JP2011252703A - Absorption refrigerating machine - Google Patents

Absorption refrigerating machine Download PDF

Info

Publication number
JP2011252703A
JP2011252703A JP2011205640A JP2011205640A JP2011252703A JP 2011252703 A JP2011252703 A JP 2011252703A JP 2011205640 A JP2011205640 A JP 2011205640A JP 2011205640 A JP2011205640 A JP 2011205640A JP 2011252703 A JP2011252703 A JP 2011252703A
Authority
JP
Japan
Prior art keywords
pump
low
refrigerant liquid
concentrated absorbent
absorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011205640A
Other languages
Japanese (ja)
Other versions
JP5181054B2 (en
Inventor
Shuji Ishizaki
修司 石崎
Shingo Nagasawa
慎悟 長澤
Soichi Ishifuku
聡一 石福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2011205640A priority Critical patent/JP5181054B2/en
Publication of JP2011252703A publication Critical patent/JP2011252703A/en
Application granted granted Critical
Publication of JP5181054B2 publication Critical patent/JP5181054B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent pump lock of an absorption liquid pump by suppressing deposition of a corrosion inhibitor contained in absorption liquid in a double effect absorption refrigerating machine in particular.SOLUTION: A refrigerant liquid bypass pipe line 20 is provided for connecting a downstream side of a refrigerant liquid pump 12 in a pipe line R6 which supplies refrigerant liquid from an evaporator 4 to a refrigerant liquid spraying pipe 4a of the evaporator 4 by the refrigerant liquid pump 12, with a downstream side of a low-temperature heat exchanger 7 in a pipe line which supplies concentrated absorption liquid from a low-temperature regenerator 2 to an absorber 5 via the low-temperature heat exchanger 7 by a concentrated absorption liquid pump 10. A shut-off valve 21 is provided in the refrigerant liquid bypass pipe line 20. When starting, a part of the refrigerant liquid from the evaporator 4 is supplied through the refrigerant liquid bypass pipe line 20 by the refrigerant liquid pump 12.

Description

本発明は、吸収式冷凍機に係り、特に二重効用吸収式冷凍機において、吸収液中に含まれている腐食抑制剤の析出を抑えることにより吸収液ポンプのポンプロックを防ぐようにした吸収式冷凍機に関する。   The present invention relates to an absorption refrigeration machine, and in particular, in a double-effect absorption chiller, absorption that prevents pump lock of an absorption liquid pump by suppressing precipitation of a corrosion inhibitor contained in the absorption liquid. It relates to a type refrigerator.

一般に、二重効用吸収式冷凍機は高温再生器、低温再生器、凝縮器、蒸発器、吸収器及び高温熱交換器、低温熱交換器が管路により接続されると共に、管路の要所に濃吸収液ポンプ、稀吸収液ポンプ、冷媒液ポンプ及び開閉弁等を設けることにより、吸収液系の循環管路と冷媒系の循環管路とが構成される。そして、蒸発器における冷媒液の蒸発潜熱によって負荷側から戻された冷温水を冷却して負荷側に供給することにより冷房又は冷凍作用を得るようにしている。又、冷房のみならず、管路の切り替えによって暖房も行えるように構成した吸収式冷凍機も従来知られている。吸収液としては、通常臭化リチウム水溶液が用いられ、冷媒としては水が用いられる。   In general, double-effect absorption refrigerators are connected to high-temperature regenerators, low-temperature regenerators, condensers, evaporators, absorbers and high-temperature heat exchangers, and low-temperature heat exchangers through pipe lines. In addition, a concentrated absorption liquid pump, a rare absorption liquid pump, a refrigerant liquid pump, an on-off valve, and the like are provided to constitute an absorption liquid circulation line and a refrigerant circulation line. Then, the cooling / refrigerating action is obtained by cooling the cold / warm water returned from the load side by the latent heat of vaporization of the refrigerant liquid in the evaporator and supplying it to the load side. In addition, an absorption refrigerator that can be heated not only by cooling but also by switching pipes is conventionally known. As the absorbing liquid, an aqueous lithium bromide solution is usually used, and water is used as the refrigerant.

従来の吸収式冷凍機においては、吸収式冷凍機が運転されている限り濃吸収液ポンプを運転し、低温再生器で冷媒を蒸発分離した濃吸収液を吸収器に供給するので、冷凍負荷が殆ど無い状態が継続して高温再生器における加熱を停止しても、低温再生器から吸収器に供給される濃吸収液は濃吸収液ポンプの熱によって加熱される。このため、濃吸収液が温度上昇して結晶化し、管路が詰まって濃吸収液の循環を妨げることがあった。   In a conventional absorption refrigerator, the concentrated absorption liquid pump is operated as long as the absorption refrigerator is operated, and the concentrated absorption liquid obtained by evaporating and separating the refrigerant in the low temperature regenerator is supplied to the absorber. Even if the heating in the high temperature regenerator is stopped with almost no condition, the concentrated absorbent supplied from the low temperature regenerator to the absorber is heated by the heat of the concentrated absorbent pump. For this reason, the temperature of the concentrated absorbent rises and crystallizes, and the pipe may be clogged, preventing the concentrated absorbent from circulating.

上記のように低負荷時における濃吸収液の結晶化を防ぐために、例えば高温再生器における稀吸収液の加熱が所定時間停止された時に、濃吸収液ポンプの運転を停止し、高温再生器の加熱再生を待って濃吸収液ポンプの運転を再開するようにした技術が特許文献1に開示されている。
特開2000−179976
In order to prevent crystallization of the concentrated absorbent at low load as described above, for example, when the heating of the rare absorbent in the high temperature regenerator is stopped for a predetermined time, the operation of the concentrated absorbent pump is stopped and the high temperature regenerator is turned off. Patent Document 1 discloses a technique in which the operation of the concentrated absorbent pump is resumed after heating regeneration.
JP 2000-179976

吸収式冷凍機の吸収液として、前記のように臭化リチウム水溶液が用いられている場合には腐食性が高いため、吸収液中に腐食抑制剤(インヒビター)が混入されている。この腐食抑制剤は、例えばモリブデン酸リチウムを主成分としており、通常運転時においては吸収液中に溶けているが、運転状況に伴う吸収液の濃度や温度の変化によって吸収液中に一部析出することがある。吸収液中に腐食抑制剤が析出すると、管路を閉塞して吸収液の流通を悪化させるばかりか、吸収液を送り出す濃吸収液ポンプ内に堆積してポンプロックを生じる等の事態を招くことになる。   When the aqueous solution of lithium bromide is used as the absorption liquid of the absorption refrigerator as described above, the corrosion resistance is high, and therefore, a corrosion inhibitor (inhibitor) is mixed in the absorption liquid. This corrosion inhibitor is mainly composed of, for example, lithium molybdate, and is dissolved in the absorbing liquid during normal operation. However, the corrosion inhibitor partially precipitates in the absorbing liquid due to changes in the concentration and temperature of the absorbing liquid in accordance with operating conditions. There are things to do. If the corrosion inhibitor deposits in the absorbent, it will not only clog the pipeline and worsen the flow of the absorbent, but will also cause a situation such as accumulation in the concentrated absorbent pump that pumps out the absorbent and causing a pump lock. become.

本発明は、吸収液中における腐食抑制剤の析出を抑えることで、濃吸収液ポンプのポンプロックを防ぐようにした吸収式冷凍機を提供することを目的とする。   An object of the present invention is to provide an absorption refrigerator that prevents pump lock of a concentrated absorbent pump by suppressing the precipitation of a corrosion inhibitor in the absorbent.

上記の目的を達成するための手段として、請求項1の発明は、高温再生器、低温再生器、蒸発器、吸収器及び高温熱交換器、低温熱交換器が管路により接続され、前記低温再生器から低温熱交換器を経て吸収器へ濃吸収液を供給する管路の、低温熱交換器より上流側に濃吸収液ポンプが設けられ、当該濃吸収液ポンプから送られる濃吸収液の一部を、低温熱交換器を経た後に濃吸収液ポンプに戻すバイパス管路が設けられた吸収式冷凍機において、前記蒸発器からの冷媒液を冷媒液ポンプにより蒸発器の冷媒液散布管に供給する管路における冷媒液ポンプの下流側と、低温再生器からの濃吸収液を濃吸収液ポンプにより低温熱交換器を経て吸収器に供給する管路における低温熱交換器の下流側とを結ぶ冷媒液バイパス管路を設けると共に、当該冷媒液バイパス管路に開閉弁を設け、起動時に、前記蒸発器からの冷媒液の一部を、冷媒液ポンプにより冷媒液バイパス管路を介して供給することを特徴とする。   As means for achieving the above object, the invention of claim 1 is characterized in that a high temperature regenerator, a low temperature regenerator, an evaporator, an absorber, a high temperature heat exchanger, and a low temperature heat exchanger are connected by a pipe, A concentrated absorbent pump is provided on the upstream side of the low-temperature heat exchanger of the conduit for supplying the concentrated absorbent to the absorber via the low-temperature heat exchanger from the regenerator, and the concentrated absorbent liquid sent from the concentrated absorbent pump In an absorption refrigeration machine provided with a bypass line that partially returns to the concentrated absorption liquid pump after passing through a low-temperature heat exchanger, the refrigerant liquid from the evaporator is supplied to the refrigerant liquid distribution pipe of the evaporator by the refrigerant liquid pump. The downstream side of the refrigerant liquid pump in the supply line and the downstream side of the low-temperature heat exchanger in the line that supplies the concentrated absorbent from the low-temperature regenerator to the absorber through the low-temperature heat exchanger by the concentrated absorbent pump. In addition to providing a refrigerant liquid bypass line to be connected, Off valve provided in the refrigerant liquid bypass line, at startup, the portion of the refrigerant fluid from the evaporator, and supplying through the refrigerant liquid bypass conduit by the coolant pump.

上記請求項1の発明によれば、二重効用吸収式冷凍機において、蒸発器からの冷媒液を冷媒液ポンプにより蒸発器の冷媒液散布管に供給する管路における冷媒液ポンプの下流側と、低温再生器からの濃吸収液を濃吸収液ポンプにより低温熱交換器を経て吸収器に供給する管路における低温熱交換器の下流側とを結ぶ冷媒液バイパス管路を設けると共に、当該冷媒液バイパス管路に開閉弁を設けたので、吸収式冷凍機の起動時に、開閉弁を開いて蒸発器からの冷媒液の一部を、冷媒液ポンプにより冷媒液バイパス管路を介して供給し、濃吸収液中に析出した腐食抑制剤の溶解を促進することで、濃吸収液ポンプのポンプロックを防ぐことができる。   According to the first aspect of the present invention, in the dual-effect absorption chiller, the downstream side of the refrigerant liquid pump in the pipe that supplies the refrigerant liquid from the evaporator to the refrigerant liquid spray pipe of the evaporator by the refrigerant liquid pump; A refrigerant liquid bypass line connecting the downstream side of the low-temperature heat exchanger in the pipe for supplying the concentrated absorption liquid from the low-temperature regenerator to the absorber through the low-temperature heat exchanger by the concentrated absorption liquid pump, and the refrigerant Since the on-off valve is provided in the liquid bypass line, when the absorption refrigerator is started, the on-off valve is opened and a part of the refrigerant liquid from the evaporator is supplied via the refrigerant liquid bypass line by the refrigerant liquid pump. By accelerating the dissolution of the corrosion inhibitor deposited in the concentrated absorbent, the pump lock of the concentrated absorbent pump can be prevented.

以下、本発明に係る吸収式冷凍機の実施形態に付いて添付図面を参照しながら説明する。二重効用吸収式冷凍機は、例えば図1に示すように高温再生器1、低温再生器2、凝縮器3、蒸発器4、吸収器5、高温熱交換器6、低温熱交換器7等が管路により接続され、吸収液系の循環路及び冷媒系の循環路が構成されている。   Hereinafter, an absorption refrigerator according to an embodiment of the present invention will be described with reference to the accompanying drawings. For example, as shown in FIG. 1, the double effect absorption refrigerator includes a high temperature regenerator 1, a low temperature regenerator 2, a condenser 3, an evaporator 4, an absorber 5, a high temperature heat exchanger 6, a low temperature heat exchanger 7, and the like. Are connected by a pipe line to constitute an absorption liquid system circulation path and a refrigerant system circulation path.

高温再生器1においては、吸収器5から稀吸収液ポンプ8により管路R1を介して戻された稀吸収液が収容されており、この稀吸収液はバーナ9により加熱されて稀吸収液中の冷媒液が蒸気となって蒸発して分離される。これにより、稀吸収液は中濃吸収液となり、管路R2を介して低温再生器2に供給されるが、高温熱交換器6を通過する際に前記管路R1を流れる稀吸収液との間で熱交換することにより放熱して低温再生器2に収容される。一方、蒸発した冷媒蒸気は、管路R3を介して凝縮器3に供給されるが、低温再生器2内を通過する際に当該低温再生器2に収容された中濃吸収液との間で熱交換することにより放熱して気液混合液となり、その後液化して冷媒液となって凝縮器3の底部に収容される。   In the high-temperature regenerator 1, the rare absorbent returned from the absorber 5 by the rare absorbent pump 8 through the pipe line R1 is accommodated, and this rare absorbent is heated by the burner 9 to be contained in the rare absorbent. The refrigerant liquid is vaporized and separated. As a result, the rare absorption liquid becomes a medium concentration absorption liquid, and is supplied to the low temperature regenerator 2 via the pipe line R2. However, when the rare absorption liquid passes through the high temperature heat exchanger 6, the rare absorption liquid flows through the pipe line R1. The heat is dissipated by exchanging heat between them and stored in the low temperature regenerator 2. On the other hand, the evaporated refrigerant vapor is supplied to the condenser 3 via the pipe line R3, but when passing through the low-temperature regenerator 2, the refrigerant vapor is exchanged with the medium-concentrated absorbent contained in the low-temperature regenerator 2. By heat exchange, the heat is dissipated to become a gas-liquid mixed liquid, and then liquefied to become a refrigerant liquid and accommodated in the bottom of the condenser 3.

低温再生器2においては、前記高温再生器1から供給された中濃吸収液が、低温再生器2内を通過する冷媒蒸気によって加熱され、中濃吸収液中の冷媒液が蒸気となって蒸発して分離される。これにより、中濃吸収液は濃吸収液となり、濃吸収液ポンプ10により管路R4を介して吸収器5に供給されるが、低温熱交換器7を通過する際に前記高温再生器1に向かって管路R1を流れる稀吸収液との間で熱交換することにより放熱して吸収器5の吸収液散布管5aに供給される。一方、低温再生器2で蒸発した冷媒蒸気は仕切壁の上部を越えて凝縮器3側に流入する。   In the low temperature regenerator 2, the medium concentrated absorbent supplied from the high temperature regenerator 1 is heated by the refrigerant vapor passing through the low temperature regenerator 2, and the refrigerant liquid in the medium concentrated absorbent is vaporized and evaporated. Separated. As a result, the medium-concentrated absorbent becomes a concentrated absorbent and is supplied to the absorber 5 through the conduit R4 by the concentrated absorbent pump 10, but when passing through the low-temperature heat exchanger 7, the high-temperature regenerator 1 The heat is exchanged with the rare absorption liquid flowing through the pipe line R <b> 1 toward the heat sink, and the heat is radiated and supplied to the absorption liquid spray pipe 5 a of the absorber 5. On the other hand, the refrigerant vapor evaporated in the low temperature regenerator 2 passes over the upper part of the partition wall and flows into the condenser 3 side.

凝縮器3においては、上記低温再生器2から流入した冷媒蒸気が、凝縮器3内を通過する冷却水によって冷やされて液化し、凝縮器3の底部に溜まる。この冷却水は、吸収器5内を通過した後に凝縮器3内を通過する冷却水管路11を通って供給される。   In the condenser 3, the refrigerant vapor flowing from the low-temperature regenerator 2 is cooled and liquefied by the cooling water passing through the condenser 3, and accumulates at the bottom of the condenser 3. The cooling water is supplied through a cooling water pipe 11 passing through the condenser 3 after passing through the absorber 5.

蒸発器4においては、上記凝縮器3の底部に溜まった冷媒液が管路R5により供給され、冷媒液ポンプ12により管路R6を介して冷媒液散布管4aに供給される。この冷媒液散布管4aから散布された冷媒液は、蒸発器4内を通過する冷温水管路13を流れる冷温水との間で熱交換することにより加熱されて蒸発する。この蒸発潜熱によって冷温水管路13を流れる冷温水は冷やされて蒸発器4から冷凍機等の負荷(図示せず)側に供給される。負荷側からは温度が上昇した冷温水が蒸発器4に戻されて循環する。一方、蒸発器4で蒸発した冷媒蒸気は仕切りスリット部を通って吸収器5側に流入する。   In the evaporator 4, the refrigerant liquid accumulated at the bottom of the condenser 3 is supplied through the pipe R 5, and is supplied from the refrigerant liquid pump 12 to the refrigerant liquid spray pipe 4 a through the pipe R 6. The refrigerant liquid sprayed from the refrigerant liquid spraying pipe 4a is heated and evaporated by exchanging heat with the cold / hot water flowing through the cold / hot water pipe 13 passing through the evaporator 4. The cold / hot water flowing through the cold / hot water pipe 13 is cooled by the latent heat of vaporization and supplied from the evaporator 4 to a load (not shown) such as a refrigerator. From the load side, cold / hot water whose temperature has risen is returned to the evaporator 4 and circulated. On the other hand, the refrigerant vapor evaporated in the evaporator 4 flows into the absorber 5 through the partition slit portion.

吸収器5においては、前記吸収液散布管5aから散布された濃吸収液が、前記冷却水管路11を流れる冷却水により冷却され、この冷却された濃吸収液により冷媒蒸気が吸収される。濃吸収液の液温が低いと、冷媒蒸気吸収能力が向上する。そして、冷媒蒸気を吸収した濃吸収液は、稀吸収液となって吸収器5の底部に溜まる。当該吸収器5の底部に溜まった稀吸収液は、前記稀吸収液ポンプ8により管路R1を介して高温再生器1に戻されるが、途中で低温熱交換器7を通過する際に低温再生器2から吸収器5に向かって流れる中温濃吸収液との間で熱交換して加熱され、次いで高温熱交換器6を通過する際に高温再生器1から低温再生器2に向かって流れる高温濃吸収液との間で熱交換して再加熱された後に高温再生器1に戻される。   In the absorber 5, the concentrated absorbent dispersed from the absorbent dispersion pipe 5a is cooled by the cooling water flowing through the cooling water pipe 11, and the refrigerant vapor is absorbed by the cooled concentrated absorbent. When the liquid temperature of the concentrated absorbent is low, the refrigerant vapor absorption capacity is improved. The concentrated absorbent that has absorbed the refrigerant vapor becomes a rare absorbent and accumulates at the bottom of the absorber 5. The rare absorbent stored at the bottom of the absorber 5 is returned to the high-temperature regenerator 1 via the pipe R1 by the rare-absorbent liquid pump 8, but is regenerated at a low temperature when passing through the low-temperature heat exchanger 7 on the way. Heat is exchanged between the intermediate temperature concentrated absorbent flowing from the regenerator 2 toward the absorber 5 and heated, and then the high temperature flowing from the high temperature regenerator 1 toward the low temperature regenerator 2 when passing through the high temperature heat exchanger 6 After heat exchange with the concentrated absorbent and reheating, it is returned to the high temperature regenerator 1.

これにより、高温再生器1→(R2)→低温再生器2→(R4)→吸収器5→(R1)→高温再生器1へと循環する吸収液系の循環経路と、高温再生器1→(R3)→凝縮器3→(R5)→蒸発器4→(R6)→蒸発器4→吸収器5→(R1)→高温再生器1へと循環する冷媒系循環路とが構成されている。   As a result, the high temperature regenerator 1 → (R2) → low temperature regenerator 2 → (R4) → absorber 5 → (R1) → the circulation path of the absorbent system circulating to the high temperature regenerator 1 and the high temperature regenerator 1 → (R3) → condenser 3 → (R5) → evaporator 4 → (R6) → evaporator 4 → absorber 5 → (R1) → refrigerant system circulation path circulating to the high-temperature regenerator 1 is configured. .

参考形態1Reference form 1

図2は、本発明に係る吸収式冷凍機の参考形態を示す構成図である。本参考形態においては、前記吸収式冷凍機(図1)の構成を基にしており、その吸収式冷凍機と同じ構成部材は前記と同じ符号をつけて詳しい説明は省略する。   FIG. 2 is a configuration diagram showing a reference form of the absorption refrigerator according to the present invention. In the present embodiment, the structure of the absorption refrigerator (FIG. 1) is based, and the same components as those of the absorption refrigerator are denoted by the same reference numerals as those described above, and detailed description thereof is omitted.

本参考形態では、前記濃吸収液ポンプ10を制御装置14により回転制御する構成を特徴とする。濃吸収液ポンプ10は、制御装置14によりインバータ制御されるモータを備えており、運転状況によって回転数が変化させられる。そして、制御装置14には高温再生器1に設けられている温度計15により検出された高温再生器1の内部温度が入力される。   The present embodiment is characterized in that the concentrated absorbent pump 10 is rotationally controlled by a control device 14. The concentrated absorbent pump 10 includes a motor that is inverter-controlled by the control device 14, and the number of rotations is changed depending on the operation state. Then, the internal temperature of the high temperature regenerator 1 detected by the thermometer 15 provided in the high temperature regenerator 1 is input to the control device 14.

吸収式冷凍機の運転負荷が低下すると、制御弁16によって燃料供給弁17及び燃焼空気供給弁18が連動して開度が制御され、バーナ9に供給する燃料及び燃焼空気の供給量が減少され、又は供給が停止される。このバーナ9の低燃焼又は燃焼停止に伴って前記温度計15による検出温度が低下し、この検出信号が制御装置14に入力され、当該制御装置14から指令信号が出力されて前記濃吸収液ポンプ10を低回転にインバータ制御する。   When the operating load of the absorption chiller decreases, the opening of the fuel supply valve 17 and the combustion air supply valve 18 are controlled by the control valve 16 and the amount of fuel and combustion air supplied to the burner 9 is reduced. Or the supply is stopped. The detected temperature by the thermometer 15 decreases with the low combustion of the burner 9 or the combustion stop, the detection signal is input to the control device 14, and the command signal is output from the control device 14, and the concentrated absorbent pump Inverter control of 10 to low rotation.

濃吸収液ポンプ10の回転数が低下すると、前記低温再生器2から管路R4を介して吸収器5に供給される濃吸収液の供給量が低下すると共に、濃吸収液の圧力損失が増加する。このため、管路R4において、低温熱交換器7を通過した後、濃吸収液ポンプ10の上流側と、低温熱交換器7の下流側とを結ぶバイパス管路19を通って、濃吸収液の一部が濃吸収液ポンプ10に循環するのを抑えることができる。これにより、濃吸収液が低温熱交換器7を通過することにより放熱して、濃吸収液中に腐食防止剤が析出してもバイパス管路19を介して濃吸収液ポンプ10に流入するのを抑えることができる。   When the rotational speed of the concentrated absorbent pump 10 decreases, the supply amount of the concentrated absorbent supplied from the low temperature regenerator 2 to the absorber 5 via the pipe R4 decreases, and the pressure loss of the concentrated absorbent increases. To do. Therefore, after passing through the low-temperature heat exchanger 7 in the pipeline R4, the concentrated absorbent is passed through the bypass pipeline 19 connecting the upstream side of the concentrated absorbent pump 10 and the downstream side of the low-temperature heat exchanger 7. Can be prevented from circulating to the concentrated absorbent pump 10. As a result, the concentrated absorbent dissipates heat by passing through the low temperature heat exchanger 7 and flows into the concentrated absorbent pump 10 via the bypass line 19 even if the corrosion inhibitor is deposited in the concentrated absorbent. Can be suppressed.

本実施形態によれば、運転負荷が低下し、低温再生器2からの濃吸収液の供給量が低下した場合に、濃吸収液ポンプ10を低回転にインバータ制御することにより、当該濃吸収液ポンプ10から送り出される濃吸収液の一部が、低温熱交換器7を経た後にバイパス管路19を介して濃吸収液ポンプ10に循環するのを阻止することで、濃吸収液ポンプ10のポンプロックを防ぐことができる。   According to the present embodiment, when the operation load is reduced and the supply amount of the concentrated absorbent from the low-temperature regenerator 2 is decreased, the concentrated absorbent pump 10 is subjected to inverter control so as to rotate at a low speed, thereby the concentrated absorbent. A part of the concentrated absorbent pumped out from the pump 10 is prevented from circulating to the concentrated absorbent pump 10 via the bypass line 19 after passing through the low-temperature heat exchanger 7, thereby pumping the concentrated absorbent pump 10. Locking can be prevented.

図3は、濃吸収液ポンプ10のインバータ制御方法の一例を示すもので、高温再生器1の温度と濃吸収液ポンプ10の周波数との関係を示すグラフである。高温再生器1の温度に基づいて濃吸収液ポンプ10の周波数を決定することができる。   FIG. 3 shows an example of the inverter control method of the concentrated absorbent pump 10, and is a graph showing the relationship between the temperature of the high temperature regenerator 1 and the frequency of the concentrated absorbent pump 10. The frequency of the concentrated absorbent pump 10 can be determined based on the temperature of the high-temperature regenerator 1.

実施形態1Embodiment 1

図4は、本発明に係る吸収式冷凍機の実施形態1を示す構成図である。本実施形態1においては、前記吸収式冷凍機(図1)の構成を基にしており、その吸収式冷凍機と同じ構成部材は前記と同じ符号を付けて詳しい説明は省略する。   FIG. 4 is a block diagram showing Embodiment 1 of the absorption refrigerator according to the present invention. The first embodiment is based on the configuration of the absorption refrigerator (FIG. 1), and the same components as those of the absorption refrigerator are denoted by the same reference numerals as those described above, and detailed description thereof is omitted.

本実施形態1では、前記蒸発器4からの冷媒液を冷媒液ポンプ12により蒸発器4の冷媒液散布管4aに供給する管路R6における冷媒液ポンプ12の下流側と、低温再生器2からの濃吸収液を前記濃吸収液ポンプ10により低温熱交換器7を経て吸収器5に供給する管路R4における低温熱交換器7の下流側とを結ぶ冷媒液バイパス管路20を設けると共に、当該冷媒液バイパス管路20に開閉弁21を設けた構成を特徴とする。   In the first embodiment, the refrigerant liquid from the evaporator 4 is supplied to the refrigerant liquid spray pipe 4 a of the evaporator 4 by the refrigerant liquid pump 12 on the downstream side of the refrigerant liquid pump 12 and from the low temperature regenerator 2. A refrigerant liquid bypass line 20 connecting the downstream side of the low temperature heat exchanger 7 in the line R4 for supplying the concentrated absorbent to the absorber 5 through the low temperature heat exchanger 7 by the concentrated absorption liquid pump 10, and The refrigerant liquid bypass pipe 20 has a configuration in which an on-off valve 21 is provided.

吸収式冷凍機の起動時には、前記高温再生器1のバーナ9を点火して高温再生器1内に収容されている稀吸収液を加熱して冷媒液を蒸発させて分離し、稀吸収液を中濃吸収液として管路R2を介して低温再生器2に供給する。低温再生器2の底部に溜まっている濃吸収液の量が不足している場合には、濃吸収液ポンプ10により吸収器5に供給される濃吸収液の供給量が減少する。この濃吸収液の供給量が減少すると、前記低温熱交換器7を通過することにより放熱して、液温降下が大きくなり濃吸収液中の腐食抑制剤が析出し易くなる。   When the absorption refrigerator is started, the burner 9 of the high-temperature regenerator 1 is ignited to heat the rare absorbent contained in the high-temperature regenerator 1 to evaporate and separate the refrigerant liquid. The medium concentrated absorbent is supplied to the low temperature regenerator 2 through the pipe line R2. When the amount of concentrated absorbent stored at the bottom of the low-temperature regenerator 2 is insufficient, the amount of concentrated absorbent supplied to the absorber 5 by the concentrated absorbent pump 10 decreases. When the supply amount of the concentrated absorbent decreases, the heat is dissipated by passing through the low-temperature heat exchanger 7, and the temperature drop of the concentrated absorbent is increased, so that the corrosion inhibitor in the concentrated absorbent is easily deposited.

このような時に、前記開閉弁21を開いて冷媒液ポンプ12により冷媒液の一部を、前記冷媒液バイパス管路20を介して前記管路R4における低温熱交換器7の下流側に供給する。この冷媒液の供給によって、濃吸収液中に析出した腐食抑制剤及び濃吸収液に生じた結晶を溶かすことができる。これにより、濃吸収液中に析出した腐食抑制剤が前記バイパス管路19を介して濃吸収液ポンプ10に流入するのを抑えることで、濃吸収液ポンプ10のポンプロックを防ぐことができる。   At such time, the on-off valve 21 is opened and a part of the refrigerant liquid is supplied to the downstream side of the low-temperature heat exchanger 7 in the pipe line R4 through the refrigerant liquid bypass pipe 20 by the refrigerant liquid pump 12. . By supplying the refrigerant liquid, it is possible to dissolve the corrosion inhibitor deposited in the concentrated absorbent and crystals generated in the concentrated absorbent. Thereby, the pump lock of the concentrated absorbent pump 10 can be prevented by suppressing the corrosion inhibitor deposited in the concentrated absorbent from flowing into the concentrated absorbent pump 10 via the bypass line 19.

上記冷媒液バイパス管路20を介して管路R4側への冷媒液の供給は、図示しないタイマ等により一定時間(5〜10分間)に制御することが好ましい。例えば、起動5分後に濃吸収液ポンプ10の運転が開始され、その5分間に冷媒液ポンプ12により管路R4側に冷媒液を供給する。冷媒液の供給量が多すぎると、蒸発器4の底部に溜まっている冷媒液の減少が大きくなる。これにより、冷媒液ポンプ12により管路R6を介して蒸発器4の冷媒液散布管4aに供給する冷媒液量が不足し、前記冷温水を冷却する機能が低下するので注意する必要がある。尚、開閉弁21は、図示しない制御装置により制御できるように電磁弁とすることが望ましい。   The supply of the refrigerant liquid to the pipe line R4 via the refrigerant liquid bypass pipe 20 is preferably controlled for a fixed time (5 to 10 minutes) by a timer (not shown) or the like. For example, the operation of the concentrated absorbent pump 10 is started 5 minutes after the start-up, and the refrigerant liquid is supplied to the pipeline R4 side by the refrigerant liquid pump 12 during the 5 minutes. If the supply amount of the refrigerant liquid is too large, the decrease in the refrigerant liquid collected at the bottom of the evaporator 4 becomes large. As a result, the amount of refrigerant liquid supplied to the refrigerant liquid spray pipe 4a of the evaporator 4 by the refrigerant liquid pump 12 via the pipe line R6 is insufficient, and the function of cooling the cold / hot water is lowered. The on-off valve 21 is preferably an electromagnetic valve so that it can be controlled by a control device (not shown).

参考形態2Reference form 2

図5は、本発明に係る吸収式冷凍機の参考形態2を示す構成図である。本参考形態2においては、前記吸収式冷凍機(図1)の構成を基にしており、その吸収式冷凍機と同じ構成部材は前記と同じ符号を付けて詳しい説明は省略する。   FIG. 5 is a configuration diagram showing a reference form 2 of the absorption refrigerator according to the present invention. In this reference form 2, it is based on the structure of the said absorption refrigerator (FIG. 1), The same component as the absorption refrigerator is attached | subjected with the same code | symbol as above, and detailed description is abbreviate | omitted.

本本参考形態2では、前記吸収器5からの稀吸収液を稀吸収液ポンプ8により低温熱交換器7、高温熱交換器6を経て高温再生器1に供給する管路R1における稀吸収液ポンプ8の下流側と、低温再生器2からの濃吸収液を濃吸収液ポンプ10により低温熱交換器7を経て吸収器5に供給する管路R4における低温熱交換器7の下流側とを結ぶ稀吸収液バイパス管路22を設けると共に、当該稀吸収液バイパス管路22に開閉弁23を設けた構成を特徴とする。   In the present embodiment 2, the rare absorbent liquid pump in the line R1 for supplying the rare absorbent from the absorber 5 to the high temperature regenerator 1 through the low temperature heat exchanger 7 and the high temperature heat exchanger 6 by the rare absorbent liquid pump 8. 8 is connected to the downstream side of the low-temperature heat exchanger 7 in the line R4 for supplying the concentrated absorbent from the low-temperature regenerator 2 to the absorber 5 through the low-temperature heat exchanger 7 by the concentrated absorbent pump 10. The present invention is characterized in that the rare absorbent bypass pipeline 22 is provided and the on / off valve 23 is provided in the rare absorbent bypass pipeline 22.

吸収式冷凍機の運転が低負荷時であって、前記濃吸収液ポンプ10を介して低温再生器2から吸収器5に供給される濃吸収液の液量が少ないと、前記低温熱交換器7を通過することにより放熱して、濃吸収液中の腐食抑制剤が析出し易くなる。このような時に、前記開閉弁23を開いて稀吸収液ポンプ8により高温再生器1に戻される稀吸収液の一部を、前記稀吸収液バイパス管路22を介して前記管路R4における低温熱交換器7の下流側に供給する。この稀吸収液の供給によって、腐食抑制剤の析出及び濃吸収液に一部の結晶が発生しないように抑える。これにより、腐食抑制剤の析出、濃吸収液の結晶が発生する前に、濃吸収液を吸収器5へ送ることで濃吸収液ポンプ10のポンプロックを防ぐことができる。尚、稀吸収液の温度を検出するための温度計24を、管路R1における稀吸収液ポンプ8と分岐バイパス管路22入口との間に設ける。   When the operation of the absorption refrigerator is at a low load and the amount of concentrated absorbent supplied to the absorber 5 from the low-temperature regenerator 2 via the concentrated absorbent pump 10 is small, the low-temperature heat exchanger The heat is dissipated by passing through 7, and the corrosion inhibitor in the concentrated absorbent is easily deposited. At such time, a part of the rare absorbent returned to the high temperature regenerator 1 by the rare absorbent pump 8 by opening the on-off valve 23 is passed through the rare absorbent bypass pipe 22 at a low temperature in the pipe R4. Supply to the downstream side of the heat exchanger 7. By supplying the rare absorbent, the corrosion inhibitor is prevented from being precipitated and some crystals are not generated in the concentrated absorbent. Thereby, the pump lock of the concentrated absorbent pump 10 can be prevented by sending the concentrated absorbent to the absorber 5 before the precipitation of the corrosion inhibitor and the crystals of the concentrated absorbent are generated. Note that a thermometer 24 for detecting the temperature of the rare absorbent is provided between the rare absorbent pump 8 and the branch bypass pipe 22 inlet in the pipe R1.

図6は、腐食抑制剤の析出及び濃吸収液の結晶が起こり易い温度範囲を示すグラフである。このグラフによると、腐食抑制剤の析出及び濃吸収液の結晶が起こり易い温度範囲は、高温再生器温度が110℃以下で、且つ稀吸収液温度が25℃以下の範囲内(斜線領域)である。この温度範囲S内にある時に、稀吸収液の一部を濃吸収液側に供給することにより腐食抑制剤の析出及び濃吸収液の結晶を予防する。例えば稀吸収液の供給は、一定時間(目安として1分間)とし、その後60分経過しても未だ斜線の範囲内を脱しない場合には、稀吸収液を再度1分間供給する。   FIG. 6 is a graph showing a temperature range in which precipitation of the corrosion inhibitor and crystallization of the concentrated absorbent occur easily. According to this graph, the temperature range where precipitation of corrosion inhibitor and crystallization of concentrated absorbent is likely to occur is within the range where the high temperature regenerator temperature is 110 ° C. or lower and the rare absorbent temperature is 25 ° C. or lower (shaded area). is there. When the temperature is in the temperature range S, a part of the rare absorbent is supplied to the concentrated absorbent to prevent precipitation of the corrosion inhibitor and crystallization of the concentrated absorbent. For example, the rare absorbent is supplied for a certain period of time (1 minute as a guide), and if it does not go out of the hatched area after 60 minutes, the rare absorbent is again supplied for 1 minute.

参考形態3Reference form 3

図7は、本発明に係る吸収式冷凍機の参考形態3を示す構成図である。本参考形態3においては、前記吸収式冷凍機(図1)の構成を基にしており、その吸収式冷凍機と同じ構成部材は前記と同じ符号を付けて詳しい説明は省略する。   FIG. 7 is a configuration diagram showing a reference embodiment 3 of the absorption refrigerator according to the present invention. In the third embodiment, the structure of the absorption refrigerator (FIG. 1) is used, and the same components as those of the absorption refrigerator are denoted by the same reference numerals as those described above, and detailed description thereof is omitted.

本参考形態3では、前記吸収器5からの稀吸収液を稀吸収液ポンプ8により低温熱交換器7、高温熱交換器6を経て高温再生器1に供給する管路R1における低温熱交換器7の上流側と、下流側とを結ぶ稀吸収液バイパス管路25を設けると共に、当該吸収液バイパス管路25に開閉弁26を設けた構成を特徴とする。   In this reference embodiment 3, the low-temperature heat exchanger in the line R1 for supplying the rare absorbent from the absorber 5 to the high-temperature regenerator 1 through the low-temperature heat exchanger 7 and the high-temperature heat exchanger 6 by the rare absorbent pump 8 7 is provided with a rare absorption liquid bypass conduit 25 connecting the upstream side and the downstream side of FIG. 7, and an open / close valve 26 is provided in the absorption liquid bypass conduit 25.

吸収式冷凍機の運転が低負荷時であって、前記濃吸収液ポンプ10を介して低温再生器2から吸収器5に供給される濃吸収液の液量が少ない場合に、前記開閉弁26を開いて稀吸収液ポンプ8により高温再生器1に戻される稀吸収液の一部を、前記稀吸収液バイパス管路25に流通させる。これにより、低温熱交換器7に流通する稀吸収液の液量を減少させ、当該低温熱交換器7を通過する濃吸収液の放熱による温度低下を緩和し、腐食抑制剤の析出及び濃吸収液の結晶を抑えることで、濃吸収液ポンプ10のポンプロックを防ぐことができる。尚、この場合も開閉弁26は電磁弁とすることが好ましい。又、前記管路R4に低温再生器温度計27と、濃吸収液ポンプ10の入口側温度計28とを設ける。   When the operation of the absorption refrigerator is at a low load and the amount of concentrated absorbent supplied from the low-temperature regenerator 2 to the absorber 5 through the concentrated absorbent pump 10 is small, the on-off valve 26 And a part of the rare absorbent returned to the high temperature regenerator 1 by the rare absorbent pump 8 is circulated through the rare absorbent bypass pipe 25. Thereby, the liquid volume of the rare absorption liquid which distribute | circulates the low temperature heat exchanger 7 is decreased, the temperature fall by the thermal radiation of the concentrated absorption liquid which passes the said low temperature heat exchanger 7 is relieve | moderated, precipitation of a corrosion inhibitor and concentrated absorption By suppressing the crystallization of the liquid, the pump lock of the concentrated absorbent pump 10 can be prevented. In this case, the on-off valve 26 is preferably a solenoid valve. Further, a low temperature regenerator thermometer 27 and an inlet side thermometer 28 of the concentrated absorbent pump 10 are provided in the pipe line R4.

参考形態4Reference form 4

図8は、本発明に係る吸収式冷凍機の参考形態4を示す構成図である。本参考形態4においては、前記吸収式冷凍機(図1)の構成を基にしており、その吸収式冷凍機と同じ構成部材は前記と同じ符号を付けて詳しい説明は省略する。   FIG. 8 is a configuration diagram showing a reference form 4 of the absorption refrigerator according to the present invention. In this reference form 4, it is based on the structure of the said absorption refrigerator (FIG. 1), the same component as the absorption refrigerator is attached | subjected with the same code | symbol as the above, and detailed description is abbreviate | omitted.

本参考形態4では、前記低温再生器2からの濃吸収液を濃吸収液ポンプ10により低温熱交換器7を経て吸収器5に供給する管路R4における低温熱交換器7の下流側にトラップ29を設け、当該トラップ29は濃吸収液中に析出した腐食抑制剤を分離する機能を有する構成を特徴とする。   In the fourth embodiment, the concentrated absorbent from the low-temperature regenerator 2 is trapped on the downstream side of the low-temperature heat exchanger 7 in the pipeline R4 that supplies the absorbent 5 through the low-temperature heat exchanger 7 with the concentrated absorbent pump 10. 29, and the trap 29 is characterized in that it has a function of separating the corrosion inhibitor deposited in the concentrated absorbent.

前記トラップ29は、例えば図9に示すように上下方向に複数回屈曲した屈曲管路29aを備え、この屈曲管路29aの一方の端部の下部に入口29bが設けられると共に、他方の端部の上部に出口29cが設けられ、屈曲管路29aの中間部の下部には収容部29dが設けられ、この収容部29dの底部にプラグ29eが着脱可能に取り付けられた構成である。トラップ29は上記構成のものに限定されず、例えばU字形やS字形のもの、或は他の適宜形状のものでも良い。   For example, as shown in FIG. 9, the trap 29 includes a bent conduit 29a that is bent a plurality of times in the vertical direction, and an inlet 29b is provided at a lower portion of one end of the bent conduit 29a, and the other end. An outlet 29c is provided at the top of the tube, a storage portion 29d is provided at the bottom of the middle portion of the bent conduit 29a, and a plug 29e is detachably attached to the bottom of the storage portion 29d. The trap 29 is not limited to the one having the above configuration, and may be, for example, U-shaped or S-shaped, or any other appropriate shape.

前記低温再生器2から吸収器5に供給される濃吸収液が、低温熱交換器7を通過することにより放熱して腐食抑制剤が析出し、濃吸収液の一部が結晶となっても、これらは濃吸収液と共に前記トラップ29の入口29bに流入する。トラップ29に流入した濃吸収液は、屈曲管路29aを流通して出口29cから管路R4に流入し、前記吸収器5に向かって流れが、濃吸収液中に析出した腐食抑制剤及び濃吸収液の結晶は、前記収容部29dに落下して出口29cから管路R4に流入しない。これにより、析出した腐食抑制剤及び濃吸収液の結晶が、前記バイパス管路19を介して濃吸収液ポンプ10に流入するのを抑えることで、濃吸収液ポンプ10のポンプロックを防ぐことができる。   Even if the concentrated absorbent supplied from the low-temperature regenerator 2 to the absorber 5 passes through the low-temperature heat exchanger 7 to dissipate heat and deposit a corrosion inhibitor, and even if a part of the concentrated absorbent becomes crystals. These flow into the inlet 29b of the trap 29 together with the concentrated absorbent. The concentrated absorbent that has flowed into the trap 29 flows through the bent pipe 29a, flows into the pipe R4 from the outlet 29c, and the flow toward the absorber 5 is caused by the corrosion inhibitor and the concentrated precipitated in the concentrated absorbent. The crystals of the absorbing liquid fall into the housing part 29d and do not flow into the pipe line R4 from the outlet 29c. This prevents the deposited corrosion inhibitor and concentrated absorbent crystals from flowing into the concentrated absorbent pump 10 via the bypass pipe 19, thereby preventing pump lock of the concentrated absorbent pump 10. it can.

前記トラップ29の収容部29dには、析出した腐食抑制剤及び濃吸収液の結晶が収容され、その収容量が徐々に増大するので、定期的なメンテナンス時に前記プラグ29eを外して収容物を排出する。収容物の排出後はプラグ29eを嵌めて元通りにする。   The storage portion 29d of the trap 29 stores the deposited corrosion inhibitor and concentrated absorption liquid crystal, and the storage amount gradually increases. Therefore, the plug 29e is removed during regular maintenance to discharge the stored material. To do. After discharging the contents, the plug 29e is fitted and returned.

本発明は、特に二重効用吸収式冷凍機に適用することができ、吸収液中における腐食抑制剤の析出を抑えることで、吸収液ポンプのポンプロックを防止することができる。   The present invention can be applied particularly to a double-effect absorption refrigerator, and the pump lock of the absorption liquid pump can be prevented by suppressing the precipitation of the corrosion inhibitor in the absorption liquid.

二重効用吸収式冷凍機の一例を示す構成図である。It is a block diagram which shows an example of a double effect absorption type refrigerator. 本発明に係る吸収式冷凍機の参考形態1を示す構成図である。It is a block diagram which shows the reference form 1 of the absorption refrigerator which concerns on this invention. 上記参考形態1の吸収液ポンプのインバータ制御方法の一例を示すもので、高温再生器温度と濃吸収液ポンプの周波数との関係を示すグラフである。It is a graph which shows an example of the inverter control method of the absorption liquid pump of the said reference form 1, and shows the relationship between high temperature regenerator temperature and the frequency of a concentrated absorption liquid pump. 本発明に係る吸収式冷凍機の実施形態1を示す構成図である。It is a block diagram which shows Embodiment 1 of the absorption refrigerator which concerns on this invention. 本発明に係る吸収式冷凍機の参考形態2を示す構成図である。It is a block diagram which shows the reference form 2 of the absorption refrigerator which concerns on this invention. 上記参考形態2の腐食抑制剤の析出及び濃吸収液の結晶が起こり易い温度範囲を示すグラフである。It is a graph which shows the temperature range which precipitation of the corrosion inhibitor of the said reference form 2, and the crystal | crystallization of a concentrated absorption liquid tend to occur. 本発明に係る吸収式冷凍機の参考形態3を示す構成図である。It is a block diagram which shows the reference form 3 of the absorption refrigerator which concerns on this invention. 本発明に係る吸収式冷凍機の参考形態4を示す構成図である。It is a block diagram which shows the reference form 4 of the absorption refrigerator which concerns on this invention. 上記参考形態4のトラップの一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the trap of the said reference form 4.

1 高温再生器
2 低温再生器
3 凝縮器
4 蒸発器
5 吸収器
6 高温熱交換器
7 低温熱交換器
8 稀吸収液ポンプ
9 バーナ
10 濃吸収液ポンプ
11 冷却水管路
12 冷媒液ポンプ
13 冷温水管路
14 制御装置
15 温度計
16 制御弁
17 燃料供給弁
18 燃焼空気供給弁
19 バイパス管路
20 冷媒液バイパス管路
21 開閉弁
22 稀吸収液バイパス管路
23 開閉弁
24 温度計
25 稀吸収液バイパス管路
26 開閉弁
27,28 温度計
29 トラップ
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 2 Low temperature regenerator 3 Condenser 4 Evaporator 5 Absorber 6 High temperature heat exchanger 7 Low temperature heat exchanger 8 Rare absorption liquid pump 9 Burner 10 Concentrated absorption liquid pump 11 Cooling water line 12 Refrigerant liquid pump 13 Cold / hot water pipe Path 14 Control device 15 Thermometer 16 Control valve 17 Fuel supply valve 18 Combustion air supply valve 19 Bypass line 20 Refrigerant liquid bypass line 21 Open / close valve 22 Rare absorbent bypass pipe 23 Open / close valve 24 Thermometer 25 Rare absorbent bypass Pipe line 26 On-off valve 27, 28 Thermometer 29 Trap

Claims (1)

高温再生器、低温再生器、蒸発器、吸収器及び高温熱交換器、低温熱交換器が管路により接続され、前記低温再生器から低温熱交換器を経て吸収器へ濃吸収液を供給する管路の、低温熱交換器より上流側に濃吸収液ポンプが設けられ、当該濃吸収液ポンプから送られる濃吸収液の一部を、低温熱交換器を経た後に濃吸収液ポンプに戻すバイパス管路が設けられた吸収式冷凍機において、前記蒸発器からの冷媒液を冷媒液ポンプにより蒸発器の冷媒液散布管に供給する管路における冷媒液ポンプの下流側と、低温再生器からの濃吸収液を濃吸収液ポンプにより低温熱交換器を経て吸収器に供給する管路における低温熱交換器の下流側とを結ぶ冷媒液バイパス管路を設けると共に、当該冷媒液バイパス管路に開閉弁を設け、起動時に、前記蒸発器からの冷媒液の一部を、冷媒液ポンプにより冷媒液バイパス管路を介して供給することを特徴とする吸収式冷凍機。   A high-temperature regenerator, a low-temperature regenerator, an evaporator, an absorber, a high-temperature heat exchanger, and a low-temperature heat exchanger are connected by a pipe, and the concentrated absorbent is supplied from the low-temperature regenerator to the absorber via the low-temperature heat exchanger. A bypass is provided with a concentrated absorbent pump upstream of the low-temperature heat exchanger in the pipeline, and a part of the concentrated absorbent sent from the concentrated absorbent pump is returned to the concentrated absorbent pump after passing through the low-temperature heat exchanger. In the absorption refrigerator provided with the pipe, the refrigerant liquid from the evaporator is supplied to the refrigerant liquid spray pipe of the evaporator by the refrigerant liquid pump on the downstream side of the refrigerant liquid pump and from the low temperature regenerator. Provide a refrigerant liquid bypass line connecting the downstream side of the low-temperature heat exchanger in the pipe that supplies the concentrated absorbent to the absorber through the low-temperature heat exchanger by the concentrated absorbent pump, and open and close the refrigerant liquid bypass line. Provided with a valve, when starting, the evaporator Part of the refrigerant liquid et al., The absorption refrigerator and supplying via the refrigerant liquid bypass conduit by the coolant pump.
JP2011205640A 2011-09-21 2011-09-21 Absorption refrigerator Active JP5181054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011205640A JP5181054B2 (en) 2011-09-21 2011-09-21 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011205640A JP5181054B2 (en) 2011-09-21 2011-09-21 Absorption refrigerator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006301624A Division JP2008116172A (en) 2006-11-07 2006-11-07 Absorption type refrigerating machine

Publications (2)

Publication Number Publication Date
JP2011252703A true JP2011252703A (en) 2011-12-15
JP5181054B2 JP5181054B2 (en) 2013-04-10

Family

ID=45416764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011205640A Active JP5181054B2 (en) 2011-09-21 2011-09-21 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP5181054B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117668U (en) * 1976-03-03 1977-09-06
JPS62186178A (en) * 1986-02-07 1987-08-14 三洋電機株式会社 Absorption refrigerator
JPH06300382A (en) * 1993-04-09 1994-10-28 Takuma Co Ltd Double effect absorption type refrigerating machine
JPH11264623A (en) * 1998-03-19 1999-09-28 Hitachi Ltd Absorptive refrigerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117668U (en) * 1976-03-03 1977-09-06
JPS62186178A (en) * 1986-02-07 1987-08-14 三洋電機株式会社 Absorption refrigerator
JPH06300382A (en) * 1993-04-09 1994-10-28 Takuma Co Ltd Double effect absorption type refrigerating machine
JPH11264623A (en) * 1998-03-19 1999-09-28 Hitachi Ltd Absorptive refrigerator

Also Published As

Publication number Publication date
JP5181054B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
WO2003102474A1 (en) Hydrate slurry manufacturing device
JP2002147885A (en) Absorption refrigerating machine
KR100865999B1 (en) Absorption type refrigerator
JP2006266633A (en) Cooling and heating operation method by absorption heat pump, and absorption heat pump
JP2003343940A (en) Absorption water cooler/heater
JP2008116172A (en) Absorption type refrigerating machine
JP5181054B2 (en) Absorption refrigerator
JP2012202589A (en) Absorption heat pump apparatus
JP2002295917A (en) Control method for absorption freezer
JP3326238B2 (en) Single double effect absorption refrigerator
JP2009243705A (en) Absorption heat pump
JP5098547B2 (en) Absorption refrigeration system
JP2011252705A (en) Absorption refrigerating machine
JP2011252704A (en) Absorption refrigerator
JPS62186178A (en) Absorption refrigerator
KR102010832B1 (en) Low load control system for 2-stage low temperature hot water absorption chiller
JP2010078298A (en) Absorption refrigerator
JP4090262B2 (en) Absorption refrigerator
JP3603006B2 (en) Absorption refrigerator and control method of absorption refrigerator
JP2005241134A (en) Absorbent
JP5092677B2 (en) Absorption refrigeration system
JP2010007907A (en) Air conditioning system
JP2009092317A (en) Absorption type refrigerating device
JP2011047522A (en) Absorption refrigerating machine
JP2011202948A (en) Absorption refrigerating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111118

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130111

R151 Written notification of patent or utility model registration

Ref document number: 5181054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160118

Year of fee payment: 3