JP2011247011A - Foundation construction method - Google Patents

Foundation construction method Download PDF

Info

Publication number
JP2011247011A
JP2011247011A JP2010122466A JP2010122466A JP2011247011A JP 2011247011 A JP2011247011 A JP 2011247011A JP 2010122466 A JP2010122466 A JP 2010122466A JP 2010122466 A JP2010122466 A JP 2010122466A JP 2011247011 A JP2011247011 A JP 2011247011A
Authority
JP
Japan
Prior art keywords
foundation
slab
steel
heat insulating
insulating portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010122466A
Other languages
Japanese (ja)
Other versions
JP5465607B2 (en
Inventor
Mitsuo Ozaki
充男 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Homes Corp
Original Assignee
Asahi Kasei Homes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Homes Corp filed Critical Asahi Kasei Homes Corp
Priority to JP2010122466A priority Critical patent/JP5465607B2/en
Publication of JP2011247011A publication Critical patent/JP2011247011A/en
Application granted granted Critical
Publication of JP5465607B2 publication Critical patent/JP5465607B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Foundations (AREA)
  • Building Environments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a foundation construction method capable of securing workability and suppressing deterioration of heat insulation properties.SOLUTION: A foundation comprises a foundation slab 10 made of steel-bar reinforced concrete, a steel foundation 2 formed on the foundation 10, and a foundation heat insulating material 40 that encloses the steel foundation 2. The foundation heat insulating material 40 comprises a slab insulating part 43 having a height slightly higher than the foundation slab 10 and a steel insulating part 44 that is connected with the slab insulating part 43 for covering an outer side of the steel foundation 2. A method for constructing the foundation comprises the steps of arranging bars of the foundation slab 10, assembling the steel foundation 2 above a position corresponding to the upper surface of the foundation slab 10, erecting the slab insulating part 43 to enclose the steel bars of the foundation slab 10 before or after assembling the steel foundation 2, placing concrete at least up to a vicinity of the upper end of the slab insulating part 43 to form the foundation slab 10, and then placing the steel insulating part 44 on the slab insulating part 43 so as to erect along the steel foundation 2.

Description

本発明は、住宅等の建物の上部構造を支持する基礎の施工方法に関する。   The present invention relates to a foundation construction method for supporting an upper structure of a building such as a house.

建物の上部構造を支持する基礎として、鉄筋コンクリート製の基礎梁を備える布基礎が知られているが、かかる布基礎は、地業、配筋、型枠、アンカーセット等の施工に関して作業に手間がかかり、これらに要する手間を改善することが現場から要望されている。かかる要望に応えるべく、基礎梁として鉄骨材を採用する構成が知られており、例えば特許文献1には、H型鋼の下部を基礎スラブに埋設させることで当該H型鋼を基礎梁とした基礎構造が開示されている。あるいは、特許文献2には、アンカー部材を介して基礎スラブにH型鋼を固定した基礎構造が開示されている。また、これらの基礎構造においては、風雨に晒されることによるH型鋼の腐食等に考慮する必要があり、その対応として、H型鋼の外側面に化粧カバーが設けられている。   Cloth foundations with reinforced concrete foundation beams are known as foundations to support the superstructure of buildings. However, such cloth foundations require time and labor for construction work such as groundwork, reinforcement, formwork and anchor sets. Therefore, there is a demand from the field to improve the labor required for these. In order to meet such a demand, a structure using a steel frame as a foundation beam is known. For example, Patent Document 1 discloses a foundation structure in which a lower portion of an H-shaped steel is embedded in a foundation slab to use the H-shaped steel as a foundation beam. Is disclosed. Alternatively, Patent Literature 2 discloses a foundation structure in which H-shaped steel is fixed to a foundation slab via an anchor member. Moreover, in these foundation structures, it is necessary to consider the corrosion of the H-shaped steel caused by exposure to wind and rain, and as a countermeasure, a decorative cover is provided on the outer surface of the H-shaped steel.

ところで、基礎構造により包囲される1階床下空間を室内に準じる温熱性能を付与すべく、鉄筋コンクリート製の布基礎に断熱性能を付与した構成が知られており、かかる断熱性能を上述の如き鋼材基礎を備えた基礎構造にも適用することが検討されている。   By the way, in order to give the thermal performance according to the room to the space under the first floor surrounded by the foundation structure, a structure in which the thermal insulation performance is given to the cloth foundation made of reinforced concrete is known. Application to a foundation structure equipped with

特開2001−262586号公報JP 2001-262586 A 特開2003−268782号公報Japanese Patent Laid-Open No. 2003-268782 特開2004−107974号公報JP 2004-107974 A

特許文献1や特許文献2の鋼材基礎の下方の基礎スラブの側面から特許文献3の断熱材を立ち上げることが考えられるが、かかる構成においては、基礎スラブ打設前に断熱材を立ち上げると、コンクリート打設のコンクリートからの荷重による断熱材の移動や揺動を防止すべく型枠は断熱材と同程度のせいを有するものを要する必要が生じ、コンクリートの打設高さに対して型枠の高さが過大となる問題があった。のみならず、当該コンクリート打設に前後して鋼材基礎を組み上げる場合には、当該鋼材基礎の組み上げにこれら断熱材や型枠が邪魔となるのみならず、当該鋼材基礎等が断熱材にぶつかり、これによって施工の段階で早くも断熱材が損傷を受けてしまうという問題がある。また、基礎スラブのコンクリートを打設し、鋼材基礎を組み上げた後に断熱材を取り付ける施工手順にあっては、断熱材と基礎スラブの間に隙間が生じ、当該隙間によって断熱性能が低下してしまう問題がある。   Although it is possible to start up the heat insulating material of patent document 3 from the side surface of the foundation slab below the steel material foundation of patent document 1 or patent document 2, in such a configuration, if the heat insulating material is started before the foundation slab is placed, In order to prevent the movement and swinging of the heat insulating material due to the load from the concrete placed in the concrete, the formwork needs to have the same level of resistance as the heat insulating material. There was a problem that the height of the frame was excessive. Not only that, when assembling the steel foundation before and after the concrete placement, not only these heat insulating materials and formwork get in the way of assembling the steel foundation, but the steel foundation hits the heat insulating material, As a result, there is a problem that the heat insulating material is damaged as early as in the construction stage. In addition, in the construction procedure of placing the concrete of the foundation slab and attaching the heat insulating material after assembling the steel foundation, a gap is generated between the heat insulating material and the foundation slab, and the heat insulation performance deteriorates due to the gap. There's a problem.

本発明は、このような問題を解決するためになされたものであり、施工性を確保しつつ断熱性能の劣化を抑制することができる基礎の施工方法を提供することを目的とする。   This invention is made | formed in order to solve such a problem, and it aims at providing the construction method of the foundation which can suppress deterioration of heat insulation performance, ensuring workability | operativity.

(1)上記課題を解決すべく、本発明の具体的構成は、
鉄筋コンクリート造の基礎スラブと、該基礎スラブ上に形成される鋼材基礎と、該鋼材基礎を包囲する基礎断熱体と、を備え、
該基礎断熱体は、基礎スラブよりも僅かに背高なスラブ断熱部と、該スラブ断熱部に連結されて前記鋼材基礎の外側面を覆う鋼材断熱部とを備えている基礎の施工方法であって、
前記基礎スラブの配筋後に、当該基礎スラブの上面に対応する位置から上方に前記鋼材基礎を組み上げていき、該鋼材基礎の組上げの前又は後に前記基礎スラブの鉄筋を包囲してスラブ断熱部を立設し、
前記スラブ断熱部の上端部近傍までコンクリートを打設して基礎スラブを形成し、その後、
前記スラブ断熱部に当接させつつ前記鋼材基礎の外側面に前記鋼材断熱部を取り付ける
ことを特徴としている。
これによれば、基礎スラブのコンクリート打設前にスラブ断熱部を設置することができ、基礎スラブとスラブ断熱部との間の隙間をなくしてこれらを密着させることができるものとなっている。また、当該スラブ断熱部は、基礎スラブの打設高さよりも僅かに背高に形成されているので、基礎スラブ打設時の型枠も当該スラブ断熱部と同程度の高さで済ませることができる。このため、型枠が作業中の作業者の移動や他の部材や道具の移動を妨げることもなく、基礎スラブ打設についての施工性の向上を図ることができる。
(1) In order to solve the above problems, the specific configuration of the present invention is as follows.
A reinforced concrete foundation slab, a steel foundation formed on the foundation slab, and a foundation insulation body surrounding the steel foundation,
The foundation insulation is a foundation construction method comprising a slab insulation part slightly taller than the foundation slab and a steel insulation part connected to the slab insulation part and covering the outer surface of the steel foundation. And
After the reinforcement of the foundation slab, the steel material foundation is assembled upward from a position corresponding to the upper surface of the foundation slab, and the reinforcement of the foundation slab is surrounded before or after the steel foundation is assembled. Erected,
Concrete is cast to the vicinity of the upper end of the slab heat insulating part to form a foundation slab, and then
The steel material heat insulating portion is attached to the outer surface of the steel material foundation while being in contact with the slab heat insulating portion.
According to this, a slab heat insulation part can be installed before concrete placement of a foundation slab, and the gap between a foundation slab and a slab heat insulation part can be eliminated, and these can be stuck. Moreover, since the said slab heat insulation part is formed slightly taller than the foundation slab placement height, the formwork at the time of foundation slab placement may be as high as the slab insulation part. it can. For this reason, the workability of the foundation slab can be improved without hindering the movement of the worker who is working and the movement of other members and tools.

また、鋼材断熱部は、基礎スラブの施工の完了後、鋼材基礎を組み上げた後の適宜のタイミングで取り付けることができるので、当該鋼材断熱部が鋼材基礎についての施工の妨げになることもない。また、上記施工方法によれば、鋼材断熱部が鋼材基礎の組み上げに先立って立ち上がった状態で放置されることもないので、当該鋼材断熱部が施工中の他の部材や工具、作業者にぶつかることによる損傷が防止されることはもちろん、鋼材断熱部が太陽光による紫外線に晒される状態も可及的抑制することができるので、当該紫外線照射による鋼材断熱部の劣化も著しく低減する或いは防止することができる。   Moreover, since a steel material heat insulation part can be attached at the appropriate timing after assembling a steel material foundation after completion of construction of a foundation slab, the said steel material heat insulation part does not become the hindrance of construction about a steel material foundation. Further, according to the above construction method, the steel heat insulation part is not left in a standing state prior to the assembling of the steel material foundation, so that the steel heat insulation part collides with other members, tools and workers under construction. In addition to preventing damage caused by the above, it is possible to suppress as much as possible the state in which the steel heat insulating part is exposed to ultraviolet rays from sunlight, so that deterioration of the steel heat insulating part due to the ultraviolet irradiation is significantly reduced or prevented. be able to.

(2)かかる点に鑑み、本発明の他の具体的構成は、
鉄筋コンクリート造の基礎スラブと、該基礎スラブ上に形成される鋼材基礎と、該鋼材基礎を包囲する基礎断熱体と、を備え、
該基礎断熱体は、基礎スラブよりも僅かに背高なスラブ断熱部と、該スラブ断熱部に連結されて前記鋼材基礎の外側面を覆う鋼材断熱部とを備えている基礎の施工方法であって、
前記基礎スラブの配筋後に前記基礎スラブの鉄筋を包囲してスラブ断熱部を立設し、
前記スラブ断熱部の上端部近傍までコンクリートを打設して基礎スラブを形成し、
該基礎スラブ形成後に、当該基礎スラブの上面に前記鋼材基礎を組み上げ、その後、
前記スラブ断熱部に当接させつつ前記鋼材基礎の外側面に前記鋼材断熱部を設置する
ことを特徴とする。
このように、鋼材基礎の組み上げ後に鋼材基礎部を設置することで、当該鋼材基礎部が鋼材基礎の外側面を覆う一方、該鋼材基礎部の裏面に対向して鋼材基礎が立ち上がることとなるので、当該裏面は鋼材基礎のかげに隠れることができ、これによって、少なくとも鋼材基礎部の内面の露出は可及的低減され、当該内面の紫外線劣化は抑制されることとなるのである。
(2) In view of this point, other specific configurations of the present invention are:
A reinforced concrete foundation slab, a steel foundation formed on the foundation slab, and a foundation insulation body surrounding the steel foundation,
The foundation insulation is a foundation construction method comprising a slab insulation part slightly taller than the foundation slab and a steel insulation part connected to the slab insulation part and covering the outer surface of the steel foundation. And
After the reinforcement of the foundation slab, surround the reinforcement of the foundation slab and set up a slab insulation part,
Concrete is cast to the vicinity of the upper end of the slab heat insulating part to form a foundation slab,
After the foundation slab is formed, the steel foundation is assembled on the upper surface of the foundation slab, and then
The steel material heat insulating portion is installed on the outer surface of the steel material base while being in contact with the slab heat insulating portion.
Thus, by installing the steel foundation after the steel foundation is assembled, the steel foundation covers the outer surface of the steel foundation, while the steel foundation rises up against the back surface of the steel foundation. The back surface can be hidden behind the steel base, whereby at least the exposure of the inner surface of the steel base is reduced as much as possible, and the ultraviolet deterioration of the inner surface is suppressed.

(3)また、前記鋼材断熱部は、前記スラブ断熱部上に載置される仕上げ断熱部と、該仕上げ断熱部と前記鋼材基礎の間の間隔に等しい厚さを有する平板状の下地断熱部とを備え、
前記鋼材断熱部の設置は、
前記下地断熱部を鋼材基礎とスラブ断熱部との間に立設させ、その後、
前記仕上げ断熱部を下地断熱部に立て掛けた状態で前記スラブ断熱部の上端部に載置する
ことが好ましい。
これによれば、仕上げ断熱部は、当該下地断熱部とスラブ断熱部に同時に当接させることで容易に位置を定めることができ、きわめて容易にこれら断熱部材を設置することができるものとなっている。
(3) Moreover, the said steel material heat insulation part is a flat heat insulation part which has a thickness equal to the space | interval between the finish heat insulation part mounted on the said slab heat insulation part, this finish heat insulation part, and the said steel material foundation. And
The installation of the steel insulation part is
The base heat insulating part is erected between the steel base and the slab heat insulating part, and then
It is preferable that the finish heat insulating part is placed on the upper end part of the slab heat insulating part in a state of leaning on the base heat insulating part.
According to this, the finish heat insulating part can be easily positioned by simultaneously contacting the base heat insulating part and the slab heat insulating part, and these heat insulating members can be installed very easily. Yes.

(4)また、前記スラブ断熱部と鋼材基礎との間の間隔は、前記仕上げ断熱部と前記鋼材基礎の間の間隔に等しく、
前記下地断熱部は、前記スラブ断熱部の上端部と前記鋼材基礎の間に嵌め込まれた状態でこれらの間に立設される
ことが好ましい。
これによれば、下地断熱部の下端部を鋼材基礎とスラブ断熱部の間に嵌め込むこと当該下地断熱部を容易に鋼材基礎に沿って立ち上がらせることができ、下地断熱部の設置が用意となってさらに施工性を向上させることができる。
(4) Moreover, the space | interval between the said slab heat insulation part and a steel material foundation is equal to the space | interval between the said finishing heat insulation part and the said steel material foundation,
It is preferable that the said foundation | substrate heat insulation part is erected between these in the state inserted by the upper end part of the said slab heat insulation part, and the said steel material foundation.
According to this, the lower end portion of the base heat insulating portion can be fitted between the steel base and the slab heat insulating portion, the base heat insulating portion can be easily raised along the steel base, and the base heat insulating portion is prepared for installation. Thus, the workability can be further improved.

(5)また、前記鋼材断熱部は、前記スラブ断熱部上に載置される仕上げ断熱部と、該仕上げ断熱部と前記鋼材基礎の間の間隔に等しい長さを有して当該仕上げ断熱部の裏面に突設されるブロック状のスペーサとを備え、
前記鋼材断熱部の設置は、前記スペーサの先端部を鋼材基礎に当接させること前記仕上げ断熱材の位置決めがなされることが好ましい。
これによれば、スペーサを鋼材基礎に当設させるだけで仕上げ断熱部の鋼材基礎からの距離が正確に維持されるため、スペーサを鋼材基礎に当設させることで仕上げ断熱部の下端部をスラブ断熱部の上端部に対向させることができるのみならず、当該スペーサを介して鋼材基礎に仕上げ断熱部を支持させることができる。
(5) Moreover, the said steel material heat insulation part has the length equivalent to the space | interval between the finish heat insulation part mounted on the said slab heat insulation part, this finishing heat insulation part, and the said steel material foundation, and the said finish heat insulation part A block-like spacer protruding on the back surface of
In the installation of the steel heat insulating part, it is preferable that the finish heat insulating material is positioned by bringing the tip of the spacer into contact with the steel base.
According to this, since the distance from the steel foundation of the finished heat insulation part is accurately maintained simply by placing the spacer against the steel foundation, the lower end part of the finished insulation part is slab slid by placing the spacer against the steel foundation. Not only can it be made to oppose the upper end part of a heat insulation part, but a finishing heat insulation part can be supported on a steel base through the said spacer.

本発明の基礎の施工方法によれば、施工性を確保しつつ断熱性能の劣化を抑制することができる。   According to the foundation construction method of the present invention, it is possible to suppress deterioration of heat insulation performance while ensuring workability.

本発明に係る基礎の施工方法により形成される基礎の第1実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of the foundation formed with the construction method of the foundation concerning this invention. 火打を介して水平ブレースが設置された部分の梁の構造例を示す平面図である。It is a top view which shows the structural example of the beam of the part in which the horizontal brace was installed through the beating. 梁を設置する工程を示す斜視図である。It is a perspective view which shows the process of installing a beam. 水平ブレースを設置する工程を示す斜視図である。It is a perspective view which shows the process of installing a horizontal brace. (a)〜(d)は基礎断熱体を組み上げていく手順を示す図である。(A)-(d) is a figure which shows the procedure which assembles a basic heat insulating body. 梁に建物の部材を設置する工程を示す斜視図である。It is a perspective view which shows the process of installing the member of a building in a beam. 本発明に係る基礎の施工方法により形成される基礎の第2実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the foundation formed with the construction method of the foundation concerning this invention. (a)〜(d)は第2実施形態の基礎の施工手順を示す図である。(A)-(d) is a figure which shows the construction procedure of the foundation of 2nd Embodiment.

以下、本発明に係る基礎の施工方法により形成される基礎及び基礎の施工方法について、図面に基づいて詳細に説明する。   Hereinafter, the foundation formed by the foundation construction method according to the present invention and the foundation construction method will be described in detail based on the drawings.

(第1実施形態)
図1〜図6に本発明の第1実施形態を示す。図1に示す如く、本実施形態の基礎構造は、鉄筋コンクリート造の支持体として形成される基礎スラブ10と、該基礎スラブ10の上部にて組み上げられた鋼材基礎2と、該基礎スラブ10及び鋼材基礎2を屋外側より覆う基礎断熱体40とを備えている。
(First embodiment)
1 to 6 show a first embodiment of the present invention. As shown in FIG. 1, the foundation structure of the present embodiment includes a foundation slab 10 formed as a reinforced concrete support, a steel foundation 2 assembled at the top of the foundation slab 10, the foundation slab 10 and the steel material. And a foundation insulator 40 that covers the foundation 2 from the outdoor side.

本実施形態において上部構造として例示する建物Aは、305mmの平面モジュールを有する梁勝ち工法による2階建ての鉄骨造の工業化住宅である。ただし、これはあくまで好適な適用例であって、本発明の適用範囲がこれに限定されるものではない。   Building A illustrated as an upper structure in the present embodiment is a two-story steel-frame industrialized house by a beam winning method having a 305 mm flat module. However, this is only a preferable application example, and the scope of application of the present invention is not limited thereto.

建物Aにおいては、基礎スラブ10及び鋼材基礎2からなる基礎躯体構造上に設けられており、該鋼材基礎2上に立設固定された柱(以下、1階柱ともいう)50(図6参照)と、該1階柱50の上端を連結するように配置された2階梁と、該2階梁上に配置された2階柱と、R階大梁と、隣接する2本の柱50間に設置された耐力要素等51の部材とが、直交する基準線(X方向基準線、Y方向基準線)の中からそれぞれ複数選択された(モジュールの整数倍の間隔となるように設定された)通りに対応して配置されて基本架構が構成されている。さらに、建物Aにおいては、小梁が適宜架け渡され、各階梁で支持されるALC(Autoclaved Light-weight Concrete;軽量気泡コンクリート)からなる床パネルにより各階床が構成され、外周部梁を利用してALC等からなる外壁パネルや開口パネルが取り付けられて外壁が構成されている。   In the building A, a pillar (hereinafter also referred to as a first-floor pillar) 50 provided on a foundation frame structure composed of a foundation slab 10 and a steel foundation 2 and standingly fixed on the steel foundation 2 (see FIG. 6). ), A second-floor beam arranged so as to connect the upper ends of the first-floor pillars 50, a second-floor pillar arranged on the second-floor beams, an R-floor large beam, and two adjacent pillars 50 Each of the members of the load-bearing elements 51 and the like installed in the plurality is selected from orthogonal reference lines (X-direction reference line, Y-direction reference line) (set to be an integral multiple of the module) ) It is arranged corresponding to the street and the basic frame is configured. Furthermore, in the building A, each floor is composed of floor panels made of ALC (Autoclaved Light-weight Concrete) supported by each floor beam, and each floor is constructed using the outer peripheral beam. An outer wall panel or an opening panel made of ALC or the like is attached to form an outer wall.

図1に示す如く、本実施形態の支持体たる基礎スラブ10は、全面的にベタ基礎形式となっている。該基礎スラブ10においては、上記各通りに対応する所定の幅の範囲について地反力に対し耐力を発揮しうる基礎梁とみなして配筋量が算定されている(図3、図4参照)。基礎スラブ10のうち、これ以外の領域については、地反力を受ける4辺固定のスラブとみなして配筋量が決定されている。   As shown in FIG. 1, the foundation slab 10 which is a support body of this embodiment is entirely solid. In the foundation slab 10, the bar arrangement amount is calculated by regarding the range of the predetermined width corresponding to each of the above as a foundation beam capable of exhibiting proof strength against the ground reaction force (see FIGS. 3 and 4). . Of the basic slab 10, the area other than this is determined as a fixed slab with four sides receiving a ground reaction force, and the bar arrangement amount is determined.

なお、本実施形態ではベタ基礎形式の基礎スラブ10を例示しているが、このようなベタ基礎形式に限定されることはなく、例えば、通りに沿って地耐力に応じた所望の幅を有するフーチング形式とする構成も採用可能である。   In this embodiment, the solid foundation type foundation slab 10 is illustrated, but is not limited to such a solid foundation type, for example, has a desired width according to the ground strength along the street. A footing type configuration can also be employed.

また、基礎スラブ10は、上端面を地盤面より高くして形成されており、これによって基礎断熱体40よりも屋内側となる建物Aの1階床下空間への水の進入が抑制されるものとなる。   In addition, the foundation slab 10 is formed with the upper end surface higher than the ground surface, and this prevents water from entering the space under the first floor of the building A that is on the indoor side of the foundation insulation 40. It becomes.

鋼材基礎2は、基礎スラブ10の上端面に設置される鋼製の束20と、該束20に支持される鋼製の梁30と、これら梁30間に架設される鋼製の水平ブレース31とを備えている。   The steel material foundation 2 includes a steel bundle 20 installed on the upper end surface of the foundation slab 10, a steel beam 30 supported by the bundle 20, and a steel horizontal brace 31 installed between the beams 30. And.

束20は、基礎スラブ10の上面に載置されており、梁30を支持する。基礎スラブ10には、予めアンカーボルト11が埋設されており、該アンカーボルト11の上端部に束20がナット等によって接合固定されている。該束20は、建物Aの柱(1階柱)50から伝達される荷重を基礎スラブ10に効率よく伝達する役割を有し、少なくとも大梁30上(通り上)に立設される1階柱50の直下に設置され、ジョイントボックス21または1階大梁30の中間部の下フランジのボルト穴を用いて接合され、1階大梁30を支持する。   The bundle 20 is placed on the upper surface of the foundation slab 10 and supports the beam 30. An anchor bolt 11 is embedded in the foundation slab 10 in advance, and a bundle 20 is joined and fixed to the upper end portion of the anchor bolt 11 with a nut or the like. The bundle 20 has a role of efficiently transmitting the load transmitted from the column (first floor column) 50 of the building A to the foundation slab 10 and is a first floor column standing on at least the large beam 30 (on the street). It is installed immediately below 50 and joined using a bolt hole in the lower flange of the middle part of the joint box 21 or the first-floor large beam 30 to support the first-floor large beam 30.

また、束20は、アンカーボルト11の上端部に接合される下フランジ20bと、例えばジョイントボックス21が接合される上フランジ20aと、これら両フランジ20a,20bを結合する横断面が例えば十字ないしクロス形状のウェブ20cとで構成されている。   Further, the bundle 20 has a lower flange 20b joined to the upper end portion of the anchor bolt 11, an upper flange 20a joined to the joint box 21, for example, and a cross section connecting these flanges 20a and 20b has a cross or cross, for example. The web 20c has a shape.

該束20は、図3に示す如く、建物Aの外周部(すなわち外壁寄りの部分)と内周部(すなわち建物Aの内部寄りの部分)とに適宜配置される。これらのうち、外周部(外通り)に配置される束20は、建物外側においては上フランジ20aと下フランジ20bの端縁位置が一致し、建物内側においては下フランジ20bが上フランジ20aよりも建物内側に向け延伸しており、延伸側のウェブ20cが上フランジ20aの端縁から下フランジ20bの端縁にかけて末広がり状に形成された形状(オフセット形状)となっている。また、建物Aの入隅部および出隅部においては、外壁に沿った2方向について、下フランジ20bが上フランジ20aよりも延伸し、延伸側のウェブ20cが上フランジ20aの端縁から下フランジ20bの端縁にかけて末広がり状に形成されている束20を採用されている。   As shown in FIG. 3, the bundle 20 is appropriately arranged on the outer peripheral portion (that is, the portion near the outer wall) and the inner peripheral portion (that is, the portion near the inside of the building A) of the building A. Among these, the bundle 20 arranged on the outer peripheral portion (outer street) has the same edge position of the upper flange 20a and the lower flange 20b on the outside of the building, and the lower flange 20b is more on the inside of the building than the upper flange 20a. It extends toward the inside of the building, and the extending-side web 20c has a shape (offset shape) formed so as to extend from the end edge of the upper flange 20a to the end edge of the lower flange 20b. In addition, at the entrance corner and the exit corner of the building A, the lower flange 20b extends from the upper flange 20a in two directions along the outer wall, and the extended web 20c extends from the edge of the upper flange 20a to the lower flange. A bundle 20 formed so as to extend toward the end edge of 20b is adopted.

このようなオフセット形状の束20を用いることにより、基礎スラブ10のより広い範囲に荷重が分散して伝達され、該基礎構造にて構造計算上の基礎梁とみなせる幅が大きくとれるものとなっている。   By using such an offset-shaped bundle 20, the load is distributed and transmitted to a wider range of the foundation slab 10, and a width that can be regarded as a foundation beam in structural calculation can be increased in the foundation structure. Yes.

梁30は、例えばH形鋼(I形鋼と呼ばれるような形鋼を含む)からなり、長手方向の両端には、先端部をL字としてボルト穴を開設したガセットプレート34が溶接により接合されている(図2、図3等参照)。   The beam 30 is made of, for example, an H-shaped steel (including a shaped steel called an I-shaped steel), and gusset plates 34 each having an L-shaped tip and having bolt holes formed at both ends in the longitudinal direction are joined by welding. (See FIG. 2, FIG. 3, etc.).

なお、なお、梁30には、通り上に配置されるいわゆる大梁(1階大梁)のみならず、建物Aの1階床を形成する床パネルを支持するために設置される大梁間に架け渡される小梁30’も含まれる(図3参照)。なお、小梁30’は大梁と他の小梁30’との間に架け渡される場合もある。   It should be noted that the beam 30 is bridged not only between so-called large beams (first floor large beams) arranged on the street but also between the large beams installed to support the floor panel forming the first floor of the building A. Also included is a small beam 30 ′ (see FIG. 3). The small beam 30 'may be bridged between the large beam and another small beam 30'.

また、図3に示す如く、梁30の上フランジ30aおよび下フランジ30bにはモジュール柱を接合するためのボルトを挿通するボルト穴30dがモジュールに基づくピッチで等間隔に穿設されている。ボルト穴30dは、平面視基準線の交点上に位置するよう穿設されている。また、ウェブ30cにも他の梁30を接合するためのボルトを挿通するボルト穴30dがモジュールに基づくピッチで等間隔に穿設されている。さらに、梁30のウェブ30cには所定の間隔で大径の穴(一例として、直径125mm)30eが穿設されている。   As shown in FIG. 3, the upper flange 30a and the lower flange 30b of the beam 30 are provided with bolt holes 30d through which bolts for joining module columns are inserted at equal intervals based on the module. The bolt hole 30d is drilled so as to be located on the intersection of the plane-view reference line. In addition, bolt holes 30d through which bolts for joining other beams 30 are also inserted into the web 30c at regular intervals with a pitch based on the module. Furthermore, large diameter holes (for example, a diameter of 125 mm) 30e are formed in the web 30c of the beam 30 at predetermined intervals.

図2や図3に示す如く、梁30の端部どうしを接合する場合、本実施形態ではジョイントボックス21を用いている。   As shown in FIGS. 2 and 3, when the ends of the beams 30 are joined together, a joint box 21 is used in this embodiment.

ジョイントボックス21は、平面視十字状のウェブ21cの上下端に正方形の上フランジ21aおよび下フランジ21bが溶接され構成されている。このジョイントボックス21に梁30を接合する場合は、梁30のガセットプレート34の2面を直交するウェブ21cの2面に当接させ、該ガセットプレート34の屈曲部のボルト穴及びこれに対応するジョイントボックス21のボルト穴にボルトを挿通してボルト接合する。   The joint box 21 is configured by welding a square upper flange 21a and a lower flange 21b to upper and lower ends of a cross-shaped web 21c in plan view. When joining the beam 30 to the joint box 21, the two surfaces of the gusset plate 34 of the beam 30 are brought into contact with the two surfaces of the web 21c perpendicular to each other, and the bolt holes in the bent portion of the gusset plate 34 and the corresponding bolt holes. Bolts are inserted into the bolt holes of the joint box 21 and bolted.

図1や図4に示す如く、水平ブレース(補剛材)31は、1階の床構面に設置されて、コンクリート打設作業時等における梁30等の変形を抑制する。床構面に設置された水平ブレース31は、そのまま建物完成後の1階床の面内剛性を確保する部材となる。   As shown in FIGS. 1 and 4, a horizontal brace (stiffener) 31 is installed on the floor construction surface of the first floor, and suppresses deformation of the beam 30 and the like during concrete placing work or the like. The horizontal brace 31 installed on the floor construction surface is a member for securing the in-plane rigidity of the first floor after the building is completed.

また、図2に示す如く、該水平ブレース31は梁30の上端付近にて火打35を介して取り付けられており、これによって、梁30等の変形抑止効果と、基礎形成時の作業性・床下利用性とをさらに向上させることが可能となっている。   In addition, as shown in FIG. 2, the horizontal brace 31 is attached near the upper end of the beam 30 via a fire hitting 35, thereby preventing the deformation of the beam 30 and the like, workability at the time of foundation formation, under the floor. Usability can be further improved.

なお、ここで例示する水平ブレース31の他、火打梁(火打土台、火打金物)等を補剛材として用いることも可能である。   In addition to the horizontal brace 31 exemplified here, it is also possible to use a fire beam (fired base, fired metal) or the like as a stiffener.

図6に示す如く、柱50は、通りと通りに直行する基準線との交点に配置され、下端部がジョイントボックス21または大梁30の中間部の上フランジ30aのボルト穴30dを用いて接合される。   As shown in FIG. 6, the pillar 50 is disposed at the intersection of the street and the reference line perpendicular to the street, and the lower end portion is joined using the bolt hole 30 d of the upper flange 30 a of the middle portion of the joint box 21 or the large beam 30. The

また、耐力要素51は、所定の間隔(例示すれば、610mm、915mmなど)で配置された2本の柱50の内側面にボルト接合される。耐力要素51は例えば筋交い(クロスフレーム)等で構成される。   Further, the strength element 51 is bolted to the inner side surfaces of the two columns 50 arranged at a predetermined interval (for example, 610 mm, 915 mm, etc.). The load-bearing element 51 is constituted by a brace (cross frame), for example.

図1に示す如く、基礎断熱体40は、建物Aの外壁の下端部に連続して設けられており、基礎スラブ10の端縁と、鋼材基礎2の外周部に位置することとなる梁30とを外気側から包囲している。   As shown in FIG. 1, the foundation heat insulator 40 is continuously provided at the lower end portion of the outer wall of the building A, and the beam 30 which is located at the edge of the foundation slab 10 and the outer peripheral portion of the steel foundation 2. And from the outside air side.

本実施形態の場合、基礎断熱体40は、押出法発泡ポリスチレンフォームやフェノールフォーム等のプラスチック系断熱材からなる断熱部41と、該断熱部41の外側面に塗布される保護層42とを備えている。   In the case of the present embodiment, the basic heat insulating body 40 includes a heat insulating portion 41 made of a plastic heat insulating material such as an extruded polystyrene foam or phenol foam, and a protective layer 42 applied to the outer surface of the heat insulating portion 41. ing.

断熱部41は、基礎スラブ10よりも背高なスラブ断熱部43と、該スラブ断熱部43に連結されて鋼材基礎2の外側面を覆う鋼材断熱部44とを備えている。   The heat insulating portion 41 includes a slab heat insulating portion 43 that is taller than the foundation slab 10 and a steel heat insulating portion 44 that is connected to the slab heat insulating portion 43 and covers the outer surface of the steel material foundation 2.

スラブ断熱部43は、基礎スラブ10の側面下端部から上端部を覆うと共に当該上端部よりも突出する高さを有する平板状に形成されている。   The slab heat insulating portion 43 is formed in a flat plate shape that covers the upper end portion from the lower end portion of the side surface of the basic slab 10 and has a height protruding from the upper end portion.

鋼材断熱部44は、スラブ断熱部43に連結される仕上げ断熱部45と、該仕上げ断熱部45と鋼材基礎2の間の間隔に等しい厚さを有する平板状の下地断熱部46とを備えている。   The steel heat insulating part 44 includes a finish heat insulating part 45 connected to the slab heat insulating part 43 and a flat base heat insulating part 46 having a thickness equal to the distance between the finish heat insulating part 45 and the steel material base 2. Yes.

下地断熱部46は、基礎スラブ10の上面から鋼材基礎2の梁の上端面に至る高さを有している。また、仕上げ断熱部45の裏面と同一平面状に位置することとなる基礎スラブ10の端面から鋼材基礎2の外側面までの間隔に等しい厚さを有して形成されている。したがって、基礎スラブ10及び鋼材基礎2の組み上げ後、基礎スラブ10の上面に下地断熱部46の下面を当接させると共に、当該鋼材基礎2の梁に下地断熱部46を立て掛けるだけで、当該下地断熱部46が鋼材基礎2の外側面を覆うと共に、当該下地断熱部46の外側面と基礎スラブ10の側面とが同一平面状に位置するものとなる。また、下地断熱部46は、鋼材基礎2に沿って立設されることにより、当該鋼材基礎2の梁30の上下フランジ30a、30bによって上端部及び中途部が梁30の長手方向に亘って支持されることとなる。   The base heat insulating part 46 has a height from the upper surface of the foundation slab 10 to the upper end surface of the beam of the steel material foundation 2. Moreover, it has thickness equal to the space | interval from the end surface of the foundation slab 10 which will be located in the same plane as the back surface of the finishing heat insulation part 45 to the outer surface of the steel-material foundation 2. Therefore, after assembling the foundation slab 10 and the steel material foundation 2, the lower surface of the foundation heat insulating portion 46 is brought into contact with the upper surface of the foundation slab 10, and the foundation heat insulation portion 46 is merely leaned against the beam of the steel material foundation 2. While the part 46 covers the outer surface of the steel base 2, the outer surface of the base heat insulating part 46 and the side surface of the foundation slab 10 are located on the same plane. Further, the base heat insulating portion 46 is erected along the steel base 2 so that the upper end portion and the midway portion are supported in the longitudinal direction of the beam 30 by the upper and lower flanges 30 a and 30 b of the beam 30 of the steel base 2. Will be.

また、このように下地断熱部46が鋼材基礎2の梁30に沿って立設されることにより、当該下地断熱部30の裏面は、鋼材基礎2に覆われるものとなる。   In addition, when the base heat insulating portion 46 is erected along the beam 30 of the steel base 2 in this way, the back surface of the base heat insulating portion 30 is covered with the steel base 2.

仕上げ断熱部45は、スラブ断熱部43と同じ厚さを有すると共に、当該スラブ断熱部43の上端面に載置された状態で上端面を鋼材基礎2の梁30の上フランジ30aと同じ位置となる高さを備える平板状に形成されている。また、当該仕上げ断熱部45の裏面は、下地断熱部46の側面に密着した状態で取り付けられており、これによって、仕上げ断熱部45は、全面に亘って下地断熱部46に支持されるものとなり、ひいては、当該下地断熱部46を介して鋼材基礎2の梁30に支持されるものとなっている。   The finish heat insulating portion 45 has the same thickness as the slab heat insulating portion 43 and is placed on the upper end surface of the slab heat insulating portion 43 so that the upper end surface is at the same position as the upper flange 30a of the beam 30 of the steel foundation 2. It is formed in a flat plate shape having a height. Further, the back surface of the finish heat insulating part 45 is attached in close contact with the side surface of the base heat insulating part 46, whereby the finish heat insulating part 45 is supported by the base heat insulating part 46 over the entire surface. As a result, it is supported by the beam 30 of the steel base 2 through the base heat insulating portion 46.

下地断熱部46、スラブ断熱部43及び仕上げ断熱部45は、それぞれが梁30の長手方向に沿って敷き並べられ、これによって基礎断熱体40の断熱部41が形成されるが、当該下地断熱部46間の継目とスラブ断熱部43及び仕上げ断熱部45間の継目は互いにずれた位置に設けられており、仕上げ断熱部45の継目の奥方には下地断熱部46の外側面が位置することとなる。これにより、気密性の向上が図られている。   The base heat insulating part 46, the slab heat insulating part 43, and the finish heat insulating part 45 are each laid out along the longitudinal direction of the beam 30, thereby forming the heat insulating part 41 of the basic heat insulating body 40. The joint between 46 and the joint between the slab heat insulating portion 43 and the finish heat insulating portion 45 are provided at positions shifted from each other, and the outer surface of the base heat insulating portion 46 is located behind the seam of the finish heat insulating portion 45. Become. Thereby, the airtightness is improved.

同様に、スラブ断熱部43は、基礎スラブ10の上面よりも上方となる位置まで突出した状態で設けられているので、仕上げ断熱部45とスラブ断熱部43の継目の奥方には下地断熱部46の外側面が位置することとなり、当該継目であっても気密の向上が図られている。   Similarly, since the slab heat insulating part 43 is provided in a state protruding to a position above the upper surface of the basic slab 10, the base heat insulating part 46 is provided at the back of the joint between the finishing heat insulating part 45 and the slab heat insulating part 43. The outer side surface is located, and the airtightness is improved even at the joint.

また、下地断熱部46は、仕上げ断熱部45の外側から差し込まれるピン47によって当該仕上げ断熱部45に固定されている。   The base heat insulating part 46 is fixed to the finish heat insulating part 45 by pins 47 inserted from the outside of the finish heat insulating part 45.

該ピン47は、樹脂等の非金属素材によって形成されている。また、ピン47は、軸部の一端に頭部を備えたものが一般的であるが、当該軸部のみによるものや頭部を軸部に比して著しく小さいものを採用しても構わない。これにより、ピン47を仕上げ断熱部45に押し込んでいくと、当該仕上げ断熱部45の表面にピン47がほとんど露出しないものとなり、これによって、当該ピン47が保護層42の形成の妨げになることを回避することができるものとなる。また、本実施形態のピン47には、軸部に多少の凹凸形状が形成されており、これによって仕上げ断熱部45との摩擦抵抗力を持たせ抜け難いものとなっている。   The pin 47 is made of a non-metallic material such as resin. Further, the pin 47 is generally provided with a head at one end of the shaft portion, but the pin 47 alone or a head that is remarkably smaller than the shaft portion may be employed. . As a result, when the pin 47 is pushed into the finish heat insulating portion 45, the pin 47 is hardly exposed on the surface of the finish heat insulating portion 45, thereby preventing the pin 47 from forming the protective layer 42. Can be avoided. In addition, the pin 47 of the present embodiment has a slightly uneven shape on the shaft portion, and thereby has a frictional resistance with the finish heat insulating portion 45 and is difficult to be pulled out.

これによって、下地断熱部46は、仕上げ断熱部45に連結されることとなり、梁30には接合されることはなく、単に当接のみすることとなる。   As a result, the base heat insulating portion 46 is connected to the finish heat insulating portion 45, and is not joined to the beam 30, but simply contacts.

保護層42は、屋外に露出することとなる断熱部41の表面を保護するものであって、本実施形態では、該断熱部41の表面たるスラブ断熱部43と鋼材断熱部44の仕上げ断熱部45の表面に全面に亘って樹脂モルタルを左官することで形成されている。また、断熱部41の表面たるスラブ断熱部43及び仕上げ断熱部45の外側面に樹脂モルタルを左官していくにつき、これら断熱部間の継目の部分に補強ネット等を設け、防水性や強度の向上を図る構成を採用することも可能である。また、該樹脂モルタルに換えて、タイルやサイディング等をスラブ断熱部43及び仕上げ断熱部45の外側面に表面材として貼着して保護層42を形成する構成を採用することも可能である。   The protective layer 42 protects the surface of the heat insulating part 41 that will be exposed to the outside. In this embodiment, the slab heat insulating part 43 that is the surface of the heat insulating part 41 and the finish heat insulating part of the steel heat insulating part 44 are used. It is formed by plastering resin mortar over the entire surface of 45. Further, as the resin mortar is plastered on the outer surfaces of the slab heat insulating portion 43 and the finish heat insulating portion 45 which are the surfaces of the heat insulating portion 41, a reinforcing net or the like is provided at the joint portion between these heat insulating portions, and the waterproofness and strength are improved. It is also possible to adopt a configuration for improvement. Further, instead of the resin mortar, it is also possible to adopt a configuration in which a protective layer 42 is formed by sticking tiles, sidings, and the like as surface materials on the outer surfaces of the slab heat insulating portion 43 and the finish heat insulating portion 45.

また、梁30の上端部には、建物Aの外壁の下端部を受ける受け金物53が屋外方向に張り出した状態で取り付けられている。当該受け金物53は、先端部が基礎断熱体40よりも僅かに屋外側となる位置に達しており、当該受け金物53によってこれら基礎断熱体40の上部は覆われることとなる。また、当該受け金物53の先端部は下方に向けて屈曲しており、当該先端部と基礎断熱体40との間にシール材54が挟装されている。また、当該受け金物53の先端部と外壁の下端部の間にもシール材が介装されている。   In addition, a metal fitting 53 that receives the lower end portion of the outer wall of the building A is attached to the upper end portion of the beam 30 in a state of protruding outward. The receiving metal object 53 reaches a position where the tip is slightly on the outdoor side with respect to the basic heat insulating body 40, and the upper part of the basic heat insulating material 40 is covered with the receiving metal object 53. Further, the tip end portion of the metal receiving piece 53 is bent downward, and the sealing material 54 is sandwiched between the tip end portion and the basic heat insulating body 40. Further, a sealing material is also interposed between the front end portion of the metal fitting 53 and the lower end portion of the outer wall.

続いて、上記基礎構造の施工手順について以下に説明する。
図3に示す如く、まず、地盤を根伐り(根切り)し、砕石17を敷きつめ転圧する。そして、根伐り底における束位置(束20が設置される位置)にPC板を設置する。PC板にアンカーボルト11の定着板を固定した後、該定着板にアンカーボルト11を固定する。
Then, the construction procedure of the said foundation structure is demonstrated below.
As shown in FIG. 3, first, the ground is cut down (root cutting), and crushed stones 17 are spread and rolled. And a PC board is installed in the bundle position (position where the bundle 20 is installed) in the root cutting bottom. After fixing the fixing plate of the anchor bolt 11 to the PC plate, the anchor bolt 11 is fixed to the fixing plate.

続いて、鉄筋12を配筋する。本実施形態において鋼材基礎2の梁30を受ける基礎梁とみなしている部分(通りに沿った所定の幅の範囲)には、算定された配筋量に応じて鉄筋12が密に配筋される。   Subsequently, the reinforcing bars 12 are arranged. In this embodiment, the reinforcing bars 12 are densely arranged in a portion (a range of a predetermined width along the street) regarded as the foundation beam that receives the beam 30 of the steel foundation 2 according to the calculated arrangement amount. The

その後、束20をアンカーボルト11に設置する。まず、アンカーボルト11に、束20を仮支持するための下部ナットをねじ入れ、束20のレベル(高さ)等を調整する。続いて、束20の下フランジ20bのボルト穴にアンカーボルト11を挿通し、更に上部ナットをねじ入れ、束20を固定する。
続いて、束20の上に梁30を載置し、ボルトおよびナットを用いて固定する。
Thereafter, the bundle 20 is installed on the anchor bolt 11. First, a lower nut for temporarily supporting the bundle 20 is screwed into the anchor bolt 11, and the level (height) of the bundle 20 is adjusted. Subsequently, the anchor bolt 11 is inserted into the bolt hole of the lower flange 20b of the bundle 20, and the upper nut is further screwed to fix the bundle 20.
Subsequently, the beam 30 is placed on the bundle 20 and fixed using bolts and nuts.

その後、図4に示す如く、1階床構面に水平ブレース31等の補剛材を取り付け、梁30の対角寸法を確認するなどして梁30位置の調整(ゆがみの補正)を行う。上述したように、構面の高い位置に水平ブレース31を設置することが好ましいが、梁30の上フランジ30aのレベルを越えると1階床を形成する床パネルの敷設の邪魔となるので工夫が必要である。例えば、仮の水平ブレースで梁30位置を調整した後に火打ち梁30等で固定する等の手順を採用してもよい。   Thereafter, as shown in FIG. 4, a stiffener such as a horizontal brace 31 is attached to the first floor construction surface, and the diagonal dimension of the beam 30 is confirmed to adjust the position of the beam 30 (correction of distortion). As described above, it is preferable to install the horizontal brace 31 at a high position on the construction surface. However, if the level of the upper flange 30a of the beam 30 is exceeded, it will interfere with the laying of the floor panel forming the first floor. is necessary. For example, a procedure of adjusting the position of the beam 30 with a temporary horizontal brace and fixing it with the fire beam 30 or the like may be adopted.

その後、図5(a)に示す如く、既に配筋を完了した鉄筋の周囲にスラブ断熱部43を起立させる。このとき、該スラブ断熱部43の裏面と鉄筋12との間の間隔lは、最外鉄筋12aのかぶり厚を充分に確保できる程度にあけておく。   Then, as shown to Fig.5 (a), the slab heat insulation part 43 is stood up around the reinforcing bar already completed. At this time, the space | interval l between the back surface of this slab heat insulation part 43 and the reinforcing bar 12 is opened so that the cover thickness of the outermost reinforcing bar 12a can fully be ensured.

その後、スラブ断熱部43の外側に型枠を設置し、コンクリートを打設する。本実施形態では、束20の下端レベルに合わせてコンクリートを打設する。ここで、スラブ断熱部43の上端部は基礎スラブ10の上面よりも突出するものとなる(図5(b)参照)。その後、コンクリートを数日程度養生する。   Then, a formwork is installed in the outer side of the slab heat insulation part 43, and concrete is laid. In the present embodiment, concrete is placed in accordance with the lower end level of the bundle 20. Here, the upper end part of the slab heat insulation part 43 will protrude rather than the upper surface of the basic | foundation slab 10 (refer FIG.5 (b)). After that, the concrete is cured for several days.

その後、図5(c)に示す如く、鋼材基礎2の梁30の外側面に沿って下地断熱部46を立設していく。ここで、上記スラブ断熱部43の上端部は基礎スラブ10の上面よりも突出しているので、下地断熱部46の設置位置には、図5(b)に示す如くスラブ断熱部43と、基礎スラブ10と、鋼材基礎2によるガイド部Sが溝状に形成されることとなり、当該溝状のガイド部Sに下地断熱部46の下端部を嵌合させることにより、容易に当該下地断熱部46を設置することができるものとなる。また、当該溝状のガイド部Sに下地断熱部46の下端部が嵌った状態で当該下地断熱部46を梁30に立て掛けることにより、下地断熱部46の外側面が基礎スラブ10の側面と同一或いは略同一平面状に位置することとなる。   Then, as shown in FIG.5 (c), the base heat insulation part 46 is standingly arranged along the outer surface of the beam 30 of the steel-material foundation 2. As shown in FIG. Here, since the upper end portion of the slab heat insulating portion 43 protrudes from the upper surface of the foundation slab 10, the slab heat insulating portion 43 and the basic slab are disposed at the installation position of the base heat insulating portion 46 as shown in FIG. 10 and the guide part S by the steel material base 2 will be formed in a groove shape, and by fitting the lower end part of the base heat insulating part 46 to the groove shaped guide part S, the base heat insulating part 46 can be easily formed. It can be installed. Further, the outer surface of the base heat insulating portion 46 is the same as the side surface of the foundation slab 10 by leaning the base heat insulating portion 46 against the beam 30 in a state where the lower end portion of the base heat insulating portion 46 is fitted to the groove-shaped guide portion S. Or it will be located in substantially the same plane shape.

次に、図5(d)に示す如く、スラブ断熱部43に仕上げ断熱部45を載置(当接)しつつ鋼材基礎部44を鋼材基礎2の外側に立設させ、断熱部41を組み上げていく。このとき、当該下地断熱部46の外側面は、端面、ひいてはスラブ断熱部43の裏面と同一或いは略平面状に位置しているので、仕上げ断熱部45をスラブ断熱部43の上端面に載置することにより、当該仕上げ断熱部45は同時に下地断熱部46に支持されることとなり、これによって、安定的に仕上げ断熱部45を設置していくことが可能となる。その後、当該仕上げ断熱部45の外側面側からピン47を挿入し、下地断熱部46を仕上げ断熱部45に留め付ける。一方、仕上げ断熱部45はスラブ断熱部43上に載せるだけで、これら仕上げ断熱部45とスラブ断熱部43とを互いに連結することはしない。これによって、仕上げ断熱部45の取り外しが容易となり、当該仕上げ断熱部45の交換等の補修が簡便となる。   Next, as shown in FIG. 5 (d), the steel base portion 44 is erected outside the steel base 2 while the finish heat insulating portion 45 is placed (contacted) on the slab heat insulating portion 43, and the heat insulating portion 41 is assembled. To go. At this time, the outer surface of the base heat insulating part 46 is located on the same or substantially the same plane as the end surface, and consequently the back surface of the slab heat insulating part 43, so that the finish heat insulating part 45 is placed on the upper end surface of the slab heat insulating part 43. By doing so, the said finishing heat insulation part 45 will be simultaneously supported by the base heat insulation part 46, and it becomes possible to install the finishing heat insulation part 45 stably by this. Thereafter, the pin 47 is inserted from the outer surface side of the finish heat insulating portion 45, and the base heat insulating portion 46 is fastened to the finish heat insulating portion 45. On the other hand, the finish heat insulation part 45 is merely placed on the slab heat insulation part 43, and the finish heat insulation part 45 and the slab heat insulation part 43 are not connected to each other. This facilitates the removal of the finish heat insulating portion 45 and facilitates repairs such as replacement of the finish heat insulating portion 45.

その後、断熱部41の表面たるスラブ断熱部43の表面と鋼材断熱部44の仕上げ断熱部45の表面に樹脂モルタルを左官して保護層42を形成して、これら地盤に接するスラブ断熱部43の表面と屋外に露出する仕上げ断熱部45の表面に強度を付与すると共に、これら断熱部間43、45の継目を埋める。これによって基礎断熱体40が形成されることとなる。   Thereafter, a protective layer 42 is formed by plastering resin mortar on the surface of the slab heat insulating portion 43 which is the surface of the heat insulating portion 41 and the surface of the finish heat insulating portion 45 of the steel heat insulating portion 44, and the slab heat insulating portion 43 in contact with the ground is formed. Strength is given to the surface and the surface of the finish heat insulating part 45 exposed to the outside, and the joint between the heat insulating parts 43 and 45 is filled. As a result, the base heat insulator 40 is formed.

以上の工程により基礎構造が完成し、その後、図6に示す如く、梁30上部に柱50や耐力要素51といった建物Aの各部を順次組み上げていくこととなる。   The basic structure is completed by the above steps, and thereafter, as shown in FIG. 6, each part of the building A such as the column 50 and the load-bearing element 51 is sequentially assembled on the beam 30.

本実施形態に基礎構造によれば、基礎スラブ10のコンクリート打設前にスラブ断熱部43を設置することができ、基礎スラブ10とスラブ断熱部43との間の隙間をなくしてこれらを密着させることができるものとなっている。また、当該スラブ断熱部43は、基礎スラブ10の打設高さよりも背高に形成されているので、基礎スラブ10打設時の型枠としては当該スラブ断熱部43と同程度の高さで済ませることができる。このため、型枠が作業中の作業者の移動や他の部材や道具の移動を妨げることもなく、基礎スラブ10打設についての施工性の向上を図ることができる。   According to the basic structure of the present embodiment, the slab heat insulating part 43 can be installed before the concrete slab 10 is placed, and the gap between the basic slab 10 and the slab heat insulating part 43 is eliminated, and these are brought into close contact with each other. It has become something that can be. Moreover, since the said slab heat insulation part 43 is formed taller than the placement height of the foundation slab 10, it is as high as the said slab insulation part 43 as a formwork at the time of foundation slab 10 placement. I can finish it. For this reason, the workability of the foundation slab 10 can be improved without hindering the movement of the worker who is working and the movement of other members and tools.

また、基礎断熱体40を形成する鋼材断熱部44は、基礎スラブ10の施工の完了後で鋼材基礎2に沿わせて設置していくことで敷き並べていくことができ、当該基礎断熱体40の組み上げも容易に行われるものとなる。鋼材断熱部44が鋼材基礎2の組み上げの後に組み上げられるので、当該鋼材断熱部44が鋼材基礎2についての施工の妨げになることもない。   Moreover, the steel heat insulation part 44 which forms the foundation heat insulation body 40 can be laid out by installing along the steel material foundation 2 after completion of construction of the foundation slab 10, and the foundation heat insulation body 40 The assembly is also easily performed. Since the steel material heat insulating portion 44 is assembled after the steel material foundation 2 is assembled, the steel material heat insulating portion 44 does not interfere with the construction of the steel material foundation 2.

また、上記施工方法によれば、鋼材断熱部44が鋼材基礎2の組み上げに先立って立ち上がった状態で放置されず、鋼材基礎2に沿って立ち上がるので、鋼材断熱部44が安定した状態で立設されることはもちろん、鋼材断熱部44が鋼材基礎2によって保護される形となるため、当該鋼材断熱部44が施工中の他の部材や工具、作業者にぶつかることによる損傷も抑制される。また、このように鋼材基礎2によって鋼材断熱部44の裏面たる下地断熱部46の裏面が保護され、保護層42によって鋼材断熱部44の表面となる仕上げ断熱部45の表面保護されるため、該鋼材基礎2が太陽光による紫外線に晒される状態も可及的抑制され、当該紫外線照射による施工段階での鋼材断熱部44の劣化も抑えられるものとなる。   In addition, according to the above construction method, the steel heat insulation portion 44 is not left standing in the state of standing up prior to the assembling of the steel material foundation 2, but rises along the steel material foundation 2, so that the steel heat insulation portion 44 stands up in a stable state. Needless to say, since the steel heat insulating portion 44 is protected by the steel base 2, damage caused by the steel heat insulating portion 44 hitting other members, tools, and workers under construction is also suppressed. Further, the back surface of the base heat insulating portion 46 that is the back surface of the steel heat insulating portion 44 is protected by the steel material base 2 in this way, and the surface of the finish heat insulating portion 45 that becomes the surface of the steel heat insulating portion 44 is protected by the protective layer 42. The state in which the steel base 2 is exposed to ultraviolet rays from sunlight is suppressed as much as possible, and the deterioration of the steel heat insulating portion 44 at the construction stage due to the ultraviolet irradiation is also suppressed.

また、基礎断熱体40は、それ自体が全面に亘って鋼材基礎2及び基礎スラブ10に支持されるため、部位によって耐衝撃性に著しく大きな差が生じることはなく、一様に衝撃に対して強度を発揮し、割れ等の損傷を可及的抑制して断熱性能が維持されるものとなる。もちろん、このように断熱部41が厚く形成されるため、床下空間の断熱気密性の向上も図られることとなる。   Moreover, since the base heat insulating body 40 is itself supported by the steel base 2 and the base slab 10 over the entire surface, there is no significant difference in impact resistance depending on the part, and it is uniform against the shock. The strength is exhibited, damage such as cracking is suppressed as much as possible, and the heat insulating performance is maintained. Of course, since the heat insulating portion 41 is formed thick in this way, the heat insulating airtightness of the underfloor space is also improved.

(第2実施形態)
本発明に係る第2実施形態の構成は、基礎断熱体40の鋼材断熱部44の構成及び施工手順の一部が上記第1実施形態と異なるが、他の構成は第1実施形態と同じであるので、異なる部分についてのみ説明することとし、第1実施形態と同じ構成については、当該第1実施形態と同じ符号を付してその説明を省略する。
(Second Embodiment)
The configuration of the second embodiment according to the present invention is different from the first embodiment in the configuration of the steel heat insulating portion 44 of the basic heat insulator 40 and part of the construction procedure, but the other configurations are the same as those in the first embodiment. Therefore, only different parts will be described, and the same configurations as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment and description thereof is omitted.

図7に示す如く、本実施形態の基礎断熱体40の鋼材断熱部44は、スラブ断熱部43に連結される仕上げ断熱部45と、該仕上げ断熱部45と鋼材基礎2の間の間隔に等しい長さを有して当該仕上げ断熱部45の裏面に突設されるブロック状のスペーサ48とを備えている。   As shown in FIG. 7, the steel heat insulating portion 44 of the basic heat insulating body 40 of the present embodiment is equal to the finish heat insulating portion 45 connected to the slab heat insulating portion 43, and the interval between the finish heat insulating portion 45 and the steel base 2. A block-shaped spacer 48 having a length and protruding from the back surface of the finish heat insulating portion 45 is provided.

仕上げ断熱部45は、スラブ断熱部43と同じ厚さを有すると共に、当該スラブ断熱部43の上端面に載置された状態で上端面を鋼材基礎2の梁30の上フランジ30aと同じ位置となる高さを備える平板状に形成されている。   The finish heat insulating portion 45 has the same thickness as the slab heat insulating portion 43 and is placed on the upper end surface of the slab heat insulating portion 43 so that the upper end surface is at the same position as the upper flange 30a of the beam 30 of the steel foundation 2. It is formed in a flat plate shape having a height.

スペーサ48は、基礎断熱体40の断熱板41と同じ素材をブロック状に成形してなり、幅は、梁30のウェブ30cの屋外側側面から基礎スラブ10の側面までの距離と略等しい大きさに形成されている。   The spacer 48 is formed by molding the same material as the heat insulating plate 41 of the base heat insulator 40 into a block shape, and the width is substantially equal to the distance from the outdoor side surface of the web 30 c of the beam 30 to the side surface of the basic slab 10. Is formed.

また、該スペーサ48は、鋼材断熱部44の仕上げ断熱部45と鋼材基礎2の梁30との間に設けられており、当該仕上げ断熱部45の上端部と対向する位置にて仕上げ断熱部45の外側から差し込まれるピン47によって当該基礎断熱体40に固定されている。   The spacer 48 is provided between the finishing heat insulating portion 45 of the steel heat insulating portion 44 and the beam 30 of the steel base 2, and the finishing heat insulating portion 45 is located at a position facing the upper end portion of the finishing heat insulating portion 45. It is being fixed to the said basic heat insulating body 40 with the pin 47 inserted from the outer side.

これによって、スペーサ48は、鋼材断熱部44の仕上げ断熱部45に連結されることとなり、当該スペーサ48の突出端部が梁30のウェブ30cに接合されることはなく、単に当接のみすることとなる。   As a result, the spacer 48 is connected to the finish heat insulating portion 45 of the steel heat insulating portion 44, and the protruding end portion of the spacer 48 is not joined to the web 30 c of the beam 30, but only abuts. It becomes.

続いて、上記基礎構造の施工手順について以下に説明する。
地盤を根伐りし、砕石17を敷き詰めて転圧し、該根伐り底における束位置(束20が設置される位置)にPC板を設置し、該PC板にアンカーボルト11を定着し、その後、基礎スラブ10の鉄筋を配筋する工程までは、上記第1実施形態と同様である。
Then, the construction procedure of the said foundation structure is demonstrated below.
The ground is cut down, the crushed stone 17 is laid down and rolled, the PC board is installed at the bundle position (position where the bundle 20 is installed) on the root cutting bottom, the anchor bolt 11 is fixed on the PC board, and then The process up to arranging the reinforcing bars of the foundation slab 10 is the same as in the first embodiment.

その後、図8(a)に示す如く、既に配筋を完了した鉄筋の周囲にスラブ断熱部43を起立させ、当該スラブ断熱部43の外側に型枠を立設する。そして、コンクリートを打設する。本実施形態では、スラブ断熱部43の上端縁のやや下方、アンカーボルト11の上端部を残した状態でコンクリートを打設する(図8(b)参照)。   After that, as shown in FIG. 8A, the slab heat insulating portion 43 is erected around the reinforcing bars that have already been arranged, and the mold is erected outside the slab heat insulating portion 43. And concrete is laid. In the present embodiment, concrete is placed in a state where the upper end edge of the slab heat insulating portion 43 is slightly below the upper end portion of the anchor bolt 11 (see FIG. 8B).

次に、図8(c)に示す如く、束20をアンカーボルト11に設置し、続いて、該束20の上に梁30を載置し、これらをボルトナットによって締結していく。   Next, as shown in FIG. 8 (c), the bundle 20 is installed on the anchor bolt 11, and then the beam 30 is placed on the bundle 20, and these are fastened by bolts and nuts.

その後、1階床構面に水平ブレース等の補剛材(図示省略)を取り付け、梁30の対角寸法を確認するなどして梁30位置の調整(ゆがみの補正)を行う。   Thereafter, a stiffener (not shown) such as a horizontal brace is attached to the first floor construction surface, and the beam 30 position is adjusted (distortion correction) by confirming the diagonal dimension of the beam 30.

一方、上記手順に至る間に、仕上げ断熱部45の上端部にスペーサ48を取り付け、鋼材断熱部44を形成しておく。当該取付けは、仕上げ断熱部45の上端部の一側面にスペーサ48の一方の小口面を当接させ、この状態で当該仕上げ断熱部45の他側面からスペーサ48に向けてピン47を差し込んでいく。複数個所にピン47を差し入れていき、これによってスペーサ48を仕上げ断熱部45に固定する。   On the other hand, the spacer 48 is attached to the upper end part of the finishing heat insulation part 45 and the steel heat insulation part 44 is formed during the above procedure. In the attachment, one small edge surface of the spacer 48 is brought into contact with one side surface of the upper end portion of the finish heat insulating portion 45, and the pin 47 is inserted from the other side surface of the finish heat insulating portion 45 toward the spacer 48 in this state. . The pins 47 are inserted into a plurality of places, and thereby the spacers 48 are fixed to the finishing heat insulating portion 45.

その後、スラブ断熱部43に仕上げ断熱部45を載置(当接)しつつ鋼材基礎部44を鋼材基礎2の外側に立設させ、断熱部41を組み上げていく。このとき、スペーサ48の長さは、梁30のウェブ30cの側面から基礎スラブ10の端面までの長さ相当であるため、図8(c)に示す如く、鋼材断熱部44の下端部をスラブ断熱部43の下端部に設置し、スペーサ48の先端部を鋼材基礎2の梁のウェブに近接させる方向に鋼材断熱部44を揺動させることで、当該鋼材断熱部44の位置が精度良く定められるのみならず、鋼材断熱部44は、真っ直ぐに起立した状態でスラブ断熱部43の上端部に立ち上がるものとなる。また、このように設置していくことで、鋼材断熱部44がスペーサ48を介して鋼材基礎2の梁30にも支持されることとなり、鋼材断熱部44の立ち上げ状態が安定的に維持される。   Thereafter, the steel base portion 44 is erected on the outside of the steel base 2 while the finishing heat insulating portion 45 is placed (contacted) on the slab heat insulating portion 43, and the heat insulating portion 41 is assembled. At this time, since the length of the spacer 48 is equivalent to the length from the side surface of the web 30c of the beam 30 to the end surface of the foundation slab 10, as shown in FIG. By installing the steel heat insulating portion 44 in the direction in which the tip of the spacer 48 is brought close to the web of the beam of the steel foundation 2, the position of the steel heat insulating portion 44 is accurately determined. In addition, the steel heat insulating portion 44 rises to the upper end portion of the slab heat insulating portion 43 while standing upright. Moreover, by installing in this way, the steel heat insulation part 44 will be supported also by the beam 30 of the steel base 2 via the spacer 48, and the starting state of the steel heat insulation part 44 is stably maintained. The

かかる鋼材断熱部44の組み上げにより、基礎断熱体40の断熱部41が基礎スラブ10及び鋼材基礎2の外側面に跨って立設されることとなる。その後、鋼材断熱部44及びスラブ断熱部43の表面に樹脂モルタル等を左官して保護層42を形成する等、残りの工程は上記第1実施形態と同様である。   By assembling the steel material heat insulating portion 44, the heat insulating portion 41 of the basic heat insulating body 40 is erected over the outer surfaces of the basic slab 10 and the steel material foundation 2. Thereafter, the remaining steps are the same as in the first embodiment, such as plastering resin mortar or the like on the surfaces of the steel heat insulating portion 44 and the slab heat insulating portion 43 to form the protective layer 42.

本実施形態によれば、スペーサ48を鋼材基礎2に当接させることで仕上げ断熱部45の鋼材基礎2からの距離が正確に維持される。また、仕上げ断熱部45の下端部をスラブ断熱部43の上端部に設置することで、スペーサ48の先端部は鋼材基礎2の梁のウェブに当接させることができ、鋼材断熱部44の位置調整がほとんど不要となる。また、当該設置工程に伴って鋼材断熱部44の支持状態が形成されるものとなる。これによって、作業者は手によって鋼材断熱部44を支持する必要が無く、スラブ断熱部43に仕上げ断熱部45を立ち上げていく作業をきわめて容易に行うことができるものとなっている。もちろん、当該鋼材断熱部44は鋼材基礎2に保護される形となるので、当該鋼材断熱部44が太陽光に曝されることを抑制し、当該鋼材断熱部44の施工時における紫外線劣化が充分に抑制されるものとなる。   According to this embodiment, the distance from the steel base 2 of the finishing heat insulation part 45 is correctly maintained by making the spacer 48 contact | abut to the steel base 2. FIG. In addition, by installing the lower end portion of the finish heat insulating portion 45 at the upper end portion of the slab heat insulating portion 43, the tip end portion of the spacer 48 can be brought into contact with the web of the beam of the steel base 2 and the position of the steel heat insulating portion 44 is Adjustment is almost unnecessary. Moreover, the support state of the steel material heat insulation part 44 will be formed with the said installation process. Thereby, the operator does not need to support the steel heat insulating part 44 by hand, and the work of starting the finishing heat insulating part 45 on the slab heat insulating part 43 can be performed very easily. Of course, since the steel heat insulating portion 44 is protected by the steel base 2, the steel heat insulating portion 44 is suppressed from being exposed to sunlight, and the ultraviolet deterioration during construction of the steel heat insulating portion 44 is sufficient. Will be suppressed.

また、上記実施形態にあるように、本発明によれば、基礎断熱体40は上下に配置される基礎スラブ10と鋼材基礎2の両方に跨って構成される一方、これら基礎スラブ10と鋼材基礎2の組み上げに伴って徐々に組み上げていくことができ、施工性の自由度が向上するものとなるのである。   Further, as in the above-described embodiment, according to the present invention, the foundation thermal insulator 40 is configured to straddle both the foundation slab 10 and the steel foundation 2 arranged above and below, while the foundation slab 10 and the steel foundation are formed. It can be gradually assembled with the assembly of 2 and the degree of freedom of workability is improved.

なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。
例えば、鋼材基礎2の組み上げ後、建物Aの柱51、耐震要素52、床パネルや外壁等を設置した後に、基礎断熱体40の鋼材断熱部44を設置する構成を採用することも可能である。
The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention.
For example, after assembling the steel material foundation 2, it is also possible to adopt a configuration in which the steel material heat insulating portion 44 of the basic heat insulating body 40 is installed after the pillar 51 of the building A, the seismic element 52, the floor panel and the outer wall are installed. .

また、このように建物のAの柱51や耐震要素52、外壁の受け金物53等を先に鋼材基礎2に対して組み上げた後、基礎スラブ10のコンクリートを打設する構成を採用することも可能である。
また、鋼材断熱部44の下地断熱部46のみを先に鋼材基礎2に対して設置させておき、建物Aの施工等がある程度完成した後に仕上げ断熱部45を設置する構成を採用することも可能である。
Moreover, after assembling the pillar 51 of the building 51, the seismic element 52, the receiving metal 53 of the outer wall, etc. to the steel foundation 2 in this way, it is possible to adopt a configuration in which the concrete of the foundation slab 10 is placed. Is possible.
It is also possible to adopt a configuration in which only the base heat insulating portion 46 of the steel heat insulating portion 44 is installed on the steel base 2 first, and the finishing heat insulating portion 45 is installed after the construction of the building A is completed to some extent. It is.

また、基礎スラブ10は、外側部のみを地盤面よりも高くし、中央部を地盤面よりも低くする構成や外側部から地盤面に向けて緩やかに水勾配を設ける構成を採用することも可能である。   Moreover, the foundation slab 10 can adopt a configuration in which only the outer portion is higher than the ground surface and the central portion is lower than the ground surface, or a configuration in which a water gradient is gently provided from the outer portion toward the ground surface. It is.

また、上述した実施形態では、束20を基礎スラブ10に固定する方法としてアンカーボルト11を利用したが、これに替え、埋め込み式のナットとボルトによって該束20を固定するように構成することもできる。このように構成した場合、ボルトを取りはずすことで束20の横方向の拘束をするものがなくなり、例えば増改築に伴って柱を移動、追加する際に、束20についても容易に撤去することができる。   In the above-described embodiment, the anchor bolt 11 is used as a method of fixing the bundle 20 to the foundation slab 10. However, instead of this, the bundle 20 may be fixed by an embedded nut and bolt. it can. When configured in this manner, there is no longer any restraint in the lateral direction of the bundle 20 by removing the bolts. For example, when moving or adding a pillar in accordance with an extension or reconstruction, the bundle 20 can be easily removed. it can.

2 鋼材基礎
10 基礎スラブ(支持体)
11 アンカーボルト
12 鉄筋
13 コンクリート
20 束
30 梁30
31 水平ブレース
40 基礎断熱体
41 断熱部
42 保護層
43 スラブ断熱部
44 鋼材断熱部
45 仕上げ断熱部
46 下地断熱部
47 ピン
48 スペーサ
46 下地断熱部
50 柱
51 耐力要素
A 建物
2 Steel foundation 10 Foundation slab (support)
11 Anchor bolt 12 Reinforcing bar 13 Concrete 20 Bundle 30 Beam 30
31 Horizontal brace 40 Basic heat insulator 41 Heat insulating portion 42 Protective layer 43 Slab heat insulating portion 44 Steel heat insulating portion 45 Finish heat insulating portion 46 Base heat insulating portion 47 Pin 48 Spacer 46 Base heat insulating portion 50 Pillar 51 Strength element A Building

Claims (5)

鉄筋コンクリート造の基礎スラブと、該基礎スラブ上に形成される鋼材基礎と、該鋼材基礎を包囲する基礎断熱体と、を備え、
該基礎断熱体は、基礎スラブよりも僅かに背高なスラブ断熱部と、該スラブ断熱部に連結されて前記鋼材基礎の外側面を覆う鋼材断熱部とを備えている基礎の施工方法であって、
前記基礎スラブの配筋後に、当該基礎スラブの上面に対応する位置から上方に前記鋼材基礎を組み上げていき、該鋼材基礎の組上げの前又は後に前記基礎スラブの鉄筋を包囲してスラブ断熱部を立設し、
前記スラブ断熱部の上端部近傍までコンクリートを打設して基礎スラブを形成し、その後、
前記スラブ断熱部に当接させつつ前記鋼材基礎の外側面に前記鋼材断熱部を取り付ける
ことを特徴とする基礎の施工方法。
A reinforced concrete foundation slab, a steel foundation formed on the foundation slab, and a foundation insulation body surrounding the steel foundation,
The foundation insulation is a foundation construction method comprising a slab insulation part slightly taller than the foundation slab and a steel insulation part connected to the slab insulation part and covering the outer surface of the steel foundation. And
After the reinforcement of the foundation slab, the steel material foundation is assembled upward from a position corresponding to the upper surface of the foundation slab, and the reinforcement of the foundation slab is surrounded before or after the steel foundation is assembled. Erected,
Concrete is cast to the vicinity of the upper end of the slab heat insulating part to form a foundation slab, and then
A foundation construction method comprising attaching the steel heat insulation portion to an outer surface of the steel material foundation while being in contact with the slab heat insulation portion.
鉄筋コンクリート造の基礎スラブと、該基礎スラブ上に形成される鋼材基礎と、該鋼材基礎を包囲する基礎断熱体と、を備え、
該基礎断熱体は、基礎スラブよりも僅かに背高なスラブ断熱部と、該スラブ断熱部に連結されて前記鋼材基礎の外側面を覆う鋼材断熱部とを備えている基礎の施工方法であって、
前記基礎スラブの配筋後に前記基礎スラブの鉄筋を包囲してスラブ断熱部を立設し、
前記スラブ断熱部の上端部近傍までコンクリートを打設して基礎スラブを形成し、
該基礎スラブ形成後に、当該基礎スラブの上面に前記鋼材基礎を組み上げ、その後、
前記スラブ断熱部に当接させつつ前記鋼材基礎の外側面に前記鋼材断熱部を設置する
ことを特徴とする基礎の施工方法。
A reinforced concrete foundation slab, a steel foundation formed on the foundation slab, and a foundation insulation body surrounding the steel foundation,
The foundation insulation is a foundation construction method comprising a slab insulation part slightly taller than the foundation slab and a steel insulation part connected to the slab insulation part and covering the outer surface of the steel foundation. And
After the reinforcement of the foundation slab, surround the reinforcement of the foundation slab and set up a slab insulation part,
Concrete is cast to the vicinity of the upper end of the slab heat insulating part to form a foundation slab,
After the foundation slab is formed, the steel foundation is assembled on the upper surface of the foundation slab, and then
A foundation construction method, wherein the steel heat insulation portion is installed on an outer surface of the steel foundation while being brought into contact with the slab heat insulation portion.
前記鋼材断熱部は、前記スラブ断熱部上に載置される仕上げ断熱部と、該仕上げ断熱部と前記鋼材基礎の間の間隔に等しい厚さを有する平板状の下地断熱部とを備え、
前記鋼材断熱部の設置は、
前記下地断熱部を鋼材基礎とスラブ断熱部との間に立設させ、その後、
前記仕上げ断熱部を下地断熱部に立て掛けた状態で前記スラブ断熱部の上端部に載置する
ことを特徴とする請求項1又は請求項2に記載の基礎の施工方法。
The steel material heat insulating portion includes a finish heat insulating portion placed on the slab heat insulating portion, and a flat base heat insulating portion having a thickness equal to a distance between the finish heat insulating portion and the steel material foundation,
The installation of the steel insulation part is
The base heat insulating part is erected between the steel base and the slab heat insulating part, and then
The foundation construction method according to claim 1 or 2, wherein the finish heat insulating portion is placed on an upper end portion of the slab heat insulating portion in a state where the finish heat insulating portion leans against the base heat insulating portion.
前記スラブ断熱部と鋼材基礎との間の間隔は、前記仕上げ断熱部と前記鋼材基礎の間の間隔に等しく、
前記下地断熱部は、前記スラブ断熱部の上端部と前記鋼材基礎の間に嵌め込まれた状態でこれらの間に立設される
ことを特徴とする請求項3に記載の基礎の施工方法。
The spacing between the slab insulation and the steel foundation is equal to the spacing between the finish insulation and the steel foundation,
The foundation construction method according to claim 3, wherein the base heat insulating portion is erected between the upper end portion of the slab heat insulating portion and the steel base in a state of being fitted between them.
前記鋼材断熱部は、前記スラブ断熱部上に載置される仕上げ断熱部と、該仕上げ断熱部と前記鋼材基礎の間の間隔に等しい長さを有して当該仕上げ断熱部の裏面に突設されるブロック状のスペーサとを備え、
前記鋼材断熱部の設置は、前記スペーサの先端部を鋼材基礎に当接させること前記仕上げ断熱材の位置決めがなされる
ことを特徴とする請求項1又は請求項2に記載の基礎の施工方法。
The steel heat insulating portion has a finish heat insulating portion placed on the slab heat insulating portion, and has a length equal to the interval between the finish heat insulating portion and the steel base, and protrudes from the back surface of the finishing heat insulating portion. Block-shaped spacers,
The foundation construction method according to claim 1 or 2, wherein the installation of the steel heat insulating portion is performed by positioning the finish heat insulating material by bringing a tip of the spacer into contact with a steel base.
JP2010122466A 2010-05-28 2010-05-28 Foundation construction method Active JP5465607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010122466A JP5465607B2 (en) 2010-05-28 2010-05-28 Foundation construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010122466A JP5465607B2 (en) 2010-05-28 2010-05-28 Foundation construction method

Publications (2)

Publication Number Publication Date
JP2011247011A true JP2011247011A (en) 2011-12-08
JP5465607B2 JP5465607B2 (en) 2014-04-09

Family

ID=45412608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010122466A Active JP5465607B2 (en) 2010-05-28 2010-05-28 Foundation construction method

Country Status (1)

Country Link
JP (1) JP5465607B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016205073A (en) * 2015-04-28 2016-12-08 株式会社住金システム建築 Foundation at peripheral part of steel frame building, and construction method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064980A (en) * 1999-08-27 2001-03-13 Sekisui Chem Co Ltd Foundation of building and its construction
JP2005023595A (en) * 2003-06-30 2005-01-27 Sekisui Chem Co Ltd Foundation with decorative panel
JP2007224542A (en) * 2006-02-22 2007-09-06 Kenji Matsui Heat insulating foundation and its construction method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064980A (en) * 1999-08-27 2001-03-13 Sekisui Chem Co Ltd Foundation of building and its construction
JP2005023595A (en) * 2003-06-30 2005-01-27 Sekisui Chem Co Ltd Foundation with decorative panel
JP2007224542A (en) * 2006-02-22 2007-09-06 Kenji Matsui Heat insulating foundation and its construction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016205073A (en) * 2015-04-28 2016-12-08 株式会社住金システム建築 Foundation at peripheral part of steel frame building, and construction method thereof

Also Published As

Publication number Publication date
JP5465607B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
KR100991851B1 (en) Earthquake retrofit structure for brick wall and construction method thereof
JP4847153B2 (en) Roof repair structure and construction method of flat roof building
JP5496732B2 (en) Construction method for reinforced concrete buildings
JP5574328B2 (en) Tokai seismic wall and its construction method
KR102029301B1 (en) Prefabricated column assembly with foundation reinforcement part
JP5503408B2 (en) Building construction method
JP5183606B2 (en) Unit structure of anchor bolt used for foundation construction of equipment and foundation construction method of equipment using it
JP4100475B2 (en) Precast balcony structure and reinforced concrete exterior heat insulation wall structure with balcony
JP5865567B2 (en) Connecting slab and its construction method
JP5465607B2 (en) Foundation construction method
JP6271399B2 (en) Exterior wall panel mounting structure
JP2011241547A (en) Strut and building provided with the same
JP5612353B2 (en) building
SA109300688B1 (en) Panel Element with Reinforcement
JP6634259B2 (en) Column and beam frame
JP5529628B2 (en) Foundation structure
JP6755102B2 (en) Construction method of the outer wall panel base and outer wall material
JP2001262586A (en) Foundation structure of dwelling house
JP5479213B2 (en) Underfloor inspection structure
JP5465606B2 (en) Foundation structure
KR101285189B1 (en) External Drywall Unit Structure For PC Rahmen Structure, And Construction Method Thereof
JP7107207B2 (en) Building construction method
JP3244102U (en) Steel house foundation structure and anchor set used therein
JP5769996B2 (en) Foundation structure
JP7040755B2 (en) Outer wall structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140122

R150 Certificate of patent or registration of utility model

Ref document number: 5465607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350