JP2011502283A - 多素子構成波長変換デバイス及びこれを組み込んだレーザ - Google Patents

多素子構成波長変換デバイス及びこれを組み込んだレーザ Download PDF

Info

Publication number
JP2011502283A
JP2011502283A JP2010532019A JP2010532019A JP2011502283A JP 2011502283 A JP2011502283 A JP 2011502283A JP 2010532019 A JP2010532019 A JP 2010532019A JP 2010532019 A JP2010532019 A JP 2010532019A JP 2011502283 A JP2011502283 A JP 2011502283A
Authority
JP
Japan
Prior art keywords
waveguide
wavelength conversion
laser source
laser
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010532019A
Other languages
English (en)
Inventor
ゴリエ,ジャック
エム ハリス,ジェイムズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of JP2011502283A publication Critical patent/JP2011502283A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3532Arrangements of plural nonlinear devices for generating multi-colour light beams, e.g. arrangements of SHG, SFG, OPO devices for generating RGB light beams
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/18Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 parallel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/58Multi-wavelength, e.g. operation of the device at a plurality of wavelengths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0092Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity

Abstract

発明の一実施形態にしたがえば、それぞれの入力面がレーザ源の有効焦点野内に配置された複数の導波路素子を波長変換デバイスが有する、周波数変換型レーザ源が提供される。個々の導波路素子は、一組の相異なる波長変換特性にそれぞれの素子を寄与させ、導波路素子に帰すことができる一組の相異なる波長変換特性を定める。一組の相異なる波長変換特性は、導波路素子の位相整合波長、導波路素子のスペクトル幅、または導波路素子の変換効率を表す特性、あるいはこれらの組合せを含む。別の実施形態が開示され、特許請求される。

Description

関連出願の説明
本出願は、名称を「多素子構成波長変換素デバイス及びこれを組み込んだレーザ(Multi-Component Wavelength Conversion Devices and Lasers Incorporating The Same)」とする、2007年10月30日に出願された、米国特許出願第11/978857号の優先権を主張する。
本発明は全般的には、半導体レーザ、レーザコントローラ、レーザ投影システム及び、半導体レーザを組み込んでいる、その他の光システムに関する。さらに詳しくは、限定ではなく例として、本発明の実施形態は全般的に、光パッケージ、レーザ投影システム及び、半導体レーザを組み込んでいる、その他の光システムにおける波長変換デバイスの使用に関する。
分布帰還(DFB)レーザ、分布ブラッグ反射器(DBR)レーザまたはファブリ−ペロレーザのような、単一波長半導体レーザを、2次高調波発生(SHG)結晶のような、光波長変換素子と組み合わせることによって、高速変調のための短波長光源を構成することができる。SHG結晶は、例えば、1060nmのDBRレーザまたはDFBレーザを、その波長を530nmに変換するSHG結晶のスペクトル中心に同調させることによって、基本レーザ信号の高次高調波を発生するように構成することができる。しかし、MgOドープ周期分極反転ニオブ酸リチウム(PPLN)結晶のような、SHG結晶の波長変換効率はレーザダイオードとSHGデバイスの間の波長整合に強く依存する。レーザ設計に堪能な技術者には当然であろうように、SHG結晶は非線形結晶の二次高調波発生特性を用いて、結晶に導き入れられたレーザ光を周波数二逓倍する。DFBレーザは、半導体材料にエッチングでつくり込まれた回折格子または同様の周期構造を反射媒体として用いる、共振キャビティレーザである。DBRレーザは、エッチングでつくられた回折格子が半導体レーザの電子ポンピング領域から物理的に隔てられたレーザである。
PPLN SHGデバイスの帯域幅は非常に狭いことが多い−代表的なPPLN SHG波長変換デバイスついて、半値全幅(FWHM)波長変換帯域幅は0.16から0.2nmの範囲に過ぎないことが多く、結晶の長さにほとんど依存する。駆動電流の変化によるレーザキャビティ内のモードホッピング及び制御されない波長変動は、動作中に半導体レーザの出力波長をこの許容帯域幅の外に移動させ得る。半導体レーザ波長がPPLN SHGデバイスの波長変換帯域幅から外れてしまうと、目標波長における変換デバイスの出力パワーは急激に低下する。そのような波長変化はいくつかの要因によって生じ得る。例えば、DBR区画の温度は、熱干渉効果により、利得区画駆動電流の振幅に影響される。DBRレーザ波長をPPLN波長と異ならせる、周囲温度の変動並びにDBRレーザ及びPPLNの製造許容範囲を含む、その他の要因がある。例えば、DBRレーザ及びPPLNからなる光源を用いるレーザ投影システムにおいては、レーザの波長変動が結晶の変換効率を時間の経過とともにいくらか変動させることが多い。これは周波数変換された光にいくらかの変動を生じさせ、この結果、画像の特定の場所に欠陥として容易に見ることができる画像欠陥が生じる。これらの可視欠陥は一般に、画像にわたる組織化され、パターン化された画像欠陥として現れ、また画像内の疑似ランダム雑音としても現れる。そのような画像アーティファクトを最小限に抑える一方法は、通過スペクトル帯域がより広い結晶の使用を含む。
しかし、例えば、短い結晶を用いることで通過帯域を広くすると一般に、システムの変換効率が低下する。したがって、システムにおいて低画像雑音及び高システム効率の両者を保証することは不可能であることが多い。
半導体レーザの開発において波長整合及び安定化に関わる難題を与えられて、本発明の発明者等は波長変換デバイスの波長変換ピークとのレーザ発振波長の適切なアライメントを保証するための有益な手段に気付いた。例えば、本発明の一実施形態にしたがえば、それぞれの入力面がレーザ源の結合光学系の有効焦点野内に配された複数の導波路素子を波長変換デバイスが有する、周波数変換型レーザ源が提供される。個々の導波路素子のそれぞれは、一組の相異なる波長変換特性にそれぞれの素子を寄与させ、導波路素子に帰すことができる一組の相異なる波長変換特性を定める。一組の相異なる波長変換特性は、導波路素子の位相整合波長、導波路素子のスペクトル幅、または導波路素子の変換効率を表す特性、あるいはこれらの組合せを含む。
別の実施形態において、いくつかの特定の特性を有する1つの特定の導波路を選択できるように、アクチュエータが用いられる。アクチュエータの設定に依存して、機器は様々なモードで動作することができる。例えば、画像雑音が重要であり、効率の優先度は比較的低ければ、スペクトル帯域幅が広い導波路を選択することができる。パワー及び効率が注目する主要パラメータであれば、効率の高い導波路を選択することができる。
周波数変換型光源は、光源の光路に沿って伝搬する光信号を相異なる導波路素子のそれぞれに選択的に割り振るようにプログラムされた、コントローラを備えることができる。例えば、本発明の一実施形態にしたがえば、コントローラは、割り振られた導波路素子のスペクトル帯域幅が比較的広く、比較的低い変換効率を定める、低雑音モードを実行するように、また割り振られた導波路素子のスペクトル帯域幅が比較的狭く、比較的高い変換効率を定める、高効率モードを実行するように、プログラムすることができる。このようにすれば、本発明にしたがうレーザ源及びレーザ投影システムを、多くの、相異なる動作モードを必要とする様々な用途で利用することができる。例えば、暗い環境において画像を投影する場合は、画像品質を最適化することが望ましいであろうが、最大パワーまたはウォールプラグ効率はそれほど重要ではない。明るい環境のような別の状況においては、肝要なパラメータは画像の明るさとすることができ、画像雑音を高めることでより優れた全体的視聴感を得られることが好ましいであろう。
本発明の別の実施形態において、導波路素子は相異なる位相整合導波路を定めるように構成され、コントローラは最適位相整合導波路の選択を可能にするかまたは光路に沿って伝搬する光信号を連続する導波路素子のいずれにも割り振ることによってスペクトル帯域幅拡張モードを実行するようにプログラムされる。これらの動作モードは、製造において広範なレーザ分布を利用するか、可調DBRレーザを用いる場合に位相整合を達成するために導入される設計上の制約のいくつかを緩和するか、またはレーザ投影システムにおいて画像スペックルを低減するために用いることができる。
本発明のまた別の実施形態は波長変換デバイスの設計だけに関する。例えば、波長変換デバイスが提供され、波長変換デバイスは複数の導波路素子を有するモノリシック構造として構成される。導波路素子の内の1つは、スペクトル帯域幅が比較的広く、比較的低い変換効率を定めるが、導波路素子の内の別の1つは、スペクトル帯域幅が比較的狭く、比較的高い変換効率を定める。あるいは、個々の導波路素子の位相整合波長が異なり得る。
本発明の概念のいくつかは半導体レーザの文脈で説明されるが、本発明の概念はDBRレーザ、DFBレーザ、ファブリ−ペロレーザ及び多くのタイプの外部キャビティレーザを含むがこれらには限定されない様々なタイプのレーザで有用であろうと考えられる。さらに、本発明の概念は主として画像形成及びレーザ投影の文脈において説明されるが、本発明の様々な概念は、波長変換デバイスの波長変換ピークとのレーザ発振波長のアライメントが問題になる、いかなるレーザ応用にも適用可能であろうと考えられる。
本発明の特定の実施形態の以下の詳細な説明は、同様の構造が同様の参照数字で示される、添付図面とともに読まれたときに最善に理解され得る。
図1は光波長変換デバイスに光結合された半導体レーザの略図である。 図2は光波長変換デバイスに光結合された半導体レーザの略図である。 図3は光波長変換デバイスに光結合された半導体レーザの略図である。 図4は光波長変換デバイスに光結合された半導体レーザの略図である。 図5は選ばれた2つのSHG波長変換デバイスについての変換効率曲線を示す。 図6は波長変換デバイスの共通入力面に沿って個々の導波路素子を揃えるための一手法を示す。 図7は波長変換デバイスの共通入力面に沿って個々の導波路素子を揃えるための別の手法を示す。 図8は光波長変換デバイスに光結合された半導体レーザの略図である。
初めに図1を参照すれば、本発明の一実施形態にしたがう周波数変換型レーザ源100が示される。レーザ源100は、レーザ10,波長変換デバイス20及び、レーザ10と波長変換デバイス20の間に定められる光路40に沿って配置された、結合光学系30を備える。一般に、波長変換デバイス20は、モノリシックPPLN SHG結晶、またはその他の適する波長変換材料として構成される。波長変換デバイス20は入射光を高次高調波に変換し、波長変換信号50を出力する。このタイプの構成は長波長半導体レーザからの短波長レーザビームの生成に特に有用であり、例えば、レーザ投影システム用の可視レーザとして用いることができる。
波長変換デバイス20は、それぞれの入力面が結合光学系30の有効焦点野内に配置された、複数の導波路素子22を有する。本発明を説明し、定める目的のため、本明細書に用いられるような「有効焦点野」は、レーザ10,波長変換デバイス20または結合光学系30の操作によって光路40に沿って伝搬する光信号の焦点を合わせるかまたはそのような光信号を導くことができる、一組の位置を指すことに注意されたい。例えば、図1において、結合光学系30の有効焦点野は、多軸アクチュエータ32を用いて結合光学系30の光学特性を変えることによるか、あるいは結合光学系に可変形レンズ、可傾ミラー、回転プリズム、液体レンズ素子またはその他の同様な素子を組み込むことによってアドレスすることができる、有効焦点f,f,f,fを含む。同様に、有効焦点f,f,f,fは多軸アクチュエータ12を用いてレーザ10の位置または方位あるいは位置と方位を変えることによってアドレスすることができる。同様に、図2を参照して以下で論じられるように、有効焦点f,f,f,fは、多軸アクチュエータ25を用いて結晶20の位置を変えることによってアドレスすることができる。あるいは、同様の構造が同様の参照数字を参照して示されている、図8に簡略に示されるように、別の手法は、入射光をレーザ10の波長の関数として様々な方向に偏向するように構成された光回折格子34のようなスペクトル分散性素子の使用を含むことができる。光路に光回折格子34またはその他の適するスペクトル分散性素子を挿入することによって、レーザ10の波長λ,λを変えることでレーザスポットを相異なる有効焦点f,f,f,fの1つに結像させることができる。
波長変換デバイス20の個々の導波路素子22は一組の相異なる波長変換特性にそれぞれの素子を寄与させ、したがって、例えば、導波路素子22の位相整合波長、導波路素子の22のスペクトル幅、導波路素子22の変換効率またはこれらの組合せを含むパラメータを表す一組の相異なる波長変換特性を集合体として定める。したがって、上述したアクチュエータ12,32あるいは何か別の、結合光学系30またはレーザ10の光学特性を変えるための、従来のまたはまだ開発中の手段を利用すれば、ユーザインターフェースを備えるプログラマブルコントローラを備え、レーザ源100の要素と機能的に通じるようにされ、光路40に沿って伝搬する光信号を導波路コンポーネントの相異なるいずれかに選択的に割り振るようにプログラムされる、プログラマブルコントローラを提供することができる。
導波路素子の相異なる波長変換特性の組は様々な仕方で確立することができる。限定ではなく例として、8mm長結晶及び12mm長結晶のPPLNスペクトル曲線が図5にそれぞれ曲線A及びBとして示される。12mm長結晶の変換効率(図Bを見よ)は60%に達するが、スペクトル帯域幅FWHMは0.15nmに抑えられる。8mmと短い同様の結晶では(図Aを見よ)、スペクトル帯域幅が0.24nmまで広がる。しかし到達し得る最良変換効率は約35%である。PPLN結晶のスペクトル帯域幅、変換効率及び位相整合波長を変えるための様々な方法は、文献に教示されており、また開発が続けられているであろう。限定ではなく例として、PPLN結晶のスペクトル帯域幅、変換効率及び位相整合波長は、結晶の周期分極反転のチャーピング、分極反転周期が相異なるいくつかの区域を有するような結晶の構成、結晶に沿う1つの特定の位置における分極反転の位置の僅かな修正により、あるいは、リッジ形状、相異なる導波路素子22に沿うコーティングにより、変えることができる。一例として、1つの導波路を大きな変換効率を与えるために結晶の全長にわたって分極させることができ、別の導波路を広いスペクトル帯域を与えるために導波路の限られた区画だけにわたって分極させることができる。
導波路素子22のそれぞれにともなう相異なる波長変換特性が与えられれば、様々な動作モードを自動化態様で、あるいはユーザによってコントロールされて、実行するようにコントローラをプログラムすることができる。例えば、本発明の一実施形態にしたがえば、ユーザ入力に応答して、(i)例えば図1のfに割り振られたときの、低雑音モード、この場合は割り振られた導波路素子22のスペクトル帯域幅が比較的広く、比較的低い変換効率を定める、または(ii)例えば図1のfに割り振られたときの、高効率モード、この場合は割り振られた導波路素子22のスペクトル帯域幅が比較的狭く、比較的高い変換効率を定める、を実行するようにコントローラをプログラムすることができる。これらの動作モードは図5の曲線A及びBによって簡略に示される。
別の有効焦点f,f,等は別の低雑音モードまたは高効率モードを、あるいは別の動作モードを実行するためにアドレスすることができると考えられる。例えば、本発明の一実施形態にしたがえば、導波路素子22は相異なる位相整合波長を定めるように構成され、コントローラは光路に沿って伝搬する光信号を連続する導波路素子22のいずれにも割り振ることによってスペクトル帯域幅拡張モードを実行するようにプログラムされる。このようにすれば、与えられたフレームレートで表示される一連の画像フレームを含む走査型レーザ画像を生成するようにレーザ源100が構成される場合、それぞれの画像フレームに対して相異なる変換波長を選択し、したがって画像内のスペックルを最小限に抑えるために、光路40に沿って伝搬する光信号を連続する導波路素子22に割り振ることができる。実際、表示されるべき画像フレームのそれぞれにおいて相異なる波長を選択することによって、スペックル形状は比較的高い周波数、例えば50Hzまたは60Hzで変えられるであろう。したがって、導波路素子22にわたる波長差が十分に大きければ、スペックルコントラストを約1/√2まで低減することができる。
DBRレーザの設計及び動作に堪能な技術者には当然であろうように、DBRレーザの波長をSHG結晶の位相整合に達するに必要な正確な波長に調節するためには、レーザ発振波長を調節または安定化するためにレーザダイオード区画のいくつかに電力を送らなければならない。一例として、DBR区画に、またはDBR区画に熱的に結合されたヒータにいくらかの電流を送り込むことによってDBRレーザの波長を同調させることができる。波長の同調に必要な電力量は無視することはできず、システムのウォールプラグ効率をかなり低下させ得る。それぞれの導波路素子を相異なる波長の変換に最適化し、相異なる波長に中心がおかれたいくつかの導波路素子の間の選択能力を与えることにより、DBRレーザのDBR区画における精密な波長制御の必要を軽減または排除し、レーザ波長の同調に必要な電力を低減するために、本発明の上述した実施形態の概念を利用することができる。本発明の上述した実施形態により、低コストレーザ(DFB,ファブリ−ペロ,他)またはより広い製造許容範囲に該当するレーザの使用が可能になり得る。
図2及び3は光路40に沿って伝搬する光信号の導波路素子22の相異なるいずれかへの選択割振りを可能にするための別の構成を提示する。詳しくは、図2に示される実施形態において、結合光学系30の有効焦点野は、多軸アクチュエータ25を用いて波長変換デバイス20の位置または方位あるいは位置と方位を変えることによるアドレスが可能な焦点を含む。図3は、光路40の多コンポーネント領域45の相異なる領域に沿う光信号のルートを選択的に定めるために、プレーナ型1×N光スイッチまたは機械式1×N光スイッチのような、導波路型または非導波路型の光スイッチSの使用を示す点において、アクチュエータベース制御との違いを表す。
図1〜3において、波長変換デバイス30の個々の導波路素子22のそれぞれの入力面は、波長変換デバイス20の共通入力面24に沿って揃えられる。共通入力面24に沿う個々の導波路素子22のそれぞれの入力面の好ましい間隔は一般に、導波路とクラッドの間のΔ屈折率に非常に敏感であろう。波長変換デバイス20の作成に用いられる製造プロセスも間隔に関わるであろう。これらの要因のそれぞれの寄与は変化するであろうと考えられるから、要は、好ましい間隔は少なくとも選ばれた導波路素子22内に導波光を維持するに十分であるべきことに注意されたい。個々の導波路素子22は、図6に示されるように、波長変換デバイス20に定められた共通導波路層内で、または図7に示されるように、波長変換デバイス30に定められた積層導波路層内で、共通入力面24に沿って揃えることができ、あるいは、様々な、図6及び7の組合せによるさらに複雑な2次元構成で与えることができる。
図4に示される本発明の実施形態において、波長変換デバイス20の個々の導波路素子22のそれぞれの入力面は交通光路に沿って連続して配される。波長変換デバイス20の第1の個別導波路素子22Aの出力面は、波長変換デバイス20の第2の個別導波路素子22Bの入力面に光結合される。レーザと波長変換デバイスの間に定められる光路40は単一コンポーネント光路からなり、結合光学系30の有効焦点野は、fにある第1の導波路素子22Aの入力端からfにある第2の導波路素子22Bの入力端まで、単一光路に沿って広がる。このようにすれば、レーザ10が第1の導波路素子22Aの位相整合波長で動作するときには、光信号は第1の導波路素子22Aにおいて変換されるであろう。変換された光信号が第2の導波路素子22Bに到達しても、変換された光信号波長は第2の導波路素子22Bの位相整合波長からかけ離れているであろうから、第2の導波路素子22Bは透明導波路としてしか機能しない。レーザ10が第2の導波路素子22Bの位相整合波長で動作するときには、第1の導波路素子22Aは透明導波路としてしか機能せず、光信号は第2の導波路素子22Bに到達してからでないと変換されない。図4に示される構成は、図1〜3を参照して上で論じたような、入力面の一次元アレイまたは二次元アレイも用いる実施形態と組合せ得ると考えられる。
画像ピクセルアレイにかけて変化するピクセル強度を確立するように画像投影エレクトロニクス及び対応するレーザ駆動電流を構成することにより、本発明にしたがう画像投映システムによって多調画像を生成することができる。例えば、ピクセルベースレーザ投影システム内にプログラマブル光源が備えられていれば、本発明にしたがうコントローラを、コード化されたデータ信号が投影システムのフレームレートに対応する複数のコード化データ期間を含むように、半導体レーザの周期的レーザ発信強度を制御するためにプログラムすることができる。
画像投影システムにおける動作のために図1,2,3,6及び7にしたがって本発明にしたがうレーザ源を構成する際には、図2に示されるように、どの導波路素子22が選ばれたかに出力信号50の位置が依存することに注意すべきである。この問題は、出力信号50のシフトを考慮し、レーザプロジェクタの他の色との位置合せを維持するために、画像投映データに若干の遅延を導入することによって対処することができる。
本発明にしたがうプログラマブル光源は、その内の少なくとも1つは波長変換デバイスに結合され、本発明で考えられる制御手順の内の1つないしさらに多くにしたがって制御される、複数の半導体レーザを備えることができると考えられる。走査型レーザ画像投映システムの構成及び可変ピクセル強度が画像にかけて発生される態様は、本主題に関する容易に入手できる様々な教示から集めることができる。本発明がピクセルベース投影システムに適用可能なことは明らかであるが、レーザベース光源が組み込まれている、(デジタル光処理(DLP)、透過型LCD及びシリコン上液晶(LCOS)を含む)空間光変調器ベースシステムのような、その他の投影システムも本明細書に説明される波長制御手法による恩恵を受け得ると考えられる。
本発明の上記の詳細な説明は特許請求されるような本発明の本質及び特質の理解のための概要または枠組みの提供が目的とされていることは当然である。本発明の精神及び範囲を逸脱することなく本発明に様々な変形及び変形がなされ得ることが当業者には明らかであろう。したがって、本発明の改変及び変形が添付される特許請求項及びそれらの等価物の範囲内にあれば、本発明はそのような改変及び変形を包含するとされる。例えば、レーザ10から放射される光信号は波長変換素子20に直接結合させることができ、あるいはコリメート/集束光学系30または何か別のタイプの適する光学素子または光学系を介して結合させることができると考えられる。
「好ましい」、「普通に」及び「一般に」のような語句は、本明細書に用いられる場合、特許請求される本発明の範囲を限定すること、あるいはある特徴が特許請求される本発明の構造または機能に必須であるか、肝要であるかまたは重要であることさえ、意味することは意図されていないことに注意されたい。むしろ、これらの語句は、本発明の特定の実施形態に利用され得るかまたは利用され得ない、別のまたは追加の特徴を強調することが意図されているに過ぎない。さらに、別の値、パラメータまたは変数の「関数」である値、パラメータまたは変数は、その変数、パラメータまたは変数が唯一の値、パラメータまたは変数の関数を意味するととられるべきではないことに注意されたい。
本発明を説明し、定める目的のため、語句「ほぼ」はいずれかの量的な比較、値、測定値またはその他の表現に帰因させ得る内在不確定性の大きさを表すために本明細書で用いられることに注意されたい。
添付される特許請求の1つないしさらに多くにおいて語句“wherein”は移行句として用いられていることに注意されたい。本発明を定める目的のため、この語句は、構造の一連の特許の叙述を組み入れるために用いられる範囲可変移行句として特許請求項に導入され、より普通に用いられる範囲可変前置句“comprising(含む)”と同様の態様で解されるべきであることに注意されたい。
本発明を定め、説明する目的のため、添付される特許請求項の内の1つないしさらに多くが、1つないしさらに多くの叙述された作業を実行するように「プログラムされた」コントローラを叙述していることに注意されたい。本発明を定める目的のため、この語句は範囲可変移行句として特許請求項に導入され、より普通に用いられる範囲可変前置句“comprising”と同様の態様で解されるべきであることに注意されたい。さらに、特定の特徴の具現化、特定の態様の機能、等のために「プログラムされている」コントローラのような、本発明のコンポーネントの本明細書における叙述は、目的用途の叙述に対する物としての、構造の叙述であることに注意されたい。さらに詳しくは、コンポーネントが「プロフラムされる」態様への本明細書における言及は既存の物理的状態を表し、したがって、コンポーネントの構造特性の明確に限定された叙述としてとられるべきである。さらに、「プログラマブル」であるコントローラへの本明細書における言及は、コントローラがプログラマブルであり、かつ再プログラマブルであることを要するととられるべきではない。むしろ、プログラムされたルーチンにしたがって、1つないしさらに多くの作業を実行するか、1つないしさらに多くのコマンドを発するか、または1つないしさらに多くの信号を発生するために、コントローラを作成するか、変更するか、またはある程度構成できることが、「プログラマブル」コントローラについて要請される全てである。
10 レーザ
12,25,32 多軸アクチュエータ
20 波長変換デバイス
22 導波路素子
24 共通入力面
30 結合光学系
34 光回折格子
40 光路
45 多コンポーネント領域
50 波長変換信号
100 周波数変換型レーザ源
S 光スイッチ

Claims (5)

  1. レーザ及び波長変換デバイスを備える周波数変換型レーザ源において、
    前記波長変換デバイスが、それぞれの入力面が前記レーザ源の有効焦点野内に配置された、複数の導波路素子を有し、
    前記波長変換デバイスの個々の導波路素子が、前記導波路素子が集合体として一組の相異なる波長変換特性を定めるように、一組の相異なる波長変換特性にそれぞれの素子を寄与させ、
    前記一組の相異なる波長変換特性が、前記導波路素子の位相整合波長、前記導波路素子のスペクトル幅、または前記導波路素子の変換効率を表す特性、あるいはこれらの組合せを含むことを特徴とする周波数変換型レーザ源。
  2. 前記周波数変換型レーザ源が光路に沿って伝搬する信号を前記導波路素子のそれぞれに選択的に割り振るようにプログラムされたコントローラをさらに備え、
    前記コントローラが、
    割り振られた導波路素子のスペクトル帯域幅が比較的広く、比較的低い変換効率を定める、低雑音モードを実行する、及び
    割り振られた導波路素子のスペクトル帯域幅が比較的狭く、比較的高い変換効率を定める、高効率モードを実行する、
    ようにプログラムされることを特徴とする請求項1に記載の周波数変換型レーザ源。
  3. 前記周波数変換型レーザ源が光路に沿って伝搬する信号を前記導波路素子のそれぞれに選択的に割り振るようにプログラムされたコントローラをさらに備え、
    前記導波路素子が相異なる位相整合波長を定め、
    前記コントローラが、光路に沿って伝搬する光信号を前記導波路素子の連続するいずれにも割り振ることによってスペクトル帯域幅拡張モードを実行するようにプログラムされることを特徴とする請求項1に記載の周波数変換型レーザ源。
  4. 前記コントローラがさらに、
    与えられたフレームレートで表示される一連の画像フレームを含む走査レーザ画像を生成することにより、スペクトル帯域幅拡張モードで前記周波数変換型レーザ源を動作させる、及び
    前記光路に沿って伝搬する光信号を前記フレームレートにほぼ等しい波長選択レートで前記導波路素子のいずれかに割り振る、
    ようにプログラムされることを特徴とする請求項3に記載の周波数変換型レーザ源。
  5. 前記波長変換デバイスが前記複数の導波路素子を有するモノリシック構造として構成されることを特徴とする請求項1に記載の周波数変換型レーザ源。
JP2010532019A 2007-10-30 2008-10-23 多素子構成波長変換デバイス及びこれを組み込んだレーザ Withdrawn JP2011502283A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/978,857 US7649918B2 (en) 2007-10-30 2007-10-30 Multi-component wavelength conversion devices and lasers incorporating the same
PCT/US2008/012050 WO2009058215A1 (en) 2007-10-30 2008-10-23 Multi-component wavelength conversion devices and lasers incorporating the same

Publications (1)

Publication Number Publication Date
JP2011502283A true JP2011502283A (ja) 2011-01-20

Family

ID=40582770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010532019A Withdrawn JP2011502283A (ja) 2007-10-30 2008-10-23 多素子構成波長変換デバイス及びこれを組み込んだレーザ

Country Status (7)

Country Link
US (1) US7649918B2 (ja)
EP (1) EP2208263A1 (ja)
JP (1) JP2011502283A (ja)
KR (1) KR20100091202A (ja)
CN (1) CN101884147B (ja)
TW (1) TW200935688A (ja)
WO (1) WO2009058215A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8038305B2 (en) * 2007-02-07 2011-10-18 Seiko Epson Corporation Light source unit, illumination device, image display apparatus, and monitor apparatus
US7916769B2 (en) * 2008-04-30 2011-03-29 Corning Incorporated Optical package having deformable mirrors for focus compensation
US7898750B2 (en) 2009-02-26 2011-03-01 Corning Incorporated Folded optical system and a lens for use in the optical system
US8259385B2 (en) 2009-10-22 2012-09-04 Corning Incorporated Methods for controlling wavelength-converted light sources to reduce speckle
US10768449B2 (en) 2012-01-17 2020-09-08 Imax Theatres International Limited Stereoscopic glasses using tilted filters
US9335541B2 (en) 2012-01-17 2016-05-10 Imax Theatres International Limited Stereoscopic glasses using dichroic and absorptive layers
US8947424B2 (en) 2012-01-17 2015-02-03 Eastman Kodak Company Spectral stereoscopic projection system
US8864314B2 (en) * 2012-01-17 2014-10-21 Eastman Kodak Company Stereoscopic projection system using tunable light emitters
CN104466656B (zh) * 2014-12-30 2017-12-26 中国科学院长春光学精密机械与物理研究所 一种单源多波长输出的红外连续激光器
EP3279736A1 (en) * 2016-08-01 2018-02-07 ASML Netherlands B.V. Device and method for processing a radiation beam with coherence
DE102018212551B4 (de) * 2018-07-27 2020-06-18 Q.ant GmbH Laserlichtquelle und Laser-Projektor damit
DE102022106271A1 (de) 2022-03-17 2023-09-21 Ams-Osram International Gmbh Optoelektronisches modul und verfahren zum betrieb eines optoelektronischen moduls
DE102022108232A1 (de) 2022-04-06 2023-10-12 Webasto SE Beleuchtungsvorrichtung für ein Fahrzeug und Verfahren zum Betreiben einer Beleuchtungsvorrichtung für ein Fahrzeug

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4974923A (en) * 1989-11-30 1990-12-04 North American Philips Corporation Gap tuned optical waveguide device
US5559824A (en) 1992-04-24 1996-09-24 Electro Scientific Industries, Inc. Optical frequency-converting medium pumped by unstable resonator semiconductor laser
US5604634A (en) 1993-09-20 1997-02-18 The United States Of America As Represented By The Secretary Of The Air Force All optical nonlinear joint fourier transform correlator
US5436919A (en) 1994-01-25 1995-07-25 Eastman Kodak Company Multiwavelength upconversion waveguide laser
US5544268A (en) 1994-09-09 1996-08-06 Deacon Research Display panel with electrically-controlled waveguide-routing
US7167620B2 (en) 2003-07-16 2007-01-23 Doron Handelman Devices and methods for all-optical processing and storage
US6856737B1 (en) 2003-08-27 2005-02-15 Mesophotonics Limited Nonlinear optical device
WO2005022708A1 (en) 2003-08-29 2005-03-10 Philips Intellectual Property & Standards Gmbh Waveguide laser light source suitable for projection displays
US7430356B2 (en) 2003-11-24 2008-09-30 University Of Southampton Fabrication of optical waveguides in periodically poled lithium niobate
WO2005098528A1 (ja) 2004-03-30 2005-10-20 Hamamatsu Foundation For Science And Technology Promotion 像波長変換装置、前記装置の製造方法、および前記装置を用いた画像変換システム
US7397598B2 (en) 2004-08-20 2008-07-08 Nikon Corporation Light source unit and light irradiation unit
US20060165138A1 (en) 2005-01-21 2006-07-27 Alexander Kachanov Frequency doubling of semiconductor lasers to generate 300-600 nm light
US20060165137A1 (en) 2005-01-21 2006-07-27 Alexander Kachanov Novel external cavity CW frequency doubling of semiconductor lasers to generate 300-600nm light
JP2007147688A (ja) 2005-11-24 2007-06-14 Noritsu Koki Co Ltd 波長変換素子、レーザ装置及び写真処理装置

Also Published As

Publication number Publication date
CN101884147B (zh) 2012-07-18
US20090110013A1 (en) 2009-04-30
KR20100091202A (ko) 2010-08-18
EP2208263A1 (en) 2010-07-21
TW200935688A (en) 2009-08-16
CN101884147A (zh) 2010-11-10
WO2009058215A1 (en) 2009-05-07
US7649918B2 (en) 2010-01-19

Similar Documents

Publication Publication Date Title
JP2011502283A (ja) 多素子構成波長変換デバイス及びこれを組み込んだレーザ
JP4271704B2 (ja) コヒーレント光源および光学装置
KR101217557B1 (ko) 직접 광변조가 가능한 레이저 모듈 및 이를 채용한 레이저디스플레이 장치
US7426223B2 (en) Coherent light source and optical device
US20090232169A1 (en) Wavelength converting laser device
JP2010534416A (ja) 波長変換レーザ源の光アライメントにおける周波数変調
JP2010204197A (ja) レーザ装置、レーザディスプレイ装置、レーザ照射装置及び非線形光学素子
JP2010527164A (ja) 変調波長制御信号を用いるレーザ発振波長の波長変換ピークとの整合
US20210159660A1 (en) Laser light source and laser projector with laser light source
KR20120008051A (ko) 전후방 dbr 격자부의 스플릿 제어
JP2015106665A (ja) 波長可変レーザの制御方法
US8306075B2 (en) System and method for optical frequency conversion
JP2004070338A (ja) 光波長変換装置、及び光波長変換方法
JP2008135689A (ja) レーザ光源装置及びそのレーザ光源装置を備えた画像表示装置
US7782913B2 (en) Intensity modulation in wavelength converting optical package
JP4930036B2 (ja) 外部共振型レーザ光源装置及びそれを用いたモニタ装置並びに画像表示装置
JP5432894B2 (ja) 表面発光外部キャビティレーザーデバイス
JP2015115509A (ja) レーザ光源装置及びスクリーン投影装置
US20080186710A1 (en) Wavelength conversion element, light source device, image display device, and monitor device
CN101174751A (zh) 激光光源装置及具备该激光光源装置的图像显示装置
JP2008118074A (ja) レーザ光源装置及びそのレーザ光源装置を備えた画像表示装置
JP2008129232A (ja) レーザ光源装置及びそのレーザ光源装置を備えた画像表示装置並びにモニター装置
JP2010534353A (ja) 波長変換光パッケージにおける変換効率の拡大
JP2008124178A (ja) レーザ光源装置及びそのレーザ光源装置を備えた画像表示装置
JP2005057208A (ja) レーザ発光装置及びレーザ露光装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120110