JPH06300382A - Double effect absorption type refrigerating machine - Google Patents

Double effect absorption type refrigerating machine

Info

Publication number
JPH06300382A
JPH06300382A JP5083596A JP8359693A JPH06300382A JP H06300382 A JPH06300382 A JP H06300382A JP 5083596 A JP5083596 A JP 5083596A JP 8359693 A JP8359693 A JP 8359693A JP H06300382 A JPH06300382 A JP H06300382A
Authority
JP
Japan
Prior art keywords
aqueous solution
heat exchanger
concentration
low
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5083596A
Other languages
Japanese (ja)
Inventor
Masatoshi Katayama
正敏 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP5083596A priority Critical patent/JPH06300382A/en
Priority to KR1019930015665A priority patent/KR100304019B1/en
Publication of JPH06300382A publication Critical patent/JPH06300382A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To enhance a rise characteristic at the time of restarting of an operation by a method wherein an inhibitor is made to spread over the whole at the time of restarting of the operation, production of a non-condensible gas is suppressed effectively, the number of times of supplement of the inhibitor is lessened and also the time for a diluting operation is shortened. CONSTITUTION:A double effect absorption type refrigerating machine equipped with a high-temperature regenerator 2, a lowtemperature regenerator 4, a condenser 5, an evaporator 6, an absorber 7, a low-temperature heat exchanger 8 and a hightemperature heat exchanger 9 and using a water solution of an absorbent and water as a refrigerant. A supply passage l for supplying the liquid refrigerant in the evaporator 6 into a flow passage of the water solution of the absorbent of high concentration of the low-temperature heat exchanger 8 is provided. A solenoid operated valve 22 is provided for the supply passage 21.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、内部が真空状態とさ
れるとともに、たとえば冷媒である水と吸収剤である臭
化リチウムとからなる臭化リチウム水溶液が封入された
2重効用吸収式冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a double-effect absorption refrigeration system in which a vacuum is formed inside and a lithium bromide aqueous solution containing, for example, water as a refrigerant and lithium bromide as an absorbent is enclosed. Regarding the machine.

【0002】[0002]

【従来の技術】この種2重効用吸収式冷凍機として、従
来、高温再生器、低温再生器、凝縮器、蒸発器、吸収
器、低温熱交換器、高温熱交換器、臭化リチウム水溶液
を吸収器から高温発生器に送る溶液ポンプおよび蒸発器
内の水を再度蒸発器の伝熱管に散布する冷媒循環ポンプ
を備えており、完全密閉の真空状態で使用されるものが
広く知られている。
As a double-effect absorption refrigerator of this kind, conventionally, a high temperature regenerator, a low temperature regenerator, a condenser, an evaporator, an absorber, a low temperature heat exchanger, a high temperature heat exchanger, and a lithium bromide aqueous solution have been used. Equipped with a solution pump that sends from the absorber to the high temperature generator and a refrigerant circulation pump that sprays the water in the evaporator to the heat transfer tubes of the evaporator again, it is widely known that it is used in a completely sealed vacuum state. .

【0003】[0003]

【発明が解決しようとする課題】上記2重効用吸収式冷
凍機において、冷水製造時には、臭化リチウム水溶液
は、高濃度(63〜64wt%)、高温度(150〜1
70℃)になる場合がある。そして、臭化リチウム水溶
液の濃度および温度が高くなるにつれて金属との化学反
応により不凝縮性ガスが発生し易くなり、発生した不凝
縮性ガスが圧力の最も低い吸収器の胴内の伝熱管の回り
に集まり、これにより吸収作用が弱まって吸収式冷凍機
の能力が大幅に低下するという問題があった。不凝縮性
ガスの発生は、特に高温再生器において顕著である。
In the above double-effect absorption refrigerator, the aqueous solution of lithium bromide has a high concentration (63 to 64 wt%) and a high temperature (150 to 1) during cold water production.
70 ° C) in some cases. Then, as the concentration and temperature of the aqueous lithium bromide solution become higher, a non-condensable gas is more likely to be generated due to a chemical reaction with the metal, and the generated non-condensable gas is the heat transfer tube in the body of the absorber having the lowest pressure. There is a problem in that the absorption action is weakened by gathering around, and the capacity of the absorption refrigerator is significantly reduced. The generation of the non-condensable gas is remarkable especially in the high temperature regenerator.

【0004】そこで、上記不凝縮性ガスの発生をおさえ
るために、臭化リチウム水溶液中にモリブデン酸系、ク
ロム酸系、硝酸系などのインヒビターを添加し、インヒ
ビターの作用により金属表面に安定で均一な酸化被膜を
形成させ、これにより不凝縮性ガスの発生を抑制するよ
うになっている。ところで、インヒビターは、吸収式冷
凍機の運転中に徐々に酸化被膜形成のため消費されてそ
の量が不足することになるので、臭化リチウム溶液を分
析してインヒビター量を確認し、消費された分を補充す
る必要がある。また、初期運転時には吸収式冷凍機の内
部表面に酸化被膜を形成してゆくため多量のインヒビタ
ーが消費されていくため、運転開始前には過剰のインヒ
ビターを添加するようになっている。
Therefore, in order to suppress the generation of the non-condensable gas, an inhibitor such as molybdic acid type, chromic acid type or nitric acid type is added to the aqueous solution of lithium bromide, and the action of the inhibitor makes the metal surface stable and uniform. An oxide film is formed to suppress the generation of non-condensable gas. By the way, the inhibitor is gradually consumed during the operation of the absorption chiller due to the formation of an oxide film, and the amount thereof becomes insufficient, so the lithium bromide solution was analyzed and the inhibitor amount was confirmed, and the inhibitor was consumed. Need to replenish the minutes. In addition, since an oxide film is formed on the inner surface of the absorption refrigerator during the initial operation, a large amount of the inhibitor is consumed, so that an excessive amount of the inhibitor is added before the operation is started.

【0005】ところが、高濃度の臭化リチウム水溶液に
おけるインヒビターの溶解度は、温度、アルカリ度より
も臭化リチウム水溶液の濃度に多くの影響を受け、臭化
リチウム水溶液の濃度が高いと、インヒビターの溶解度
が低下する。そして、一般的な吸収式冷凍機の場合、冷
水製造時には臭化リチウム水溶液の濃度は、最も薄い場
合で56〜57wt%、最も濃い場合で62〜63wt
%になり、添加された過剰のインヒビターは、臭化リチ
ウム水溶液濃度が高濃度になり、かつ流速が遅い低温熱
交換器の高濃度水溶液流路内で晶出し、沈殿する。その
結果、全体のインヒビターの添加量が過剰であるにもか
かわらず、臭化リチウム水溶液とともに循環している量
は少なくなり、特にインヒビターは最も必要とされる高
温再生器へは流れていかないため、インヒビターの効果
が十分に得られないという問題がある。しかも、多量に
補充しても効果がないこととなる。また、晶出した結晶
が沈殿し、ピッチング腐食が起こる可能性もある。
However, the solubility of the inhibitor in a high-concentration aqueous solution of lithium bromide is more affected by the concentration of the aqueous solution of lithium bromide than by temperature and alkalinity. When the concentration of the aqueous solution of lithium bromide is high, the solubility of the inhibitor is high. Is reduced. In the case of a general absorption refrigerator, the concentration of the aqueous lithium bromide solution during cold water production is 56 to 57 wt% in the thinnest case and 62 to 63 wt% in the thickest case.
% Of the added inhibitor is crystallized and precipitated in the high-concentration aqueous solution channel of the low-temperature heat exchanger where the concentration of the lithium bromide aqueous solution is high and the flow rate is slow. As a result, even though the total amount of inhibitor added is excessive, the amount circulating with the aqueous lithium bromide solution is small, especially because the inhibitor does not flow to the most needed high temperature regenerator, There is a problem that the effect of the inhibitor cannot be sufficiently obtained. Moreover, even if a large amount is replenished, there is no effect. In addition, crystallized crystals may precipitate and pitting corrosion may occur.

【0006】また、添加された過剰のインヒビターは、
2重効用吸収式冷凍機の高温再生器の加熱源の運転を停
止させた後、または製造された冷水の温度が所定温度以
下まで下がって高温再生器の加熱源の運転が自動的に停
止した後臭化リチウム水溶液の温度が低下すると、臭化
リチウム水溶液の濃度が高い部分で晶出、沈殿する。し
たがって、これを防止するために、通常高温再生器の加
熱源の運転が停止した後、水溶液ポンプおよび冷媒循環
ポンプの作動を続けて稀釈運転を行ない、臭化リチウム
水溶液の濃度を低下させている。このような稀釈運転時
に、低温熱交換器の高濃度水溶液流路内で晶出して沈殿
しているインヒビターの結晶も溶解するが、稀釈運転時
の濃度(53〜55wt%)では効率良く溶解させるこ
とができないので、過剰に投入したにもかかわらず、臭
化リチウム水溶液に溶解しているインヒビターは不足し
て再びインヒビターを添加する必要があり、その作業が
面倒であるという問題がある。
Further, the excess inhibitor added is
After stopping the operation of the heating source of the high temperature regenerator of the double-effect absorption refrigerator, or when the temperature of the produced cold water dropped below a predetermined temperature, the operation of the heating source of the high temperature regenerator automatically stopped. When the temperature of the post-lithium bromide aqueous solution decreases, crystallization and precipitation occur in a portion where the concentration of the lithium bromide aqueous solution is high. Therefore, in order to prevent this, after the operation of the heating source of the high temperature regenerator is stopped, the aqueous solution pump and the refrigerant circulation pump are continuously operated to perform the dilution operation to reduce the concentration of the lithium bromide aqueous solution. . During such a dilution operation, the inhibitor crystals that have crystallized and precipitated in the high-concentration aqueous solution flow path of the low-temperature heat exchanger are also dissolved, but at the dilution operation concentration (53 to 55 wt%), they are efficiently dissolved. Since it is impossible to do so, there is a problem that the inhibitor dissolved in the lithium bromide aqueous solution is insufficient despite the excessive addition, and the inhibitor needs to be added again, which is a troublesome work.

【0007】しかも、上述したような稀釈運転を行う
と、運転再開時に臭化リチウム水溶液の濃度を所定濃度
まで高めるのに時間がかかり、立上り特性が低下する。
そこで、最近、吸収式冷凍機の立上り特性を高めるた
め、運転停止前の稀釈運転時間を短かくする傾向があ
り、高濃度で停止する時間が長くなって結晶したインヒ
ビターを溶かすことが一層困難になるとともに、外気温
度が低いとき、停止中に高濃度の水溶液が結晶し、運転
ができなくなることがある。
Moreover, when the above-described dilution operation is performed, it takes time to increase the concentration of the lithium bromide aqueous solution to a predetermined concentration when the operation is restarted, and the start-up characteristic is deteriorated.
Therefore, recently, there has been a tendency to shorten the dilution operation time before the operation is stopped in order to improve the start-up characteristics of the absorption refrigerator, and it becomes more difficult to dissolve the crystallized inhibitor due to the long stop time at high concentration. At the same time, when the outside air temperature is low, the high-concentration aqueous solution may crystallize during the stop, and operation may not be possible.

【0008】この発明の目的は、上記問題を解決した2
重効用式冷温水機を提供することにある。
The object of the present invention is to solve the above problems.
It is to provide a heavy-duty chiller / heater.

【0009】[0009]

【課題を解決するための手段】この発明による2重効用
吸収式冷凍機は、高温再生器、低温再生器、凝縮器、蒸
発器、吸収器、低温熱交換器および高温熱交換器を備え
ており、かつ吸収剤と冷媒である水との水溶液を利用し
た2重効用吸収式冷凍機において、蒸発器内の液状冷媒
または吸収器内の低濃度吸収剤水溶液を、低温熱交換器
の高濃度吸収剤水溶液の流路内に供給する供給路が備え
られ、この供給路に弁が設けられているものである。
A double-effect absorption refrigerator according to the present invention comprises a high temperature regenerator, a low temperature regenerator, a condenser, an evaporator, an absorber, a low temperature heat exchanger and a high temperature heat exchanger. In addition, in a double-effect absorption refrigerating machine using an aqueous solution of an absorbent and water as a refrigerant, the liquid refrigerant in the evaporator or the low-concentration absorbent solution in the absorber is mixed with the high-concentration of the low-temperature heat exchanger. A supply path is provided for supplying the absorbent aqueous solution into the flow path, and a valve is provided in the supply path.

【0010】[0010]

【作用】過飽和になったインヒビターが沈殿している低
温熱交換器の高濃度吸収剤水溶液の流路内の吸収剤の濃
度は、稀釈運転中徐々に薄くなっていくが、運転終了時
には、その濃度が約53〜55wt%の状態で停止す
る。
[Function] The concentration of the absorbent in the flow path of the high-concentration absorbent aqueous solution of the low temperature heat exchanger in which the supersaturated inhibitor is precipitated gradually decreases during the dilution operation, but at the end of the operation, It stops when the concentration is about 53 to 55 wt%.

【0011】蒸発器内の液状冷媒または吸収器内の低濃
度吸収剤水溶液を、低温熱交換器の高濃度吸収剤水溶液
の流路内に供給する供給路が備えられ、この供給路に弁
が設けられていると、稀釈運転中または稀釈運転終了後
に弁を開き、供給路を通して低温熱交換器の高濃度吸収
剤水溶液の流路内に、液状冷媒または低濃度吸収剤水溶
液を供給することができる。したがって、低温熱交換器
の高濃度吸収剤水溶液の流路内の水溶液の吸収剤濃度が
低下し、沈殿していたインヒビターの結晶が溶解する。
A supply passage for supplying the liquid refrigerant in the evaporator or the low-concentration absorbent aqueous solution in the absorber into the flow passage of the high-concentration absorbent aqueous solution in the low-temperature heat exchanger is provided, and a valve is provided in this supply passage. If provided, it is possible to open the valve during the dilution operation or after the completion of the dilution operation to supply the liquid refrigerant or the low-concentration absorbent aqueous solution into the high-concentration absorbent aqueous solution flow path of the low-temperature heat exchanger through the supply passage. it can. Therefore, the concentration of the absorbent in the aqueous solution of the high-concentration absorbent aqueous solution of the low-temperature heat exchanger is lowered, and the precipitated inhibitor crystals are dissolved.

【0012】[0012]

【実施例】以下、この発明の実施例を図面に基づいて詳
細に説明する。この実施例において、2重効用吸収式冷
凍機は、2重効用吸収冷温水機である。なお、全図面を
通じて同一物および同一部分には同一符号を付して説明
を省略する。
Embodiments of the present invention will be described in detail below with reference to the drawings. In this example, the double effect absorption refrigerator is a double effect absorption chiller-heater. Throughout the drawings, the same parts and parts are designated by the same reference numerals, and description thereof will be omitted.

【0013】図1は、この発明の実施例に係る2重効用
吸収冷温水機の概略構成図である。
FIG. 1 is a schematic configuration diagram of a double-effect absorption chiller-heater according to an embodiment of the present invention.

【0014】図1において、2重効用吸収冷温水機は、
冷媒である水と吸収剤である臭化リチウムとの臭化リチ
ウム水溶液を利用したものであって、加熱用バーナ(1)
により低濃度臭化リチウム水溶液(低濃度吸収剤水溶
液)を加熱する高温再生器(2)、高温再生器(2) から送
られてきた高温の中濃度臭化リチウム水溶液と水蒸気
(ガス状冷媒)とを分離する分離器(3) 、分離器(3) か
ら送られてきた中濃度臭化リチウム水溶液を、同じく分
離器(3) から送られてきた水蒸気により加熱し高濃度臭
化リチウム水溶液(高濃度吸収剤水溶液)を得る低温再
生器(4) 、低温再生器(4) を通過した水蒸気を冷却して
凝縮させる凝縮器(5) 、凝縮器(5) で得られた水(液状
冷媒)を蒸発させる蒸発器(6) 、蒸発器(6) で発生した
水蒸気を、低温再生器(4) から送られてきた高濃度臭化
リチウム水溶液で吸収させて稀釈し低濃度臭化リチウム
水溶液を得る吸収器(7) 、吸収器(7) から高温再生器
(2) に送られる低濃度臭化リチウム水溶液と、低温再生
器(4) から吸収器(7) に送られる高濃度臭化リチウム水
溶液とを熱交換させる低温熱交換器(8) 、および低温熱
交換器(8) を通過した低濃度臭化リチウム水溶液と、分
離器(3) から低温再生器(4) に送られる中濃度臭化リチ
ウム水溶液とを熱交換させる高温熱交換器(9) を備えて
いる。
In FIG. 1, the double-effect absorption chiller / heater is
Using a lithium bromide aqueous solution of water as a refrigerant and lithium bromide as an absorbent, a heating burner (1)
High-temperature regenerator (2) that heats the low-concentration lithium bromide aqueous solution (low-concentration absorbent aqueous solution), and the high-temperature medium-concentration lithium bromide aqueous solution and steam (gas refrigerant) sent from the high-temperature regenerator (2) Separator (3) for separating and the medium-concentration lithium bromide aqueous solution sent from the separator (3) is heated by steam also sent from the separator (3) to obtain a high-concentration lithium bromide aqueous solution ( Water (liquid refrigerant) obtained from the low-temperature regenerator (4) for obtaining high-concentration absorbent solution), the condenser (5) for cooling and condensing the steam that has passed through the low-temperature regenerator (4), and the condenser (5) ) Is evaporated and the water vapor generated in the evaporator (6) is absorbed by the high-concentration lithium bromide aqueous solution sent from the low-temperature regenerator (4) and diluted to dilute the low-concentration lithium bromide aqueous solution. Get the absorber (7), high temperature regenerator from the absorber (7)
A low-temperature heat exchanger (8) for exchanging heat between the low-concentration lithium bromide aqueous solution sent to (2) and the high-concentration lithium bromide aqueous solution sent to the absorber (7) from the low-temperature regenerator (4), and a low temperature High-temperature heat exchanger (9) that exchanges heat between the low-concentration lithium bromide aqueous solution that has passed through the heat exchanger (8) and the medium-concentration lithium bromide aqueous solution that is sent from the separator (3) to the low-temperature regenerator (4). Is equipped with.

【0015】低温再生器(4) と凝縮器(5) は1つの胴に
仕切を介してまとめて設けられている。低温再生器(4)
は胴内に加熱器(11)を備えており、この加熱器(11)の一
端に分離器(3) で得られた水蒸気が送り込まれ、加熱器
(11)内を通過した水蒸気が凝縮器(5) 内に送られるよう
になっている。凝縮器(5) は胴内に冷却水流通管(12)を
備えており、この冷却水流通管(12)内を流通する冷却水
により、低温再生器(4) で発生した水蒸気および加熱器
(11)から送られてきた水蒸気を冷却し、凝縮液化させる
ようになっている。
The low temperature regenerator (4) and the condenser (5) are provided together in one cylinder via a partition. Low Temperature Regenerator (4)
Is equipped with a heater (11) inside the body, and the steam obtained in the separator (3) is sent to one end of this heater (11),
The steam that has passed through the inside of the (11) is sent to the inside of the condenser (5). The condenser (5) has a cooling water flow pipe (12) in the body, and the cooling water flowing in the cooling water flow pipe (12) causes steam generated in the low temperature regenerator (4) and a heater.
The steam sent from (11) is cooled and condensed and liquefied.

【0016】蒸発器(6) と吸収器(7) は1つの胴内に仕
切を介して1つにまとめて設けられている。蒸発器(6)
は、胴内に散水装置(13)と水流通管(14)(伝熱管)を備
えている。そして、凝縮器(5) から送られてきた水を散
水装置(13)により水流通管(14)に散布する。散布された
水は、水流通管(14)内を流れる水から気化熱を奪って蒸
発して水を冷却し、冷水が製造されるようになってい
る。製造された冷水が冷房に供される。また、蒸発器
(6) において蒸発せずに流下して下部に溜まった水は、
蒸発器(6) の下端部から水循環ポンプ(15)により、水循
環管(16)を介して再度散水装置(13)に送られるようにな
っている。
The evaporator (6) and the absorber (7) are integrally provided in one cylinder through a partition. Evaporator (6)
Is equipped with a water sprinkler (13) and a water distribution pipe (14) (heat transfer pipe) inside the body. Then, the water sent from the condenser (5) is sprayed on the water distribution pipe (14) by the water spraying device (13). The sprayed water removes heat of vaporization from the water flowing in the water distribution pipe (14) and evaporates to cool the water, thereby producing cold water. The manufactured cold water is used for cooling. Also the evaporator
In (6), the water that has flowed down without evaporating and accumulated at the bottom is
From the lower end of the evaporator (6), the water circulation pump (15) sends the water to the water sprinkler (13) again via the water circulation pipe (16).

【0017】吸収器(7) は、胴内に散水装置(17)と冷却
水流通管(18)を備えている。そして、低温再生器(4) か
ら送られてきた高濃度臭化リチウム水溶液を散水装置(1
7)により冷却水流通管(18)に散布してその表面に液膜を
形成し、この液膜を流通管(18)内を流れる冷却水で冷却
しつつ水蒸気を吸収して、低濃度臭化リチウム水溶液を
得るようになっている。こうして得られた低濃度臭化リ
チウム水溶液は、水溶液循環ポンプ(19)により吸収器
(7) から低温熱交換器(8) および高温熱交換器(9) を経
て高温再生器(2) に送られる。その後、低温再生器(4)
へ送られ、濃縮された後低温熱交換器(8) を通って吸収
器(7) へ環流される。冷却水流通管(18)を通過した冷却
水は、凝縮器(5) の冷却水流通管(12)に送られる。
The absorber (7) is provided with a water sprinkler (17) and a cooling water flow pipe (18) inside the body. Then, the high-concentration lithium bromide aqueous solution sent from the low-temperature regenerator (4) was sprayed with the sprinkler (1
7) Sprays on the cooling water flow pipe (18) to form a liquid film on its surface, absorbs water vapor while cooling this liquid film with the cooling water flowing in the flow pipe (18), and produces a low concentration odor. It is designed to obtain a lithium fluoride aqueous solution. The low-concentration lithium bromide aqueous solution thus obtained was absorbed by the aqueous solution circulation pump (19).
It is sent from (7) to the high temperature regenerator (2) via the low temperature heat exchanger (8) and the high temperature heat exchanger (9). Then low temperature regenerator (4)
To the absorber (7) through the low temperature heat exchanger (8). The cooling water that has passed through the cooling water flow pipe (18) is sent to the cooling water flow pipe (12) of the condenser (5).

【0018】また、分離器(3) と蒸発器(6) との間に、
分離器(3) 内の臭化リチウム水溶液を蒸発器(6) に供給
する配管(10)が設けられ、この配管(10)の途中に弁(20)
が設けられている。そして、温水製造時に、弁(20)が開
かれ、高温再生器(2) において加熱用バーナ(1) により
加熱されて分離器(3) に送られてきた高温の臭化リチウ
ム水溶液が蒸発器(6) に送られ、水流通管(14)内を流れ
る水が加熱されて温水が製造されるようになっている。
温水製造時には、臭化リチウム水溶液の濃縮工程がない
ため、その濃度は冷水製造時に比べて薄くなり(51〜
52wt%)、しかも全体に均一な濃度となる。したが
って、冷水製造時に発生していた過剰に添加されたイン
ヒビターの結晶は溶解し、循環臭化リチウム水溶液中の
インヒビター量は増えて、補充が不要になる。
Further, between the separator (3) and the evaporator (6),
A pipe (10) for supplying the lithium bromide aqueous solution in the separator (3) to the evaporator (6) is provided, and a valve (20) is provided in the middle of this pipe (10).
Is provided. During hot water production, the valve (20) is opened, and the hot lithium bromide aqueous solution heated by the heating burner (1) in the high temperature regenerator (2) and sent to the separator (3) is evaporated. The water sent to (6) and flowing in the water flow pipe (14) is heated to produce hot water.
Since there is no step of concentrating the aqueous solution of lithium bromide during hot water production, its concentration is lower than during cold water production (51-51).
52 wt%), and the concentration is uniform throughout. Therefore, the crystals of the excessively added inhibitor generated during the production of cold water are dissolved, the amount of the inhibitor in the circulating lithium bromide aqueous solution increases, and replenishment becomes unnecessary.

【0019】2重効用吸収冷温水機のここまでの構成お
よび作用は公知であり、詳細な説明を省略する。
The structure and operation of the double-effect absorption chiller-heater up to this point are known, and detailed description thereof will be omitted.

【0020】水循環管(16)における水循環ポンプ(15)の
吐出側の部分と低温熱交換器(8) との間に、蒸発器(6)
内の水を低温熱交換器(8) の高濃度臭化リチウム水溶液
流路に供給する供給路(21)が設けられている。供給路(2
1)の途中に電磁弁(22)が設けられている。
Between the portion of the water circulation pipe (16) on the discharge side of the water circulation pump (15) and the low temperature heat exchanger (8), an evaporator (6)
A supply path (21) is provided for supplying water in the high-concentration lithium bromide aqueous solution flow path of the low temperature heat exchanger (8). Supply path (2
A solenoid valve (22) is provided in the middle of 1).

【0021】上記において、冷水製造時に、水流通管(1
4)を通過した水の温度が低下し所定温度になった場合、
または運転停止スイッチが操作された場合、高温再生器
(2)の加熱用バーナ(1) が停止させられる。バーナ(1)
停止後も稀釈運転が行われ、水循環ポンプ(15)および水
溶液循環ポンプ(19)は引き続き作動し、吸収器(7) にお
いて臭化リチウム水溶液に水蒸気が吸収させられ、水溶
液濃度は次第に低下する。そして、所定の設定時間経過
後または高温再生器(1) の温度が所定の設定温度まで下
がったときに、水溶液循環ポンプ(19)のみ停止する。こ
れと同時に電磁弁(22)が開く。すると、水循環ポンプ(1
5)により水が低温熱交換器(8) の高濃度水溶液流路内に
送り込まれ、この流路内の水溶液の濃度が約20〜30
wt%に低下させられる。その結果、低温熱交換器(8)
の高濃度水溶液流路内の水溶液の濃度が低下することに
より、この流路内に結晶していた過剰インヒビターは、
短時間で溶解する。その後、水循環ポンプ(15)を停止す
るとともに電磁弁(22)を閉じる。水循環ポンプ(15)の作
動、および電磁弁(22)の開状態から閉状態への移行は、
タイマーによって設定される時間で行われる。
In the above, the water flow pipe (1
When the temperature of the water passing through 4) drops and reaches the specified temperature,
Or when the shutdown switch is operated, the high temperature regenerator
The heating burner (1) of (2) is stopped. Burner (1)
After the suspension, the dilution operation is performed, the water circulation pump (15) and the aqueous solution circulation pump (19) continue to operate, and the lithium bromide aqueous solution absorbs water vapor in the absorber (7), whereby the aqueous solution concentration gradually decreases. Then, after the elapse of a predetermined set time or when the temperature of the high temperature regenerator (1) drops to the predetermined set temperature, only the aqueous solution circulation pump (19) is stopped. At the same time, the solenoid valve (22) opens. Then, the water circulation pump (1
Water is sent into the high-concentration aqueous solution channel of the low-temperature heat exchanger (8) by 5), and the concentration of the aqueous solution in this channel is about 20-30.
It can be reduced to wt%. As a result, low temperature heat exchanger (8)
Due to the decrease in the concentration of the aqueous solution in the high-concentration aqueous solution channel, the excess inhibitor crystallized in this channel is
Dissolves in a short time. Then, the water circulation pump (15) is stopped and the solenoid valve (22) is closed. The operation of the water circulation pump (15) and the transition of the solenoid valve (22) from the open state to the closed state are
The time is set by the timer.

【0022】再び運転信号が入り、バーナ(1) により再
生器(2) 内の低濃度水溶液が加熱されるとともに、水溶
液循環ポンプ(19)および水循環ポンプ(15)が作動して、
臭化リチウム水溶液が流れだすと、低温熱交換器(8) 内
で溶け出したインヒビターは吸収器(7) へ送られ、低温
熱交換器(8) および高温熱交換器(9) を通って、高温再
生器(1) に送り込まれるため、過剰により投入されたイ
ンヒビターは、全体に有効に利用され、不凝縮ガスの発
生が効果的に抑制される。したがって、過剰インヒビタ
ー投入により、インヒビター補充回数を減らすことがで
き、メンテナンス回数も減ることとなる。
The operation signal is input again, the low concentration aqueous solution in the regenerator (2) is heated by the burner (1), and the aqueous solution circulation pump (19) and the water circulation pump (15) are activated,
When the aqueous solution of lithium bromide begins to flow, the inhibitor dissolved in the low temperature heat exchanger (8) is sent to the absorber (7) and passes through the low temperature heat exchanger (8) and the high temperature heat exchanger (9). Since it is sent to the high temperature regenerator (1), the excess inhibitor is effectively used as a whole and the generation of non-condensable gas is effectively suppressed. Therefore, by supplying the excess inhibitor, the number of times of supplementing the inhibitor can be reduced and the number of times of maintenance can be reduced.

【0023】図2〜図4はこの発明の第2の実施例を示
す。
2 to 4 show a second embodiment of the present invention.

【0024】図2〜図4において、供給路(21)の途中
に、吸収器(7) と低温熱交換器(8) を連通させる配管(2
3)における水溶液循環ポンプ(19)の吐出側の部分の圧力
をパイロット圧として開閉するパイロット式の開閉弁(2
4)が設けられている。供給路(21)は、水循環管(16)と開
閉弁(24)の弁箱(25)とを接続する第1の導管(21a) と、
弁箱(25)と低温熱交換器(8) の高濃度水溶液流路を接続
する第2の導管(21b) とを備えている。また、開閉弁(2
4)の弁箱(25)に、上記配管(23)から分岐した分岐管(23
a) が接続されている。第2の導管(21b) の弁箱(25)へ
の接続端部に弁座(26)が設けられている。分岐管(23a)
の弁箱(25)への接続端部に、通常は収縮状態となるベロ
ーズ(27)が取付けられ、ベローズ(27)の先端に弁座(26)
に圧接する弁体(28)が取付けられている。
2 to 4, a pipe (2) for connecting the absorber (7) and the low temperature heat exchanger (8) to each other is provided in the middle of the supply path (21).
Pilot type on-off valve (2) that opens and closes using the pressure on the discharge side of the aqueous solution circulation pump (19) in 3) as pilot pressure
4) is provided. The supply path (21) includes a first conduit (21a) connecting the water circulation pipe (16) and the valve box (25) of the on-off valve (24),
It is provided with a valve box (25) and a second conduit (21b) connecting the high-concentration aqueous solution flow path of the low temperature heat exchanger (8). The on-off valve (2
In the valve box (25) of 4), the branch pipe (23
a) is connected. A valve seat (26) is provided at the connection end of the second conduit (21b) to the valve box (25). Branch pipe (23a)
A bellows (27), which is normally in a contracted state, is attached to the connection end of the valve box (25) of the valve seat (26) at the tip of the bellows (27).
A valve element (28) that is pressed against is attached.

【0025】冷媒循環ポンプ(15)と水溶液循環ポンプ(1
9)のポンプヘッド差は約1.0kg/m2 Gであり、両
ポンプ(15)(19)が作動しているさいには、図3に示すよ
うに、吸収器(7) と低温熱交換器(8) を連通させる配管
(23)における水溶液循環ポンプ(19)の吐出側の部分の圧
力をパイロット圧としてベローズ(27)が伸長し、弁体(2
8)が弁座(26)に圧接させられて開閉弁(24)が閉じ、水の
第2の導管(21b) への流入が阻止されている。
Refrigerant circulation pump (15) and aqueous solution circulation pump (1
The pump head difference of 9) is about 1.0 kg / m 2 G, and when both pumps (15) and (19) are operating, as shown in FIG. Piping for connecting the exchanger (8)
The bellows (27) expands using the pressure on the discharge side of the aqueous solution circulation pump (19) in (23) as the pilot pressure, and the valve body (2
8) is brought into pressure contact with the valve seat (26) to close the on-off valve (24), and water is prevented from flowing into the second conduit (21b).

【0026】稀釈運転終了後、水溶液循環ポンプ(19)だ
けが停止すると、図4に示すように、ベローズ(27)は収
縮し、弁体(28)が弁座(26)から離れて開閉弁(24)が開
く。その結果、水が第2の導管(21b) を経て低温熱交換
器(8) に流入し、図1に示す実施例の場合と同様にして
低温熱交換器(8) の高濃度水溶液流路内に結晶していた
過剰インヒビターが溶解する。
When only the aqueous solution circulation pump (19) is stopped after the completion of the dilution operation, the bellows (27) contracts and the valve body (28) separates from the valve seat (26) as shown in FIG. (24) opens. As a result, water flows into the low-temperature heat exchanger (8) through the second conduit (21b), and the high-concentration aqueous solution flow path of the low-temperature heat exchanger (8) is processed in the same manner as in the embodiment shown in FIG. The excess inhibitor that had crystallized inside dissolves.

【0027】図5および図6は吸収器(7) と低温熱交換
器(8) を連通させる配管(23)における水溶液循環ポンプ
(19)の吐出側の部分の圧力をパイロット圧として開閉す
るパイロット式の開閉弁の変形例を示す。
FIGS. 5 and 6 show an aqueous solution circulation pump in the pipe (23) for connecting the absorber (7) and the low temperature heat exchanger (8).
A modification of the pilot-type on-off valve that opens and closes by using the pressure on the discharge side of (19) as the pilot pressure is shown.

【0028】図5および図6において、開閉弁(30)の弁
箱(31)への第2の導管(21b) の接続端部に弁座(32)が設
けられるとともに、弁箱(31)内にこの弁座(32)に圧接す
る第1の弁体(33)が設けられている。また、第1の導管
(21a) の弁箱(31)への接続端部に弁座(34)が設けられる
とともに、弁箱(31)内にこの弁座(34)に圧接する第2の
弁体(35)が設けられている。第1の弁体(33)は、第2の
導管(21b) および分岐管(23a) 内に設けられた案内部材
(36)(37)により弁体(33)に設けられた被案内棒(38)(39)
が案内されることによって移動するようになっている。
また、第1の弁体(33)は、引張りコイルばね(41)により
分岐管(23a) 側に付勢されている。第2の弁体(35)は、
引張りコイルばね(42)により第1の導管(21a) 側に付勢
されている。
5 and 6, a valve seat (32) is provided at the connection end of the second conduit (21b) to the valve box (31) of the on-off valve (30), and the valve box (31) is provided. A first valve body (33), which is in pressure contact with the valve seat (32), is provided therein. Also, the first conduit
A valve seat (34) is provided at the connection end of (21a) to the valve box (31), and a second valve body (35) that is in pressure contact with this valve seat (34) is provided in the valve box (31). It is provided. The first valve body (33) is a guide member provided in the second conduit (21b) and the branch pipe (23a).
Guide rods (38) (39) provided on the valve body (33) by (36) (37)
Is guided to move.
The first valve body (33) is biased toward the branch pipe (23a) by the tension coil spring (41). The second valve body (35) is
It is urged toward the first conduit (21a) side by the tension coil spring (42).

【0029】このような構成において、両ポンプ(15)(1
9)が作動しているさいには、図5に示すように、吸収器
(7) と低温熱交換器(8) を連通させる配管(23)における
水溶液循環ポンプ(19)の吐出側の部分の圧力をパイロッ
ト圧として第1の弁体(33)が弁座(32)に圧接させられる
とともに、上記圧力により第2の弁体(35)が弁座(34)に
圧接させられて開閉弁(30)が閉じ、水の第2の導管(21
b) への流入が阻止されている。
In such a structure, both pumps (15) (1
When 9) is activated, as shown in Fig. 5, the absorber
The first valve element (33) has the valve seat (32) with the pressure at the discharge side of the aqueous solution circulation pump (19) in the pipe (23) connecting the low temperature heat exchanger (8) and the low temperature heat exchanger (8) as pilot pressure. And the second valve element (35) is pressed against the valve seat (34) by the above pressure to close the on-off valve (30), and the second conduit (21
Inflow to b) is blocked.

【0030】稀釈運転終了後、水溶液循環ポンプ(19)だ
けが停止すると、図6に示すように、引張りコイルばね
(41)により第1の弁体(33)が弁座(32)から離れるととも
に、水の圧力により第2の弁体(35)が弁座(34)から離れ
て開閉弁(30)が開く。その結果、水が第2の導管(21b)
を経て低温熱交換器(8) に流入し、図1に示す実施例の
場合と同様にして低温熱交換器(8) の高濃度水溶液流路
内に結晶していた過剰インヒビターは溶解する。
When only the aqueous solution circulation pump (19) is stopped after the dilution operation is completed, as shown in FIG.
(41) separates the first valve body (33) from the valve seat (32), and the water pressure causes the second valve body (35) to separate from the valve seat (34) and open the on-off valve (30). . As a result, the water is in the second conduit (21b)
After flowing into the low temperature heat exchanger (8), the excess inhibitor crystallized in the high-concentration aqueous solution channel of the low temperature heat exchanger (8) is dissolved in the same manner as in the embodiment shown in FIG.

【0031】図7はこの発明のさらに他の実施例を示
す。
FIG. 7 shows still another embodiment of the present invention.

【0032】図7において、吸収器(7) と低温熱交換器
(8) の低濃度水溶液流路を連通させる配管(23)における
水溶液循環ポンプ(19)の吐出側の部分と低温熱交換器
(8) の高濃度水溶液流路との間に、吸収器(7) で得られ
た低濃度水溶液を低温熱交換器(8) の高濃度水溶液流路
に供給する供給路(45)が設けられている。供給路(45)の
途中に電磁弁(46)が設けられている。
In FIG. 7, an absorber (7) and a low temperature heat exchanger are shown.
The low temperature heat exchanger and the discharge side part of the aqueous solution circulation pump (19) in the pipe (23) communicating the low concentration aqueous solution flow path of (8)
Provided between the high-concentration aqueous solution flow path of (8) and the high-concentration aqueous solution flow path of the low-temperature heat exchanger (8) is a supply path (45) for supplying the low-concentration aqueous solution obtained in the absorber (7). Has been. A solenoid valve (46) is provided in the middle of the supply path (45).

【0033】稀釈運転中に電磁弁(46)を開くと、水溶液
循環ポンプ(19)により吸収器(7) 内の低濃度臭化リチウ
ム水溶液が低温熱交換器(8) の高濃度水溶液流路内に送
り込まれ、この流路内の水溶液の濃度が低下させられ
る。その結果、低温熱交換器(8) の高濃度水溶液流路内
の水溶液の濃度が低下することにより、この流路内に結
晶していた過剰インヒビターが溶解する。
When the solenoid valve (46) is opened during the dilution operation, the aqueous solution circulation pump (19) causes the low-concentration lithium bromide aqueous solution in the absorber (7) to flow in the high-concentration aqueous solution flow path of the low temperature heat exchanger (8). And the concentration of the aqueous solution in this channel is reduced. As a result, the concentration of the aqueous solution in the high-concentration aqueous solution channel of the low-temperature heat exchanger (8) is lowered, and the excess inhibitor crystallized in this channel is dissolved.

【0034】上記すべての実施例においては、この発明
が吸収冷温水機に適用された場合が示されているが、こ
れに限るものではなく、冷水製造専用の冷凍機にも適用
可能である。
In all of the above embodiments, the present invention is applied to an absorption chiller-heater, but the present invention is not limited to this, and can be applied to a chiller exclusively for producing chilled water.

【0035】[0035]

【発明の効果】この発明の2重効用吸収冷凍機によれ
ば、上述のように、低温熱交換器の高吸収剤含有水溶液
の流路内の水溶液の吸収剤濃度が低下し、この流路内に
沈殿していたインヒビターの結晶が溶解する。したがっ
て、運転再開時にインヒビターは全体に行き渡り、不凝
縮性ガスの発生を効果的に抑制できる。また、沈殿した
結晶によるピッチング腐食の発生を防止できる。また、
インヒビターの補充回数が少なくなり、メンテナンスが
容易になる。さらに、稀釈運転時間の長短にかかわら
ず、低温熱交換器の高濃度吸収剤水溶液流路内に沈殿し
ているインヒビターの結晶を溶解することができるの
で、稀釈運転時間を短くすることができるとともに、高
濃度の水溶液を薄くすることにより、外気温度低下によ
る水溶液の結晶トラブルを防止することができる。した
がって、運転再開時の立上り特性を高めることができ
る。
According to the double-effect absorption refrigerator of the present invention, as described above, the concentration of the absorbent in the aqueous solution of the high-absorbent-containing aqueous solution of the low temperature heat exchanger decreases, and The inhibitor crystals that had settled inside dissolve. Therefore, when the operation is restarted, the inhibitor is spread over the entire area, and the generation of the non-condensable gas can be effectively suppressed. In addition, it is possible to prevent pitting corrosion due to precipitated crystals. Also,
Inhibitors are replenished less frequently and maintenance becomes easier. Further, regardless of the length of the dilution operation time, the inhibitor crystals precipitated in the high-concentration absorbent aqueous solution flow path of the low-temperature heat exchanger can be dissolved, so that the dilution operation time can be shortened. By thinning the high-concentration aqueous solution, it is possible to prevent crystal troubles of the aqueous solution due to a decrease in outside air temperature. Therefore, it is possible to improve the start-up characteristic when the operation is restarted.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.

【図2】この発明の他の実施例を示す概略構成図であ
る。
FIG. 2 is a schematic configuration diagram showing another embodiment of the present invention.

【図3】図2の開閉弁の部分を拡大して示す図である。FIG. 3 is an enlarged view showing a portion of an opening / closing valve of FIG.

【図4】図3と異なる状態を示す同図相当の図である。FIG. 4 is a view corresponding to FIG. 3 showing a state different from FIG.

【図5】図2に示す2重効用吸収冷温水機の開閉弁の変
形例を示す図3相当の図である。
5 is a view corresponding to FIG. 3 showing a modified example of the on-off valve of the double-effect absorption chiller / heater shown in FIG. 2.

【図6】同じく図4相当の図である。FIG. 6 is a view equivalent to FIG.

【図7】この発明のさらに他の実施例を示す概略構成図
である。
FIG. 7 is a schematic configuration diagram showing still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2 高温再生器 4 低温再生器 5 凝縮器 6 蒸発器 7 吸収器 8 低温熱交換器 9 高温熱交換器 21 供給路 22 電磁弁 24 開閉弁 30 開閉弁 45 供給路 46 電磁弁 2 High temperature regenerator 4 Low temperature regenerator 5 Condenser 6 Evaporator 7 Absorber 8 Low temperature heat exchanger 9 High temperature heat exchanger 21 Supply path 22 Solenoid valve 24 Open / close valve 30 Open / close valve 45 Supply path 46 Solenoid valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高温再生器、低温再生器、凝縮器、蒸発
器、吸収器、低温熱交換器および高温熱交換器を備えて
おり、かつ吸収剤と冷媒である水との水溶液を利用した
2重効用吸収式冷凍機において、 蒸発器内の液状冷媒または吸収器内の低濃度吸収剤水溶
液を、低温熱交換器の高濃度吸収剤水溶液の流路内に供
給する供給路が備えられ、この供給路に弁が設けられて
いる2重効用吸収式冷凍機。
1. A high temperature regenerator, a low temperature regenerator, a condenser, an evaporator, an absorber, a low temperature heat exchanger and a high temperature heat exchanger are provided, and an aqueous solution of an absorbent and water as a refrigerant is used. In the double-effect absorption refrigerator, a supply passage is provided for supplying the liquid refrigerant in the evaporator or the low-concentration absorbent aqueous solution in the absorber into the high-concentration absorbent aqueous solution flow passage in the low-temperature heat exchanger, A double-effect absorption refrigerator with a valve provided in this supply path.
JP5083596A 1993-04-09 1993-04-09 Double effect absorption type refrigerating machine Pending JPH06300382A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5083596A JPH06300382A (en) 1993-04-09 1993-04-09 Double effect absorption type refrigerating machine
KR1019930015665A KR100304019B1 (en) 1993-04-09 1993-08-13 Dual-effect Absorption Chiller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5083596A JPH06300382A (en) 1993-04-09 1993-04-09 Double effect absorption type refrigerating machine

Publications (1)

Publication Number Publication Date
JPH06300382A true JPH06300382A (en) 1994-10-28

Family

ID=13806879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5083596A Pending JPH06300382A (en) 1993-04-09 1993-04-09 Double effect absorption type refrigerating machine

Country Status (2)

Country Link
JP (1) JPH06300382A (en)
KR (1) KR100304019B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291944A (en) * 2006-04-25 2007-11-08 Honda Motor Co Ltd Exhaust control valve
JP2011252703A (en) * 2011-09-21 2011-12-15 Sanyo Electric Co Ltd Absorption refrigerating machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291944A (en) * 2006-04-25 2007-11-08 Honda Motor Co Ltd Exhaust control valve
JP2011252703A (en) * 2011-09-21 2011-12-15 Sanyo Electric Co Ltd Absorption refrigerating machine

Also Published As

Publication number Publication date
KR100304019B1 (en) 2001-11-22

Similar Documents

Publication Publication Date Title
JP2008116173A (en) Absorption type refrigerating machine
JPH06300382A (en) Double effect absorption type refrigerating machine
JP3326238B2 (en) Single double effect absorption refrigerator
JP3880852B2 (en) Refrigerant management device and method for storing and discharging refrigerant
JP2985513B2 (en) Absorption cooling and heating system and its control method
US3266267A (en) Absorption refrigeration
JPS6023649Y2 (en) Double effect water - lithium salt absorption chiller
KR100330542B1 (en) Absorption refrigerator
KR100229414B1 (en) Absorption type cooler
KR200308240Y1 (en) Absorption refrigerator with preventing the crystallization of a solution
JP3108800B2 (en) Exhaust heat recovery type absorption chiller / heater and its control method
JP2828700B2 (en) Absorption refrigerator
JP3084650B2 (en) Absorption chiller / heater and its control method
JP2000018759A (en) Absorption refrigerating machine
JP3398832B2 (en) Control method of absorption chiller / heater
JPH0451320Y2 (en)
JPS58124177A (en) Water-lithium salt absorption type refrigerator
JP2865305B2 (en) Absorption refrigerator
JP2011220675A (en) Absorption refrigerating machine
JPH11201580A (en) Absorption refrigerating machine
JPS6086353A (en) Preventive device for crystal of absorption refrigerator
KR20220129367A (en) Absorption refrigerating regenerator
JP2823295B2 (en) Absorption refrigerator
JP2011202948A (en) Absorption refrigerating machine
JPS6115983B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020709