JP2009243705A - Absorption heat pump - Google Patents

Absorption heat pump Download PDF

Info

Publication number
JP2009243705A
JP2009243705A JP2008087445A JP2008087445A JP2009243705A JP 2009243705 A JP2009243705 A JP 2009243705A JP 2008087445 A JP2008087445 A JP 2008087445A JP 2008087445 A JP2008087445 A JP 2008087445A JP 2009243705 A JP2009243705 A JP 2009243705A
Authority
JP
Japan
Prior art keywords
evaporator
heat source
temperature
flow rate
source water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008087445A
Other languages
Japanese (ja)
Other versions
JP5097593B2 (en
Inventor
Takeo Ishikawa
豪夫 石河
Shiguma Yamazaki
志奥 山崎
Takeo Nashimoto
猛夫 梨本
Tadato Kobayashi
唯人 小林
Kazutaka Nishida
一孝 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008087445A priority Critical patent/JP5097593B2/en
Priority to CN2009101282589A priority patent/CN101545694B/en
Publication of JP2009243705A publication Critical patent/JP2009243705A/en
Application granted granted Critical
Publication of JP5097593B2 publication Critical patent/JP5097593B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an absorption heat pump for preventing crystallization of concentrated absorbing liquid caused by partial load during a heating operation. <P>SOLUTION: A heat source water pump 18 is disposed at an upstream side of a heat transfer tube 17 passing in an evaporator 4, a flow rate detecting means 19 is disposed at a downstream side, and further a refrigerant liquid temperature sensor 20 is disposed on a bottom portion of the evaporator 4. When the flow rate of the heat source water is reduced to be less than a set value, or the heat source water pump 18 is stopped, an operation is not immediately stopped, but a diluting operation of the absorbing liquid is performed to prevent crystallization of the concentrated absorbing liquid. Further when the probability of freezing of the heat source water exists, a temperature of the refrigerant liquid accumulated on the bottom portion of the evaporator 4 is measured by the refrigerant liquid temperature sensor 20, so that the diluting operation of the absorbing liquid is performed when the temperature of the refrigerant liquid is over a prescribed temperature, and the operation is stopped when the temperature becomes lower than a prescribed temperature. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、吸収液の結晶化を防止すると共に、暖房運転時における熱源水の凍結を防止するようにした吸収式ヒートポンプに関する。   The present invention relates to an absorption heat pump that prevents crystallization of an absorbing solution and prevents freezing of heat source water during heating operation.

従来、例えば冷媒として水、吸収液として臭化リチウム(LiBr)溶液を用いた吸収式ヒートポンプが知られている。この吸収式ヒートポンプは、主要な構成要素として、吸収器から戻される稀吸収液を加熱して冷媒蒸気を分離する再生器と、この再生器から送られる冷媒蒸気を凝縮して液化する凝縮器と、この凝縮器から送られる冷媒液を貯溜すると共に散布器から伝熱管に散布して蒸発させる蒸発器と、この蒸発器から送られる冷媒蒸気を、再生器から送られてくる濃吸収液を散布器から散布することで吸収する前記吸収器とを備えている(例えば特許文献1)。   Conventionally, for example, an absorption heat pump using water as a refrigerant and a lithium bromide (LiBr) solution as an absorption liquid is known. This absorption heat pump includes, as main components, a regenerator that heats a rare absorbing liquid returned from the absorber to separate the refrigerant vapor, and a condenser that condenses and liquefies the refrigerant vapor sent from the regenerator. , The refrigerant liquid sent from this condenser is stored, the evaporator is sprayed from the spreader to the heat transfer tube and evaporated, and the refrigerant vapor sent from this evaporator is sprayed with the concentrated absorbent sent from the regenerator And the absorber that absorbs by dispersing from the container (for example, Patent Document 1).

上記のような一重効用の吸収式ヒートポンプを暖房運転に使用する場合は、前記蒸発器内を通過する伝熱管に副熱源として熱源水を通し、前記凝縮器から送られて蒸発器の底部に滞留する冷媒液を、冷媒ポンプにより蒸発器内の上部に設けられている散布器に送り込んで伝熱管に散布し、この冷媒液が蒸発する際に伝熱管内を流れる熱源水から熱を奪い、この冷媒蒸気が吸収器において散布された濃吸収液に吸収される際に、吸収器内を通過する温水管内を流れる温水(負荷から戻された低温水)を加温する。この吸収器で加温された温水は、温水管が前記凝縮器を通過する際に、再生器から送られた冷媒蒸気と熱交換して更に加温された後、負荷に供給して暖房用熱源として使用する。   When using a single-effect absorption heat pump as described above for heating operation, heat source water is passed through the heat transfer tube passing through the evaporator as a secondary heat source, and is sent from the condenser and stays at the bottom of the evaporator. The refrigerant liquid to be sent is sent to the sprayer provided in the upper part of the evaporator by the refrigerant pump and sprayed on the heat transfer pipe, and when the refrigerant liquid evaporates, heat is taken from the heat source water flowing in the heat transfer pipe. When the refrigerant vapor is absorbed by the concentrated absorbent dispersed in the absorber, warm water flowing in the hot water pipe passing through the absorber (cold water returned from the load) is heated. When the hot water pipe passes through the condenser, the hot water heated by the absorber is further heated by exchanging heat with the refrigerant vapor sent from the regenerator, and then supplied to the load for heating. Used as a heat source.

上記の場合、前記蒸発器の出口側伝熱管に流量検知手段が設けられ、この流量検知手段により熱源水の流量を監視する。そして、熱源水の流量が減少して設定値以下になると、流量検知手段から制御装置に信号が入力され、この制御装置から吸収器の入口側伝熱管に設けられている温水ポンプに信号が出力され、当該温水ポンプが停止すると共に、暖房運転を即時停止している。   In the above case, the flow rate detecting means is provided in the outlet side heat transfer tube of the evaporator, and the flow rate of the heat source water is monitored by the flow rate detecting means. When the flow rate of the heat source water decreases and falls below the set value, a signal is input from the flow rate detection means to the control device, and a signal is output from this control device to the hot water pump provided in the inlet heat transfer pipe of the absorber. The hot water pump is stopped and the heating operation is immediately stopped.

しかしながら、暖房運転を即時停止すると、吸収器に貯留する稀吸収液を再生器に戻す吸収液ポンプが停止されるため、再生器と吸収器とを連結する循環路に吸収液が流れなくなり、再生器から吸収器に向かう管路内や途中の熱交換器内で濃吸収液が滞留してしまう。このような状態のままで停止時間が長引くと、濃吸収液が冷えて結晶化が生じることがある。   However, if the heating operation is stopped immediately, the absorption liquid pump that returns the rare absorption liquid stored in the absorber to the regenerator is stopped, so that the absorption liquid does not flow in the circulation path connecting the regenerator and the absorber, The concentrated absorbent stays in the pipe line from the vessel to the absorber or in the heat exchanger on the way. If the stop time is prolonged in such a state, the concentrated absorbent may cool and crystallization may occur.

このような濃吸収液の結晶化が生じると、その後に運転を再開する時に濃吸収液の流れが阻害され、直ちに正常運転することが不能になる。このため、運転再開に先立って、再生器から吸収器に通じる管路をヒータ等により加熱して結晶を溶解しなければならず、面倒な作業を強いられることになる。特に、再生器と吸収器との途中位置に設けられた熱交換器内で結晶した場合には、加熱による溶解作業が非常に困難になる。   When such crystallization of the concentrated absorbent occurs, the flow of the concentrated absorbent is hindered when the operation is resumed thereafter, and normal operation immediately becomes impossible. For this reason, prior to restarting the operation, the pipe line leading from the regenerator to the absorber must be heated by a heater or the like to dissolve the crystal, which is troublesome. In particular, when crystallization occurs in a heat exchanger provided in the middle of the regenerator and the absorber, melting work by heating becomes very difficult.

特開平8−233391号公報JP-A-8-233391

本発明は、前記従来の吸収式ヒートポンプにおける不都合を解消するためになされ、暖房運転時、熱源水の流量が低下した場合での濃吸収液の結晶化を防止するようにした吸収式ヒートポンプを提供することを目的とする。   The present invention is made to eliminate the disadvantages of the conventional absorption heat pump, and provides an absorption heat pump that prevents crystallization of concentrated absorbent when the flow rate of heat source water decreases during heating operation. The purpose is to do.

上記の目的を達成するための手段として、本発明の請求項1は、吸収器から戻される稀吸収液を加熱して冷媒蒸気を分離する再生器と、この再生器から送られる冷媒蒸気を凝縮して液化する凝縮器と、この凝縮器から送られる冷媒液を蒸発させる蒸発器と、この蒸発器から送られる冷媒蒸気を吸収する前記吸収器とを備え、暖房運転時に前記蒸発器を通る伝熱管内を流れる熱源水の流量が設定値以下に減少した時、又は前記蒸発器より上流側の伝熱管に設けた熱源水ポンプが停止した時に、即時に運転停止せずに吸収液の稀釈運転を行うことを特徴とする吸収式ヒートポンプを要旨とする。   As means for achieving the above-mentioned object, claim 1 of the present invention comprises a regenerator for heating the rare absorbent returned from the absorber to separate the refrigerant vapor, and condensing the refrigerant vapor sent from the regenerator. A condenser for liquefying, an evaporator for evaporating the refrigerant liquid sent from the condenser, and the absorber for absorbing refrigerant vapor sent from the evaporator, and passing through the evaporator during heating operation. When the flow rate of the heat source water flowing through the heat pipe decreases below the set value, or when the heat source water pump provided in the heat transfer pipe upstream of the evaporator stops, the operation of diluting the absorption liquid without stopping immediately The gist of the present invention is an absorption heat pump.

本発明の請求項2は、請求項1の吸収式ヒートポンプにおいて、前記蒸発器より下流側の伝熱管に流量検知手段を設け、この流量検知手段を介して伝熱管内を流れる熱源水の流量を調整すると共に、前記熱源水の流量が設定値以下に減少した時には当該検知信号を制御装置に入力することを特徴とする。   According to a second aspect of the present invention, in the absorption heat pump according to the first aspect, a flow rate detecting means is provided in a heat transfer tube downstream of the evaporator, and the flow rate of the heat source water flowing in the heat transfer tube through the flow rate detecting means is set. In addition to adjusting, when the flow rate of the heat source water decreases below a set value, the detection signal is input to the control device.

本発明の請求項3は、請求項1の吸収式ヒートポンプにおいて、前記熱源水が凍結するおそれがある場合には、前記蒸発器の底部に溜まる冷媒液の温度を計測し、この冷媒液の温度が所定温度を超える場合には吸収液の稀釈運転を行い、所定温度以下になった場合には運転停止とすることを特徴とする。   According to a third aspect of the present invention, in the absorption heat pump according to the first aspect, when the heat source water is likely to freeze, the temperature of the refrigerant liquid accumulated at the bottom of the evaporator is measured, and the temperature of the refrigerant liquid is measured. When the temperature exceeds a predetermined temperature, the absorption liquid is diluted, and when the temperature falls below the predetermined temperature, the operation is stopped.

本発明の請求項4は、請求項3の吸収式ヒートポンプにおいて、前記蒸発器の底部に温度センサを設け、この温度センサにより当該蒸発器の底部に溜まる冷媒液の温度を検知すると共に、この検知信号を制御装置に入力することを特徴とする。   According to a fourth aspect of the present invention, in the absorption heat pump according to the third aspect, a temperature sensor is provided at the bottom of the evaporator, and the temperature sensor detects the temperature of the refrigerant liquid accumulated at the bottom of the evaporator. A signal is input to the control device.

上記請求項1の発明によれば、吸収式ヒートポンプの暖房運転時に、熱源水の流量が設定値以下に低下し、又は蒸発器より上流側の伝熱管に設けた熱源水ポンプを停止させた時に、即時に運転を停止しないで吸収液の稀釈運転を行うので、再生器から吸収器へ通じる管路内に濃吸収液が溜まった状態で放置されることはない。このため、濃吸収液の結晶化を抑えることができ、運転を再開する時に濃吸収液の流れが阻害されず、直ちに正常運転を行うことが可能となる。又、運転再開に先立って、管路を温めて濃吸収液の結晶を溶かすといった従来の面倒な作業を必要としない。   According to the first aspect of the invention, when heating the absorption heat pump, when the flow rate of the heat source water falls below the set value or when the heat source water pump provided in the heat transfer pipe upstream from the evaporator is stopped. Since the absorption liquid is diluted without immediately stopping the operation, the concentrated absorption liquid is not left in a state where the absorption liquid is accumulated in the conduit from the regenerator to the absorber. For this reason, crystallization of the concentrated absorbent can be suppressed, and when the operation is restarted, the flow of the concentrated absorbent is not hindered, and normal operation can be immediately performed. Further, prior to restarting the operation, the conventional troublesome work of warming the pipe line and dissolving the crystals of the concentrated absorbent is not required.

上記請求項2の発明によれば、前記蒸発器より下流側の伝熱管に流量検知手段を設けることにより、熱源水の流量が設定値以下に減少した時には、その検知信号を制御装置に入力することで、当該制御装置から確実に稀釈運転信号を出力することができる。   According to the second aspect of the present invention, when the flow rate of the heat source water is reduced below the set value by providing the flow rate detection means in the heat transfer pipe downstream of the evaporator, the detection signal is input to the control device. Thus, the dilution operation signal can be reliably output from the control device.

上記請求項3の発明によれば、前記熱源水が凍結するおそれがある場合には、前記蒸発器の底部に溜まる冷媒液の温度を計測し、この冷媒液の温度が所定温度を超える場合には吸収液の稀釈運転を行うことにより濃吸収液の結晶化を防止することができる。又、冷媒液の温度が所定温度以下になった場合には、運転停止することにより蒸発器内における伝熱管での熱源水の凍結を極力抑えることができる。   According to the third aspect of the present invention, when there is a possibility that the heat source water is frozen, the temperature of the refrigerant liquid accumulated at the bottom of the evaporator is measured, and the temperature of the refrigerant liquid exceeds a predetermined temperature. The crystallization of the concentrated absorbent can be prevented by performing a dilution operation of the absorbent. Further, when the temperature of the refrigerant liquid becomes equal to or lower than a predetermined temperature, it is possible to suppress freezing of the heat source water in the heat transfer tube in the evaporator as much as possible by stopping the operation.

上記請求項4の発明によれば、前記蒸発器の底部に温度センサを設け、この温度センサで当該蒸発器の底部に溜まる冷媒液の温度を検知することにより、熱源水が凍結しないように監視することができる。又、温度センサによる検知信号を制御装置に入力することにより、冷媒液の温度が所定温度以下になった場合には、運転停止信号を出力することができる。   According to the fourth aspect of the present invention, the temperature sensor is provided at the bottom of the evaporator, and the temperature of the refrigerant liquid collected at the bottom of the evaporator is detected by the temperature sensor so that the heat source water is not frozen. can do. In addition, by inputting a detection signal from the temperature sensor to the control device, an operation stop signal can be output when the temperature of the refrigerant liquid becomes a predetermined temperature or lower.

以下、本発明に係る吸収式ヒートポンプの実施形態を添付図面に基づいて説明する。
図1は、本発明に係る吸収式ヒートポンプの要部を示す構成図である。この図において、1は再生器、2は凝縮器であり、これらは上胴3に収納されて仕切板3aにより下部が仕切られている。4は蒸発器、5は吸収器であり、これらは下胴6に収納されて仕切板6aにより下部が傾斜状態に仕切られている。
Hereinafter, an embodiment of an absorption heat pump according to the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a configuration diagram showing a main part of an absorption heat pump according to the present invention. In this figure, 1 is a regenerator, 2 is a condenser, these are accommodated in the upper trunk | drum 3, and the lower part is partitioned off by the partition plate 3a. Reference numeral 4 denotes an evaporator, and 5 denotes an absorber. These are accommodated in the lower body 6 and the lower part is partitioned in an inclined state by a partition plate 6a.

7は駆動熱源(主熱源)が流通する駆動熱源管であり、前記再生器1内を通過するように配管され、当該再生器1より上流側に流量制御弁8が設けられている。駆動熱源としては、水蒸気又は熱水等を用いることができ、例えばボイラーやエンジン等の供給源から供給する。   Reference numeral 7 denotes a drive heat source pipe through which a drive heat source (main heat source) circulates, and is piped to pass through the regenerator 1, and a flow rate control valve 8 is provided upstream from the regenerator 1. As the driving heat source, steam, hot water, or the like can be used. For example, the driving heat source is supplied from a supply source such as a boiler or an engine.

再生器1では、前記吸収器5から吸収液ポンプ9及び稀吸収液管10を介して供給される低濃度の吸収液(以下、稀吸収液と称する)を、前記駆動熱源管7を通る駆動熱源によって加熱して冷媒蒸気を分離する。   In the regenerator 1, a low-concentration absorption liquid (hereinafter referred to as a rare absorption liquid) supplied from the absorber 5 via the absorption liquid pump 9 and the rare absorption liquid pipe 10 is driven through the drive heat source pipe 7. The refrigerant vapor is separated by heating with a heat source.

再生器1で稀吸収液から分離された冷媒蒸気は、隣接する凝縮器2に流入して冷却され、冷媒液となって凝縮器2の底部に溜まる。この凝縮器2では、温水管11が通過するように配管され、この温水管11は前記吸収器5内を通過した後に凝縮器2内を通過する。更に、温水管11における吸収器5よりも上流側には温水ポンプ12が設けられ、凝縮器2よりも下流側には温水出口温度センサ13が設けられている。この温水出口温度センサ13による温度検知に基づいて、前記流量制御弁8の開閉弁を制御し、再生器1に供給する駆動熱源を調整するようにしてある。   The refrigerant vapor separated from the rare absorbing liquid in the regenerator 1 flows into the adjacent condenser 2 and is cooled, and becomes refrigerant liquid and accumulates at the bottom of the condenser 2. In this condenser 2, piping is provided so that the hot water pipe 11 passes through, and the hot water pipe 11 passes through the condenser 2 after passing through the absorber 5. Further, a hot water pump 12 is provided upstream of the absorber 5 in the hot water pipe 11, and a hot water outlet temperature sensor 13 is provided downstream of the condenser 2. Based on the temperature detection by the hot water outlet temperature sensor 13, the on-off valve of the flow rate control valve 8 is controlled to adjust the drive heat source supplied to the regenerator 1.

前記凝縮器2の底部に溜まる冷媒液は、冷媒液供給管14によって前記蒸発器4内に流下して供給され、蒸発器4の底部に溜まると共に、冷媒液ポンプ15により冷媒液管16を介して蒸発器4の上部に設けられた散布器4aに供給し散布される。この蒸発器4では、熱源水(副熱源)が流通する伝熱管17が通過するように配管され、この伝熱管17における蒸発器4よりも上流側には熱源水ポンプ18が設けられ、蒸発器4よりも下流側には流量検知手段19が設けられている。この流量検知手段19としては、例えばフロースイッチを用いることができる。又、蒸発器4における底部の外側には冷媒液温度センサ20が設けられる。   The refrigerant liquid collected at the bottom of the condenser 2 is supplied by flowing down into the evaporator 4 through the refrigerant liquid supply pipe 14, and is collected at the bottom of the evaporator 4, and at the refrigerant liquid pump 15 through the refrigerant liquid pipe 16. Then, it is supplied to the spreader 4a provided on the upper part of the evaporator 4 and spread. The evaporator 4 is piped so that the heat transfer pipe 17 through which the heat source water (sub heat source) flows, and a heat source water pump 18 is provided upstream of the evaporator 4 in the heat transfer pipe 17. A flow rate detection means 19 is provided on the downstream side of 4. For example, a flow switch can be used as the flow rate detection means 19. A refrigerant liquid temperature sensor 20 is provided outside the bottom of the evaporator 4.

前記再生器1で冷媒蒸気が分離されて濃度の濃くなった吸収液(以下、濃吸収液)は、吸収液供給管21によって吸収器5に流下して供給され、吸収器5の上部に設けられた散布器5aから散布される。この吸収液供給管21の途中には熱交換器22が設けられ、この熱交換器22内を前記稀吸収液管10が通過することで、高温の濃吸収液と低温の稀吸収液とが熱交換する。   Absorbing liquid (hereinafter, concentrated absorbing liquid) having a high concentration as a result of separation of the refrigerant vapor in the regenerator 1 is supplied by flowing down to the absorber 5 through an absorbing liquid supply pipe 21 and is provided above the absorber 5. It spreads from the spreader 5a. A heat exchanger 22 is provided in the middle of the absorption liquid supply pipe 21, and the rare absorption liquid pipe 10 passes through the heat exchanger 22, so that a high-temperature concentrated absorption liquid and a low-temperature rare absorption liquid are formed. Exchange heat.

23は制御装置であり、前記流量検知手段19及び冷媒液温度センサ20と接続されると共に、前記熱源水ポンプ18、冷媒液ポンプ15、吸収液ポンプ9、温水ポンプ12及び流量制御弁8と接続されている。そして、流量制御弁8は前記温水温度センサ13と接続されている。   A control device 23 is connected to the flow rate detection means 19 and the refrigerant liquid temperature sensor 20 and is connected to the heat source water pump 18, the refrigerant liquid pump 15, the absorption liquid pump 9, the hot water pump 12, and the flow rate control valve 8. Has been. The flow control valve 8 is connected to the hot water temperature sensor 13.

上記のように構成された本発明に係る吸収式ヒートポンプは、駆動熱源管7に駆動熱源を供給すると共に、前記伝熱管17に副熱源を供給することで暖房運転することができる。副熱源としては、例えば地下から汲み上げた熱源水を使用することができる。   The absorption heat pump according to the present invention configured as described above can perform a heating operation by supplying a drive heat source to the drive heat source tube 7 and supplying a sub heat source to the heat transfer tube 17. As the auxiliary heat source, for example, heat source water pumped from the underground can be used.

暖房運転時において、前記駆動熱源管7に例えば水蒸気を供給して再生器1内の稀吸収液を加熱し、冷媒蒸気を分離する。再生器1で分離された冷媒蒸気は凝縮器2内に流入し、この凝縮器2内の温水管11を流れる温水に放熱して凝縮し、冷媒液となって凝縮器2の底部に溜まる。   During the heating operation, for example, water vapor is supplied to the drive heat source pipe 7 to heat the rare absorbent in the regenerator 1 and to separate the refrigerant vapor. The refrigerant vapor separated by the regenerator 1 flows into the condenser 2, dissipates heat to the hot water flowing through the hot water pipe 11 in the condenser 2, condenses, and accumulates at the bottom of the condenser 2 as a refrigerant liquid.

凝縮器2の底部に溜まった冷媒液は、前記冷媒液供給管14により蒸発器4に供給されると共に、冷媒液ポンプ15により冷媒液管16を介して散布器4aに送られ、伝熱管17に向けて散布される。この散布された冷媒液は、蒸発器4内の伝熱管17を流れる熱源水から熱を奪って蒸発し、冷媒蒸気となって吸収器5内に流入する。   The refrigerant liquid collected at the bottom of the condenser 2 is supplied to the evaporator 4 through the refrigerant liquid supply pipe 14 and is sent to the spreader 4a through the refrigerant liquid pipe 16 by the refrigerant liquid pump 15 and is supplied to the heat transfer pipe 17. It is sprayed toward. The dispersed refrigerant liquid takes heat from the heat source water flowing through the heat transfer pipe 17 in the evaporator 4 and evaporates, and flows into the absorber 5 as refrigerant vapor.

吸収器5内に流入した冷媒蒸気は、前記再生器1から吸収液供給管21により吸収器5に供給されると共に、散布器5aから散布される濃吸収液に吸収され、稀吸収液となって吸収器5の底部に溜まる。そして、吸収器5の底部に溜まった稀吸収液は、前記吸収液ポンプ9により稀吸収液管10を通り、前記熱交換器22で加温された後に再生器1に供給される。   The refrigerant vapor that has flowed into the absorber 5 is supplied from the regenerator 1 to the absorber 5 through the absorption liquid supply pipe 21 and is absorbed by the concentrated absorption liquid sprayed from the spreader 5a to become a rare absorption liquid. And accumulates at the bottom of the absorber 5. Then, the rare absorbent stored at the bottom of the absorber 5 passes through the rare absorbent pipe 10 by the absorbent pump 9 and is heated by the heat exchanger 22 and then supplied to the regenerator 1.

このようにして、冷媒及び吸収液がそれぞれ循環し、温水管11を通る温水は吸収器5を通過する際に冷媒蒸気と熱交換して加温され、次いで凝縮器2を通過する際に冷媒蒸気と熱交換して再加温され、図示を省略した負荷に供給されて暖房用熱源として使用する。負荷で放熱して温度の低下した温水は、管路(図略)を介して温水管11の入口側に戻され、前記温水ポンプ12により温水管11に供給される。   In this way, the refrigerant and the absorption liquid circulate, and the hot water passing through the hot water pipe 11 is heated by heat exchange with the refrigerant vapor when passing through the absorber 5, and then when passing through the condenser 2. It is reheated by exchanging heat with steam, supplied to a load (not shown), and used as a heat source for heating. The hot water whose temperature has decreased due to heat dissipation by the load is returned to the inlet side of the hot water pipe 11 through a pipe (not shown) and supplied to the hot water pipe 11 by the hot water pump 12.

前記伝熱管17に供給する熱源水の流量が減少し、熱源水の流量検知手段19が設定値以下の流量を検知し、又は熱源水ポンプ18が停止した場合には、即座に運転を停止しないで稀釈運転を行う。   When the flow rate of the heat source water supplied to the heat transfer tube 17 decreases, the flow rate detection means 19 of the heat source water detects a flow rate below the set value, or the heat source water pump 18 stops, the operation is not immediately stopped. Dilute operation at.

この稀釈運転は、前記流量制御弁8を閉弁して再生器1への水蒸気の供給を停止し、吸収器5から稀吸収液を再生器1へと戻すために吸収液ポンプ9を運転し、蒸発器4から冷媒蒸気を吸収器5へ供給するために冷媒液ポンプ15を運転し、且つ負荷へ温水を供給するために温水ポンプ12を運転することにより行う。   In this dilution operation, the flow rate control valve 8 is closed to stop the supply of water vapor to the regenerator 1, and the absorbent pump 9 is operated to return the diluted absorbent from the absorber 5 to the regenerator 1. The refrigerant liquid pump 15 is operated to supply the refrigerant vapor from the evaporator 4 to the absorber 5 and the hot water pump 12 is operated to supply the hot water to the load.

この稀釈運転により、再生器1には吸収器5から稀吸収液が供給されるため、再生器1内での吸収液の濃度は薄くなり、又再生器1には駆動熱源管7から水蒸気が供給されないため、再生器1で殆ど冷媒蒸気が分離されない。   By this dilution operation, the regenerator 1 is supplied with the rare absorbent from the absorber 5, so that the concentration of the absorbent in the regenerator 1 becomes thin, and the regenerator 1 receives water vapor from the drive heat source pipe 7. Since it is not supplied, the refrigerant vapor is hardly separated in the regenerator 1.

再生器1で濃度が薄められた吸収液は、吸収液供給管21を経て吸収器5に供給される。従来は異常時において即座に運転停止したため、濃吸収液が再生器1から吸収器5に流通せずに吸収液供給管21内や熱交換器22内に滞留し、その状態のまま停止時間が長引くと、冷えて濃吸収液が結晶化した。本発明の場合には、上記のように即座に運転停止せずに稀釈運転を続行するため、従来のような吸収液の結晶化を防止することができる。又、従来では運転再開に先立って、ヒータ等で加熱して結晶を溶解させる作業を必要としたが、本発明の場合には吸収液の結晶化が生じないためそのような溶解作業は不要である。   The absorbing liquid whose concentration has been diluted by the regenerator 1 is supplied to the absorber 5 through the absorbing liquid supply pipe 21. Conventionally, since the operation was stopped immediately in the event of an abnormality, the concentrated absorbent does not flow from the regenerator 1 to the absorber 5 but stays in the absorbent supply pipe 21 or the heat exchanger 22 and remains in that state. When prolonged, it cooled and the concentrated absorbent crystallized. In the case of the present invention, since the dilution operation is continued without immediately stopping the operation as described above, it is possible to prevent the conventional crystallization of the absorbing solution. Conventionally, prior to resuming operation, it was necessary to perform heating with a heater or the like to dissolve the crystals, but in the case of the present invention, the absorption liquid does not crystallize, so such melting work is unnecessary. is there.

本発明では、熱源水の凍結を防止するため、蒸発器4の底部に溜まる冷媒液の温度が所定温度を超える場合には吸収液の稀釈運転を行い、所定温度以下になった場合には運転停止とする。   In the present invention, in order to prevent freezing of the heat source water, the operation of diluting the absorbing liquid is performed when the temperature of the refrigerant liquid accumulated at the bottom of the evaporator 4 exceeds a predetermined temperature, and the operation is performed when the temperature is lower than the predetermined temperature. Stop.

図2に示すように、ステップS1で熱源水の流量が低下し又は熱源水ポンプ18にインターロック異常が生じたら、ステップS2で制御装置23から稀釈運転開始の信号を出力する。そして、ステップS3で流量制御弁8を閉弁し、ステップS4で冷媒液温度が7℃以上の場合には、ステップS5〜7で温水ポンプ12、吸収液ポンプ9、冷媒液ポンプ15をそれぞれ運転することにより稀釈運転を行う。   As shown in FIG. 2, when the flow rate of the heat source water decreases or an abnormality of the interlock occurs in the heat source water pump 18 in step S1, a signal for starting the dilution operation is output from the control device 23 in step S2. In step S3, the flow rate control valve 8 is closed. In step S4, when the refrigerant liquid temperature is 7 ° C. or higher, the hot water pump 12, the absorption liquid pump 9, and the refrigerant liquid pump 15 are respectively operated in steps S5 to S7. Dilute operation by doing.

そして、ステップS8で稀釈完了か否かを判断し、NOの場合はステップS4に戻って稀釈運転を繰り返す。稀釈完了か否かは例えばタイマーによって判断することが可能である。   In step S8, it is determined whether or not the dilution is completed. If NO, the process returns to step S4 and the dilution operation is repeated. Whether or not the dilution is complete can be determined by, for example, a timer.

ステップS4で、冷媒液温度が7℃以下の場合には、ステップS9〜11に進んで、温水ポンプ12、吸収液ポンプ9及び冷媒液ポンプ15をそれぞれ停止させて運転停止とする。これにより、冷媒液の温度が所定温度を超える場合には、吸収液の稀釈運転を行うことにより濃吸収液の結晶化を防止することができる。又、冷媒液の温度が所定温度以下になった場合には、運転停止とすることにより蒸発器4内における伝熱管17での熱源水の凍結を極力抑えることができる。図3は、そのタイムチャートを示すものである。   In step S4, when the refrigerant liquid temperature is 7 ° C. or lower, the process proceeds to steps S9 to S11, and the hot water pump 12, the absorption liquid pump 9, and the refrigerant liquid pump 15 are stopped to stop the operation. Thereby, when the temperature of the refrigerant liquid exceeds a predetermined temperature, crystallization of the concentrated absorbent can be prevented by performing the dilution operation of the absorbent. Further, when the temperature of the refrigerant liquid becomes equal to or lower than a predetermined temperature, it is possible to suppress freezing of the heat source water in the heat transfer tube 17 in the evaporator 4 as much as possible by stopping the operation. FIG. 3 shows the time chart.

本発明は、吸収式ヒートポンプで暖房運転する場合に、部分負荷に起因する吸収液の結晶化防止手段として、有効に適用することができる。   INDUSTRIAL APPLICABILITY The present invention can be effectively applied as a means for preventing crystallization of an absorbing liquid caused by a partial load when heating operation is performed with an absorption heat pump.

本発明に係る吸収式ヒートポンプで暖房運転する場合における概略構成図である。It is a schematic block diagram in the case of heating operation with the absorption heat pump which concerns on this invention. 本発明に係る吸収式ヒートポンプで暖房運転する場合における異常時でのフローチャートである。It is a flowchart at the time of abnormality in heating operation with the absorption heat pump which concerns on this invention. 同じく、異常時でのタイムチャートである。Similarly, it is a time chart at the time of abnormality.

符号の説明Explanation of symbols

1 再生器
2 凝縮器
4 蒸発器
5 吸収器
7 駆動熱源管
8 流量制御弁
9 吸収液ポンプ
10 稀吸収液管
11 温水管
12 温水ポンプ
13 温水出口温度センサ
14 冷媒液供給管
15 冷媒液ポンプ
16 冷媒液管
17 伝熱管
18 熱源水ポンプ
19 流量検知手段
20 冷媒液温度センサ
21 吸収液供給管
22 熱交換器
23 制御装置
DESCRIPTION OF SYMBOLS 1 Regenerator 2 Condenser 4 Evaporator 5 Absorber 7 Drive heat source pipe 8 Flow control valve 9 Absorption liquid pump 10 Rare absorption liquid pipe 11 Hot water pipe 12 Hot water pump 13 Hot water outlet temperature sensor 14 Refrigerant liquid supply pipe 15 Refrigerant liquid pump 16 Refrigerant liquid pipe 17 Heat transfer pipe 18 Heat source water pump 19 Flow rate detecting means 20 Refrigerant liquid temperature sensor 21 Absorbing liquid supply pipe 22 Heat exchanger 23 Controller

Claims (4)

吸収器から戻される稀吸収液を加熱して冷媒蒸気を分離する再生器と、この再生器から送られる冷媒蒸気を凝縮して液化する凝縮器と、この凝縮器から送られる冷媒液を蒸発させる蒸発器と、この蒸発器から送られる冷媒蒸気を吸収する前記吸収器とを備え、暖房運転時に前記蒸発器を通る伝熱管内を流れる熱源水の流量が設定値以下に減少した時、又は前記蒸発器より上流側の伝熱管に設けた熱源水ポンプが停止した時に、即時に運転停止せずに吸収液の稀釈運転を行うことを特徴とする吸収式ヒートポンプ。   A regenerator that separates the refrigerant vapor by heating the rare absorbing liquid returned from the absorber, a condenser that condenses and liquefies the refrigerant vapor sent from the regenerator, and evaporates the refrigerant liquid sent from the condenser An evaporator, and the absorber that absorbs the refrigerant vapor sent from the evaporator, and when the flow rate of the heat source water flowing in the heat transfer pipe passing through the evaporator is reduced to a set value or less during heating operation, or An absorption heat pump characterized in that when the heat source water pump provided in the heat transfer tube upstream of the evaporator is stopped, the absorption liquid is diluted without immediately stopping the operation. 前記蒸発器より下流側の伝熱管に流量検知手段を設け、この流量検知手段を介して伝熱管内を流れる熱源水の流量を調整すると共に、前記熱源水の流量が設定値以下に減少した時には当該検知信号を制御装置に入力することを特徴とする請求項1に記載の吸収式ヒートポンプ。   When the flow rate detection means is provided in the heat transfer pipe downstream from the evaporator, the flow rate of the heat source water flowing through the heat transfer pipe is adjusted via the flow rate detection means, and when the flow rate of the heat source water decreases below a set value. The absorption heat pump according to claim 1, wherein the detection signal is input to a control device. 前記熱源水が凍結するおそれがある場合には、前記蒸発器の底部に溜まる冷媒液の温度を計測し、この冷媒液の温度が所定温度を超える場合には吸収液の稀釈運転を行い、所定温度以下になった場合には運転停止とすることを特徴とする請求項1に記載の吸収式ヒートポンプ。   When the heat source water is likely to freeze, the temperature of the refrigerant liquid collected at the bottom of the evaporator is measured. If the temperature of the refrigerant liquid exceeds a predetermined temperature, the absorption liquid is diluted, The absorption heat pump according to claim 1, wherein the operation is stopped when the temperature becomes lower than the temperature. 前記蒸発器の底部に温度センサを設け、この温度センサにより当該蒸発器の底部に溜まる冷媒液の温度を検知すると共に、この検知信号を制御装置に入力することを特徴とする請求項3に記載の吸収式ヒートポンプ。   The temperature sensor is provided at the bottom of the evaporator, and the temperature of the refrigerant liquid accumulated at the bottom of the evaporator is detected by the temperature sensor, and the detection signal is input to the control device. Absorption heat pump.
JP2008087445A 2008-03-28 2008-03-28 Absorption heat pump Expired - Fee Related JP5097593B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008087445A JP5097593B2 (en) 2008-03-28 2008-03-28 Absorption heat pump
CN2009101282589A CN101545694B (en) 2008-03-28 2009-03-24 Absorption type heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008087445A JP5097593B2 (en) 2008-03-28 2008-03-28 Absorption heat pump

Publications (2)

Publication Number Publication Date
JP2009243705A true JP2009243705A (en) 2009-10-22
JP5097593B2 JP5097593B2 (en) 2012-12-12

Family

ID=41192975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008087445A Expired - Fee Related JP5097593B2 (en) 2008-03-28 2008-03-28 Absorption heat pump

Country Status (2)

Country Link
JP (1) JP5097593B2 (en)
CN (1) CN101545694B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5514003B2 (en) * 2010-06-15 2014-06-04 荏原冷熱システム株式会社 Absorption heat pump
CN103047794B (en) * 2012-12-07 2015-10-21 张跃 Energy adjustment method and device in a kind of novel flue gas heat recovery system
CN104879864B (en) * 2015-04-22 2017-06-27 南京理工大学 Attract to obtain the absorbing type refrigeration air-conditioning system of concentrated solution based on alternately ion
CN117805172A (en) * 2021-12-30 2024-04-02 合肥通用机械研究院有限公司 Evaporator freezing test method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996565U (en) * 1982-12-20 1984-06-30 三洋電機株式会社 Absorption heat pump with boiler function
JPS59115951A (en) * 1982-12-23 1984-07-04 三洋電機株式会社 Absorption heat pump
JPS6262163A (en) * 1985-09-11 1987-03-18 三洋電機株式会社 Cooling-water flow controller for absorption refrigerator
JPH05113266A (en) * 1991-10-21 1993-05-07 Sanyo Electric Co Ltd Controller of absorption refrigerating machine
JPH0674593A (en) * 1992-08-25 1994-03-15 Sanyo Electric Co Ltd Refrigerant freezing preventing device for absorption refrigerator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4166037B2 (en) * 2002-05-24 2008-10-15 三洋電機株式会社 Absorption chiller / heater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996565U (en) * 1982-12-20 1984-06-30 三洋電機株式会社 Absorption heat pump with boiler function
JPS59115951A (en) * 1982-12-23 1984-07-04 三洋電機株式会社 Absorption heat pump
JPS6262163A (en) * 1985-09-11 1987-03-18 三洋電機株式会社 Cooling-water flow controller for absorption refrigerator
JPH05113266A (en) * 1991-10-21 1993-05-07 Sanyo Electric Co Ltd Controller of absorption refrigerating machine
JPH0674593A (en) * 1992-08-25 1994-03-15 Sanyo Electric Co Ltd Refrigerant freezing preventing device for absorption refrigerator

Also Published As

Publication number Publication date
JP5097593B2 (en) 2012-12-12
CN101545694B (en) 2011-01-05
CN101545694A (en) 2009-09-30

Similar Documents

Publication Publication Date Title
JP3883838B2 (en) Absorption refrigerator
JP5097593B2 (en) Absorption heat pump
JP2002147885A (en) Absorption refrigerating machine
JP2009085509A (en) Method of preventing crystallization of absorbent of high concentration in low-temperature heat exchanger in absorption type refrigerating machine
JP4166037B2 (en) Absorption chiller / heater
JP2009243706A (en) Absorption heat pump
JP6820050B2 (en) Absorption chiller, control program and control method of absorption chiller
JP2002295917A (en) Control method for absorption freezer
JP2018105603A (en) Absorption refrigerator, control program, and control method of absorption refrigerator
JP4390267B2 (en) Single double effect absorption refrigerator and operation control method thereof
KR100512827B1 (en) Absorption type refrigerator
JP4315855B2 (en) Absorption refrigerator
JP4090262B2 (en) Absorption refrigerator
KR20090103740A (en) Absorption heat pump
KR101012051B1 (en) Absorption heat pump
JP2010007907A (en) Air conditioning system
JP3729102B2 (en) Steam-driven double-effect absorption chiller / heater
JP6765056B2 (en) Absorption chiller
KR200308240Y1 (en) Absorption refrigerator with preventing the crystallization of a solution
JP6605975B2 (en) Absorption refrigerator
JP3857955B2 (en) Absorption refrigerator
JP4115020B2 (en) Control method of absorption refrigerator
JP3143251B2 (en) Absorption refrigerator
JP2005282967A (en) Absorption type refrigerating machine
JP2020046128A (en) Absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees