二流動チャンネルが、平行方向に伸びており、また前記燃焼ガス混合物および前記吸熱反応混合物が、同一方向に流動する、請求項1〜6の何れか1項に記載の反応モジュール。
  8. 前記各反応器ブロック内の前記流動チャンネルが、少なくとも300mm、より好ましくは少なくとも500mmであるが、好ましくは1000mm以下の長さを持つ、請求項1〜7の何れか1項に記載の反応モジュール。
  9. 燃焼のための前記各流動チャンネルに対して、その入口部に、火炎防止装置が設けられている、請求項1〜8の何れか1項に記載の反応モジュール。
  10. 請求項1〜9の何れか1項に記載の反応モジュールを使用することを特徴とする、吸熱反応を実施する方法。
  11. 前記吸熱反応に必要とされる熱が、隣接するチャンネル内での燃焼反応によって該吸熱反応に与えられ、かつ該吸熱反応が、複数の連続する段階において行われることを特徴とする、吸熱反応を実施する方法。
  12. 前記燃焼反応を、前記吸熱反応と同一順序にて、順次少なくとも2段階で行い、前記燃焼ガス混合物を次の段階に導入する前に、一つの段階から出てくる該燃焼ガス混合物の処理を伴う、請求項11記載の方法。
  13. 前記処理が、前記ガス混合物の温度を変更し、また追加の燃料を添加する工程を含む、請求項12記載の方法。
  14. 前記温度が、ガスまたは蒸気の添加により変えられる、請求項13記載の方法。
  15. 吸熱反応を行うための触媒反応モジュール用の制御システムであって、該モジュールが、複数の分離反応器ブロックを含み、該各反応器ブロックが、第一および第二流動チャンネルを画成しており、該反応器ブロックが、その前記第一流動チャンネル内で該吸熱反応を行うために、ガス混合物の連続的流動に適するように、かつまた該第二の流動チャンネル内での燃焼ガス混合物の流動に適するように配列かつ接続されていて、結果として該燃焼ガス混合物は該反応器ブロックを通して流れ、かつ該吸熱反応混合物は、該反応器ブロックを連続的に流動し、該制御システムは、該吸熱反応を行う該混合物の流量を監視する手段および該監視された流量に従って燃焼を行う、該混合物の流量を調節する手段を含むことを特徴とする、前記制御システム。
  16. 前記第一反応器ブロックに供給される燃料の割合が、前記モジュールに供給される燃料の50%〜70%なる範囲にある、請求項15記載の制御システム。
JP2010546404A 2008-02-14 2009-02-10 触媒反応モジュール Ceased JP2011514873A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB0802726A GB0802726D0 (en) 2008-02-14 2008-02-14 Catalytic rection module
GB0802726.0 2008-02-14
GB0820281.4 2008-11-06
GB0820281A GB0820281D0 (en) 2008-11-06 2008-11-06 Catalytic reaction module
PCT/GB2009/050129 WO2009101434A2 (en) 2008-02-14 2009-02-10 Catalytic reaction module

Publications (1)

Publication Number Publication Date
JP2011514873A true JP2011514873A (ja) 2011-05-12

Family

ID=40957316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010546404A Ceased JP2011514873A (ja) 2008-02-14 2009-02-10 触媒反応モジュール

Country Status (14)

Country Link
US (1) US20110046245A1 (ja)
EP (1) EP2242571A2 (ja)
JP (1) JP2011514873A (ja)
KR (1) KR20100126373A (ja)
CN (1) CN101952031A (ja)
AU (1) AU2009213830B2 (ja)
BR (1) BRPI0908113A2 (ja)
CA (1) CA2713985A1 (ja)
EA (1) EA019000B1 (ja)
EG (1) EG26348A (ja)
MX (1) MX2010008808A (ja)
TW (1) TW200940164A (ja)
WO (1) WO2009101434A2 (ja)
ZA (1) ZA201005505B (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0822544D0 (en) * 2008-12-11 2009-01-14 Compactgtl Plc Chemical reactor operation
KR101008402B1 (ko) * 2008-12-19 2011-01-14 삼성에스디아이 주식회사 개질장치
KR101001395B1 (ko) * 2009-03-03 2010-12-14 삼성에스디아이 주식회사 연료 개질기
GB0915036D0 (en) * 2009-08-28 2009-09-30 Compactgtl Plc Catalytic reaction module
WO2013034934A1 (en) 2011-09-09 2013-03-14 Compactgtl Limited Catalytic method using a plate-type reactor
WO2013076460A1 (en) 2011-11-23 2013-05-30 Compactgtl Limited Removal of carbon from a catalytic reaction module
CN102556965B (zh) * 2012-01-13 2013-07-17 清华大学 一种液态碳氢燃料催化重整冷却高温部件的方法
WO2013124627A1 (en) 2012-02-22 2013-08-29 Compactgtl Limited Reactor temperature control system and method
GB201301201D0 (en) * 2013-01-23 2013-03-06 Compact Gtl Plc Removal of Carbon from a Catalytic Reaction Module
US9676623B2 (en) 2013-03-14 2017-06-13 Velocys, Inc. Process and apparatus for conducting simultaneous endothermic and exothermic reactions
WO2017100493A1 (en) 2015-12-10 2017-06-15 Uop Llc Reactor system for use with an ionic liquid catalyst
DE102018117654A1 (de) * 2018-07-20 2019-10-17 Thyssenkrupp Ag Vorrichtung mit einem Dampfreformer, Verfahren unter Verwendung der Vorrichtung und eine entsprechende Verwendung der Vorrichtung
WO2020118417A1 (en) * 2018-12-10 2020-06-18 Ekona Power Inc. Method and reactor for producing one or more products

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162601A (ja) * 1986-01-08 1987-07-18 Hitachi Ltd 燃料改質器
JPH06111838A (ja) * 1992-09-30 1994-04-22 Toshiba Corp 改質器、改質システム、及び燃料電池システム
JPH09227103A (ja) * 1996-02-27 1997-09-02 Ishikawajima Harima Heavy Ind Co Ltd 水素製造装置
JPH1171101A (ja) * 1997-08-22 1999-03-16 Ishikawajima Harima Heavy Ind Co Ltd 高圧改質装置
JP2002080203A (ja) * 2000-07-07 2002-03-19 Nippon Soken Inc 改質器
JP2003068344A (ja) * 2001-08-23 2003-03-07 Nissan Motor Co Ltd 燃料電池システム
JP2003171101A (ja) * 2001-12-05 2003-06-17 Nissan Motor Co Ltd 改質反応器
JP2005289768A (ja) * 2004-04-02 2005-10-20 Nissan Motor Co Ltd 燃料改質反応器
WO2007129108A1 (en) * 2006-05-08 2007-11-15 Compactgtl Plc Catalytic reactor comprising first and secondary flow channels arranged alternately

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6969506B2 (en) * 1999-08-17 2005-11-29 Battelle Memorial Institute Methods of conducting simultaneous exothermic and endothermic reactions
DE10063647A1 (de) * 2000-12-20 2002-07-04 Xcellsis Gmbh Reaktor
EP1500156B1 (en) * 2002-03-14 2007-09-12 QuestAir Technologies Inc. Hydrogen recycle for solid oxide fuel cell
US6872645B2 (en) * 2002-04-02 2005-03-29 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
DE10305102A1 (de) * 2003-02-07 2004-08-26 Siemens Ag Mikrofluidik-Einrichtung
US20040163313A1 (en) * 2003-02-20 2004-08-26 Buxbaum Robert E. Hydrogen generation apparatus
GB0413400D0 (en) * 2004-06-16 2004-07-21 Accentus Plc Catalytic plant and process
ATE540000T1 (de) * 2005-08-31 2012-01-15 Fmc Corp Autoxidative herstellung von wasserstoffperoxid mittels oxidation in einem mikroreaktor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162601A (ja) * 1986-01-08 1987-07-18 Hitachi Ltd 燃料改質器
JPH06111838A (ja) * 1992-09-30 1994-04-22 Toshiba Corp 改質器、改質システム、及び燃料電池システム
JPH09227103A (ja) * 1996-02-27 1997-09-02 Ishikawajima Harima Heavy Ind Co Ltd 水素製造装置
JPH1171101A (ja) * 1997-08-22 1999-03-16 Ishikawajima Harima Heavy Ind Co Ltd 高圧改質装置
JP2002080203A (ja) * 2000-07-07 2002-03-19 Nippon Soken Inc 改質器
JP2003068344A (ja) * 2001-08-23 2003-03-07 Nissan Motor Co Ltd 燃料電池システム
JP2003171101A (ja) * 2001-12-05 2003-06-17 Nissan Motor Co Ltd 改質反応器
JP2005289768A (ja) * 2004-04-02 2005-10-20 Nissan Motor Co Ltd 燃料改質反応器
WO2007129108A1 (en) * 2006-05-08 2007-11-15 Compactgtl Plc Catalytic reactor comprising first and secondary flow channels arranged alternately
JP2009536143A (ja) * 2006-05-08 2009-10-08 コンパクトジーティーエル パブリック リミテッド カンパニー 交互に配置された第一および第二フローチャネルを備えた触媒作用反応器

Also Published As

Publication number Publication date
AU2009213830A2 (en) 2010-09-09
KR20100126373A (ko) 2010-12-01
EA019000B1 (ru) 2013-12-30
CA2713985A1 (en) 2009-08-20
BRPI0908113A2 (pt) 2015-10-06
AU2009213830B2 (en) 2013-10-17
AU2009213830A1 (en) 2009-08-20
EA201070956A1 (ru) 2011-02-28
EP2242571A2 (en) 2010-10-27
US20110046245A1 (en) 2011-02-24
WO2009101434A3 (en) 2010-05-06
MX2010008808A (es) 2010-10-25
EG26348A (en) 2013-08-20
ZA201005505B (en) 2011-11-30
TW200940164A (en) 2009-10-01
WO2009101434A2 (en) 2009-08-20
CN101952031A (zh) 2011-01-19

Similar Documents

Publication Publication Date Title
JP2011514873A (ja) 触媒反応モジュール
JP5571573B2 (ja) 触媒反応器
EP2164621B1 (en) Reformer apparatus and method
US8758459B2 (en) Reforming apparatus and method
US8262754B2 (en) Catalyst structure for a rapid reaction
JP2007533444A (ja) 着脱自在の触媒構造体を含む、プレート型の反応器
EP2050714B1 (en) Staged hydrocarbons/steam reformer apparatus and method
EP3837210B1 (en) Steam or dry reforming of hydrocarbons
US20120142789A1 (en) Catalytic Reaction Module
EP1858801B1 (en) Reforming process for synthesis gas production and related plant
EP2915780A1 (en) Ion transport membrane reactor systems and methods for producing synthesis gas
WO2013034934A1 (en) Catalytic method using a plate-type reactor
JP2024521356A (ja) 金属ダスティングを低減した熱交換反応器
WO2013076460A1 (en) Removal of carbon from a catalytic reaction module
WO2014114933A1 (en) Removal of carbon from a catalytic reaction module
TW201317049A (zh) 催化反應方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130710

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130919

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140402

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20140825