JP6820050B2 - Absorption chiller, control program and control method of absorption chiller - Google Patents

Absorption chiller, control program and control method of absorption chiller Download PDF

Info

Publication number
JP6820050B2
JP6820050B2 JP2017042974A JP2017042974A JP6820050B2 JP 6820050 B2 JP6820050 B2 JP 6820050B2 JP 2017042974 A JP2017042974 A JP 2017042974A JP 2017042974 A JP2017042974 A JP 2017042974A JP 6820050 B2 JP6820050 B2 JP 6820050B2
Authority
JP
Japan
Prior art keywords
absorption
liquid
refrigerant
concentration
absorption chiller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017042974A
Other languages
Japanese (ja)
Other versions
JP2018146190A (en
Inventor
青山 淳
淳 青山
一郎 櫻場
一郎 櫻場
林 大介
大介 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2017042974A priority Critical patent/JP6820050B2/en
Publication of JP2018146190A publication Critical patent/JP2018146190A/en
Application granted granted Critical
Publication of JP6820050B2 publication Critical patent/JP6820050B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は吸収式冷凍機、制御プログラム及び吸収式冷凍機の制御方法に関し、特に圧力に基づく濃度演算を適切に行って吸収液の希釈の要否を判断する吸収式冷凍機、制御プログラム及び吸収式冷凍機の制御方法に関する。 The present invention relates to the absorption chiller, the control program and the control method of the absorption chiller, and particularly the absorption chiller, the control program and the absorption chiller for appropriately performing a concentration calculation based on pressure to determine the necessity of diluting the absorption liquid. Regarding the control method of the type refrigerator.

吸収液(溶液)と冷媒との吸収サイクルにより温度調節対象流体の冷却又は加熱を行う吸収冷温水機等の吸収式冷凍機は、機内において高温で吸収液の濃度に偏りのある運転状態から、負荷が減少した等の事情で停止させる際に、吸収液の結晶を防ぐため、吸収液を冷媒で希釈すると共に吸収液の濃度を均一化する希釈運転を一定時間行ってから停止させるのが一般的である。希釈運転を行う一定時間を最も溶液の濃度が濃い場合を想定して定めた場合の省エネルギーに反するという欠点を解消した吸収冷温水機として、高温再生器内の溶液の濃度を検出する溶液濃度検出手段を設け、吸収冷温水機を停止する際に、溶液濃度検出手段で検出した溶液の濃度が所定値以上の場合に希釈を開始し、溶液の濃度が所定値以下となった後所定の時間だけ溶液ポンプの残留運転を行って希釈を終了するものがある(例えば、特許文献1参照。)。 Absorption chillers such as absorption chillers and hot water machines that cool or heat the fluid to be temperature-controlled by the absorption cycle of the absorption liquid (solution) and the refrigerant are used in an operating state where the concentration of the absorption liquid is uneven at high temperatures. When stopping due to a decrease in load, etc., in order to prevent the absorption liquid from crystallizing, it is common to dilute the absorption liquid with a refrigerant and perform a dilution operation to make the concentration of the absorption liquid uniform for a certain period of time before stopping. Is the target. Solution concentration detection that detects the concentration of the solution in the high temperature regenerator as an absorption cold / hot water machine that eliminates the drawback of violating energy saving when the concentration of the solution is set to the highest concentration for a certain period of time during the dilution operation. When the means is provided and the absorption cold / hot water machine is stopped, dilution is started when the concentration of the solution detected by the solution concentration detecting means is equal to or higher than a predetermined value, and after the concentration of the solution becomes equal to or lower than a predetermined value, a predetermined time Only the residual operation of the solution pump is performed to finish the dilution (see, for example, Patent Document 1).

特開平11−37595号公報Japanese Unexamined Patent Publication No. 11-37595

吸収式冷凍機を停止する際、溶液濃度がある程度高い状態で希釈せずに停止すると、溶液の温度が結晶温度まで低下したときに溶液が結晶することとなる。しかしながら、溶液の温度が結晶温度まで低下するにはある程度時間がかかるため、特許文献1に記載の吸収冷温水機のように溶液の濃度が所定値以上の場合に希釈を開始することとすると、溶液が結晶するまでに時間があるにもかかわらず希釈を行うこととなり、結晶温度に低下する前に吸収冷温水機を再起動した場合は、希釈に要したエネルギーが無駄になると共に、立ち上がりに時間を要することとなる。このような不都合を解消するために、吸収式冷凍機の停止後も継続して溶液濃度を検出し、検出した濃度が溶液の希釈が必要な濃度になったときに希釈を開始することが考えられる。溶液濃度を検出するに際し、より経済的な利点がある缶胴内圧力に基づいて濃度を演算する場合は、吸収式冷凍機の停止後に適切な濃度演算ができなくなってしまっていた。 When the absorption chiller is stopped, if the solution concentration is high to some extent and the solution is stopped without dilution, the solution will crystallize when the temperature of the solution drops to the crystal temperature. However, it takes some time for the temperature of the solution to drop to the crystal temperature. Therefore, when the concentration of the solution is equal to or higher than a predetermined value as in the absorption cold / hot water machine described in Patent Document 1, the dilution is started. Dilution will be performed even though there is time for the solution to crystallize, and if the absorption cold / hot water machine is restarted before the temperature drops to the crystal temperature, the energy required for dilution will be wasted and the solution will start up. It will take time. In order to eliminate such inconvenience, it is conceivable to continuously detect the solution concentration even after the absorption chiller is stopped and start the dilution when the detected concentration reaches the concentration required to dilute the solution. Be done. When calculating the concentration based on the pressure inside the canister, which has a more economical advantage in detecting the solution concentration, it has become impossible to calculate the appropriate concentration after the absorption chiller is stopped.

本発明は上述の課題に鑑み、圧力に基づく濃度演算を適切に行って吸収液の希釈の要否を判断することができる吸収式冷凍機、制御プログラム及び吸収式冷凍機の制御方法を提供することを目的とする。 In view of the above problems, the present invention provides an absorption chiller, a control program, and a control method for the absorption chiller, which can appropriately perform a concentration calculation based on pressure to determine the necessity of diluting the absorption liquid. The purpose is.

上記目的を達成するために、本発明の第1の態様に係る吸収式冷凍機は、例えば図1に示すように、加熱源31が供給されることによって構成される吸収液Sと冷媒Vとの吸収サイクルにより温度調節対象流体Cの冷却又は加熱を行う吸収式冷凍機1であって;冷媒Veを吸収した吸収液Swを加熱源31で加熱し、吸収液Swから冷媒Vgを離脱させて吸収液Swの濃度を上昇させる再生器30と;再生器30の圧力又は再生器30の圧力と相関を有する物理量を検出する再生器圧力相関値検出部52と;吸収式冷凍機1の内部で吸収液Sが循環するように吸収液Sを流動させる溶液ポンプ19と;吸収液Sが循環し得る系統10、18、30、38に冷媒の液Vfを混入させる状態と混入させない状態とを切り替え可能な冷媒液混入可能部70と;吸収式冷凍機1を停止する際に、吸収液Sが循環し得る系統10、18、30、38に冷媒の液Vfを混入させない状態で、溶液ポンプ19の運転を継続させつつ再生器30に投入される熱量を所定の熱量に減少させた低加熱運転を行い、低加熱運転中に再生器圧力相関値検出部52で検出された値に基づいて演算された吸収液Sの濃度である演算濃度が所定の値未満のときに吸収式冷凍機1への加熱源31の供給を停止するように、加熱源31の供給機構、溶液ポンプ19及び冷媒液混入可能部70を制御する制御装置60とを備える。 In order to achieve the above object, the absorption chiller according to the first aspect of the present invention includes, for example, as shown in FIG. 1, an absorption liquid S and a refrigerant V formed by supplying a heating source 31. In the absorption chiller 1 that cools or heats the temperature-controlled fluid C by the absorption cycle of the above; the absorption liquid Sw that has absorbed the refrigerant Ve is heated by the heating source 31 to separate the refrigerant Vg from the absorption liquid Sw. With the regenerator 30 that increases the concentration of the absorption liquid Sw; with the regenerator pressure correlation value detection unit 52 that detects the pressure of the regenerator 30 or the physical quantity that correlates with the pressure of the regenerator 30; inside the absorption chiller 1 A solution pump 19 that flows the absorption liquid S so that the absorption liquid S circulates; a state in which the refrigerant liquid Vf is mixed in the systems 10, 18, 30, and 38 in which the absorption liquid S can circulate and a state in which the liquid Vf is not mixed are switched. Possible refrigerant liquid mixing possible part 70; When the absorption chiller 1 is stopped, the solution pump 19 does not mix the refrigerant liquid Vf into the systems 10, 18, 30, and 38 in which the absorption liquid S can circulate. The low heating operation is performed by reducing the amount of heat input to the regenerator 30 to a predetermined amount of heat while continuing the operation of the above, and calculation is performed based on the value detected by the regenerator pressure correlation value detection unit 52 during the low heating operation. The supply mechanism of the heating source 31, the solution pump 19, and the refrigerant liquid so as to stop the supply of the heating source 31 to the absorption chiller 1 when the calculated concentration, which is the concentration of the absorbed chiller S, is less than a predetermined value. A control device 60 for controlling the mixing possible unit 70 is provided.

このように構成すると、低加熱運転を行いながら再生器圧力相関値検出部で検出された値に基づいて吸収液の濃度が演算されるので、再生器内の飽和状態が保たれて吸収液の濃度を適切に把握することができ、吸収液の希釈の要否を適切に判断することができる。 With this configuration, the concentration of the absorbent solution is calculated based on the value detected by the regenerator pressure correlation value detector while performing low heating operation, so that the saturated state in the regenerator is maintained and the absorbent solution is supplied. The concentration can be appropriately grasped, and the necessity of diluting the absorbing solution can be appropriately determined.

また、本発明の第2の態様に係る吸収式冷凍機は、例えば図1を参照して示すと、上記本発明の第1の態様に係る吸収式冷凍機1において、制御装置60は、低加熱運転を開始してから所定の時間が経過しても演算濃度が所定の値未満とならないときに、吸収式冷凍機1への加熱源31の供給を停止すると共に、溶液ポンプ19の作動による吸収液Sが循環し得る系統10、18、30、38における吸収液Sの濃度の均一化及び冷媒液混入可能部70による吸収液Sが循環し得る系統10、18、30、38への冷媒の液Vfの混入の少なくとも一方を行うことにより吸収液Sを希釈する希釈運転を行うように加熱源31の供給機構、溶液ポンプ19及び冷媒液混入可能部70を制御する。 Further, as shown in the absorption chiller according to the second aspect of the present invention, for example, with reference to FIG. 1, in the absorption chiller 1 according to the first aspect of the present invention, the control device 60 is low. When the calculated concentration does not fall below the predetermined value even after a predetermined time has elapsed since the heating operation was started, the supply of the heating source 31 to the absorption chiller 1 is stopped and the solution pump 19 is operated. Uniformization of the concentration of the absorption liquid S in the systems 10, 18, 30, and 38 in which the absorption liquid S can circulate, and the refrigerant in the systems 10, 18, 30, and 38 in which the absorption liquid S can be circulated by the refrigerant liquid mixing possible portion 70. The supply mechanism of the heating source 31, the solution pump 19, and the refrigerant liquid mixing possible unit 70 are controlled so as to perform a dilution operation for diluting the absorption liquid S by mixing at least one of the liquid Vf.

このように構成すると、低加熱運転を継続することに伴うエネルギー消費を削減することができる。 With this configuration, it is possible to reduce the energy consumption associated with continuing the low heating operation.

また、本発明の第3の態様に係る吸収式冷凍機は、例えば図1を参照して示すと、上記本発明の第1の態様又は第2の態様に係る吸収式冷凍機1において、吸収式冷凍機1の周囲の環境の温度に関連する周囲環境温度関連値を把握する周囲環境温度関連値把握部55を備え;所定の値は、周囲環境温度関連値に応じて変化するように設定されている。 Further, the absorption chiller according to the third aspect of the present invention is absorbed in the absorption chiller 1 according to the first aspect or the second aspect of the present invention, for example, as shown with reference to FIG. The ambient environment temperature-related value grasping unit 55 for grasping the ambient environment temperature-related value related to the ambient temperature-related value of the chiller 1 is provided; the predetermined value is set to change according to the ambient temperature-related value. Has been done.

このように構成すると、加熱源の供給停止後に低下し得る吸収液の温度の下限値である周囲環境温度に関連する周囲環境温度関連値を加味して所定の値が変化することとなり、周囲環境温度が高いほど所定の値を大きく設定することができ、吸収液の希釈を行わない範囲を拡大させることができる。 With this configuration, the predetermined value changes in consideration of the ambient temperature-related value related to the ambient temperature, which is the lower limit of the temperature of the absorbing liquid that can decrease after the supply of the heating source is stopped, and the ambient environment. The higher the temperature, the larger the predetermined value can be set, and the range in which the absorption liquid is not diluted can be expanded.

また、本発明の第4の態様に係る吸収式冷凍機は、例えば図1を参照して示すと、上記本発明の第1の態様乃至第3の態様のいずれか1つの態様に係る吸収式冷凍機1において、吸収液Sの濃度に関連する吸収液濃度関連値を把握する吸収液濃度関連値把握部51、52、60を備え;制御装置60は、吸収式冷凍機1を停止する際に、吸収液濃度関連値把握部51、52、60で把握された吸収液濃度関連値が吸収液Sの希釈が不要な濃度の上限である希釈不要上限濃度以下のときに、低加熱運転を行わずかつ吸収液Sを希釈する希釈運転を行わずに吸収式冷凍機1を停止する。 Further, the absorption chiller according to the fourth aspect of the present invention is, for example, as shown with reference to FIG. 1, the absorption type according to any one of the first to third aspects of the present invention. The refrigerator 1 includes absorption liquid concentration-related value grasping units 51, 52, and 60 for grasping the absorption liquid concentration-related values related to the concentration of the absorption liquid S; when the control device 60 stops the absorption chiller 1 In addition, when the absorption liquid concentration-related value grasped by the absorption liquid concentration-related value grasping units 51, 52, and 60 is equal to or less than the upper limit concentration of the absorption liquid S which does not require dilution, the low heating operation is performed. The absorption chiller 1 is stopped without performing the dilution operation for diluting the absorption liquid S.

このように構成すると、低加熱運転を行うのに必要なエネルギーを削減することができる。 With this configuration, the energy required to perform the low heating operation can be reduced.

また、本発明の第5の態様に係る吸収式冷凍機は、例えば図1を参照して示すと、上記本発明の第4の態様に係る吸収式冷凍機1において、吸収式冷凍機1の周囲の環境の温度に関連する周囲環境温度関連値を把握する周囲環境温度関連値把握部55を備え;希釈不要上限濃度が周囲環境温度関連値に応じて変化するように設定されている。 Further, the absorption chiller according to the fifth aspect of the present invention is, for example, as shown with reference to FIG. 1, in the absorption chiller 1 according to the fourth aspect of the present invention, the absorption chiller 1 The ambient temperature-related value grasping unit 55 for grasping the ambient temperature-related value related to the ambient temperature is provided; the upper limit concentration at which dilution is not required is set to change according to the ambient temperature-related value.

このように構成すると、吸収式冷凍機の停止後に低下し得る吸収液の温度の下限値である周囲環境温度に関連する周囲環境温度関連値を加味して希釈不要上限濃度が変化することとなり、周囲環境温度が高いほど希釈不要上限濃度を高く設定することができ、低加熱運転を行わずかつ吸収液の希釈をしない範囲を拡大させることができる。 With this configuration, the upper limit concentration that does not require dilution changes in consideration of the ambient temperature-related value related to the ambient temperature, which is the lower limit of the absorption liquid temperature that can decrease after the absorption chiller is stopped. The higher the ambient temperature, the higher the upper limit concentration that does not require dilution can be set, and the range in which the low heating operation is not performed and the absorption liquid is not diluted can be expanded.

また、本発明の第6の態様に係る吸収式冷凍機は、例えば図1を参照して示すと、上記本発明の第1の態様乃至第5の態様のいずれか1つの態様に係る吸収式冷凍機1において、制御装置60は、冷媒液混入可能部70による吸収液Sが循環し得る系統10、18、30、38への冷媒の液Vfの混入を伴わない吸収サイクルの停止回数が所定の回数に到達したとき、又は冷媒の液Vfが貯留される部分における冷媒Vへの吸収液Sの混入を検出したときに、演算濃度の値にかかわらず、吸収液Sが循環し得る系統10、18、30、38に冷媒の液Vfを混入させるように冷媒液混入可能部70を制御する。ここで、吸収液が循環し得る系統への冷媒の液の混入を伴わない吸収サイクルの停止とは、典型的には、冷媒の液の混入を伴う希釈運転を行わずに吸収冷凍機を停止することである。 Further, the absorption chiller according to the sixth aspect of the present invention is, for example, as shown with reference to FIG. 1, the absorption type according to any one of the first to fifth aspects of the present invention. In the chiller 1, the control device 60 determines the number of times of stopping the absorption cycle without mixing the refrigerant liquid Vf into the systems 10, 18, 30, and 38 in which the absorption liquid S can be circulated by the refrigerant liquid mixing possible unit 70. System 10 in which the absorption liquid S can circulate regardless of the value of the calculated concentration when the number of times of the above is reached or when the mixing of the absorption liquid S into the refrigerant V in the portion where the liquid Vf of the refrigerant is stored is detected. , 18, 30, 38 are controlled so that the refrigerant liquid Vf is mixed with the refrigerant liquid mixing unit 70. Here, stopping the absorption cycle without mixing the refrigerant liquid into the system in which the absorption liquid can circulate is typically stopping the absorption chiller without performing the dilution operation accompanied by the mixing of the refrigerant liquid. It is to be.

このように構成すると、冷媒の系統に吸収液が混入してしまっている場合に、冷媒の系統を浄化することができる。 With this configuration, the refrigerant system can be purified when the absorbing liquid is mixed in the refrigerant system.

また、本発明の第7の態様に係る吸収式冷凍機は、例えば図1を参照して示すと、上記本発明の第1の態様乃至第6の態様のいずれか1つの態様に係る吸収式冷凍機1において、制御装置60は、吸収式冷凍機1に吸収液S及び冷媒Vを注入してから所定の運転時間又は所定の運転回数が経過するまでは、吸収式冷凍機1を停止する際に、演算濃度の値にかかわらず、溶液ポンプ19の作動による吸収液Sが循環し得る系統10、18、30、38における吸収液Sの濃度の均一化及び冷媒液混入可能部70による吸収液Sが循環し得る系統10、18、30、38への冷媒の液Vfの混入の両方を伴う希釈運転を行うように溶液ポンプ19及び冷媒液混入可能部70を制御する。 Further, the absorption chiller according to the seventh aspect of the present invention is, for example, as shown with reference to FIG. 1, the absorption type according to any one of the first to sixth aspects of the present invention. In the chiller 1, the control device 60 stops the absorption chiller 1 until a predetermined operation time or a predetermined number of operations elapses after injecting the absorption liquid S and the refrigerant V into the absorption chiller 1. At that time, regardless of the value of the calculated concentration, the concentration of the absorption liquid S in the systems 10, 18, 30, and 38 where the absorption liquid S can be circulated by the operation of the solution pump 19 is made uniform and absorbed by the refrigerant liquid mixing possible portion 70. The solution pump 19 and the refrigerant liquid mixing unit 70 are controlled so as to perform a dilution operation involving both mixing of the refrigerant liquid Vf into the systems 10, 18, 30, and 38 in which the liquid S can circulate.

このように構成すると、吸収式冷凍機の構成部材の表面に適切に被膜を形成することができる。 With this configuration, a film can be appropriately formed on the surface of the constituent members of the absorption chiller.

上記目的を達成するために、本発明の第8の態様に係る制御プログラムは、例えば図1及び図2を参照して示すと、加熱源31が供給されることによって構成される吸収液Sと冷媒Vとの吸収サイクルにより温度調節対象流体Cの冷却又は加熱を行う吸収式冷凍機1を制御するプログラムであって;吸収式冷凍機1を構成する再生器30の圧力又は再生器30の圧力と相関を有する物理量に基づいて吸収液Sの濃度を演算する吸収液濃度演算工程(S12)と;吸収式冷凍機1を停止する際に、再生器30に投入される熱量を所定の熱量に減少させた低加熱運転を行う低加熱運転工程(S11)と;低加熱運転中に吸収液濃度演算工程(S12)で算出された演算濃度が所定の値未満のときに吸収式冷凍機1への加熱源31の供給を停止する加熱源供給停止工程(S5)とを備える。 In order to achieve the above object, the control program according to the eighth aspect of the present invention includes, for example, with reference to FIGS. 1 and 2, the absorption liquid S formed by supplying the heating source 31. A program that controls the absorption chiller 1 that cools or heats the temperature-controlled fluid C by an absorption cycle with the refrigerant V; the pressure of the regenerator 30 or the pressure of the regenerator 30 that constitutes the absorption chiller 1. In the absorption liquid concentration calculation step (S12) in which the concentration of the absorption liquid S is calculated based on the physical amount having a correlation with; the amount of heat input to the regenerator 30 is set to a predetermined amount when the absorption chiller 1 is stopped. The low heating operation step (S11) in which the reduced low heating operation is performed; and the absorption chiller 1 when the calculated concentration calculated in the absorption liquid concentration calculation step (S12) during the low heating operation is less than a predetermined value. The heating source supply stop step (S5) for stopping the supply of the heat source 31 of the above is provided.

このように構成すると、低加熱運転を行いながら再生器の圧力又は再生器の圧力と相関を有する物理量に基づいて吸収液の濃度が演算されるので、再生器内の飽和状態が保たれて吸収液の濃度を適切に把握することができ、吸収液の希釈の要否を適切に判断することができる。 With this configuration, the concentration of the absorbent is calculated based on the pressure of the regenerator or the physical quantity that correlates with the pressure of the regenerator while performing low heating operation, so that the saturated state in the regenerator is maintained and absorbed. The concentration of the liquid can be appropriately grasped, and the necessity of diluting the absorption liquid can be appropriately determined.

上記目的を達成するために、本発明の第9の態様に係る吸収式冷凍機の制御方法は、例えば図1及び図2を参照して示すと、加熱源31が供給されることによって構成される吸収液Sと冷媒Vとの吸収サイクルにより温度調節対象流体Cの冷却又は加熱を行う吸収式冷凍機1を制御する方法であって;吸収式冷凍機1を構成する再生器30の圧力又は再生器30の圧力と相関を有する物理量に基づいて吸収液Sの濃度を演算する吸収液濃度演算工程(S12)と;吸収式冷凍機1を停止する際に、再生器30に投入される熱量を所定の熱量に減少させた低加熱運転を行う低加熱運転工程(S11)と;低加熱運転中に吸収液濃度演算工程(S12)で算出された演算濃度が所定の値未満のときに吸収式冷凍機1への加熱源31の供給を停止する加熱源供給停止工程(S5)とを備える。 In order to achieve the above object, the control method of the absorption chiller according to the ninth aspect of the present invention is configured by supplying the heating source 31, for example, as shown with reference to FIGS. 1 and 2. It is a method of controlling the absorption chiller 1 that cools or heats the temperature-controlled fluid C by the absorption cycle of the absorption liquid S and the refrigerant V; the pressure of the regenerator 30 constituting the absorption chiller 1 or The absorption liquid concentration calculation step (S12), which calculates the concentration of the absorption fluid S based on the physical quantity correlating with the pressure of the regenerator 30, and the amount of heat input to the regenerator 30 when the absorption chiller 1 is stopped. In the low heating operation step (S11) in which the low heating operation is performed in which the amount of heat is reduced to a predetermined amount; absorption is performed when the calculated concentration calculated in the absorption liquid concentration calculation step (S12) during the low heating operation is less than a predetermined value. A heating source supply stop step (S5) for stopping the supply of the heat source 31 to the chiller 1 is provided.

このように構成すると、低加熱運転を行いながら再生器の圧力又は再生器の圧力と相関を有する物理量に基づいて吸収液の濃度が演算されるので、再生器内の飽和状態が保たれて吸収液の濃度を適切に把握することができ、吸収液の希釈の要否を適切に判断することができる。 With this configuration, the concentration of the absorbent is calculated based on the pressure of the regenerator or the physical quantity that correlates with the pressure of the regenerator while performing low heating operation, so that the saturated state in the regenerator is maintained and absorbed. The concentration of the liquid can be appropriately grasped, and the necessity of diluting the absorption liquid can be appropriately determined.

本発明によれば、低加熱運転を行いながら再生器の圧力又は再生器の圧力と相関を有する物理量(再生器圧力相関値検出部で検出された値)に基づいて吸収液の濃度が演算されるので、再生器内の飽和状態が保たれて吸収液の濃度を適切に把握することができ、吸収液の希釈の要否を適切に判断することができる。 According to the present invention, the concentration of the absorbing liquid is calculated based on the pressure of the regenerator or the physical quantity (value detected by the regenerator pressure correlation value detection unit) that correlates with the pressure of the regenerator while performing the low heating operation. Therefore, the saturated state in the regenerator can be maintained, the concentration of the absorbing solution can be appropriately grasped, and the necessity of diluting the absorbing solution can be appropriately determined.

本発明の実施の形態に係る吸収冷凍機の模式的系統図である。It is a schematic system diagram of the absorption chiller which concerns on embodiment of this invention. 本発明の実施の形態に係る吸収冷凍機の停止時の手順の前半部分を説明するフローチャートである。It is a flowchart explaining the first half part of the procedure at the time of stopping of the absorption chiller which concerns on embodiment of this invention. 本発明の実施の形態に係る吸収冷凍機の停止時の手順の後半部分を説明するフローチャートである。It is a flowchart explaining the latter half part of the procedure at the time of stopping of the absorption chiller which concerns on embodiment of this invention. 周囲環境温度に対する吸収液の結晶濃度と希釈不要上限濃度との関係を例示するグラフである。It is a graph which illustrates the relationship between the crystal concentration of the absorption liquid and the upper limit concentration which does not need dilution with respect to the ambient temperature. 演算濃度と実際の吸収液濃度との誤差を示すグラフである。It is a graph which shows the error between the calculated concentration and the actual absorption liquid concentration. 本発明の実施の形態に係る吸収冷凍機の停止時の手順の変形部分を説明するフローチャートである。It is a flowchart explaining the modified part of the procedure at the time of stopping of the absorption chiller which concerns on embodiment of this invention.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each figure, members that are the same as or correspond to each other are designated by the same or similar reference numerals, and duplicate description will be omitted.

本明細書において、「吸収式冷凍機」は、再生器に加熱源を供給することによって、再生器、凝縮器、吸収器、蒸発器などによる吸収サイクルを構成し、温度調節対象流体の冷却又は加熱を行う吸収式熱源機の総称であり、加熱源を再生器に供給して吸収冷凍サイクルを構成し、冷水(冷却された温度調節対象流体)を供給する機械である吸収冷凍機、加熱源を再生器に供給して吸収サイクルを構成し、冷水(冷却された温度調節対象流体)及び/又は温水(加熱された温度調節対象流体)を供給する機械である吸収冷温水機、及び加熱源を再生器に供給して吸収ヒートポンプサイクルを構成し、蒸発器で熱源水から熱を回収することによって、吸収器及び凝縮器で加熱された温水(加熱された温度調節対象流体)を供給する機械である吸収ヒートポンプを含むものである。以下、吸収式冷凍機は、その一形態である吸収冷凍機であるとして説明する。 In the present specification, the "absorption chiller" constitutes an absorption cycle by a regenerator, a condenser, an absorber, an evaporator, etc. by supplying a heating source to the regenerator, and cools or cools the fluid subject to temperature control. Absorption chiller, which is a general term for absorption heat source machines that perform heating, is a machine that supplies a heating source to a regenerator to form an absorption refrigeration cycle and supplies cold water (cooled fluid subject to temperature control). Absorption chiller-heater and heating source, which are machines that supply cold water (cooled temperature-controlled fluid) and / or hot water (heated temperature-controlled fluid) to the regenerator to form an absorption cycle. To the regenerator to form an absorption heat pump cycle, and by recovering heat from the heat source water with an evaporator, a machine that supplies hot water (heated fluid subject to temperature control) heated by the absorber and condenser. It includes an absorption heat pump. Hereinafter, the absorption chiller will be described as one form thereof, the absorption chiller.

まず図1を参照して、本発明の実施の形態に係る吸収冷凍機1を説明する。図1は、吸収冷凍機1の模式的系統図である。吸収冷凍機1は、吸収冷凍サイクルを行う主要構成機器として、吸収器10と、蒸発器20と、再生器30と、凝縮器40とを備えていると共に、制御装置60を備えている。吸収冷凍機1は、吸収液Sに対して冷媒Vが相変化をしながら循環することで熱移動を行わせ、温度調節対象流体である冷水Cの温度を低下させる機器である。以下の説明において、吸収液に関し、吸収冷凍サイクル上における区別を容易にするために、性状や吸収冷凍サイクル上の位置に応じて、「希溶液Sw」、「濃溶液Sa」等と呼称するが、性状等を不問にするときは総称して「吸収液S」ということとする。また、冷媒に関し、吸収冷凍サイクル上における区別を容易にするために、性状や吸収冷凍サイクル上の位置に応じて、「蒸発器冷媒蒸気Ve」、「再生器冷媒蒸気Vg」、「冷媒液Vf」等と呼称するが、性状等を不問にするときは総称して「冷媒V」ということとする。本実施の形態では、吸収液S(吸収剤と冷媒との混合物)としてLiBr水溶液が用いられており、冷媒Vとして水(HO)が用いられているが、これに限らず他の冷媒、溶液(吸収剤)の組み合わせで使用してもよい。 First, the absorption chiller 1 according to the embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic system diagram of the absorption chiller 1. The absorption chiller 1 includes an absorber 10, an evaporator 20, a regenerator 30, a condenser 40, and a control device 60 as main components for performing the absorption chiller cycle. The absorption chiller 1 is a device that causes heat transfer by circulating the refrigerant V with respect to the absorption liquid S while changing the phase, and lowers the temperature of the cold water C, which is a fluid to be temperature-controlled. In the following description, the absorption liquor is referred to as "rare solution Sw", "concentrated solution Sa", etc., depending on the properties and the position on the absorption chilling cycle, in order to facilitate the distinction on the absorption chilling cycle. , When the properties are unquestioned, they are collectively referred to as "absorbent solution S". Further, in order to facilitate the distinction of the refrigerant on the absorption refrigeration cycle, "evaporator refrigerant vapor Ve", "regenerator refrigerant vapor Vg", and "refrigerant liquid Vf" are used according to the properties and the position on the absorption refrigeration cycle. However, when the properties are unquestioned, they are collectively referred to as "refrigerant V". In this embodiment, the absorbing liquid S and LiBr solution is used as (a mixture of absorbent and refrigerant) is water (H 2 O) is used as the refrigerant V, other refrigerants not limited thereto , May be used in combination with a solution (absorbent).

吸収器10は、蒸発器20で発生した蒸発器冷媒蒸気Veを濃溶液Saで吸収する機器である。吸収器10は、冷却水Dを流す冷却水流路としての冷却管11と、濃溶液Saを冷却管11の外面に向けて散布する濃溶液散布ノズル12とを、吸収器缶胴17の内部に有している。濃溶液散布ノズル12は、散布した濃溶液Saが冷却管11に降りかかるように、冷却管11の上方に配設されている。吸収器10は、散布された濃溶液Saが蒸発器冷媒蒸気Veを吸収することで濃度の低下した希溶液Swを吸収器缶胴17の下部に貯留すると共に、濃溶液Saが蒸発器冷媒蒸気Veを吸収した際に発生した吸収熱を冷却水Dが奪うように構成されている。 The absorber 10 is a device that absorbs the evaporator refrigerant vapor Ve generated in the evaporator 20 with the concentrated solution Sa. The absorber 10 has a cooling pipe 11 as a cooling water flow path for flowing the cooling water D and a concentrated solution spraying nozzle 12 for spraying the concentrated solution Sa toward the outer surface of the cooling pipe 11 inside the absorber can body 17. Have. The concentrated solution spraying nozzle 12 is arranged above the cooling pipe 11 so that the sprayed concentrated solution Sa falls on the cooling pipe 11. In the absorber 10, the sprayed concentrated solution Sa absorbs the evaporator refrigerant vapor Ve, so that the rare solution Sw whose concentration has decreased is stored in the lower part of the absorber can body 17, and the concentrated solution Sa is the evaporator refrigerant vapor. The cooling water D is configured to take away the absorbed heat generated when the Ve is absorbed.

蒸発器20は、冷水Cの熱で冷媒液Vfを蒸発させて蒸発器冷媒蒸気Veを発生させることにより冷水Cを冷却する機器である。蒸発器20は、冷水Cを流す冷水流路としての蒸発管21と、冷媒液Vfを蒸発管21の外面に向けて散布する冷媒液散布ノズル22とを、蒸発器缶胴27の内部に有している。冷媒液散布ノズル22は、散布した冷媒液Vfが蒸発管21に降りかかるように、蒸発管21の上方に配設されている。蒸発器20は、蒸発器缶胴27の下部に貯留されている冷媒液Vfを冷媒液散布ノズル22に導く冷媒液管28と、冷媒液管28内の冷媒液Vfを冷媒液散布ノズル22に送る冷媒ポンプ29とを有している。蒸発器20は、蒸発管21の外面に散布された冷媒液Vfが蒸発して蒸発器冷媒蒸気Veとなるための気化熱を、蒸発管21内を流れる冷水Cから奪うことで冷水Cを冷却し、散布された冷媒液Vfのうち蒸発しなかった冷媒液Vfが蒸発器缶胴27の下部に貯留されるように構成されている。 The evaporator 20 is a device that cools the cold water C by evaporating the refrigerant liquid Vf with the heat of the cold water C to generate the evaporator refrigerant vapor Ve. The evaporator 20 has an evaporator pipe 21 as a chilled water flow path through which the chilled water C flows, and a refrigerant liquid spray nozzle 22 for spraying the refrigerant liquid Vf toward the outer surface of the evaporator pipe 21 inside the evaporator can body 27. doing. The refrigerant liquid spray nozzle 22 is arranged above the evaporation pipe 21 so that the sprayed refrigerant liquid Vf falls on the evaporation pipe 21. The evaporator 20 uses a refrigerant liquid pipe 28 that guides the refrigerant liquid Vf stored in the lower part of the evaporator can body 27 to the refrigerant liquid spray nozzle 22 and the refrigerant liquid Vf in the refrigerant liquid pipe 28 to the refrigerant liquid spray nozzle 22. It has a refrigerant pump 29 to send. The evaporator 20 cools the cold water C by taking the heat of vaporization for the refrigerant liquid Vf sprayed on the outer surface of the evaporation pipe 21 to become the evaporator refrigerant vapor Ve from the cold water C flowing in the evaporation pipe 21. However, of the sprayed refrigerant liquid Vf, the non-evaporated refrigerant liquid Vf is configured to be stored in the lower part of the evaporator can body 27.

本実施の形態では、吸収器10と蒸発器20とは隣接して配置されており、吸収器缶胴17の上部と蒸発器缶胴27の上部とが連通している。このような構成により、蒸発器缶胴27の内部で発生した蒸発器冷媒蒸気Veを吸収器缶胴17の内部に導くことができるようになっている。冷却管11には、冷却水Dを導入する冷却水入口管11aが一端に接続されている。冷却管11の他端には、冷却水連絡管58が接続されている。冷却水入口管11aには、吸収冷凍機1外の冷却水往管98が接続される。冷却水往管98は、吸収冷凍機1外の冷却塔(不図示)に接続されている。冷却水往管98には、吸収冷凍機1外の冷却水ポンプ91が配設されている。吸収冷凍機1は、冷却水ポンプ91の稼働により、冷却管11内を冷却水Dが流動するように構成されている。蒸発管21には、冷水Cを導入する冷水入口管21aが一端に接続され、冷水Cを流出させる冷水出口管21bが他端に接続されている。冷水入口管21aには、吸収冷凍機1外の冷水還管95が接続される。冷水還管95には、吸収冷凍機1外の冷水ポンプ92が配設されている。吸収冷凍機1は、冷水ポンプ92の稼働により、蒸発管21内を冷水Cが流動するように構成されている。冷水出口管21bには、吸収冷凍機1外の冷水往管96が接続される。 In the present embodiment, the absorber 10 and the evaporator 20 are arranged adjacent to each other, and the upper part of the absorber can body 17 and the upper part of the evaporator can body 27 communicate with each other. With such a configuration, the evaporator refrigerant vapor Ve generated inside the evaporator can body 27 can be guided to the inside of the absorber can body 17. A cooling water inlet pipe 11a for introducing the cooling water D is connected to one end of the cooling pipe 11. A cooling water connecting pipe 58 is connected to the other end of the cooling pipe 11. A cooling water outflow pipe 98 outside the absorption chiller 1 is connected to the cooling water inlet pipe 11a. The cooling water outflow pipe 98 is connected to a cooling tower (not shown) outside the absorption chiller 1. A cooling water pump 91 outside the absorption chiller 1 is arranged in the cooling water outflow pipe 98. The absorption chiller 1 is configured such that the cooling water D flows in the cooling pipe 11 by the operation of the cooling water pump 91. A chilled water inlet pipe 21a for introducing chilled water C is connected to one end of the evaporation pipe 21, and a chilled water outlet pipe 21b for letting out chilled water C is connected to the other end. A chilled water return pipe 95 outside the absorption chiller 1 is connected to the chilled water inlet pipe 21a. A chilled water pump 92 outside the absorption chiller 1 is arranged in the chilled water return pipe 95. The absorption chiller 1 is configured such that the chilled water C flows in the evaporation pipe 21 by the operation of the chilled water pump 92. A chilled water outflow pipe 96 outside the absorption chiller 1 is connected to the chilled water outlet pipe 21b.

再生器30は、希溶液Swを導入し、加熱することで、希溶液Sw中の冷媒Vを離脱させ、濃溶液Saを生成する機器である。再生器30において、希溶液Swから離脱した冷媒Vは蒸気の状態であり、この冷媒Vの蒸気を再生器冷媒蒸気Vgということとする。再生器30は、希溶液Swを加熱する加熱部31と、導入した吸収液Sを貯留する再生器缶胴37とを有している。加熱部31は、再生器缶胴37の内部に配設されており、加熱源として機能する。加熱部31は、典型的には、バーナーの燃焼熱、外部から導入した蒸気や温水等の熱で、吸収液Sを加熱することができるように構成されている。再生器30として、貫流式再生器や煙管型再生器、液管型再生器等を用いることができる。 The regenerator 30 is a device that introduces a dilute solution Sw and heats it to release the refrigerant V in the dilute solution Sw to generate a concentrated solution Sa. In the regenerator 30, the refrigerant V separated from the dilute solution Sw is in a vapor state, and the vapor of this refrigerant V is referred to as the regenerator refrigerant vapor Vg. The regenerator 30 has a heating unit 31 for heating the dilute solution Sw, and a regenerator can body 37 for storing the introduced absorption liquid S. The heating unit 31 is arranged inside the regenerator can body 37 and functions as a heating source. The heating unit 31 is typically configured so that the absorption liquid S can be heated by the combustion heat of the burner and the heat of steam, hot water, or the like introduced from the outside. As the regenerator 30, a once-through type regenerator, a smoke tube type regenerator, a liquid tube type regenerator, or the like can be used.

凝縮器40は、再生器30で希溶液Swから蒸発した再生器冷媒蒸気Vgを導入し冷却して凝縮させ、蒸発器20に送る冷媒液Vfを生成する機器である。凝縮器40は、冷却水Dの流路を形成する部材である凝縮管41を、凝縮器缶胴47の内部に有している。凝縮管41の一端には、一端が冷却管11に接続されている冷却水連絡管58の他端が接続されている。凝縮管41の他端には、冷却水Dを流出させる冷却水出口管41bが接続されている。冷却水出口管41bには、吸収冷凍機1外の冷却水還管99が接続される。冷却水還管99は、吸収冷凍機1外の冷却塔(不図示)に接続されている。このような構成により、冷却水還管99を流れる冷却水Dは、冷却塔(不図示)で冷却されて冷却水往管98に供給されるようになっている。 The condenser 40 is a device that introduces the regenerator refrigerant vapor Vg evaporated from the dilute solution Sw in the regenerator 30, cools and condenses it, and generates the refrigerant liquid Vf to be sent to the evaporator 20. The condenser 40 has a condenser pipe 41, which is a member forming a flow path of the cooling water D, inside the condenser can body 47. The other end of the cooling water connecting pipe 58, one end of which is connected to the cooling pipe 11, is connected to one end of the condensing pipe 41. A cooling water outlet pipe 41b for flowing out the cooling water D is connected to the other end of the condensing pipe 41. A cooling water return pipe 99 outside the absorption chiller 1 is connected to the cooling water outlet pipe 41b. The cooling water return pipe 99 is connected to a cooling tower (not shown) outside the absorption chiller 1. With such a configuration, the cooling water D flowing through the cooling water return pipe 99 is cooled by a cooling tower (not shown) and supplied to the cooling water outgoing pipe 98.

凝縮器缶胴47は、再生器缶胴37に近接して配設されている。本実施の形態では、再生器缶胴37の上部と凝縮器缶胴47の上部とは、再生器冷媒蒸気流路35を介して連通している。凝縮器40は、再生器冷媒蒸気流路35を介して再生器30から再生器冷媒蒸気Vgを導入し、凝縮管41を流れる冷却水Dに再生器冷媒蒸気Vgの熱を奪わせて、再生器冷媒蒸気Vgを凝縮させて冷媒液Vfにするように構成されている。本実施の形態では、凝縮器缶胴47及び再生器缶胴37は、蒸発器缶胴27及び吸収器缶胴17の上方に配設されている。凝縮器缶胴47の冷媒液Vfが貯留される部分(典型的には凝縮器缶胴47の底部又は下部)と蒸発器缶胴27とは、凝縮冷媒液管48で接続されており、凝縮器缶胴47内の冷媒液Vfを位置ヘッド及び両者の内圧の差で蒸発器缶胴27内に導くことができるように構成されている。 The condenser can body 47 is arranged close to the regenerator can body 37. In the present embodiment, the upper part of the regenerator can body 37 and the upper part of the condenser can body 47 communicate with each other via the regenerator refrigerant vapor flow path 35. The condenser 40 introduces the regenerator refrigerant vapor Vg from the regenerator 30 via the regenerator refrigerant vapor flow path 35, causes the cooling water D flowing through the condenser pipe 41 to take away the heat of the regenerator refrigerant vapor Vg, and regenerates. It is configured to condense the refrigerant vapor Vg into the refrigerant liquid Vf. In the present embodiment, the condenser can body 47 and the regenerator can body 37 are arranged above the evaporator can body 27 and the absorber can body 17. The portion of the condenser can body 47 in which the refrigerant liquid Vf is stored (typically the bottom or bottom of the condenser can body 47) and the evaporator can body 27 are connected by a condensed refrigerant liquid pipe 48 to condense. It is configured so that the refrigerant liquid Vf in the vessel body 47 can be guided into the evaporator can body 27 by the difference between the position head and the internal pressures of the two.

吸収器缶胴17の希溶液Swが貯留される部分(典型的には吸収器缶胴17の底部又は下部)と、再生器缶胴37とは、希溶液管18で接続されている。希溶液管18には、溶液ポンプ19が配設されている。吸収冷凍機1は、溶液ポンプ19により、吸収器缶胴17の希溶液Swを再生器缶胴37内に搬送することができるように構成されている。再生器缶胴37内では、導入された希溶液Swが、入口から出口に移動するに連れて希溶液Sw中から冷媒Vが離脱して濃度が上昇するようになっている。 The portion of the absorber can body 17 where the dilute solution Sw is stored (typically the bottom or bottom of the absorber can body 17) and the regenerator can body 37 are connected by a dilute solution tube 18. A solution pump 19 is arranged in the dilute solution tube 18. The absorption chiller 1 is configured so that the dilute solution Sw of the absorber can body 17 can be conveyed into the regenerator can body 37 by the solution pump 19. In the regenerator can body 37, as the introduced dilute solution Sw moves from the inlet to the outlet, the refrigerant V is separated from the dilute solution Sw and the concentration increases.

再生器缶胴37の濃溶液Saが流出する部分と、吸収器10の濃溶液散布ノズル12とは、濃溶液管38で接続されている。吸収冷凍機1は、溶液ポンプ19によって希溶液Swが再生器缶胴37に搬送され、再生器缶胴37内で冷媒Vが離脱して生成された濃溶液Saが、濃溶液管38を介して濃溶液散布ノズル12に導入されるように構成されている。つまり、溶液ポンプ19は、吸収器10と再生器30との間で吸収液Sを循環させることができる。濃溶液管38には、再生器30の出口の濃溶液Saの温度を検出する濃溶液温度計51が設けられている。再生器缶胴37には、内部の冷媒Vの温度を検出する冷媒温度計52が設けられている。冷媒温度計52は、吸収冷凍機1の運転時には、再生器30内の冷媒Vの露点温度を検出するようになっている。再生器30内の冷媒Vの露点温度は再生器30内の圧力と相関を有する物理量であるので、冷媒温度計52は再生器圧力相関値検出部に相当する。なお、冷媒温度計52は、再生器冷媒蒸気流路35に設けられていてもよい。希溶液管18及び濃溶液管38には、希溶液管18を流れる希溶液Swと濃溶液管38を流れる濃溶液Saとの間で熱交換を行わせる溶液熱交換器81が挿入されて配置されている。 The portion of the regenerator can body 37 from which the concentrated solution Sa flows out and the concentrated solution spray nozzle 12 of the absorber 10 are connected by a concentrated solution pipe 38. In the absorption chiller 1, the dilute solution Sw is conveyed to the regenerator can body 37 by the solution pump 19, and the concentrated solution Sa generated by the refrigerant V being separated from the regenerator can body 37 passes through the concentrated solution tube 38. It is configured to be introduced into the concentrated solution spraying nozzle 12. That is, the solution pump 19 can circulate the absorbing liquid S between the absorber 10 and the regenerator 30. The concentrated solution tube 38 is provided with a concentrated solution thermometer 51 that detects the temperature of the concentrated solution Sa at the outlet of the regenerator 30. The regenerator can body 37 is provided with a refrigerant thermometer 52 that detects the temperature of the refrigerant V inside. The refrigerant thermometer 52 detects the dew point temperature of the refrigerant V in the regenerator 30 during the operation of the absorption chiller 1. Since the dew point temperature of the refrigerant V in the regenerator 30 is a physical quantity having a correlation with the pressure in the regenerator 30, the refrigerant thermometer 52 corresponds to the regenerator pressure correlation value detection unit. The refrigerant thermometer 52 may be provided in the regenerator refrigerant vapor flow path 35. A solution heat exchanger 81 for exchanging heat between the dilute solution Sw flowing through the dilute solution tube 18 and the concentrated solution Sa flowing through the concentrated solution tube 38 is inserted and arranged in the dilute solution tube 18 and the concentrated solution tube 38. Has been done.

凝縮器缶胴47の冷媒液Vfが貯留される部分(典型的には凝縮器缶胴47の底部又は下部)と濃溶液管38とは、凝縮器缶胴47内の冷媒液Vfを濃溶液管38に導く冷媒液混入管71で接続されている。冷媒液混入管71には、流路を開閉する冷媒液混入弁72が配設されている。本実施の形態では、冷媒液混入管71と冷媒液混入弁72とで冷媒液混入可能部70を構成している。冷媒液混入可能部70は、冷媒液混入弁72を開けたときの冷媒液Vfを濃溶液管38に混入させる状態と、冷媒液混入弁72を閉じたときの冷媒液Vfを濃溶液管38の混入させない状態とを切り替えることができるように構成されている。また、再生器30の外側の再生器30の近傍には、気温を検出する周囲温度計55が設けられている。再生器30の外側の気温は、吸収冷凍機1の周囲の環境に相関する温度であり、周囲環境温度関連値に相当する。周囲温度計55は、周囲環境温度関連値把握部に相当する。 The portion of the condenser can body 47 in which the refrigerant liquid Vf is stored (typically the bottom or bottom of the condenser can body 47) and the concentrated solution pipe 38 form a concentrated solution of the refrigerant liquid Vf in the condenser can body 47. It is connected by a refrigerant solution mixing pipe 71 leading to the pipe 38. The refrigerant liquid mixing pipe 71 is provided with a refrigerant liquid mixing valve 72 that opens and closes the flow path. In the present embodiment, the refrigerant liquid mixing pipe 71 and the refrigerant liquid mixing valve 72 constitute the refrigerant liquid mixing possible portion 70. The refrigerant liquid mixing possible portion 70 mixes the refrigerant liquid Vf when the refrigerant liquid mixing valve 72 is opened into the concentrated solution pipe 38, and the refrigerant liquid Vf when the refrigerant liquid mixing valve 72 is closed is mixed into the concentrated solution pipe 38. It is configured so that it can be switched between a state in which the refrigerant is not mixed. Further, an ambient thermometer 55 for detecting the air temperature is provided in the vicinity of the regenerator 30 outside the regenerator 30. The air temperature outside the regenerator 30 is a temperature that correlates with the surrounding environment of the absorption chiller 1, and corresponds to a value related to the ambient environment temperature. The ambient thermometer 55 corresponds to an ambient temperature-related value grasping unit.

制御装置60は、吸収冷凍機1の動作を制御する機器である。制御装置60は、加熱部31と有線又は無線で電気的に接続されており、加熱部31に投入される熱量を調節することができるように構成されている。また、制御装置60は、溶液ポンプ19、冷媒ポンプ29、冷却水ポンプ91、冷水ポンプ92と、それぞれ有線又は無線で電気的に接続されており、これらの発停を制御することができるように構成されている。また、制御装置60は、濃溶液温度計51、冷媒温度計52、及び周囲温度計55と、それぞれ有線又は無線で電気的に接続されており、検出された温度を信号として受信することができるように構成されている。また、制御装置60は、濃溶液温度計51で検出された温度と、冷媒温度計52で検出された温度(冷媒Vの飽和温度)とから、濃溶液管38を流れる吸収液Sの濃度を演算することができるように構成されている。なお、制御装置60で演算された吸収液Sの濃度を「演算濃度」ということとする。演算濃度は、吸収液Sの濃度に関連する値の一態様であり、吸収液濃度関連値を兼ねている。また、本実施の形態では、濃溶液温度計51で検出された温度と冷媒温度計52で検出された温度と制御装置60とが協働して吸収液濃度関連値を把握することができるから、濃溶液温度計51と冷媒温度計52と制御装置60とで吸収液濃度関連値把握部を構成する。また、制御装置60は、冷媒液混入弁72と有線又は無線で電気的に接続されており、冷媒液混入弁72の開閉を切り替えることができるように構成されている。また、制御装置60は、後述する吸収冷凍機1の作用で説明するような吸収冷凍機1の制御を行うことができるように構成されている。後述する吸収冷凍機1の制御は、シーケンスプログラムとして制御装置60に格納されている。 The control device 60 is a device that controls the operation of the absorption chiller 1. The control device 60 is electrically connected to the heating unit 31 by wire or wirelessly, and is configured to be able to adjust the amount of heat input to the heating unit 31. Further, the control device 60 is electrically connected to the solution pump 19, the refrigerant pump 29, the cooling water pump 91, and the chilled water pump 92, respectively, by wire or wirelessly, so that the start and stop of these can be controlled. It is configured. Further, the control device 60 is electrically connected to the concentrated solution thermometer 51, the refrigerant thermometer 52, and the ambient thermometer 55, respectively, by wire or wirelessly, and can receive the detected temperature as a signal. It is configured as follows. Further, the control device 60 determines the concentration of the absorbing liquid S flowing through the concentrated solution tube 38 from the temperature detected by the concentrated solution thermometer 51 and the temperature detected by the refrigerant thermometer 52 (saturation temperature of the refrigerant V). It is configured so that it can be calculated. The concentration of the absorbing liquid S calculated by the control device 60 is referred to as "calculated concentration". The calculated concentration is an aspect of a value related to the concentration of the absorbing liquid S, and also serves as a value related to the concentration of the absorbing liquid. Further, in the present embodiment, the temperature detected by the concentrated solution thermometer 51, the temperature detected by the refrigerant thermometer 52, and the control device 60 can cooperate to grasp the absorption liquid concentration-related value. The concentrated solution thermometer 51, the refrigerant thermometer 52, and the control device 60 constitute an absorption liquid concentration-related value grasping unit. Further, the control device 60 is electrically connected to the refrigerant liquid mixing valve 72 by wire or wirelessly, and is configured to be able to switch the opening and closing of the refrigerant liquid mixing valve 72. Further, the control device 60 is configured to be able to control the absorption chiller 1 as described in the operation of the absorption chiller 1 described later. The control of the absorption chiller 1 described later is stored in the control device 60 as a sequence program.

引き続き図1を参照して、吸収冷凍機1の作用を説明する。まず、吸収冷凍機1の定常運転時の作用を説明する。吸収冷凍機1の定常運転時は、制御装置60からの指令により、冷媒液混入弁72が閉となっており、溶液ポンプ19、冷媒ポンプ29、冷却水ポンプ91、冷水ポンプ92がそれぞれ稼働している。冷媒V側のサイクルについて見ると、再生器冷媒蒸気流路35を介して再生器30から凝縮器40に導入された再生器冷媒蒸気Vgは、凝縮管41を流れる冷却水Dに冷却されて凝縮し、冷媒液Vfとなって凝縮器缶胴47の下部に貯留される。再生器冷媒蒸気Vgを冷却した冷却水Dは、温度が上昇して冷却水還管99から流出し、冷却塔(不図示)に供給される。凝縮器缶胴47内の冷媒液Vfは、凝縮冷媒液管48を介して蒸発器缶胴27内に導入される。 Subsequently, the operation of the absorption chiller 1 will be described with reference to FIG. First, the operation of the absorption chiller 1 during steady operation will be described. During steady operation of the absorption chiller 1, the refrigerant liquid mixing valve 72 is closed by a command from the control device 60, and the solution pump 19, the refrigerant pump 29, the cooling water pump 91, and the chilled water pump 92 operate respectively. ing. Looking at the cycle on the refrigerant V side, the regenerator refrigerant vapor Vg introduced from the regenerator 30 into the condenser 40 via the regenerator refrigerant vapor flow path 35 is cooled by the cooling water D flowing through the condenser pipe 41 and condensed. Then, it becomes the refrigerant liquid Vf and is stored in the lower part of the condenser can body 47. The cooling water D obtained by cooling the regenerator refrigerant vapor Vg rises in temperature, flows out of the cooling water return pipe 99, and is supplied to a cooling tower (not shown). The refrigerant liquid Vf in the condenser can body 47 is introduced into the evaporator can body 27 via the condensed refrigerant liquid pipe 48.

凝縮器缶胴47から蒸発器缶胴27に導入された冷媒液Vfは、冷媒液散布ノズル22から散布されて蒸発しなかった冷媒液Vfと混合して蒸発器缶胴27の下部に貯留される。蒸発器缶胴27内の冷媒液Vfは、冷媒ポンプ29により、冷媒液管28を流れて冷媒液散布ノズル22に至る。冷媒液散布ノズル22に至った冷媒液Vfは、蒸発管21に向けて散布され、蒸発管21を流れる冷水Cの熱を得て一部が蒸発して蒸発器冷媒蒸気Veとなり、吸収器缶胴17に導入される。散布された冷媒液Vfに熱を奪われた冷水Cは、温度が低下して冷水往管96から流出し、空気調和機等の冷水Cの利用場所に供給される。冷媒液散布ノズル22から散布されて蒸発しなかった冷媒液Vfは、凝縮器缶胴47から導入された冷媒液Vfと混合して蒸発器缶胴27の下部に貯留される。 The refrigerant liquid Vf introduced from the condenser can body 47 into the evaporator can body 27 is mixed with the refrigerant liquid Vf that was sprayed from the refrigerant liquid spray nozzle 22 and did not evaporate, and is stored in the lower part of the evaporator can body 27. To. The refrigerant liquid Vf in the evaporator can body 27 flows through the refrigerant liquid pipe 28 by the refrigerant pump 29 and reaches the refrigerant liquid spray nozzle 22. The refrigerant liquid Vf that has reached the refrigerant liquid spray nozzle 22 is sprayed toward the evaporation pipe 21, and the heat of the cold water C flowing through the evaporation pipe 21 is obtained and a part of the refrigerant liquid Vf evaporates to become the evaporator refrigerant steam Ve, which becomes an absorber can. It is introduced into the body 17. The temperature of the cold water C, which has been deprived of heat by the sprayed refrigerant liquid Vf, drops and flows out from the cold water outflow pipe 96, and is supplied to a place where the cold water C is used, such as an air conditioner. The refrigerant liquid Vf sprayed from the refrigerant liquid spray nozzle 22 and not evaporated is mixed with the refrigerant liquid Vf introduced from the condenser can body 47 and stored in the lower part of the evaporator can body 27.

次に吸収冷凍機1の溶液S側のサイクルを見ると、吸収器缶胴17内の希溶液Swは、溶液ポンプ19により、希溶液管18を流れ、溶液熱交換器81で温度が上昇した後に、再生器缶胴37に導入される。再生器缶胴37に導入された希溶液Swは、加熱部31によって加熱され、冷媒Vが離脱して濃溶液Saとなる。他方、希溶液Swから離脱した冷媒Vは、再生器冷媒蒸気Vgとして、再生器冷媒蒸気流路35を介して凝縮器缶胴47内に送られる。再生器缶胴37内で生成された濃溶液Saは、濃溶液管38を流れ、溶液熱交換器81において希溶液Swと熱交換して温度が低下したうえで濃溶液散布ノズル12に至る。 Next, looking at the cycle on the solution S side of the absorption chiller 1, the dilute solution Sw in the absorber can body 17 flowed through the dilute solution tube 18 by the solution pump 19, and the temperature rose in the solution heat exchanger 81. Later, it is introduced into the regenerator can body 37. The dilute solution Sw introduced into the regenerator can body 37 is heated by the heating unit 31, and the refrigerant V is separated to become a concentrated solution Sa. On the other hand, the refrigerant V separated from the dilute solution Sw is sent as the regenerator refrigerant vapor Vg into the condenser can body 47 via the regenerator refrigerant vapor flow path 35. The concentrated solution Sa generated in the regenerator can body 37 flows through the concentrated solution tube 38, exchanges heat with the dilute solution Sw in the solution heat exchanger 81, lowers the temperature, and then reaches the concentrated solution spray nozzle 12.

濃溶液散布ノズル12に至った濃溶液Saは、冷却管11に向けて散布され、蒸発器20から導入された蒸発器冷媒蒸気Veを吸収し濃度が低下して希溶液Swとなる。吸収器缶胴17内において、濃溶液Saが蒸発器冷媒蒸気Veを吸収する際には吸収熱が発生する。この発生した吸収熱は、冷却水往管98から導入されて冷却管11を流れる冷却水Dによって除去される。冷却管11を流れる冷却水Dは、吸収熱を奪って温度上昇して冷却水連絡管58に流出し、凝縮器40の凝縮管41に供給される。吸収器缶胴17内で生じた希溶液Swは、吸収器缶胴17内に貯留される。 The concentrated solution Sa that has reached the concentrated solution spraying nozzle 12 is sprayed toward the cooling pipe 11, absorbs the evaporator refrigerant vapor Ve introduced from the evaporator 20, and the concentration decreases to become a dilute solution Sw. Endothermic heat is generated when the concentrated solution Sa absorbs the evaporator refrigerant vapor Ve in the absorber can body 17. The generated absorbed heat is removed by the cooling water D which is introduced from the cooling water outward pipe 98 and flows through the cooling pipe 11. The cooling water D flowing through the cooling pipe 11 takes away the absorbed heat, rises in temperature, flows out to the cooling water connecting pipe 58, and is supplied to the condenser pipe 41 of the condenser 40. The dilute solution Sw generated in the absorber can body 17 is stored in the absorber can body 17.

上述のような定常運転を行っている吸収冷凍機1は、冷水Cの冷熱が利用される空気調和機等の負荷が減少して(負荷がなくなることも含む)吸収冷凍機1を運転する必要がなくなった場合は、加熱部31への入熱を停止して、吸収冷凍機1を停止させることになる。一般に、吸収冷凍機を停止させる際は、温度が低下したときの吸収液の結晶を防ぐため、希釈運転を行うことが多い。希釈運転では、通常、適量の冷媒を吸収液に混入させて循環させることにより、吸収冷凍機内の吸収液を結晶しない濃度で均一化させることが行われる。そして、吸収液が希釈された吸収冷凍機を、負荷の増加等に起因して起動させる場合、吸収液を加熱して吸収液に濃度差を生じさせることになる。吸収冷凍機では、吸収液に所定の濃度差が生じてから所望の温度の冷水が得られることとなる。このように、吸収冷凍機では、希釈運転を開始してから再起動を経て定常運転に至るまでの間、冷水の製造に寄与しないエネルギーが消費されることとなる。このエネルギー消費は、吸収液の結晶を回避するためには必要なものであるが、吸収冷凍機を停止してから再起動するまでに吸収液が結晶する状態にならない場合は無駄なものとなる。そこで、本実施の形態に係る吸収冷凍機1では、このような無駄を回避するために、以下の制御を行うこととしている。 The absorption chiller 1 performing the steady operation as described above needs to operate the absorption chiller 1 with the load of the air conditioner or the like in which the cold heat of the cold water C is used reduced (including the elimination of the load). When there is no more, the heat input to the heating unit 31 is stopped, and the absorption chiller 1 is stopped. Generally, when the absorption chiller is stopped, a dilution operation is often performed in order to prevent crystallization of the absorption liquid when the temperature drops. In the dilution operation, usually, an appropriate amount of refrigerant is mixed with the absorption liquid and circulated to homogenize the absorption liquid in the absorption chiller at a concentration that does not crystallize. Then, when the absorption chiller in which the absorption liquid is diluted is started due to an increase in load or the like, the absorption liquid is heated to cause a concentration difference in the absorption liquid. In the absorption chiller, cold water having a desired temperature can be obtained after a predetermined concentration difference occurs in the absorption liquid. As described above, in the absorption chiller, energy that does not contribute to the production of cold water is consumed from the start of the dilution operation to the steady operation through the restart. This energy consumption is necessary to avoid crystallization of the absorption liquor, but it is useless if the absorption liquor does not crystallize between the time the absorption chiller is stopped and the time it is restarted. .. Therefore, in the absorption chiller 1 according to the present embodiment, the following control is performed in order to avoid such waste.

図2及び図3は吸収冷凍機1の停止時の手順を説明するフローチャートであり、図2は前半部分を、図3は後半部分を、それぞれ示している。図2及び図3を併せて1つの停止時の手順を示している。以下、主に図2及び図3を参照して吸収冷凍機1の停止時の制御を説明するが、説明において吸収冷凍機1の構成に言及しているときは適宜図1を参照することとする。吸収冷凍機1は、定常運転中、制御装置60が、吸収冷凍機1を構成する各機器の運転を制御しながら、空気調和機等の冷水Cを利用する機器(不図示)からの停止指令を受けられるようにしている。換言すれば、制御装置60は、停止指令があったか否かを判断している(S1)。停止指令がない場合は、再び停止指令があったか否かを判断する工程(S1)に戻る。 2 and 3 are flowcharts for explaining the procedure when the absorption chiller 1 is stopped, FIG. 2 shows the first half portion, and FIG. 3 shows the second half portion. FIG. 2 and FIG. 3 together show one stop procedure. Hereinafter, the control when the absorption chiller 1 is stopped will be described mainly with reference to FIGS. 2 and 3, but when the configuration of the absorption chiller 1 is referred to in the description, FIG. 1 shall be referred to as appropriate. To do. During the steady operation of the absorption chiller 1, the control device 60 controls the operation of each device constituting the absorption chiller 1, and a stop command is given from a device (not shown) that uses cold water C such as an air conditioner. I am trying to receive it. In other words, the control device 60 determines whether or not there is a stop command (S1). If there is no stop command, the process returns to the step (S1) of determining whether or not there is a stop command again.

停止指令があったか否かを判断する工程(S1)において、停止指令があった場合、制御装置60は、濃溶液温度計51で検知した温度及び冷媒温度計52で検知した温度に基づいて演算した吸収液S(濃溶液Sa)の濃度が、希釈不要上限濃度以下か否かを判断する(S3)。ここで、希釈不要上限濃度は、希釈運転をせずにそのまま吸収冷凍機1の周囲の環境の温度(以下「周囲環境温度」という。)に低下しても吸収液Sの結晶が生じない濃度の上限値である。希釈運転は、溶液ポンプ19を運転することによる吸収液Sの濃度を均一化させること(以下「溶液攪拌」という。)、冷媒液混入弁72を所定時間開にして凝縮器40内の冷媒液Vfの所定量を濃溶液管38に流入させること(以下「冷媒移送」という。)の2つがあるが、希釈不要上限濃度は両方の希釈運転が不要な濃度の上限値である。なお、希釈不要上限濃度は、本実施の形態では、周囲温度計55が検出した温度に応じて可変としている。吸収液Sは、濃度が高いほど高い温度で結晶し、濃度が低いほど低い温度で結晶する。吸収冷凍機1の定常運転時に比較的高温となっている吸収液Sは、吸収冷凍機1が停止すると周囲環境温度に近づいていき、周囲環境温度を下回ることはない。つまり、吸収液Sの濃度の、結晶する濃度までの近さは、周囲環境温度に応じて変化するので、本実施の形態では、周囲環境温度(周囲温度計55が検出した温度)に応じて希釈不要上限濃度を可変としている。 In the step (S1) of determining whether or not there was a stop command, when a stop command was given, the control device 60 calculated based on the temperature detected by the concentrated solution thermometer 51 and the temperature detected by the refrigerant thermometer 52. It is determined whether or not the concentration of the absorbing solution S (concentrated solution Sa) is equal to or less than the upper limit concentration at which dilution is not required (S3). Here, the upper limit concentration that does not require dilution is a concentration at which crystals of the absorption liquid S do not form even if the temperature drops to the temperature of the ambient environment of the absorption chiller 1 (hereinafter referred to as "ambient environment temperature") as it is without performing the dilution operation. Is the upper limit of. In the dilution operation, the concentration of the absorbing liquid S is made uniform by operating the solution pump 19 (hereinafter referred to as “solution stirring”), the refrigerant liquid mixing valve 72 is opened for a predetermined time, and the refrigerant liquid in the condenser 40 is opened. There are two methods of flowing a predetermined amount of Vf into the concentrated solution tube 38 (hereinafter referred to as “refrigerant transfer”), and the upper limit concentration at which dilution is not required is the upper limit of the concentration at which dilution operation is unnecessary for both. In this embodiment, the upper limit concentration that does not require dilution is variable according to the temperature detected by the ambient thermometer 55. The higher the concentration of the absorbent S, the higher the temperature, and the lower the concentration, the lower the temperature. The absorption liquid S, which has a relatively high temperature during steady operation of the absorption chiller 1, approaches the ambient temperature when the absorption chiller 1 is stopped, and does not fall below the ambient temperature. That is, since the closeness of the concentration of the absorbing liquid S to the crystallizing concentration changes according to the ambient environment temperature, in the present embodiment, it depends on the ambient environment temperature (the temperature detected by the ambient thermometer 55). The upper limit concentration that does not require dilution is variable.

図4のグラフに、周囲環境温度(単に「周囲温度」という場合もある)に対する吸収液Sの結晶濃度と希釈不要上限濃度との関係の例を示す。図4のグラフ中、実線Lsは周囲温度と吸収液Sの結晶濃度との関係を示している。本実施の形態では、吸収液Sの結晶濃度に対して所定の余裕を有する値を希釈不要上限濃度として定め、図4のグラフ中、破線Lbで示している。例えば、周囲温度計55が検出した周囲温度が15℃の場合、吸収液Sの結晶濃度が60%のところ、周囲温度(15℃)における結晶濃度に対して余裕分を加味した濃度(例えば周囲温度が15℃における吸収液の濃度59%)を希釈不要上限濃度とし、これを各周囲温度について求めたものの線図が破線Lbとなる。なお、所定の余裕分を、周囲温度が高いほど大きく、低いほど小さくした、一点鎖線Ldのような可変としてもよい。 The graph of FIG. 4 shows an example of the relationship between the crystal concentration of the absorbent S and the upper limit concentration that does not require dilution with respect to the ambient temperature (sometimes simply referred to as “ambient temperature”). In the graph of FIG. 4, the solid line Ls shows the relationship between the ambient temperature and the crystal concentration of the absorbent S. In the present embodiment, a value having a predetermined margin with respect to the crystal concentration of the absorbent S is defined as the upper limit concentration that does not require dilution, and is indicated by the broken line Lb in the graph of FIG. For example, when the ambient temperature detected by the ambient temperature gauge 55 is 15 ° C., where the crystal concentration of the absorbing solution S is 60%, the concentration (for example, ambient) in which a margin is added to the crystal concentration at the ambient temperature (15 ° C.). The concentration of the absorbing liquid at a temperature of 15 ° C. (59%) is set as the upper limit concentration that does not require dilution, and the diagram obtained for each ambient temperature is shown by the broken line Lb. The predetermined margin may be variable, such as the alternate long and short dash line Ld, which increases as the ambient temperature increases and decreases as the ambient temperature decreases.

再び主に図2及び図3に戻って、吸収冷凍機1の停止時の手順の説明を続ける。吸収液Sの濃度が希釈不要上限濃度以下か否かを判断する工程(S3)において、希釈不要上限濃度以下の場合、制御装置60は、加熱部31における加熱を停止する(S5)。次に、制御装置60は、冷媒未混入停止回数Nが所定の回数以上か否かを判断する(S6)。ここで、冷媒未混入停止回数Nは、吸収液Sへの冷媒液Vfの混入を伴う希釈運転を最後に実施した後に吸収冷凍機1を停止してから、吸収液Sへの冷媒液Vfの混入を行わずに吸収冷凍サイクルを停止した回数である。吸収冷凍機1では、運転中に、吸収液Sの飛散や、再生器冷媒蒸気Vgに吸収液Sの液滴が随伴すること等により、冷媒Vの系統への吸収液Sの混入が生じ得る。冷媒Vの系統への吸収液Sの混入は、吸収冷凍機1における冷水Cの冷却性能の低下を引き起こし得る。そこで、冷媒液Vfを吸収液Sの系統に混入させると、冷媒Vの系統に吸収液Sが混入していた場合に、吸収液Sを含んだ冷媒液Vfを吸収液Sの系統に導入することができることとなり、後に吸収冷凍サイクルを行って冷媒Vを蒸発させて冷媒Vの系統に戻すことで、冷媒Vの系統を浄化することができる。このため、吸収冷凍機1では、少なくとも冷媒未混入停止回数Nが所定の回数となるごとに冷媒液Vfを吸収液Sの系統に混入させて、冷媒Vの系統における吸収液Sの濃度が上昇することを抑制することとしている。 Mainly returning to FIGS. 2 and 3, the description of the procedure when the absorption chiller 1 is stopped will be continued. In the step (S3) of determining whether or not the concentration of the absorbing liquid S is equal to or less than the upper limit concentration requiring dilution, the control device 60 stops heating in the heating unit 31 when the concentration is equal to or less than the upper limit concentration requiring dilution (S5). Next, the control device 60 determines whether or not the number of times N for stopping the non-mixing of the refrigerant is equal to or greater than a predetermined number (S6). Here, the number of times N for stopping the non-mixing of the refrigerant is such that after the absorption chiller 1 is stopped after the last dilution operation involving the mixing of the refrigerant liquid Vf in the absorbing liquid S, the refrigerant liquid Vf in the absorbing liquid S is stopped. This is the number of times the absorption refrigeration cycle was stopped without mixing. In the absorption chiller 1, the absorption liquid S may be mixed into the system of the refrigerant V due to the scattering of the absorption liquid S or the accompanying droplets of the absorption liquid S in the regenerator refrigerant vapor Vg during operation. .. Mixing the absorbing liquid S into the system of the refrigerant V may cause a deterioration in the cooling performance of the cold water C in the absorption chiller 1. Therefore, when the refrigerant liquid Vf is mixed into the system of the absorption liquid S, when the absorption liquid S is mixed in the system of the refrigerant V, the refrigerant liquid Vf containing the absorption liquid S is introduced into the system of the absorption liquid S. It is possible to purify the system of the refrigerant V by performing an absorption refrigeration cycle later to evaporate the refrigerant V and return it to the system of the refrigerant V. Therefore, in the absorption chiller 1, the refrigerant liquid Vf is mixed into the absorption liquid S system at least every time the refrigerant non-mixing stop count N reaches a predetermined number, and the concentration of the absorption liquid S in the refrigerant V system increases. It is supposed to suppress doing.

冷媒未混入停止回数Nが所定の回数以上か否かを判断する工程(S6)において、所定の回数以上でない(所定の回数未満である)場合、制御装置60は、その時点での冷媒未混入停止回数Nに1を加算し(S7)、吸収冷凍機1を待機停止する(S9)。吸収冷凍機1の待機停止は、吸収冷凍機1の希釈運転を行わずに吸収冷凍機1を停止状態とすることであり、必要に応じて定常運転を開始できるように待機している状態である。 In the step (S6) of determining whether or not the number of times N for stopping the non-mixing of the refrigerant is not more than the predetermined number of times, if the number of times is not more than the predetermined number (less than the predetermined number of times), the control device 60 is not mixed with the refrigerant at that time. 1 is added to the number of stops N (S7), and the absorption chiller 1 is stopped on standby (S9). The standby stop of the absorption chiller 1 is to put the absorption chiller 1 in a stopped state without performing the dilution operation of the absorption chiller 1, and in a state of waiting so that the steady operation can be started as needed. is there.

少し戻って、吸収液Sの濃度が希釈不要上限濃度以下か否かを判断する工程(S3)において、希釈不要上限濃度以下でない場合、制御装置60は、吸収冷凍機1を低加熱運転の状態にする(S11)。低加熱運転は、吸収液Sの系統に冷媒液Vfを混入させない状態で、溶液ポンプ19の運転を継続させつつ、加熱部31による再生器30への入熱量を所定の熱量に減少させた運転状態である。所定の熱量は、典型的には、再生器30内の飽和状態を維持できる範囲で可能な限り減少させた熱量である。このようにすると、再生器30内の飽和状態を維持しつつ熱エネルギーの消費量を抑制することができる。ここで、低加熱運転とするのは、仮に再生器30への入熱を完全に停止した場合は再生器30内の飽和状態を維持できなくなって演算濃度と実際の濃度との乖離が大きくなってしまうからである。低加熱運転を開始したら(S11)、制御装置60は、濃溶液温度計51で検出した温度及び冷媒温度計52で検出した温度に基づいて演算濃度を算出する(S12)。なお、演算濃度を算出する工程(S12)は、低加熱運転を開始する工程(S11)と並行して行ってもよく、低加熱運転を開始する工程(S11)の前に行ってもよい。つまり、演算濃度を算出する工程(S12)は、少なくとも低加熱運転を行っているときに(少なくとも加熱部31に再生器30内の飽和状態を維持できる入熱量がある場合に)行われる。 In the step (S3) of determining whether or not the concentration of the absorption liquid S is not less than or equal to the upper limit concentration requiring dilution, the control device 60 is in a state of low heating operation of the absorption chiller 1 when the concentration is not less than or lower than the upper limit concentration requiring dilution. (S11). The low heating operation is an operation in which the amount of heat input to the regenerator 30 by the heating unit 31 is reduced to a predetermined amount while continuing the operation of the solution pump 19 in a state where the refrigerant liquid Vf is not mixed in the system of the absorbing liquid S. It is in a state. The predetermined amount of heat is typically the amount of heat reduced as much as possible within the range in which the saturated state in the regenerator 30 can be maintained. By doing so, it is possible to suppress the consumption of heat energy while maintaining the saturated state in the regenerator 30. Here, the low heating operation is performed because if the heat input to the regenerator 30 is completely stopped, the saturated state in the regenerator 30 cannot be maintained and the difference between the calculated concentration and the actual concentration becomes large. Because it will end up. After starting the low heating operation (S11), the control device 60 calculates the calculated concentration based on the temperature detected by the concentrated solution thermometer 51 and the temperature detected by the refrigerant thermometer 52 (S12). The step of calculating the calculated concentration (S12) may be performed in parallel with the step of starting the low heating operation (S11), or may be performed before the step of starting the low heating operation (S11). That is, the step (S12) of calculating the calculated concentration is performed at least when the low heating operation is performed (at least when the heating unit 31 has a heat input amount capable of maintaining the saturated state in the regenerator 30).

次に、制御装置60は、演算濃度が所定の値未満か否かを判断する(S13)。所定の値は、吸収液Sの温度が周囲環境温度まで低下しても結晶しない濃度の上限に余裕分を加えた値である。所定の値は、本実施の形態では、前述の希釈不要上限濃度と同様、周囲環境温度に応じて可変であることとしている(図4参照)。ここで、演算濃度が実際の吸収液Sの濃度から大きく乖離しているとすると、吸収冷凍機1の停止の判断に影響を及ぼすことになるため、以下に演算濃度と実際の吸収液Sの濃度との差について述べる。 Next, the control device 60 determines whether or not the calculated density is less than a predetermined value (S13). The predetermined value is a value obtained by adding a margin to the upper limit of the concentration that does not crystallize even if the temperature of the absorbing liquid S drops to the ambient temperature. In the present embodiment, the predetermined value is variable according to the ambient temperature, as in the case of the above-mentioned upper limit concentration that does not require dilution (see FIG. 4). Here, if the calculated concentration deviates significantly from the actual concentration of the absorption liquid S, it will affect the determination of stopping the absorption chiller 1. Therefore, the calculated concentration and the actual absorption liquid S are described below. The difference from the concentration will be described.

図5に演算濃度と実際の吸収液Sの濃度との差を示す。図5は、横軸に希釈時間をとり、縦軸に再生器30の吸収液Sの濃度をとっている。図5中、実線Ccが演算濃度、破線Caが実際の吸収液Sの濃度を表している。図5に示すように、希釈運転の開始時に同じ値を示していた両者は、時間の経過と共に演算濃度が実際よりも低くなるように乖離していくが、ある時間(図5に示す例では10分後)以降は乖離幅が広がらなくなる。この乖離は、希釈運転の要否を判断する実用上は誤差の範囲であり、この誤差の分を余裕分としてみて所定の値を決定すれば差し支えない。 FIG. 5 shows the difference between the calculated concentration and the actual concentration of the absorbent S. In FIG. 5, the horizontal axis represents the dilution time, and the vertical axis represents the concentration of the absorbent S of the regenerator 30. In FIG. 5, the solid line Cc represents the calculated concentration, and the broken line Ca represents the actual concentration of the absorbent S. As shown in FIG. 5, the two showing the same value at the start of the dilution operation deviate from each other so that the calculated concentration becomes lower than the actual value with the passage of time, but for a certain time (in the example shown in FIG. 5). After 10 minutes), the dissociation width will not widen. This deviation is within the range of an error in practical use for determining the necessity of dilution operation, and a predetermined value may be determined by considering this error as a margin.

再び主に図2及び図3に戻ると、演算濃度が所定の値未満か否かを判断する工程(S13)において、所定の値未満の場合は、加熱部31における加熱を停止する工程(S5)に進む。他方、所定の値未満でない場合、制御装置60は、低加熱運転を開始してから所定の時間が経過したか否かを判断する(S14)。所定の時間は、加熱部31による発熱に関するエネルギー消費量を考慮しつつ、演算濃度が所定の値未満になることを待つのを許容できる時間であり、例えば10分〜15分程度としてもよい。所定の時間が経過したか否かを判断する工程(S14)において、所定の時間が経過していない場合は、演算濃度を算出する工程(S12)に戻る。 Mainly returning to FIGS. 2 and 3, in the step (S13) of determining whether or not the calculated concentration is less than the predetermined value, if it is less than the predetermined value, the step of stopping the heating in the heating unit 31 (S5). ). On the other hand, if it is not less than a predetermined value, the control device 60 determines whether or not a predetermined time has elapsed since the start of the low heating operation (S14). The predetermined time is a time that allows waiting for the calculated concentration to become less than a predetermined value while considering the energy consumption related to heat generation by the heating unit 31, and may be, for example, about 10 minutes to 15 minutes. In the step (S14) of determining whether or not the predetermined time has elapsed, if the predetermined time has not elapsed, the process returns to the step of calculating the calculated concentration (S12).

所定の時間が経過したか否かを判断する工程(S14)において、所定の時間が経過した場合、制御装置60は、加熱部31における加熱を停止する(S15)。次に、制御装置60は、冷媒未混入停止回数Nが所定の回数以上か否かを判断する(S16)。この工程(S16)は、前述の工程(S6)と同じ内容であるが、その後の工程が前述の工程(S6)と異なるので、独立した工程として規定している。冷媒未混入停止回数Nが所定の回数以上か否かを判断する工程(S16)において、所定の回数以上の場合、制御装置60は、冷媒未混入停止回数Nを0にして(S18)、冷媒移送を伴う希釈運転を行い(S19)、吸収冷凍機1を停止する(S29)。なお、前述の冷媒未混入停止回数Nが所定の回数以上か否かを判断する工程(S6)において所定の回数以上の場合も、冷媒未混入停止回数Nを0にする工程(S18)に進み、以降、上述のフローに従う。 In the step (S14) of determining whether or not the predetermined time has elapsed, when the predetermined time has elapsed, the control device 60 stops the heating in the heating unit 31 (S15). Next, the control device 60 determines whether or not the number of times N for stopping the non-mixing of the refrigerant is equal to or greater than a predetermined number (S16). This step (S16) has the same contents as the above-mentioned step (S6), but since the subsequent steps are different from the above-mentioned step (S6), it is defined as an independent step. In the step (S16) of determining whether or not the number of times N of refrigerant non-mixed stops is equal to or greater than a predetermined number of times, the control device 60 sets the number of times N of non-mixed refrigerant stopped N to 0 (S18) and the refrigerant is not mixed. A dilution operation accompanied by transfer is performed (S19), and the absorption chiller 1 is stopped (S29). In the step (S6) of determining whether or not the above-mentioned number of non-refrigerant stop counts N is equal to or greater than the predetermined number of times, the process proceeds to the step (S18) of setting the number of non-refrigerant stop counts N to 0. After that, follow the above flow.

冷媒未混入停止回数Nが所定の回数以上か否かを判断する工程(S16)において、所定の回数以上でない(所定の回数未満である)場合、制御装置60は、希釈運転を行う(S21)。この希釈運転(S21)は、溶液攪拌及び冷媒移送のいずれか一方又は両方を行う。加熱部31への入熱を停止した状態で溶液攪拌を行うことにより、濃溶液Saと希溶液Swとの濃度差が小さくなり、濃溶液Saの濃度が低下して、吸収液Sが結晶することを回避することができる。冷媒移送を行うことにより、濃溶液管38内の濃溶液Saが冷媒液Vfで薄められて濃度が低下し、吸収液Sが結晶することを回避することができる。また、冷媒移送を行うことにより、上述のように、冷媒Vの系統を浄化することができる。 In the step (S16) of determining whether or not the number of times N for stopping the non-mixing of the refrigerant is equal to or more than a predetermined number of times, if it is not more than or equal to the predetermined number of times (less than the predetermined number of times), the control device 60 performs a dilution operation (S21). .. In this dilution operation (S21), either one or both of solution stirring and refrigerant transfer are performed. By stirring the solution while the heat input to the heating unit 31 is stopped, the concentration difference between the concentrated solution Sa and the dilute solution Sw becomes small, the concentration of the concentrated solution Sa decreases, and the absorbing solution S crystallizes. Can be avoided. By transferring the refrigerant, it is possible to prevent the concentrated solution Sa in the concentrated solution pipe 38 from being diluted with the refrigerant liquid Vf to reduce the concentration and crystallize the absorbing liquid S. Further, by transferring the refrigerant, the system of the refrigerant V can be purified as described above.

希釈運転(S21)を行ったら、制御装置60は、冷媒移送を実施したか否か(吸収液Sへの冷媒液Vfの混入があったか否か)を判断する(S23)。冷媒移送を実施したか否かは、冷媒液混入弁72を所定時間開にしたか否かで判断することができる。冷媒移送を実施していない場合は、その時点での冷媒未混入停止回数Nに1を加算する(S27)。冷媒移送を実施した場合は、冷媒未混入停止回数Nを0にする(S28)。冷媒未混入停止回数Nに1を加算したら(S27)、又は冷媒未混入停止回数Nを0にしたら(S28)、制御装置60は、吸収冷凍機1を停止する工程(S29)に進む。 After the dilution operation (S21) is performed, the control device 60 determines whether or not the refrigerant transfer has been performed (whether or not the refrigerant liquid Vf is mixed in the absorption liquid S) (S23). Whether or not the refrigerant transfer has been carried out can be determined by whether or not the refrigerant liquid mixing valve 72 is opened for a predetermined time. When the refrigerant transfer is not performed, 1 is added to the number of times N of refrigerant non-mixing stops at that time (S27). When the refrigerant is transferred, the number of non-refrigerant stop counts N is set to 0 (S28). When 1 is added to the refrigerant non-mixed stop count N (S27) or when the refrigerant non-mixed stop count N is set to 0 (S28), the control device 60 proceeds to the step of stopping the absorption chiller 1 (S29).

引き続き、吸収冷凍機1が待機停止(S9)又は停止(S29)している状態から、吸収冷凍機1を再起動する手順を説明する。なお、前述のように、待機停止(S9)は希釈運転を行わずに吸収冷凍機1が停止している状態であり、停止(29)は希釈運転を行ってから吸収冷凍機1が停止している状態である。待機停止(S9)している状態において、制御装置60は、再起動指令があったか否かを判断する(S31)。再起動指令がない場合は、再起動指令があったか否かを判断する工程(S31)に戻る。他方、再起動指令があった場合、制御装置60は、吸収冷凍機1の再起動を行う(S32)。吸収冷凍機1の再起動は、冷媒液混入弁72が閉じていることを確認した後、溶液ポンプ19、冷媒ポンプ29、冷却水ポンプ91、冷水ポンプ92を起動し、加熱部31に熱を投入することで行う。ここでの再起動(S32)は、吸収冷凍機1が希釈運転せずに待機停止していたものであるから、吸収冷凍機1中では濃溶液Saと希溶液Swとの間に所定の濃度差がついている。所定の濃度差は、所望の温度の冷水Cを製造可能な吸収液Sと冷媒Vとの吸収冷凍サイクルを形成できる濃度差である。再起動(S32)を行う際に濃溶液Saと希溶液Swとの間に所定の濃度差がついていると、再起動(S32)の後、濃溶液Saと希溶液Swとの間に所定の濃度差をつける起動運転を行わずに定常運転に移行することができ、再起動の開始から定常運転に至るまでに要する時間を大幅に短縮することができるのみならず、起動運転時に必要となるエネルギー消費量を削減することができる。 Subsequently, the procedure for restarting the absorption chiller 1 from the state in which the absorption chiller 1 is on standby (S9) or stopped (S29) will be described. As described above, the standby stop (S9) is a state in which the absorption chiller 1 is stopped without performing the dilution operation, and the stop (29) is a state in which the absorption chiller 1 is stopped after performing the dilution operation. It is in a state of being. In the state of standby stop (S9), the control device 60 determines whether or not there is a restart command (S31). If there is no restart command, the process returns to the step (S31) of determining whether or not there is a restart command. On the other hand, when there is a restart command, the control device 60 restarts the absorption chiller 1 (S32). To restart the absorption chiller 1, after confirming that the refrigerant liquid mixing valve 72 is closed, the solution pump 19, the refrigerant pump 29, the cooling water pump 91, and the chilled water pump 92 are started to heat the heating unit 31. It is done by throwing it in. In the restart (S32) here, since the absorption chiller 1 did not perform the dilution operation and was stopped on standby, a predetermined concentration was formed between the concentrated solution Sa and the dilute solution Sw in the absorption chiller 1. There is a difference. The predetermined concentration difference is a concentration difference capable of forming an absorption refrigeration cycle between the absorption liquid S capable of producing cold water C at a desired temperature and the refrigerant V. If there is a predetermined concentration difference between the concentrated solution Sa and the dilute solution Sw when the restart (S32) is performed, a predetermined concentration difference is found between the concentrated solution Sa and the dilute solution Sw after the restart (S32). It is possible to shift to steady operation without performing start operation with a difference in concentration, and not only can the time required from the start of restart to steady operation be significantly shortened, but also it is required at start operation. Energy consumption can be reduced.

他方、吸収冷凍機1が希釈運転を行った後に停止(S29)している状態において、制御装置60は、再起動指令があったか否かを判断する(S33)。再起動指令がない場合は、再び再起動指令があったか否かを判断する工程(S33)に戻る。再起動指令があった場合、制御装置60は、吸収冷凍機1の再起動を行う(S35)。ここでの再起動は、上述の再起動工程(S32)と同様、冷媒液混入弁72が閉じていることを確認した後、溶液ポンプ19、冷媒ポンプ29、冷却水ポンプ91、冷水ポンプ92を起動し、加熱部31に熱を投入することで行う。このとき、吸収冷凍機1は、吸収液Sの希釈が行われて停止していたため、吸収液Sの濃度分布が吸収冷凍機1の所望の能力を発揮できる状態ではないので、濃溶液Saと希溶液Swとの間に所定の濃度差をつける起動運転を行う(S37)。起動運転中は、冷水ポンプ92の起動によって冷水Cが流動しているが、冷水Cが所望の温度に冷却されないため、冷水Cは空気調和機等の負荷には供給されない。起動運転を行うと、次第に濃溶液Saと希溶液Swとの間に濃度差がついてきて、やがて定常運転状態(所望の冷凍能力を発揮できる運転状態)に到達する。吸収冷凍機1の再起動を開始してから定常運転の状態に至るまでには相当の時間を要する。 On the other hand, in the state where the absorption chiller 1 is stopped (S29) after the dilution operation is performed, the control device 60 determines whether or not there is a restart command (S33). If there is no restart command, the process returns to the step (S33) of determining whether or not there is a restart command again. When there is a restart command, the control device 60 restarts the absorption chiller 1 (S35). In the restart here, as in the restart step (S32) described above, after confirming that the refrigerant liquid mixing valve 72 is closed, the solution pump 19, the refrigerant pump 29, the cooling water pump 91, and the chilled water pump 92 are restarted. This is performed by starting and applying heat to the heating unit 31. At this time, since the absorption chiller 1 was stopped due to the dilution of the absorption liquor S, the concentration distribution of the absorption chiller S was not in a state where the desired capacity of the absorption chiller 1 could be exhibited. A start-up operation is performed in which a predetermined concentration difference is provided between the dilute solution and Sw (S37). During the start-up operation, the cold water C is flowing by starting the cold water pump 92, but since the cold water C is not cooled to a desired temperature, the cold water C is not supplied to the load of the air conditioner or the like. When the start-up operation is performed, a concentration difference gradually increases between the concentrated solution Sa and the dilute solution Sw, and eventually a steady operation state (an operation state capable of exerting a desired refrigerating capacity) is reached. It takes a considerable amount of time from the start of restarting the absorption chiller 1 to the state of steady operation.

ところで、吸収冷凍機1を設置場所に設置した直後、あるいは、メンテナンス等のために吸収冷凍機1から吸収液S及び冷媒Vを抜いたときは、吸収冷凍機1内に吸収液S及び冷媒Vが入っていない場合がある。この場合、吸収冷凍機1を作動させる前に、吸収冷凍機1内に吸収液S及び冷媒Vを注入することとなる。このとき、吸収冷凍機1の内部構成部材の表面に被膜を形成するため、適量のモリブデンを吸収液Sに混入させるとよい。モリブデンは、吸収液Sの濃度が低い方が吸収液S中への溶解が促進する。そのため、吸収冷凍機1に吸収液S及び冷媒Vを注入してから所定の運転時間が経過するまで又は所定の運転回数が経過するまで(以下、両者を併せて「所定の条件が充足するまで」という。)は、吸収冷凍機1を停止する指令があった際、希釈不要上限濃度以下か否かや演算濃度が所定の値未満か否かにかかわらず、溶液攪拌及び冷媒移送の両方を伴う希釈運転を行うとよい。なお、運転回数とは、吸収液S及び冷媒Vの吸収サイクルが停止した状態から吸収サイクルが作動した回数である。所定の条件が充足するまで溶液攪拌及び冷媒移送の両方を伴う希釈運転を行う場合は、図6に示すように、図2及び図3のフローチャートにおいて、停止指令があったか否かを判断する工程(S1)において停止指令があった後、所定の条件が充足したか否かを判断し(S2)、所定の条件が充足していない場合は希釈運転を行う工程(S21)に進み、所定の条件が充足している場合は吸収液Sの濃度が希釈不要上限濃度以下か否かを判断する工程(S3)に進むようにするとよい。 By the way, immediately after the absorption chiller 1 is installed at the installation location, or when the absorption chiller S and the refrigerant V are removed from the absorption chiller 1 for maintenance or the like, the absorption chiller S and the refrigerant V are contained in the absorption chiller 1. May not be included. In this case, the absorption liquid S and the refrigerant V are injected into the absorption chiller 1 before the absorption chiller 1 is operated. At this time, in order to form a film on the surface of the internal constituent members of the absorption chiller 1, it is advisable to mix an appropriate amount of molybdenum into the absorption liquid S. The lower the concentration of the absorption liquid S, the faster the dissolution of molybdenum in the absorption liquid S. Therefore, from the injection of the absorption liquid S and the refrigerant V into the absorption chiller 1 until a predetermined operation time elapses or a predetermined number of operations elapses (hereinafter, both are collectively "until the predetermined conditions are satisfied". When there is a command to stop the absorption chiller 1, both solution stirring and refrigerant transfer are performed regardless of whether or not the concentration is below the upper limit concentration that does not require dilution and whether or not the calculated concentration is less than a predetermined value. It is advisable to carry out the accompanying dilution operation. The number of operations is the number of times the absorption cycle is operated from the state in which the absorption cycle of the absorption liquid S and the refrigerant V is stopped. When the dilution operation involving both solution stirring and refrigerant transfer is performed until the predetermined conditions are satisfied, as shown in FIG. 6, in the flowcharts of FIGS. 2 and 3, it is determined whether or not there is a stop command ( After the stop command is given in S1), it is determined whether or not the predetermined conditions are satisfied (S2), and if the predetermined conditions are not satisfied, the process proceeds to the step of performing the dilution operation (S21), and the predetermined conditions are satisfied. If is satisfied, it is advisable to proceed to the step (S3) of determining whether or not the concentration of the absorbing solution S is equal to or less than the upper limit concentration requiring dilution.

以上で説明した吸収冷凍機1のフロー(停止時の手順)は、典型的には、制御装置60にインストールされた制御プログラムによって実行される。したがって、フローにおける設定値の変更、工程の一部の追加又は省略、アップデート等を容易に行うことができると共に、制御プログラムの提供(配布)を有線又は無線のネットワークを介して簡便に行うことができる。 The flow of the absorption chiller 1 described above (procedure at the time of stopping) is typically executed by a control program installed in the control device 60. Therefore, it is possible to easily change the set value in the flow, add or omit a part of the process, update, etc., and easily provide (distribute) the control program via a wired or wireless network. it can.

以上で説明したように、本実施の形態に係る吸収冷凍機1によれば、停止指令を受けた際に、吸収液Sの濃度が希釈不要上限濃度以下の場合、あるいは吸収液Sの濃度が希釈不要上限濃度以下でない場合であっても低加熱運転を行っているときに演算濃度が所定の値未満となった場合に、冷媒未混入停止回数Nが所定の回数以上でなければ、直ちに吸収液Sの希釈を行うことはせずに、待機停止とし、その後に再起動の指令を受けた場合に、起動運転を行わずに定常運転に移行することができるので、吸収液Sの希釈及び起動運転に要するエネルギーを削減することができると共に、再起動から定常運転に至るまでの時間を短縮することができる。また、演算濃度は少なくとも低加熱運転を行っているときに算出されるので、吸収液Sの濃度を適切に把握することができる。 As described above, according to the absorption refrigerator 1 according to the present embodiment, when the stop command is received, the concentration of the absorption liquid S is equal to or less than the upper limit concentration requiring dilution, or the concentration of the absorption liquid S is high. Even if the concentration is not less than the upper limit concentration that does not require dilution, if the calculated concentration is less than the specified value during low heating operation and the number of times N of refrigerant non-mixing stops is not more than the specified number, it is immediately absorbed. If the standby stop is performed without diluting the liquid S and then a restart command is received, it is possible to shift to the steady operation without performing the start operation. Therefore, the absorption liquid S is diluted and the liquid S is diluted. The energy required for the start-up operation can be reduced, and the time from the restart to the steady operation can be shortened. Further, since the calculated concentration is calculated at least when the low heating operation is performed, the concentration of the absorbing liquid S can be appropriately grasped.

以上の説明では、再生器圧力相関値検出部が、再生器30内の圧力と相関を有する物理量である再生器30内の冷媒Vの露点温度を検出する冷媒温度計52であるとしたが、再生器30内の圧力を検知する圧力計等であってもよい。また、演算濃度が、濃溶液温度計51で検出された温度及び冷媒温度計52で検出された温度から演算されるものとしたが、再生器30内の圧力を検出すると共に再生器30内の吸収液Sの温度を検出して、これらの検出した圧力及び温度から濃度を演算してもよい。 In the above description, it is assumed that the regenerator pressure correlation value detection unit is a refrigerant thermometer 52 that detects the dew point temperature of the refrigerant V in the regenerator 30, which is a physical quantity that correlates with the pressure in the regenerator 30. It may be a pressure gauge or the like that detects the pressure in the regenerator 30. Further, the calculated concentration is calculated from the temperature detected by the concentrated solution thermometer 51 and the temperature detected by the refrigerant thermometer 52, but the pressure in the regenerator 30 is detected and the temperature in the regenerator 30 is detected. The temperature of the absorption liquid S may be detected, and the concentration may be calculated from the detected pressure and temperature.

以上の説明では、吸収液濃度関連値は、演算濃度が兼ねることとしたが、例えば再生器30の出口の濃溶液Saの濃度を検出する濃溶液濃度計を濃溶液管38に設けて濃溶液濃度計で検出された吸収液Sの濃度としてもよく、あるいは、吸収液Sの濃度に関連する物理量(再生器30の出口の吸収液Sの温度・密度、再生器30の内部の圧力・露点温度等)、希溶液Swの濃度、冷媒Vのレベル、吸収器10における吸収液Sのレベル、吸収冷凍機1の冷凍負荷率、冷却水Dの温度、溶液ポンプ19や冷媒ポンプ29等のインバータ周波数、加熱部31における加熱量(加熱量調節弁の開度を含む)等のうちの単体、あるいはこれらのうちの複数の組み合わせとしてもよい。しかしながら、装置構成のコストを低減する観点から、濃溶液濃度計の使用を回避することが好ましい。 In the above description, it is assumed that the absorption liquid concentration-related value also serves as the calculated concentration. For example, a concentrated solution concentration meter for detecting the concentration of the concentrated solution Sa at the outlet of the regenerator 30 is provided in the concentrated solution tube 38 to provide a concentrated solution. It may be the concentration of the absorption solution S detected by the densitometer, or a physical amount related to the concentration of the absorption solution S (temperature / density of the absorption solution S at the outlet of the regenerator 30, pressure / dew point inside the regenerator 30). Temperature, etc.), concentration of dilute solution Sw, level of refrigerant V, level of absorption liquid S in absorber 10, refrigerating load factor of absorption refrigerator 1, temperature of cooling water D, inverter of solution pump 19 or refrigerant pump 29, etc. It may be a single unit of the frequency, the amount of heating in the heating unit 31 (including the opening degree of the heating amount adjusting valve), or a combination of a plurality of these. However, from the viewpoint of reducing the cost of the device configuration, it is preferable to avoid the use of the concentrated solution concentration meter.

以上の説明では、周囲環境温度関連値が再生器30の近傍の大気温度であるとしたが、この他、吸収冷凍機1の最外部の筐体の温度等、周囲環境温度に関連する物理量であってもよい。 In the above explanation, the value related to the ambient temperature is the atmospheric temperature in the vicinity of the regenerator 30, but in addition to this, physical quantities related to the ambient temperature such as the temperature of the outermost housing of the absorption chiller 1 are used. There may be.

以上の説明では、希釈不要上限濃度及び所定の値が周囲環境温度に応じて可変であるとしたが、希釈不要上限濃度及び所定の値のいずれか一方又は両方が周囲環境温度にかかわらず(安全を見て低めに設定した)決められた値としてもよい。このようにすると、制御を簡素化できる。 In the above explanation, it is assumed that the upper limit concentration without dilution and the predetermined value are variable according to the ambient temperature, but either one or both of the upper limit concentration without dilution and the predetermined value is not related to the ambient temperature (safety). It may be a fixed value (set lower by looking at). In this way, control can be simplified.

以上の説明では、冷媒未混入停止回数Nが所定の回数以上か否か(S6、S16)によって、冷媒移送を伴う希釈を行うか否かを決定することとしたが、冷媒未混入停止回数Nが所定の回数以上か否かに代えて、凝縮器40及び/又は蒸発器20に貯留された冷媒液Vfへの吸収液Sの混入があったか否かを判断することとしてもよい。この場合、図2において冷媒未混入停止回数Nに関する工程(S7、S18、S23、S27、S28)を省略することができ、冷媒液Vfへの吸収液Sの混入があった場合は冷媒移送を伴う希釈運転を行う工程(S19)に進み、工程(S6)の代替で冷媒液Vfへの吸収液Sの混入がなかった場合は吸収冷凍機1を待機停止する工程(S9)に、工程(S16)の代替で冷媒液Vfへの吸収液Sの混入がなかった場合は希釈運転を行う工程(S21)に、それぞれ進むことになる。なお、冷媒液Vfへの吸収液Sの混入があったか否かは、濃度計や露点温度計等を用いて検出することができる。 In the above description, it is determined whether or not the dilution accompanied by the refrigerant transfer is performed depending on whether or not the number of times N of refrigerant non-mixing stops N is equal to or more than a predetermined number of times (S6, S16). It may be determined whether or not the absorption liquid S is mixed in the refrigerant liquid Vf stored in the condenser 40 and / or the evaporator 20 instead of whether or not is more than a predetermined number of times. In this case, in FIG. 2, the steps (S7, S18, S23, S27, S28) related to the number of times N of refrigerant non-mixing stops can be omitted, and when the absorption liquid S is mixed in the refrigerant liquid Vf, the refrigerant is transferred. Proceeding to the step (S19) of performing the accompanying dilution operation, and in the step (S9) of stopping the absorption chiller 1 on standby when the absorption liquid S is not mixed in the refrigerant liquid Vf instead of the step (S6), the step (S9). If the absorbing liquid S is not mixed in the refrigerant liquid Vf as an alternative to S16), the process proceeds to the step (S21) of performing the dilution operation. Whether or not the absorbing liquid S is mixed in the refrigerant liquid Vf can be detected by using a hygrometer, a dew point thermometer, or the like.

以上の説明では、冷却水Dが、吸収器11に導入された後に凝縮器40に導入される構成を例示したが、凝縮器40に導入された後に吸収器11に導入される構成であってもよく、吸収器10と凝縮器40とに並列に導入される構成であってもよい。 In the above description, the configuration in which the cooling water D is introduced into the condenser 40 after being introduced into the absorber 11 is illustrated, but the configuration is such that the cooling water D is introduced into the absorber 11 after being introduced into the condenser 40. It may be configured to be introduced in parallel with the absorber 10 and the condenser 40.

以上の説明では、冷却水ポンプ91及び冷水ポンプ92が吸収冷凍機1の構成要素ではないものとしたが、冷却水ポンプ91及び/又は冷水ポンプ92を吸収冷凍機1の構成要素として備えることとしてもよい。しかしながら、冷却水ポンプ91が流動させる冷却水D、及び冷水ポンプ92が流動させる冷水Cは、吸収冷凍機1が設置される場所等の条件によって供給先までの搬送距離や流量等が異なるのが一般的なため、冷却水ポンプ91及び冷水ポンプ92を吸収冷凍機1の構成要素とはせず、吸収冷凍機1の設置場所等に適した能力のものを選定できるようにするのが好ましい。 In the above description, it is assumed that the cooling water pump 91 and the chilled water pump 92 are not components of the absorption chiller 1, but the cooling water pump 91 and / or the chilled water pump 92 is provided as a component of the absorption chiller 1. May be good. However, the cooling water D flowing by the cooling water pump 91 and the cold water C flowing by the chilled water pump 92 differ in the transport distance and the flow rate to the supply destination depending on the conditions such as the place where the absorption chiller 1 is installed. For the sake of generality, it is preferable that the cooling water pump 91 and the chilled water pump 92 are not included in the absorption chiller 1 and that the capacity suitable for the installation location of the absorption chiller 1 can be selected.

以上の説明では、理解の容易のために、吸収冷凍機1が単効用の構成であるとしたが、複数の再生器を有する多重効用の吸収冷凍機、あるいは、動作圧力の異なる複数の蒸発器/吸収器を有する吸収冷凍機にも適用することができる。 In the above description, the absorption chiller 1 has a single-effect configuration for ease of understanding, but a multiple-effect absorption chiller having a plurality of regenerators or a plurality of evaporators having different operating pressures. / It can also be applied to an absorption chiller having an absorber.

以上の説明では、吸収式冷凍機が吸収冷凍機であるとして説明したが、吸収冷温水機、吸収ヒートポンプ等、吸収液Sと冷媒Vとの吸収サイクルが行われる他の吸収式熱源機であってもよい。 In the above explanation, the absorption chiller has been described as an absorption chiller, but it is another absorption heat source machine such as an absorption chiller-heater, an absorption heat pump, etc., in which an absorption cycle between the absorption liquid S and the refrigerant V is performed. You may.

1 吸収冷凍機
10 吸収器
18 希溶液管
19 溶液ポンプ
30 再生器
31 加熱部
38 濃溶液管
51 濃溶液温度計
52 冷媒温度計
55 周囲温度計
60 制御装置
70 冷媒液混入可能部
C 冷水
S 吸収液
Sw 希溶液
V 冷媒
Vf 冷媒液
Vg 再生器冷媒蒸気
1 Absorption Refrigerant 10 Absorber 18 Rare Solution Tube 19 Solution Pump 30 Regenerator 31 Heating Unit 38 Concentrated Solution Tube 51 Concentrated Solution Thermometer 52 Refrigerant Thermometer 55 Ambient Thermometer 60 Control Device 70 Refrigerant Liquid Mixable Part C Cold Water S Absorption Liquid Sw Rare Solution V Refrigerant Vf Refrigerant Liquid Vg Regenerator Refrigerant Steam

Claims (9)

加熱源が供給されることによって構成される吸収液と冷媒との吸収サイクルにより温度調節対象流体の冷却又は加熱を行う吸収式冷凍機であって;
前記冷媒を吸収した前記吸収液を前記加熱源で加熱し、前記吸収液から前記冷媒を離脱させて前記吸収液の濃度を上昇させる再生器と;
前記再生器の圧力又は前記再生器の圧力と相関を有する物理量を検出する再生器圧力相関値検出部と;
前記吸収式冷凍機の内部で前記吸収液が循環するように前記吸収液を流動させる溶液ポンプと;
前記吸収液が循環し得る系統に前記冷媒の液を混入させる状態と混入させない状態とを切り替え可能な冷媒液混入可能部と;
前記吸収式冷凍機を停止する際に、前記吸収液が循環し得る系統に前記冷媒の液を混入させない状態で、前記溶液ポンプの運転を継続させつつ前記再生器に投入される熱量を所定の熱量に減少させた低加熱運転を行い、前記低加熱運転中に前記再生器圧力相関値検出部で検出された値に基づいて演算された前記吸収液の濃度である演算濃度が所定の値未満のときに前記吸収式冷凍機への前記加熱源の供給を停止するように、前記加熱源の供給機構、前記溶液ポンプ及び前記冷媒液混入可能部を制御する制御装置とを備える;
吸収式冷凍機。
An absorption chiller that cools or heats the fluid to be temperature-controlled by the absorption cycle of the absorption liquid and the refrigerant formed by supplying a heating source;
With a regenerator that heats the absorbing liquid that has absorbed the refrigerant with the heating source and separates the refrigerant from the absorbing liquid to increase the concentration of the absorbing liquid;
With a regenerator pressure correlation value detector that detects a physical quantity that correlates with the pressure of the regenerator or the pressure of the regenerator;
With a solution pump that flows the absorption liquid so that the absorption liquid circulates inside the absorption chiller;
A refrigerant liquid-mixable portion capable of switching between a state in which the refrigerant liquid is mixed and a state in which the refrigerant liquid is not mixed in the system in which the absorption liquid can circulate;
When the absorption chiller is stopped, the amount of heat input to the regenerator is determined while continuing the operation of the solution pump without mixing the liquid of the refrigerant into the system in which the absorption liquid can circulate. A low heating operation reduced to a calorific value is performed, and the calculated concentration, which is the concentration of the absorption solution calculated based on the value detected by the regenerator pressure correlation value detection unit during the low heating operation, is less than a predetermined value. A control device for controlling the supply mechanism of the heating source, the solution pump, and the refrigerant liquid mixing unit is provided so as to stop the supply of the heating source to the absorption chiller at the time.
Absorption chiller.
前記制御装置は、前記低加熱運転を開始してから所定の時間が経過しても前記演算濃度が前記所定の値未満とならないときに、前記吸収式冷凍機への前記加熱源の供給を停止すると共に、前記溶液ポンプの作動による前記吸収液が循環し得る系統における前記吸収液の濃度の均一化及び前記冷媒液混入可能部による前記吸収液が循環し得る系統への前記冷媒の液の混入の少なくとも一方を行うことにより前記吸収液を希釈する希釈運転を行うように前記加熱源の供給機構、前記溶液ポンプ及び前記冷媒液混入可能部を制御する;
請求項1に記載の吸収式冷凍機。
The control device stops supplying the heating source to the absorption chiller when the calculated concentration does not fall below the predetermined value even after a predetermined time has elapsed since the start of the low heating operation. At the same time, the concentration of the absorption liquid is made uniform in the system in which the absorption liquid can be circulated by the operation of the solution pump, and the refrigerant liquid is mixed in the system in which the absorption liquid can be circulated by the refrigerant liquid mixing possible portion. The supply mechanism of the heating source, the solution pump, and the refrigerant liquid-mixable portion are controlled so as to perform a dilution operation for diluting the absorption liquid by performing at least one of the above;
The absorption chiller according to claim 1.
前記吸収式冷凍機の周囲の環境の温度に関連する周囲環境温度関連値を把握する周囲環境温度関連値把握部を備え;
前記所定の値は、前記周囲環境温度関連値に応じて変化するように設定された;
請求項1又は請求項2に記載の吸収式冷凍機。
It is equipped with an ambient environment temperature-related value grasping unit that grasps the ambient temperature-related value related to the ambient temperature of the absorption chiller;
The predetermined value was set to change according to the ambient temperature related value;
The absorption chiller according to claim 1 or 2.
前記吸収液の濃度に関連する吸収液濃度関連値を把握する吸収液濃度関連値把握部を備え;
前記制御装置は、前記吸収式冷凍機を停止する際に、前記吸収液濃度関連値把握部で把握された前記吸収液濃度関連値が前記吸収液の希釈が不要な濃度の上限である希釈不要上限濃度以下のときに、前記低加熱運転を行わずかつ前記吸収液を希釈する希釈運転を行わずに前記吸収式冷凍機を停止する;
請求項1乃至請求項3のいずれか1項に記載の吸収式冷凍機。
It is equipped with an absorption liquid concentration-related value grasping unit for grasping the absorption liquid concentration-related value related to the absorption liquid concentration;
In the control device, when the absorption chiller is stopped, the absorption liquid concentration-related value grasped by the absorption liquid concentration-related value grasping unit is the upper limit of the concentration at which the absorption liquid does not need to be diluted. When the concentration is equal to or lower than the upper limit, the absorption chiller is stopped without performing the low heating operation and the dilution operation for diluting the absorption liquid;
The absorption chiller according to any one of claims 1 to 3.
前記吸収式冷凍機の周囲の環境の温度に関連する周囲環境温度関連値を把握する周囲環境温度関連値把握部を備え;
前記希釈不要上限濃度が前記周囲環境温度関連値に応じて変化するように設定された;
請求項4に記載の吸収式冷凍機。
It is equipped with an ambient environment temperature-related value grasping unit that grasps the ambient temperature-related value related to the ambient temperature of the absorption chiller;
The dilution-free upper limit concentration was set to change according to the ambient temperature-related value;
The absorption chiller according to claim 4.
前記制御装置は、前記冷媒液混入可能部による前記吸収液が循環し得る系統への前記冷媒の液の混入を伴わない前記吸収サイクルの停止回数が所定の回数に到達したとき、又は前記冷媒の液が貯留される部分における前記冷媒への前記吸収液の混入を検出したときに、前記演算濃度の値にかかわらず、前記吸収液が循環し得る系統に前記冷媒の液を混入させるように前記冷媒液混入可能部を制御する;
請求項1乃至請求項5のいずれか1項に記載の吸収式冷凍機。
The control device is used when the number of stops of the absorption cycle without mixing the refrigerant liquid into a system in which the absorption liquid can be circulated by the refrigerant liquid mixing unit reaches a predetermined number of times, or when the refrigerant liquid is stopped. When it is detected that the absorbing liquid is mixed with the refrigerant in the portion where the liquid is stored, the refrigerant liquid is mixed into the system in which the absorbing liquid can circulate regardless of the value of the calculated concentration. Control the part where the refrigerant liquid can be mixed;
The absorption chiller according to any one of claims 1 to 5.
前記制御装置は、前記吸収式冷凍機に前記吸収液及び前記冷媒を注入してから所定の運転時間又は所定の運転回数が経過するまでは、前記吸収式冷凍機を停止する際に、前記演算濃度の値にかかわらず、前記溶液ポンプの作動による前記吸収液が循環し得る系統における前記吸収液の濃度の均一化及び前記冷媒液混入可能部による前記吸収液が循環し得る系統への前記冷媒の液の混入の両方を伴う希釈運転を行うように前記溶液ポンプ及び前記冷媒液混入可能部を制御する;
請求項1乃至請求項6のいずれか1項に記載の吸収式冷凍機。
When the absorption chiller is stopped, the control device performs the calculation until a predetermined operation time or a predetermined number of operations elapses after injecting the absorption liquid and the refrigerant into the absorption chiller. Regardless of the value of the concentration, the concentration of the absorption liquid is made uniform in the system in which the absorption liquid can be circulated by the operation of the solution pump, and the refrigerant in the system in which the absorption liquid can be circulated by the refrigerant liquid mixing part. The solution pump and the refrigerant liquid mixing part are controlled so as to perform a dilution operation involving both of the liquids of the above.
The absorption chiller according to any one of claims 1 to 6.
加熱源が供給されることによって構成される吸収液と冷媒との吸収サイクルにより温度調節対象流体の冷却又は加熱を行う吸収式冷凍機を制御するプログラムであって;
前記吸収式冷凍機を構成する再生器の圧力又は前記再生器の圧力と相関を有する物理量に基づいて前記吸収液の濃度を演算する吸収液濃度演算工程と;
前記吸収式冷凍機を停止する際に、前記再生器に投入される熱量を所定の熱量に減少させた低加熱運転を行う低加熱運転工程と;
前記低加熱運転中に前記吸収液濃度演算工程で算出された演算濃度が所定の値未満のときに前記吸収式冷凍機への前記加熱源の供給を停止する加熱源供給停止工程とを備える;
制御プログラム。
A program that controls an absorption chiller that cools or heats a fluid to be temperature-controlled by an absorption cycle of an absorption liquid and a refrigerant composed of a heating source supplied;
With the absorption liquid concentration calculation step of calculating the concentration of the absorption liquid based on the pressure of the regenerator constituting the absorption chiller or the physical quantity correlating with the pressure of the regenerator;
A low heating operation step of performing a low heating operation in which the amount of heat input to the regenerator is reduced to a predetermined amount when the absorption chiller is stopped;
It includes a heating source supply stop step of stopping the supply of the heating source to the absorption chiller when the calculated concentration calculated in the absorption liquid concentration calculation step is less than a predetermined value during the low heating operation;
Control program.
加熱源が供給されることによって構成される吸収液と冷媒との吸収サイクルにより温度調節対象流体の冷却又は加熱を行う吸収式冷凍機を制御する方法であって;
前記吸収式冷凍機を構成する再生器の圧力又は前記再生器の圧力と相関を有する物理量に基づいて前記吸収液の濃度を演算する吸収液濃度演算工程と;
前記吸収式冷凍機を停止する際に、前記再生器に投入される熱量を所定の熱量に減少させた低加熱運転を行う低加熱運転工程と;
前記低加熱運転中に前記吸収液濃度演算工程で算出された演算濃度が所定の値未満のときに前記吸収式冷凍機への前記加熱源の供給を停止する加熱源供給停止工程とを備える;
吸収式冷凍機の制御方法。
It is a method of controlling an absorption chiller that cools or heats a fluid to be temperature-controlled by an absorption cycle of an absorption liquid and a refrigerant formed by supplying a heating source;
With the absorption liquid concentration calculation step of calculating the concentration of the absorption liquid based on the pressure of the regenerator constituting the absorption chiller or the physical quantity correlating with the pressure of the regenerator;
A low heating operation step of performing a low heating operation in which the amount of heat input to the regenerator is reduced to a predetermined amount when the absorption chiller is stopped;
It includes a heating source supply stop step of stopping the supply of the heating source to the absorption chiller when the calculated concentration calculated in the absorption liquid concentration calculation step is less than a predetermined value during the low heating operation;
How to control the absorption chiller.
JP2017042974A 2017-03-07 2017-03-07 Absorption chiller, control program and control method of absorption chiller Active JP6820050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017042974A JP6820050B2 (en) 2017-03-07 2017-03-07 Absorption chiller, control program and control method of absorption chiller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017042974A JP6820050B2 (en) 2017-03-07 2017-03-07 Absorption chiller, control program and control method of absorption chiller

Publications (2)

Publication Number Publication Date
JP2018146190A JP2018146190A (en) 2018-09-20
JP6820050B2 true JP6820050B2 (en) 2021-01-27

Family

ID=63591848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017042974A Active JP6820050B2 (en) 2017-03-07 2017-03-07 Absorption chiller, control program and control method of absorption chiller

Country Status (1)

Country Link
JP (1) JP6820050B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109458753B (en) * 2018-12-27 2024-04-02 双良节能系统股份有限公司 Online detection density flue gas type lithium bromide absorption type low-temperature water chilling unit
KR102229296B1 (en) * 2019-12-30 2021-03-17 엘지전자 주식회사 Apparatus for preventing the crystallization of a solution in absorption type cooler and heater

Also Published As

Publication number Publication date
JP2018146190A (en) 2018-09-20

Similar Documents

Publication Publication Date Title
JP6820050B2 (en) Absorption chiller, control program and control method of absorption chiller
JP6434730B2 (en) Absorption heat source machine
JPH0473064B2 (en)
CN108253656B (en) Absorption chiller, control program, and control method for absorption chiller
JP5097593B2 (en) Absorption heat pump
JP2003343940A (en) Absorption water cooler/heater
JP4721783B2 (en) Operation control method of absorption chiller / heater
JP6814071B2 (en) Absorption chiller system and absorption chiller using waste heat
JP2009058207A (en) Absorption water cooler/heater
JP5993771B2 (en) Absorption refrigerator
JP3943672B2 (en) Absorption refrigerator
JP4315855B2 (en) Absorption refrigerator
JP3603006B2 (en) Absorption refrigerator and control method of absorption refrigerator
JP4115020B2 (en) Control method of absorption refrigerator
KR100330542B1 (en) Absorption refrigerator
KR20220129367A (en) Absorption refrigerating regenerator
JP4145001B2 (en) Absorption refrigerator
JP2017133807A (en) Absorption type refrigerator
JP3831425B2 (en) Control method of absorption chiller / heater
JP3920979B2 (en) Absorption air conditioner control device
JP3660493B2 (en) Absorption refrigeration system controller
JP5181054B2 (en) Absorption refrigerator
JP2011220675A (en) Absorption refrigerating machine
JP2011033261A (en) Absorption type refrigerating machine
JP2002323269A (en) Absorption refrigerating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201223

R150 Certificate of patent or registration of utility model

Ref document number: 6820050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250