JP2011246812A - Method for producing powder for dust core and device for producing the powder for the dust core - Google Patents

Method for producing powder for dust core and device for producing the powder for the dust core Download PDF

Info

Publication number
JP2011246812A
JP2011246812A JP2011030573A JP2011030573A JP2011246812A JP 2011246812 A JP2011246812 A JP 2011246812A JP 2011030573 A JP2011030573 A JP 2011030573A JP 2011030573 A JP2011030573 A JP 2011030573A JP 2011246812 A JP2011246812 A JP 2011246812A
Authority
JP
Japan
Prior art keywords
powder
silicon dioxide
sintering
rotary furnace
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011030573A
Other languages
Japanese (ja)
Inventor
Yasuhiro Katsukawa
康宏 勝川
Masaki Sugiyama
昌揮 杉山
Shota Ohira
翔太 大平
Yusuke Oishi
雄介 大石
Takeshi Hattori
毅 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2011030573A priority Critical patent/JP2011246812A/en
Publication of JP2011246812A publication Critical patent/JP2011246812A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Muffle Furnaces And Rotary Kilns (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing powder for a dust core and a device for producing the powder for the dust core, allowing improvement of productivity and quality of the powder for the dust core by preventing that secondary particles are generated in time of siliconizing treatment.SOLUTION: By bringing soft magnetic metal powder 21 into contact with silica dioxide holding member 22 coated by silica dioxide powder 23 while heating them, oxidation-reduction reaction between the soft magnetic metal powder 21 and the silica dioxide powder 23 is generated, and silicon disengaged from the silica dioxide powder 23 is made to diffuse and permeate into the surface of each soft magnetic metal powder 21 to form a silicon permeation layer on the surfaces of the soft magnetic metal powder 21.

Description

本発明は、圧粉磁心用粉末を製造するための圧粉磁心用粉末の製造方法及び圧粉磁心用粉末製造装置に関する。   The present invention relates to a method for producing a powder for a powder magnetic core and a powder production apparatus for a powder magnetic core for producing a powder for a powder magnetic core.

圧粉磁心は、軟磁性金属粉末からなる圧粉磁心用粉末をプレス成形したものである。圧粉磁心は、電磁鋼板を積層してなるコア材と比べて、周波数に応じて生じる高周波損失(以下「鉄損」という。)が少ない磁気特性を有していること、形状バリエーションに臨機且つ安価に対応できること、材料費が廉価であること等、多くの利点を有する。このような圧粉磁心は、例えば車両の駆動用モータのステータコアやロータコア、電力変換回路を構成するリアクトルコアなどに適用されている。   The dust core is obtained by press-molding a dust core powder made of soft magnetic metal powder. Compared to the core material made by laminating electromagnetic steel sheets, the dust core has magnetic properties with less high frequency loss (hereinafter referred to as “iron loss”) depending on the frequency, and is suitable for shape variations. It has many advantages such as being able to cope with low cost and low material cost. Such a powder magnetic core is applied to, for example, a stator core and a rotor core of a vehicle drive motor, a reactor core constituting a power conversion circuit, and the like.

例えば、圧粉磁心用粉末101は、図14に示すように、二酸化珪素粉末103を鉄粉102の表面から浸透拡散させ、珪素元素が濃化した珪素浸透層104を鉄粉102の表層に形成する浸珪処理が施されている。浸珪処理は、鉄粉102と二酸化珪素粉末103を攪拌混合して鉄粉102の表面に二酸化珪素粉末103を付着させ、鉄粉102と二酸化珪素粉末103の混合粉を炉に入れる。そして、混合粉を1000℃に加熱する。すると、二酸化珪素粉末103から珪素元素が脱離して鉄粉102の表層に浸透拡散し、珪素浸透層104が形成される。   For example, as shown in FIG. 14, the powder 101 for the powder magnetic core allows the silicon dioxide powder 103 to permeate and diffuse from the surface of the iron powder 102, thereby forming a silicon permeation layer 104 in which the silicon element is concentrated on the surface layer of the iron powder 102. The siliconization process to be performed is performed. In the siliconization treatment, the iron powder 102 and the silicon dioxide powder 103 are stirred and mixed to adhere the silicon dioxide powder 103 to the surface of the iron powder 102, and the mixed powder of the iron powder 102 and the silicon dioxide powder 103 is put into a furnace. Then, the mixed powder is heated to 1000 ° C. Then, the silicon element is detached from the silicon dioxide powder 103 and permeates and diffuses into the surface layer of the iron powder 102 to form the silicon permeation layer 104.

鉄粉102の中心部まで珪素元素を浸透させると、圧粉磁心用粉末101の硬度が高くなる。この場合、圧粉磁心用粉末101を加圧して圧粉成形したときに、圧粉磁心用粉末101が変形せず、圧粉磁心用粉末101の間に形成される隙間が大きくなるため、磁心密度が低くなる。磁心密度が低いと、磁束密度が低くなる問題がある。そのため、珪素浸透層104は、鉄粉102の表面から鉄粉102の中心部側への距離X2を、鉄粉102の直径Dの0.15倍未満とすることが、好ましいとされている。但し、珪素浸透層104が薄かったり、珪素浸透層104における珪素元素濃度が低いと、鉄粉102の接触部分を十分絶縁することができず、鉄損(主にヒステリシス損失と渦電流損失)が高くなる。よって、圧粉磁心用粉末101に形成する珪素浸透層104の距離X2や濃度は、圧粉磁心の比抵抗を管理する上で、とても重要である(例えば、特許文献1及び特許文献2参照)。   When the silicon element is infiltrated to the center of the iron powder 102, the hardness of the powder 101 for dust core becomes high. In this case, when the dust core powder 101 is pressed and compacted, the dust core powder 101 is not deformed and the gap formed between the dust core powders 101 becomes larger. Density decreases. When the magnetic core density is low, there is a problem that the magnetic flux density is lowered. Therefore, it is preferable that the silicon permeation layer 104 has a distance X2 from the surface of the iron powder 102 to the center of the iron powder 102 that is less than 0.15 times the diameter D of the iron powder 102. However, if the silicon permeation layer 104 is thin or the silicon element concentration in the silicon permeation layer 104 is low, the contact portion of the iron powder 102 cannot be sufficiently insulated, and iron loss (mainly hysteresis loss and eddy current loss) is caused. Get higher. Therefore, the distance X2 and the concentration of the silicon permeation layer 104 formed on the powder 101 for dust core are very important in managing the specific resistance of the dust core (see, for example, Patent Document 1 and Patent Document 2). .

特開2009−256750号公報JP 2009-256750 A 特開2009−123774号公報JP 2009-123774 A

しかしながら、従来の圧粉磁心用粉末の製造方法は、図15に示すように、製造された圧粉磁心用粉末101をランダムに10個取り出して、珪素浸透層104が鉄粉102の表面から鉄粉102の中心部へ向かって形成される距離(表面からの距離)X2と珪素浸透層における珪素元素の濃度(Si濃度)を測定したところ、表面からの距離X2とSi濃度が、粉末間でおおきくばらついていた。具体的には、取り出された粉末の中には、浸珪反応が乏しい粉末(浸珪反応量が低い粉末)が含まれていた(図15中の細い実線で記載するグラフ参照)。また、浸珪反応が豊富な粉末(浸珪反応量が高い粉末)であっても(図15中の太い実線で記載するグラフ参照)、鉄粉102の表面におけるSi濃度が、約2.0%〜約5.0%と幅広くばらついている上に、珪素浸透層104の鉄粉102の表面からの距離(厚さ)X2が約4μm〜約20μmにばらついている。更に、浸珪反応が豊富な粉末は、珪素浸透層104の鉄粉102の表面から鉄粉102の中心部へ向かってSi濃度が低下する割合がおおきくばらついている。よって、従来の圧粉磁心用粉末の製造方法では、各鉄粉102に均一な浸珪反応をさせることができず、各圧粉磁心用粉末101に形成される珪素浸透層104の均一化を図ることができなかった。そのため、圧粉成形時に、圧粉磁心用粉末101に形成される珪素浸透層104の厚さ(表面からの距離)X2の薄い部分やSi濃度の低い部分同士が接触すると、当該接触部分の絶縁性が低いため、圧粉磁心に発生する渦電流が大きくなり、ひいては、比抵抗が低くなる問題がある。また、珪素浸透層104の厚さ(表面からの距離)X2が大きい圧粉磁心用粉末101は、硬く、磁心密度や磁束密度を低下させる原因となる。   However, as shown in FIG. 15, the conventional method for manufacturing a powder for a powder magnetic core is to randomly extract 10 powders 101 for the powder magnetic core that are manufactured, and the silicon permeation layer 104 is iron from the surface of the iron powder 102. When the distance (distance from the surface) X2 formed toward the center of the powder 102 and the concentration of silicon element (Si concentration) in the silicon permeation layer were measured, the distance X2 from the surface and the Si concentration were between the powders. There was a lot of variation. Specifically, the extracted powder contained a powder having a poor silicification reaction (a powder having a low silicidation reaction amount) (see the graph described by a thin solid line in FIG. 15). Further, even if the powder is rich in the silicification reaction (powder having a high silicidation reaction amount) (see the graph described by the thick solid line in FIG. 15), the Si concentration on the surface of the iron powder 102 is about 2.0. The distance (thickness) X2 from the surface of the iron powder 102 of the silicon permeation layer 104 varies from about 4 μm to about 20 μm. Furthermore, the ratio of the Si concentration decreasing from the surface of the iron powder 102 of the silicon-penetrating layer 104 toward the center of the iron powder 102 varies greatly in the powder rich in the silicon immersion reaction. Therefore, in the conventional method for producing a powder for a powder magnetic core, it is not possible to cause each iron powder 102 to undergo a uniform silicidation reaction, and the silicon permeation layer 104 formed in each powder for a powder magnetic core 101 is made uniform. I couldn't plan. Therefore, when a portion having a small thickness (distance from the surface) X2 or a portion having a low Si concentration of the silicon permeation layer 104 formed on the powder 101 for dust core is in contact with each other at the time of compacting, insulation of the contact portion is performed. Therefore, there is a problem that the eddy current generated in the dust core becomes large and the specific resistance becomes low. Moreover, the powder 101 for a dust core having a large thickness (distance from the surface) X2 of the silicon-penetrating layer 104 is hard and causes a decrease in the core density and magnetic flux density.

従来の圧粉磁心用粉末の製造方法によって、珪素浸透層104の厚さ(表面からの距離)X2やSi濃度が圧粉磁心用粉末101間でばらつく理由は、鉄粉102と二酸化珪素粉末103の混合粉を投入した炉を回転させずに混合粉を加熱していたため、浸珪処理を行う間、鉄粉102と二酸化珪素粉末103の配置が変わらず、周囲に二酸化珪素粉末103がたくさんある鉄粉102では、珪素元素が表層にたくさん浸透拡散して、珪素浸透層104の厚さやSi濃度が大きくなるのに対して、周囲に二酸化珪素粉末103が少ない鉄粉102では、珪素元素が表層に浸透拡散する量が少なく、珪素浸透層104の厚さやSi濃度が小さくなるからと考えられる。   The reason why the thickness (distance from the surface) X2 and the Si concentration of the silicon-penetrating layer 104 varies between the powders 101 for powder magnetic cores by the conventional method for producing powders for powder magnetic cores is as follows. Since the mixed powder was heated without rotating the furnace in which the mixed powder was charged, the arrangement of the iron powder 102 and the silicon dioxide powder 103 did not change during the siliconization treatment, and there were a lot of silicon dioxide powder 103 around. In the iron powder 102, a large amount of silicon element penetrates and diffuses into the surface layer, and the thickness and the Si concentration of the silicon infiltrated layer 104 increase. This is considered to be because the amount permeating and diffusing into the silicon is small, and the thickness and the Si concentration of the silicon-penetrating layer 104 are small.

そこで、発明者らは、図16及び図18に示すように、平均粒径200μmの鉄粉102と平均粒径50nmの二酸化珪素粉末103を攪拌混合した混合粉を炉105に投入した後、炉105を加熱し、その後、炉105の内部温度を1000℃に温度調整しながら、炉105を回転させて混合粉を1時間連続して攪拌することにより、圧粉磁心用粉末を製造することを試みた。これにより、発明者らは、浸珪処理時に二酸化珪素粉末103が配置を変えながら鉄粉102の周りに均一に付着し、各鉄粉102に均一な浸珪反応を発生させることができると考えた。   Then, as shown in FIGS. 16 and 18, the inventors put a mixed powder obtained by stirring and mixing iron powder 102 having an average particle diameter of 200 μm and silicon dioxide powder 103 having an average particle diameter of 50 nm into a furnace 105, and The powder for a magnetic core is manufactured by heating 105 and then stirring the mixed powder continuously for 1 hour by rotating the furnace 105 while adjusting the internal temperature of the furnace 105 to 1000 ° C. Tried. As a result, the inventors believe that the silicon dioxide powder 103 is uniformly attached around the iron powder 102 while changing the arrangement during the silicidation treatment, and a uniform silicification reaction can be generated in each iron powder 102. It was.

ところが、上記圧粉磁心用粉末の製造方法を実施して炉105から生成物を取り出したところ、図17に示すように、鉄粉102と二酸化珪素粉末103が団子状に固まって二次粒子110になってしまっていた。二次粒子110は、二酸化珪素粉末103(ドット部分参照)が焼結して複数の鉄粉102を結合させており、直径が600μm〜700μmにも及んでいた。二次粒子110ができる理由は、次のように考えられる。   However, when the above method for producing a powder for a powder magnetic core was carried out and the product was taken out from the furnace 105, as shown in FIG. 17, the iron powder 102 and the silicon dioxide powder 103 were solidified in a dumpling shape to form secondary particles 110. It had become. The secondary particles 110 were sintered with silicon dioxide powder 103 (see dot portion) to combine a plurality of iron powders 102, and the diameters ranged from 600 μm to 700 μm. The reason why the secondary particles 110 are formed is considered as follows.

焼結は、融点の3分の2程度の温度で始まることが知られている。二酸化珪素の融点は、1600℃±75℃である。一方、浸珪処理時の混合粉の加熱温度は約1000℃である。よって、混合粉の加熱温度1000℃は、二酸化珪素の融点のちょうど3分の2程度の温度に相当する。混合粉を1000℃に加熱することにより、鉄粉102の表面に付着した二酸化珪素粉末103から珪素元素が脱離して鉄粉102に拡散浸透するが、加熱時間が長くなると、二酸化珪素粉末103間で物質が移動し、焼結が発生する。焼結は、鉄粉102の表面に拡散接合した二酸化珪素粉末103にも発生するため、焼結した二酸化珪素粉末103を介して鉄粉102同士が結合される。特に、上記圧粉磁心用粉末の製造方法は、図16及び図18に示すように、混合粉を1000℃に加熱した状態で、炉105を1時間連続回転させ、鉄粉102と二酸化珪素粉末103の混合粉を高所から低所に繰り返し落下させて攪拌を行う。この場合、低所にある二酸化珪素粉末103は、上方から落ちてきた混合粉の重みで圧縮され、焼結が促進される。このように、単に、浸珪処理時に混合粉を1000℃に加熱しながら攪拌しただけでは、二酸化珪素粉末103が加圧焼結されて二次粒子110を生成してしまっていた。この結果、圧粉磁心用粉末の品質及び生産性が悪くなってしまった。   It is known that sintering begins at a temperature of about two-thirds of the melting point. The melting point of silicon dioxide is 1600 ° C. ± 75 ° C. On the other hand, the heating temperature of the mixed powder during the siliconizing treatment is about 1000 ° C. Accordingly, the heating temperature of the mixed powder of 1000 ° C. corresponds to a temperature that is about two thirds of the melting point of silicon dioxide. By heating the mixed powder to 1000 ° C., silicon element is detached from the silicon dioxide powder 103 adhering to the surface of the iron powder 102 and diffuses and penetrates into the iron powder 102. The material moves and sintering occurs. Sintering also occurs in the silicon dioxide powder 103 that is diffusion bonded to the surface of the iron powder 102, so that the iron powders 102 are bonded together via the sintered silicon dioxide powder 103. In particular, as shown in FIGS. 16 and 18, the above method for producing a powder for a powder magnetic core is such that the furnace 105 is continuously rotated for 1 hour while the mixed powder is heated to 1000 ° C., and the iron powder 102 and the silicon dioxide powder. The mixed powder of 103 is repeatedly dropped from a high place to a low place and stirred. In this case, the silicon dioxide powder 103 in the low place is compressed by the weight of the mixed powder falling from above, and the sintering is promoted. As described above, when the mixed powder is simply stirred while being heated to 1000 ° C. during the siliconization treatment, the silicon dioxide powder 103 is pressure-sintered to generate secondary particles 110. As a result, the quality and productivity of the powder for powder magnetic cores have deteriorated.

本発明は、上記問題点を解決するためになされたものであり、浸珪処理時に二次粒子が生成されることを防ぎ、圧粉磁心用粉末の品質と生産性を向上させることができる圧粉磁心用粉末の製造方法及び圧粉磁心用粉末製造装置を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and prevents the generation of secondary particles during the siliconization treatment, and improves the quality and productivity of the powder for powder magnetic core. It aims at providing the manufacturing method of the powder for powder magnetic cores, and the powder manufacturing apparatus for powder magnetic cores.

上記課題を解決するために、本発明の一態様に係る圧粉磁心用粉末の製造方法は、圧粉磁心用粉末の製造方法において、前記軟磁性金属粉末と、二酸化珪素粉末によってコーティングされた二酸化珪素保持部材とを加熱しながら接触させることにより、前記軟磁性金属粉末と前記二酸化珪素粉末の酸化還元反応を発生させ、前記二酸化珪素粉末から離脱した珪素元素を前記軟磁性金属粉末の表面に拡散浸透させて珪素浸透層を前記軟磁性金属粉末の表面に形成する。   In order to solve the above problems, a method for producing a powder for a powder magnetic core according to an aspect of the present invention is the method for producing a powder for a powder magnetic core, wherein the soft magnetic metal powder and the silicon dioxide powder coated with the silicon dioxide powder are used. By bringing the silicon holding member into contact with heating, an oxidation-reduction reaction occurs between the soft magnetic metal powder and the silicon dioxide powder, and the silicon element detached from the silicon dioxide powder is diffused on the surface of the soft magnetic metal powder. A silicon infiltration layer is formed on the surface of the soft magnetic metal powder by infiltration.

上記態様の圧粉磁心用粉末の製造方法は、前記二酸化珪素保持部材が、焼結を防止するものであって、表面が二酸化珪素粉末にコーティングされた焼結防止材であり、前記軟磁性金属粉末と前記焼結防止材を混合して加熱攪拌することが好ましい。   In the method for producing a powder for a powder magnetic core according to the above aspect, the silicon dioxide holding member is a sintering preventing material whose surface is coated with silicon dioxide powder, wherein the silicon dioxide holding member prevents sintering, and the soft magnetic metal It is preferable to mix the powder and the anti-sintering material and stir with heating.

上記態様の圧粉磁心用粉末の製造方法は、前記二酸化珪素保持部材が、二酸化珪素粉末がコーティングされた回転炉の内壁であり、前記軟磁性金属粉末と、焼結を防止するための焼結防止材とを、前記回転炉に投入して加熱攪拌することが好ましい。   In the method for producing a powder for a powder magnetic core according to the above aspect, the silicon dioxide holding member is an inner wall of a rotary furnace coated with silicon dioxide powder, and the soft magnetic metal powder and sintering for preventing sintering are performed. It is preferable that the preventive material is put into the rotary furnace and heated and stirred.

上記態様の圧粉磁心用粉末の製造方法は、前記焼結防止材が、前記軟磁性金属粉末より平均粒径が小さく、かつ、前記軟磁性金属粉末及び前記二酸化珪素粉末と反応しないものであることが好ましい。
例えば、焼結防止材は、アルミナ(Al23)やジルコニア(ZrO2)などが好ましい。
In the method for producing a powder for a powder magnetic core according to the above aspect, the sintering preventing material has an average particle size smaller than that of the soft magnetic metal powder and does not react with the soft magnetic metal powder and the silicon dioxide powder. It is preferable.
For example, the sintering preventing material is preferably alumina (Al 2 O 3 ) or zirconia (ZrO 2 ).

上記態様の圧粉磁心用粉末の製造方法は、前記焼結防止材の平均粒径が、7μm〜30μmであることが好ましい。   In the method for producing a powder for a powder magnetic core according to the above aspect, it is preferable that an average particle diameter of the sintering preventing material is 7 μm to 30 μm.

上記課題を解決するために、本発明の一態様に係る圧粉磁心用粉末製造装置は、圧粉磁心用粉末を製造するための圧粉磁心用粉末製造装置において、回転可能に保持され、熱伝導性を有する材質からなる回転炉と、前記回転炉に回転力を付与する駆動手段と、前記回転炉を加熱する加熱手段と、を有し、前記回転炉が、軟磁性金属粉末と、表面が二酸化珪素粉末でコーティングされた焼結防止材との混合粉を投入される。   In order to solve the above problems, a powder magnetic core manufacturing apparatus according to an aspect of the present invention is a powder magnetic core powder manufacturing apparatus for manufacturing a powder magnetic core, wherein the powder magnetic core is rotatably held and heated. A rotary furnace made of a conductive material, a driving means for applying a rotational force to the rotary furnace, and a heating means for heating the rotary furnace, wherein the rotary furnace comprises a soft magnetic metal powder, a surface Is mixed with a sintering inhibitor coated with silicon dioxide powder.

上記態様の圧粉磁心用粉末製造装置は、前記焼結防止材の平均粒径が、7μm〜30μmであることが好ましい。   In the powder magnetic core manufacturing apparatus of the above aspect, the average particle diameter of the sintering preventing material is preferably 7 μm to 30 μm.

上記課題を解決するために、本発明の一態様に係る圧粉磁心用粉末製造装置は、圧粉磁心用粉末を製造するための圧粉磁心用粉末製造装置において、回転可能に保持され、熱伝導性を有する材質からなる回転炉と、前記回転炉に回転力を付与する駆動手段と、前記回転炉を加熱する加熱手段と、を有し、前記回転炉が、二酸化珪素粉末で内壁をコーティングされ、軟磁性金属粉末と焼結防止材との混合粉を投入される。   In order to solve the above problems, a powder magnetic core manufacturing apparatus according to an aspect of the present invention is a powder magnetic core powder manufacturing apparatus for manufacturing a powder magnetic core, wherein the powder magnetic core is rotatably held and heated. A rotary furnace made of a conductive material; a driving means for applying a rotational force to the rotary furnace; and a heating means for heating the rotary furnace, wherein the rotary furnace coats an inner wall with silicon dioxide powder. Then, a mixed powder of soft magnetic metal powder and an anti-sintering material is introduced.

上記態様の圧粉磁心用粉末の製造方法及び圧粉磁心用粉末製造装置は、例えば、軟磁性金属粉末と、表面が二酸化珪素粉末でコーティングされた焼結防止材との混合粉を回転炉に投入し、回転炉を加熱手段で加熱しながら回転させ、軟磁性金属粉末と焼結防止材とを攪拌混合する。この場合、軟磁性金属粉末が、焼結防止材の表面にコーティングされた酸化珪素粉末と接触し、酸化還元反応を発生する。この酸化還元反応により、二酸化珪素粉末から珪素元素が脱離して軟磁性金属粉末の表面に拡散浸透し、軟磁性金属粉末の表面に珪素浸透層が形成される。二酸化珪素粉末は、焼結防止材により焼結を防止される。そのため、回転炉を加熱させた状態で回転させ、混合粉を攪拌混合しても、軟磁性金属粉末が二酸化珪素粉末を介して結合したり、二酸化珪素粉末同士が焼結するなどして、二次粒子が生成されることがない。また、軟磁性粉末の表面には、混合粉の攪拌混合により、焼結防止材の二酸化珪素粉末が次々と供給され、各軟磁性金属粉末の表面に珪素浸透層が均一に形成される。よって、上記圧粉磁心用粉末の製造方法及び圧粉磁心用粉末製造装置によれば、浸珪処理時に二次粒子が生成されることを防ぎ、圧粉磁心用粉末の品質と生産性を向上させることができる。   The powder magnetic core powder manufacturing method and the powder magnetic core powder manufacturing apparatus according to the above aspect include, for example, a mixed powder of a soft magnetic metal powder and a sintering inhibitor whose surface is coated with silicon dioxide powder in a rotary furnace. Then, the rotary furnace is rotated while being heated by a heating means, and the soft magnetic metal powder and the anti-sintering material are stirred and mixed. In this case, the soft magnetic metal powder comes into contact with the silicon oxide powder coated on the surface of the anti-sintering material and generates an oxidation-reduction reaction. By this oxidation-reduction reaction, silicon element is desorbed from the silicon dioxide powder and diffuses and penetrates into the surface of the soft magnetic metal powder, thereby forming a silicon permeation layer on the surface of the soft magnetic metal powder. The silicon dioxide powder is prevented from sintering by the sintering inhibitor. Therefore, even if the rotary furnace is rotated in a heated state and the mixed powder is stirred and mixed, the soft magnetic metal powder is bonded through the silicon dioxide powder or the silicon dioxide powder is sintered together. No secondary particles are produced. Further, silicon dioxide powder as a sintering preventing material is successively supplied to the surface of the soft magnetic powder by stirring and mixing the mixed powder, so that a silicon permeation layer is uniformly formed on the surface of each soft magnetic metal powder. Therefore, according to the method for manufacturing a powder for a powder magnetic core and the powder core manufacturing apparatus for the powder magnetic core, secondary particles are prevented from being generated during the siliconization treatment, and the quality and productivity of the powder for the powder magnetic core are improved. Can be made.

上記態様の圧粉磁心用粉末の製造方法及び圧粉磁心用粉末製造装置は、例えば、軟磁性金属粉末と焼結防止材との混合粉を回転炉に投入し、回転炉を加熱手段で加熱しながら回転させ、軟磁性金属粉末と焼結防止材とを攪拌混合する。この場合、軟磁性金属粉末が、回転炉の内壁にコーティングされた二酸化珪素粉末と接触し、酸化還元反応を発生する。この酸化還元反応により、二酸化珪素粉末から珪素元素が脱離して軟磁性金属粉末の表面に拡散浸透し、軟磁性金属粉末の表面に珪素浸透層が形成される。二酸化珪素粉末は、焼結防止材により焼結を防止される。そのため、軟磁性金属粉末が二酸化珪素粉末を介して結合したり、二酸化珪素粉末同士が焼結するなどして、二次粒子が生成されることがない。また、軟磁性粉末は、混合粉の攪拌混合時に、回転炉の内壁にコーティングされた二酸化珪素粉末に接触する位置を変え、各軟磁性金属粉末の表面に珪素浸透層が均一に形成される。よって、上記圧粉磁心用粉末の製造方法及び圧粉磁心用粉末製造装置によれば、浸珪処理時に二次粒子が生成されることを防ぎ、圧粉磁心用粉末の品質と生産性を向上させることができる。   The method for manufacturing a powder for a powder magnetic core and the powder core manufacturing apparatus for a powder magnetic core according to the above aspect include, for example, putting a mixed powder of a soft magnetic metal powder and an antisintering material into a rotary furnace and heating the rotary furnace with heating means. The soft magnetic metal powder and the sintering preventing material are stirred and mixed while rotating. In this case, the soft magnetic metal powder comes into contact with the silicon dioxide powder coated on the inner wall of the rotary furnace and generates an oxidation-reduction reaction. By this oxidation-reduction reaction, silicon element is desorbed from the silicon dioxide powder and diffuses and penetrates into the surface of the soft magnetic metal powder, thereby forming a silicon permeation layer on the surface of the soft magnetic metal powder. The silicon dioxide powder is prevented from sintering by the sintering inhibitor. Therefore, secondary particles are not generated by binding of the soft magnetic metal powder via the silicon dioxide powder or sintering of the silicon dioxide powder. Further, the soft magnetic powder changes the position of contact with the silicon dioxide powder coated on the inner wall of the rotary furnace when the mixed powder is agitated and mixed, so that a silicon permeation layer is uniformly formed on the surface of each soft magnetic metal powder. Therefore, according to the method for manufacturing a powder for a powder magnetic core and the powder core manufacturing apparatus for the powder magnetic core, secondary particles are prevented from being generated during the siliconization treatment, and the quality and productivity of the powder for the powder magnetic core are improved. Can be made.

上記態様の圧粉磁心用粉末は、軟磁性金属粉末より平均粒径が小さく、かつ、軟磁性金属粉末及び二酸化珪素粉末と反応しないものを焼結防止材に使用するので、混合粉を加熱して攪拌混合しても、焼結防止材が軟磁性金属粉末の間に行き渡り、二酸化珪素粉末の焼結を防ぐことができる。   The powder for the powder magnetic core of the above aspect has an average particle size smaller than that of the soft magnetic metal powder and does not react with the soft magnetic metal powder and silicon dioxide powder. Even if the mixture is stirred and mixed, the sintering preventing material spreads between the soft magnetic metal powders, and sintering of the silicon dioxide powder can be prevented.

また、焼結防止材の平均粒径を、7μm〜30μmとすることにより、軟磁性金属粉末と焼結防止材との偏析や二酸化珪素粉末の焼結を確実に防止して、圧粉磁心用粉末の品質と生産性をさらに向上させることができる。   In addition, by setting the average particle size of the sintering preventing material to 7 μm to 30 μm, segregation of the soft magnetic metal powder and the sintering preventing material and sintering of the silicon dioxide powder are surely prevented, and the powder magnetic core is used. The quality and productivity of the powder can be further improved.

本発明の第1実施形態に係り、圧粉磁心用粉末製造装置の概略構成図である。It is a schematic block diagram of the powder manufacturing apparatus for dust cores according to the first embodiment of the present invention. 回転炉の縦断面図である。It is a longitudinal cross-sectional view of a rotary furnace. 焼結防止材の断面を示すイメージ図である。It is an image figure which shows the cross section of a sintering prevention material. 炭素−鉄金属粉末と焼結防止材の位置関係を示すイメージ図である。It is an image figure which shows the positional relationship of carbon-iron metal powder and a sintering prevention material. 浸珪処理のイメージ図である。It is an image figure of a siliconization process. 圧粉磁心用粉末の断面を示すイメージ図である。It is an image figure which shows the cross section of the powder for dust cores. 比較例と実施例1における浸珪処理の条件を示す図である。It is a figure which shows the conditions of the siliconization process in a comparative example and Example 1. FIG. 比較例と実施例1の歩留まり率を示す図である。It is a figure which shows the yield rate of a comparative example and Example 1. FIG. 実施例1の圧粉磁心用粉末について、鉄粉の表面から鉄粉の中心部へ向かって形成される珪素浸透層の距離を、圧粉磁心用粉末別に調べた結果を示すグラフである。It is a graph which shows the result of having investigated the distance of the silicon osmosis | permeation layer formed toward the center part of iron powder from the surface of iron powder about the powder for powder magnetic cores of Example 1 according to powder for powder magnetic cores. 平均粒径の測定態様を示すグラフである。It is a graph which shows the measurement aspect of an average particle diameter. 実施例2における焼結防止材の平均粒径と歩留まりとの関係を示すグラフである。It is a graph which shows the relationship between the average particle diameter of the sintering prevention material in Example 2, and a yield. 本発明の第2実施形態に係り、圧粉磁心用粉末製造装置で使用される回転炉の縦断面図である。It is a longitudinal cross-sectional view of the rotary furnace which concerns on 2nd Embodiment of this invention and is used with the powder manufacturing apparatus for powder magnetic cores. 図12のA部拡大図である。It is the A section enlarged view of FIG. 浸珪処理のイメージ図である。It is an image figure of a siliconization process. 鉄粉の表面から鉄粉の中心部へ向かって形成される珪素浸透層の距離を、圧粉磁心用粉末別に調べた結果を示すグラフである。It is a graph which shows the result of having investigated the distance of the silicon osmosis | permeation layer formed toward the center part of iron powder from the surface of iron powder according to the powder for powder magnetic cores. 混合粉を攪拌しながら加熱する処理のイメージ図である。It is an image figure of the process heated while stirring mixed powder. 混合粉を攪拌しながら加熱した場合に得られる圧粉磁心用粉末の顕微鏡写真を図面化したものである。It is drawing which made the micrograph of the powder for powder magnetic cores obtained when heating mixed powder while stirring. 混合粉を攪拌しながら加熱する装置の概念図である。It is a conceptual diagram of the apparatus heated while stirring mixed powder.

次に、本発明に係る圧粉磁心用粉末製造方法の一実施形態について図面を参照して説明する。   Next, one embodiment of a powder magnetic core powder manufacturing method according to the present invention will be described with reference to the drawings.

(第1実施形態)
<圧粉磁心用粉末の概略構成>
図6は、圧粉磁心用粉末28の断面を示すイメージ図である。
圧粉磁心用粉末28は、鉄粉24(軟磁性金属粉末の一例)の絶縁を確保するために、鉄粉24の表層に珪素浸透層25が形成され、更に、鉄粉24の表面を覆うようにシリコーン被膜層27が形成されている。
(First embodiment)
<Schematic configuration of powder for powder magnetic core>
FIG. 6 is an image view showing a cross section of the powder 28 for dust core.
The powder 28 for dust core has a silicon permeation layer 25 formed on the surface layer of the iron powder 24 in order to ensure insulation of the iron powder 24 (an example of soft magnetic metal powder), and further covers the surface of the iron powder 24. Thus, the silicone coating layer 27 is formed.

<圧粉磁心用粉末製造装置の概略構成>
図1は、本発明の実施形態に係り、圧粉磁心用粉末製造装置1の概略構成図である。
圧粉磁心用粉末製造装置1は、圧粉磁心用粉末28を製造する工程のうち、鉄粉24の表層に珪素浸透層25を形成する浸珪処理工程に用いられる。
<Schematic configuration of powder manufacturing apparatus for dust core>
FIG. 1 is a schematic configuration diagram of a powder magnetic core manufacturing apparatus 1 according to an embodiment of the present invention.
The powder magnetic core manufacturing apparatus 1 is used in a siliconizing treatment process in which a silicon permeation layer 25 is formed on the surface layer of the iron powder 24 among the processes of manufacturing the powder 28 for a powder magnetic core.

圧粉磁心用粉末製造装置1は、中空円筒形状の回転炉2を備える。回転炉2は、熱伝導率が高く、化学反応しにくい材質(例えば、SUS310S)により、構成されている。回転炉2は、両端面に回転軸3,4が固定され、その回転軸3,4を介して図示しない支柱に回転自在に保持されている。回転軸3には、図示しないモータが連結され、回転軸3を介して回転炉2に回転力を付与するようになっている。   The powder manufacturing apparatus 1 for a dust core includes a hollow cylindrical rotary furnace 2. The rotary furnace 2 is made of a material (for example, SUS310S) that has high thermal conductivity and is difficult to chemically react. The rotary furnace 2 has rotary shafts 3 and 4 fixed to both end faces, and is rotatably held by a support (not shown) via the rotary shafts 3 and 4. A motor (not shown) is connected to the rotary shaft 3 so as to apply a rotational force to the rotary furnace 2 via the rotary shaft 3.

回転炉2には、炭素−鉄金属粉末21(軟磁性金属粉末の一例)と、焼結を防止するための焼結防止材22(二酸化珪素保持部材の一例)を攪拌混合した混合粉20を投入するための投入口5と、浸珪処理を施された粉体26を取り出すための取出口6が設けられている。回転炉2の外周面には、ヒータ7が巻き付けられ、回転炉2を介して混合粉20が加熱されるようになっている。   In the rotary furnace 2, a mixed powder 20 obtained by stirring and mixing a carbon-iron metal powder 21 (an example of a soft magnetic metal powder) and a sintering preventing material 22 (an example of a silicon dioxide holding member) for preventing sintering is mixed. An inlet 5 for feeding and an outlet 6 for taking out the powder 26 subjected to the siliconization treatment are provided. A heater 7 is wound around the outer peripheral surface of the rotary furnace 2 so that the mixed powder 20 is heated through the rotary furnace 2.

回転軸3,4の内部には、流路が設けられている。回転軸3の流路は、図示しない雰囲気ガス供給源に接続され、雰囲気ガスを回転炉2の内部へ供給する。回転軸4の流路は、図示しない排気ポンプに接続され、回転炉2内のガスを排気する。   A flow path is provided inside the rotary shafts 3 and 4. The flow path of the rotating shaft 3 is connected to an atmospheric gas supply source (not shown) and supplies the atmospheric gas into the rotary furnace 2. The flow path of the rotating shaft 4 is connected to an exhaust pump (not shown) and exhausts the gas in the rotary furnace 2.

図2は、回転炉2の縦断面図である。
回転炉2の内壁には、複数(ここでは3枚)の攪拌板10が固設されている。攪拌板10は、熱伝導率が高く、化学反応しにくい材質(例えば、SUS310S)からなる直線状の板材である。攪拌板10は、回転炉2の全長とほぼ同じ長さを有する。攪拌板10は、回転炉2の軸線に対して平行であって、回転炉2の縦断面周方向に均等配置され、回転炉2の中心部へ向かって立設されている。これにより、回転炉2は、図示しないモータによって回転された場合に、内部に供給された材料を攪拌板10によって次々とすくい上げては落下させ、攪拌することができる。回転炉2の内部には、回転炉2内の温度を測定
するための温度センサ8が取り付けられている。
FIG. 2 is a longitudinal sectional view of the rotary furnace 2.
A plurality (three in this case) of stirring plates 10 are fixedly provided on the inner wall of the rotary furnace 2. The stirring plate 10 is a linear plate material made of a material (for example, SUS310S) that has high thermal conductivity and is difficult to chemically react. The stirring plate 10 has substantially the same length as the entire length of the rotary furnace 2. The stirring plate 10 is parallel to the axis of the rotary furnace 2, is evenly arranged in the circumferential direction of the vertical section of the rotary furnace 2, and stands up toward the center of the rotary furnace 2. As a result, when the rotary furnace 2 is rotated by a motor (not shown), the material supplied to the rotary furnace 2 can be scooped up and dropped one after another by the stirring plate 10 and stirred. Inside the rotary furnace 2, a temperature sensor 8 for measuring the temperature in the rotary furnace 2 is attached.

<焼結防止材の構成>
図3は、焼結防止材22の断面を示すイメージ図である。
焼結防止材22は、二酸化珪素粉末23により外周面をコーティングされている。二酸化珪素粉末23は、接着剤で焼結防止材22の外周面全体に固定されている。焼結防止材22は、平均粒径が炭素−鉄金属粉末21の平均粒径より小さいことが好ましい。これは、一般に、粉体の運動エネルギーは粒径の影響を受け、焼結防止材22の平均粒径を炭素−鉄金属粉末21の平均粒径より小さくすることにより、焼結防止材22が炭素−鉄金属粉末21の間に入り込みやすくなり、鉄粉同士の接触を防止できるからである。また、焼結防止材22は、炭素−鉄金属粉末21(鉄粉24)及び二酸化珪素粉末23と反応しないものであることが好ましい。これは、炭素−鉄金属粉末21と二酸化珪素粉末23の量を管理し、鉄粉24に珪素浸透層25を適正に形成できるようにするためである。本実施形態では、アルミ粉末(Al23粉末)を焼結防止材22に使用している。
<Configuration of anti-sintering material>
FIG. 3 is an image view showing a cross section of the sintering preventing material 22.
The sintering preventing material 22 is coated on the outer peripheral surface with silicon dioxide powder 23. The silicon dioxide powder 23 is fixed to the entire outer peripheral surface of the sintering preventing material 22 with an adhesive. The sintering preventing material 22 preferably has an average particle size smaller than the average particle size of the carbon-iron metal powder 21. In general, the kinetic energy of the powder is affected by the particle size, and by making the average particle size of the sintering preventing material 22 smaller than the average particle size of the carbon-iron metal powder 21, the sintering preventing material 22 It is because it becomes easy to enter between the carbon-iron metal powders 21 and contact between the iron powders can be prevented. Moreover, it is preferable that the sintering preventing material 22 does not react with the carbon-iron metal powder 21 (iron powder 24) and the silicon dioxide powder 23. This is because the amounts of the carbon-iron metal powder 21 and the silicon dioxide powder 23 are controlled so that the silicon permeation layer 25 can be appropriately formed on the iron powder 24. In this embodiment, aluminum powder (Al 2 O 3 powder) is used for the sintering preventing material 22.

一方、二酸化珪素粉末23は、平均粒径が焼結防止材22の平均粒径より小さく、焼結防止材22の表面全体に殆ど隙間無く接着されている。二酸化珪素粉末23は、平均粒径が1μm以下であることが好ましい。二酸化珪素粉末23の平均粒径が1μmを超えると、炭素−鉄金属粉末21との接触面積が小さくなり、炭素−鉄金属粉末21の表面に拡散浸透する反応速度が遅くなるからである。特に、二酸化珪素粉末23は、炭素−鉄金属粉末21へ拡散浸透しやすくするために、平均粒径が50nmとすることが好ましい。   On the other hand, the silicon dioxide powder 23 has an average particle size smaller than the average particle size of the anti-sintering material 22 and is adhered to the entire surface of the anti-sintering material 22 with almost no gap. The silicon dioxide powder 23 preferably has an average particle size of 1 μm or less. This is because when the average particle diameter of the silicon dioxide powder 23 exceeds 1 μm, the contact area with the carbon-iron metal powder 21 becomes small, and the reaction rate of diffusing and penetrating the surface of the carbon-iron metal powder 21 becomes slow. In particular, the silicon dioxide powder 23 preferably has an average particle diameter of 50 nm in order to facilitate diffusion and penetration into the carbon-iron metal powder 21.

<圧粉磁心用粉末の製造方法>
次に、圧粉磁心用粉末製造方法について説明する。
先ず、炭素−鉄金属粉末21と焼結防止材22を攪拌混合した混合粉20を、投入口5から回転炉2に投入する。そして、雰囲気ガス(例えば、アルゴン(Ar)とAr供給量に対して30%の水素(H2)の混合ガス)を回転炉2に供給すると共に、排気を開始する。そして、ヒータ7により回転炉2を加熱する。
<Method for producing powder for powder magnetic core>
Next, a method for producing a powder for a dust core will be described.
First, the mixed powder 20 obtained by stirring and mixing the carbon-iron metal powder 21 and the sintering preventing material 22 is charged into the rotary furnace 2 from the charging port 5. Then, an atmospheric gas (for example, a mixed gas of 30% hydrogen (H 2 ) with respect to the supply amount of argon (Ar) and Ar) is supplied to the rotary furnace 2 and exhaust is started. Then, the rotary furnace 2 is heated by the heater 7.

加熱を開始すると同時に、図示しないモータを駆動して回転炉2を回転させる。回転炉2の回転により、図2に示すように、混合粉20が攪拌板10によって底部から所定の高さまですくい上げられては底部へ滑り落とされ、炭素−鉄金属粉末21と焼結防止材22とが混ぜ合わされて攪拌され、浸珪処理が行われる。この浸珪処理中、回転炉2内の温度は、温度センサ8が検出する温度測定データに基づいてフィードバック制御され、1000℃に維持される。   Simultaneously with the start of heating, the rotary furnace 2 is rotated by driving a motor (not shown). As the rotating furnace 2 rotates, as shown in FIG. 2, the mixed powder 20 is scooped up from the bottom to a predetermined height by the stirring plate 10, and is slid down to the bottom, and the carbon-iron metal powder 21 and the sintering preventing material 22. Are mixed and stirred, and a siliconizing treatment is performed. During this siliconization process, the temperature in the rotary furnace 2 is feedback-controlled based on temperature measurement data detected by the temperature sensor 8 and maintained at 1000 ° C.

回転炉2内で加熱された混合粉20は、図5に示すように、焼結防止材22の表面にコーティングされた二酸化珪素粉末23と炭素−鉄金属粉末21が酸化還元反応を発生し、二酸化珪素粉末23から珪素元素が脱離すると共に、一酸化炭素(CO)ガスが生成される。脱離した珪素元素は、炭素−鉄金属粉末21の表面から浸透して炭素−鉄金属粉末21の内部に拡散し、炭素−鉄金属粉末21の表層に珪素浸透層25を形成する。加熱時間が経過するにつれて、珪素元素が炭素−鉄金属粉末21の表層に濃化していく。一方、生成されたCOガスは、回転軸4内の流路を介して回転炉2の外部へ排気され、処理ガスと置換される。そのため、回転炉2内の圧力と雰囲気は一定に維持される。このような浸珪処理は、珪素元素が二酸化珪素粉末23から脱離する反応生成速度が、炭素−鉄金属粉末21の表層に浸透拡散する拡散速度よりも速い脱離拡散雰囲気下で行われる。尚、炭素−鉄金属粉末21は、酸化還元反応が進んで炭素元素が抜けるにつれて純度の高い鉄粉24に近づき、浸珪処理を施された粉体26が生成される。   As shown in FIG. 5, the mixed powder 20 heated in the rotary furnace 2 causes an oxidation-reduction reaction between the silicon dioxide powder 23 and the carbon-iron metal powder 21 coated on the surface of the sintering preventing material 22, The silicon element is desorbed from the silicon dioxide powder 23, and carbon monoxide (CO) gas is generated. The detached silicon element permeates from the surface of the carbon-iron metal powder 21 and diffuses into the carbon-iron metal powder 21 to form a silicon permeation layer 25 on the surface layer of the carbon-iron metal powder 21. As the heating time elapses, silicon element is concentrated on the surface layer of the carbon-iron metal powder 21. On the other hand, the generated CO gas is exhausted to the outside of the rotary furnace 2 through the flow path in the rotary shaft 4 and is replaced with the processing gas. Therefore, the pressure and atmosphere in the rotary furnace 2 are kept constant. Such a siliconization treatment is performed in a desorption / diffusion atmosphere in which the reaction generation rate at which silicon element is desorbed from the silicon dioxide powder 23 is faster than the diffusion rate at which it penetrates and diffuses into the surface layer of the carbon-iron metal powder 21. The carbon-iron metal powder 21 approaches the high-purity iron powder 24 as the oxidation-reduction reaction proceeds and the carbon element is removed, and the powder 26 subjected to the siliconization treatment is generated.

ここで、混合粉20の攪拌混合時における炭素−鉄金属粉末21と焼結防止材22との位置関係について説明する。図4は、炭素−鉄金属粉末21と焼結防止材22の位置関係を示すイメージ図である。
攪拌によって、炭素−鉄金属粉末21は、焼結防止材22が他の炭素−鉄金属粉末21との間に入り込み、他の炭素−鉄金属粉末21と接触するのが防止される。より具体的には、焼結防止材22は、炭素−鉄金属粉末21より平均粒径が小さいため、炭素−鉄金属粉末21の間に入り込み、炭素−鉄金属粉末21同士が接触することを防ぐ。焼結防止材22の表面全体には、二酸化珪素粉末23がコーティングされている。そのため、焼結防止材22で外周面を覆われた炭素−鉄金属粉末21は、表面全体に二酸化珪素粉末23が接触する。しかも、回転炉2の回転に伴う攪拌により、炭素−鉄金属粉末21の表面に接触する焼結防止材22が絶えず入れ替わり、炭素−鉄金属粉末21の表面に二酸化珪素粉末23が供給され続ける。よって、各炭素−鉄金属粉末21(鉄粉24)の表面では浸珪反応が均一に進行する。
Here, the positional relationship between the carbon-iron metal powder 21 and the sintering preventing material 22 when the mixed powder 20 is stirred and mixed will be described. FIG. 4 is an image diagram showing a positional relationship between the carbon-iron metal powder 21 and the sintering preventing material 22.
By stirring, the carbon-iron metal powder 21 is prevented from entering the other carbon-iron metal powder 21 and coming into contact with the other carbon-iron metal powder 21. More specifically, since the sintering preventing material 22 has an average particle size smaller than that of the carbon-iron metal powder 21, it enters between the carbon-iron metal powders 21 and the carbon-iron metal powders 21 come into contact with each other. prevent. The entire surface of the sintering preventing material 22 is coated with silicon dioxide powder 23. Therefore, the carbon-iron metal powder 21 whose outer peripheral surface is covered with the sintering preventing material 22 is in contact with the silicon dioxide powder 23 on the entire surface. Moreover, due to the stirring accompanying the rotation of the rotary furnace 2, the sintering preventing material 22 that contacts the surface of the carbon-iron metal powder 21 is constantly replaced, and the silicon dioxide powder 23 continues to be supplied to the surface of the carbon-iron metal powder 21. Therefore, the silicification reaction proceeds uniformly on the surface of each carbon-iron metal powder 21 (iron powder 24).

混合粉20をヒータ7で加熱して攪拌混合する場合、二酸化珪素粉末23は、まず、炭素−鉄金属粉末21の表面に拡散接合し、徐々に炭素−鉄金属粉末21の表面に拡散浸透していく。焼結防止材22にコーティングされた二酸化珪素粉末23は、回転炉2の外周面に装着されたヒータ7によって加熱されているが、焼結防止材22が、二酸化珪素粉末23の焼結を防いでいる。そのため、炭素−鉄金属粉末21が、表面に拡散接合した二酸化珪素粉末23を介して他の炭素−鉄金属粉末21と結合されない。また、焼結防止材22が二酸化珪素粉末23を介して結合されることもない。つまり、混合粉20を加熱しながら攪拌混合しても、二次粒子が発生しない。   When the mixed powder 20 is heated and mixed with the heater 7, the silicon dioxide powder 23 is first diffusion bonded to the surface of the carbon-iron metal powder 21 and gradually diffuses and penetrates into the surface of the carbon-iron metal powder 21. To go. The silicon dioxide powder 23 coated on the sintering preventing material 22 is heated by the heater 7 mounted on the outer peripheral surface of the rotary furnace 2, but the sintering preventing material 22 prevents the silicon dioxide powder 23 from sintering. It is out. Therefore, the carbon-iron metal powder 21 is not combined with the other carbon-iron metal powder 21 through the silicon dioxide powder 23 diffusion-bonded to the surface. Further, the sintering preventing material 22 is not bonded via the silicon dioxide powder 23. That is, even if the mixed powder 20 is stirred and mixed while heating, secondary particles are not generated.

所定の加熱時間(例えば1時間)だけ、回転炉2を加熱しながら回転させたら、雰囲気ガスの供給及び排気、ヒータ7による加熱、回転炉2の回転を停止させる。加熱時間は、珪素浸透層25の鉄粉24の表面からの距離X1が、鉄粉24の直径Dの0.15倍未満となるように(図6参照)、設定することが好ましい。これは、圧粉磁心用粉末28を圧粉成形した圧粉磁心の磁心密度や磁束密度を低下させないように、圧粉磁心用粉末28の硬さを調整することができるからである。   When the rotary furnace 2 is rotated while being heated for a predetermined heating time (for example, 1 hour), the supply and exhaust of the atmospheric gas, the heating by the heater 7, and the rotation of the rotary furnace 2 are stopped. The heating time is preferably set so that the distance X1 of the silicon-penetrating layer 25 from the surface of the iron powder 24 is less than 0.15 times the diameter D of the iron powder 24 (see FIG. 6). This is because the hardness of the powder core powder 28 can be adjusted so as not to lower the magnetic core density and magnetic flux density of the powder magnetic core obtained by powder molding the powder core powder 28.

作業者は、回転炉2の内部温度が常温に低下したことを確認してから、浸珪処理を施された粉体26(図5参照)を回転炉2の取出口6から取り出す。   After confirming that the internal temperature of the rotary furnace 2 has decreased to room temperature, the operator takes out the powder 26 (see FIG. 5) subjected to the siliconization treatment from the outlet 6 of the rotary furnace 2.

上記のように浸珪処理を施された粉体26は、被膜処理が施される。被膜処理では、例えば、エタノールにシリコーン樹脂を溶解させた液に浸珪処理を施された粉体26を投入し、攪拌する。所定時間攪拌したら、更にエタノールを蒸発させながら攪拌し、シリコーン樹脂を浸珪処理を施された粉体26の表面に固着させる。これにより、珪素浸透層25がシリコーン被膜層27で覆われた圧粉磁心用粉末28(図6参照)が生成される。   The powder 26 that has been subjected to the siliconization treatment as described above is subjected to a coating treatment. In the coating treatment, for example, a powder 26 that has been subjected to a siliconization treatment in a solution obtained by dissolving a silicone resin in ethanol is added and stirred. After stirring for a predetermined time, the ethanol is further stirred while evaporating, and the silicone resin is fixed to the surface of the powder 26 subjected to the siliconization treatment. Thereby, the powder 28 for powder magnetic core (refer FIG. 6) by which the silicon penetration layer 25 was covered with the silicone coating layer 27 is produced | generated.

<圧粉磁心の製造方法>
次に、上記のように製造された圧粉磁心用粉末28を圧粉成形して圧粉磁心を製造する方法について説明する。
圧粉磁心用粉末28を、モータのコアなどの所定形状のキャビティを具備するパンチダイスに充填し、圧粉磁心用粉末28に所定圧と所定熱を加えて加圧成形する。加圧成形体は、キャビティから取り出され、内部に生じた加工歪みを除去するために、高温焼鈍処理が施される。これにより、所定形状の圧粉磁心が製造される。このように製造された圧粉磁心は、鉄粉24の直径Dに対して0.15倍以下の範囲で鉄粉24の表層に珪素浸透層25を形成する圧粉磁心用粉末28を用いているので、加圧成形時に圧粉磁心用粉末28を適度に変形させ、磁心密度や磁束密度が高い。
<Method of manufacturing a dust core>
Next, a method for producing a dust core by compacting the dust core powder 28 produced as described above will be described.
The powder 28 for powder magnetic core is filled in a punch die having a cavity of a predetermined shape such as a motor core, and the powder 28 for powder magnetic core 28 is pressed by applying a predetermined pressure and a predetermined heat. The pressure-molded body is taken out of the cavity and subjected to a high-temperature annealing process in order to remove processing distortion generated inside. Thereby, the dust core of a predetermined shape is manufactured. The dust core produced in this way uses the powder 28 for the dust core that forms the silicon permeation layer 25 on the surface layer of the iron powder 24 within a range of 0.15 times or less the diameter D of the iron powder 24. Therefore, the powder magnetic core powder 28 is appropriately deformed during pressure molding, and the magnetic core density and magnetic flux density are high.

[実施例1]
図7は、比較例と実施例1における浸珪処理の条件を示す図である。
実施例1では、次の条件で浸珪処理を行った。平均粒径が150〜212μmで比重が7.8の炭素−鉄金属粉末(鉄粉)と、平均粒径が1μmで比重が2.2であり、表面に、平均粒径が50nmで比重が2.2g/cm3の二酸化珪素粉末がコーティングされ
た平均粒径1μmのAl23粉末(焼結防止材)を、鉄粉が97〜95重量%、二酸化珪素粉末が3〜5重量%となるように攪拌混合し、その混合粉を回転炉に投入した後、アルゴン(Ar)とAr供給量に対して30%の水素(H2)の混合ガスを回転炉に供給すると共に回転炉から排気を行う。そして、回転炉を1000℃まで加熱する。そして、回転炉は、1000℃に維持した状態で、回転速度25rpmで処理時間の1時間だけ連続回転される。その後、回転炉の加熱と回転を停止させ、浸珪処理を終了する。
[Example 1]
FIG. 7 is a diagram showing the conditions of the siliconizing treatment in the comparative example and Example 1.
In Example 1, the siliconizing treatment was performed under the following conditions. A carbon-iron metal powder (iron powder) having an average particle diameter of 150 to 212 μm and a specific gravity of 7.8, an average particle diameter of 1 μm and a specific gravity of 2.2, and having an average particle diameter of 50 nm and a specific gravity on the surface Al 2 O 3 powder (sintering preventive material) having an average particle diameter of 1 μm coated with 2.2 g / cm 3 of silicon dioxide powder is composed of 97 to 95% by weight of iron powder and 3 to 5% by weight of silicon dioxide powder. And mixing the mixed powder into a rotary furnace, and then supplying a mixed gas of 30% hydrogen (H 2 ) to the rotary furnace with respect to the supply amount of argon (Ar) and Ar. Exhaust from. Then, the rotary furnace is heated to 1000 ° C. The rotary furnace is continuously rotated at a rotational speed of 25 rpm for 1 hour of the processing time while being maintained at 1000 ° C. Thereafter, heating and rotation of the rotary furnace are stopped, and the siliconization process is completed.

一方、比較例では、次の条件で浸珪処理を行った。平均粒径が150〜212μmで比重が7.8の鉄粉を95〜97重量%、平均粒径が50nmで比重が2.2の二酸化珪素粉末を3〜5重量%の割合で攪拌混合した混合粉を回転炉に投入した後、アルゴン(Ar)とAr供給量に対して30%の水素(H2)の混合ガスを回転炉に供給し、回転炉を
加熱すると同時に、回転炉を回転させる。回転炉は、内部温度を1000℃に維持した状態で、処理時間の1時間連続回転される。その後、回転炉の加熱と回転を停止させ、浸珪処理を終了する。
On the other hand, in the comparative example, the siliconizing treatment was performed under the following conditions. 95-97% by weight of iron powder having an average particle size of 150 to 212 μm and a specific gravity of 7.8, and silicon dioxide powder having an average particle size of 50 nm and a specific gravity of 2.2 were stirred and mixed at a ratio of 3 to 5% by weight. After the mixed powder is put into the rotary furnace, a mixed gas of 30% hydrogen (H 2 ) is supplied to the rotary furnace with respect to the supply amount of argon (Ar) and Ar, and the rotary furnace is heated at the same time as the rotary furnace is rotated. Let The rotary furnace is continuously rotated for 1 hour during the processing time while maintaining the internal temperature at 1000 ° C. Thereafter, heating and rotation of the rotary furnace are stopped, and the siliconization process is completed.

<実施例1と比較例の歩留まりについて>
発明者は、実施例1と比較例の歩留まりについて調べた。図8にその実験結果を示す。ここで、歩留まりは、0%に近い程、二酸化珪素粉末が焼結することにより生成される二次粒子の発生割合が高く、100%に近いほど二次粒子の発生割合が低い(粉末状である)ものとする。
比較例の歩留まりは約5%であった。つまり、比較例は、鉄粉と二酸化珪素粉末との混合粉が、浸珪処理が施されると、殆ど二次粒子化してしまった。
一方、実施例1の歩留まりは、ほぼ100%に近かった。つまり、実施例1は、鉄粉と表面に二酸化珪素粉末でコーティングされた焼結防止材との混合粉が、比較例と同様の浸珪処理を施されても、殆ど二次粒子化せず、各鉄粉の表面に珪素浸透層を形成して細かい粉状の圧粉磁心用粉末を製造することができた。
<About the yield of Example 1 and a comparative example>
The inventor examined the yield of Example 1 and the comparative example. FIG. 8 shows the experimental results. Here, as the yield is closer to 0%, the generation rate of secondary particles generated by sintering the silicon dioxide powder is higher, and as the yield is closer to 100%, the generation rate of secondary particles is lower (in powder form). )
The yield of the comparative example was about 5%. That is, in the comparative example, the mixed powder of the iron powder and the silicon dioxide powder was almost converted into secondary particles when the siliconization treatment was performed.
On the other hand, the yield of Example 1 was almost 100%. That is, in Example 1, even if the mixed powder of the iron powder and the anti-sintering material coated with the silicon dioxide powder on the surface is subjected to the same siliconization treatment as in the comparative example, it is hardly converted into secondary particles. A fine powdery magnetic core powder could be produced by forming a silicon permeation layer on the surface of each iron powder.

上記実験結果より、浸珪処理時においては、二酸化珪素粉末で表面をコーティングされた焼結防止材と、炭素−鉄金属粉末の混合粉を回転炉に投入した後、回転炉を処理温度に加熱した状態で回転させれば、二次粒子を発生させることなく鉄粉に珪素浸透層を形成することができ、圧粉磁心用粉末の生産性が向上することが実証された。   From the above experimental results, during the silicidation treatment, a mixture of an anti-sintering material coated with silicon dioxide powder and carbon-iron metal powder was put into the rotary furnace, and then the rotary furnace was heated to the processing temperature. It was proved that, if rotated in this state, a silicon-penetrating layer can be formed on the iron powder without generating secondary particles, and the productivity of the powder for powder magnetic core is improved.

<珪素浸透層の均一化について>
発明者らは、実施例1からランダムに10個の粉末を取り出して切断し、電子顕微鏡で切断面を観察した。そして、鉄粉の表面から鉄粉の中心部へ向かって形成される珪素浸透層の距離を、圧粉磁心用粉末別に測定した。その測定結果を、図9に示す。
<Regarding the uniformization of the silicon-permeable layer>
The inventors took out 10 powders at random from Example 1, cut them, and observed the cut surfaces with an electron microscope. And the distance of the silicon osmosis | permeation layer formed toward the center part of iron powder from the surface of iron powder was measured according to the powder for powder magnetic cores. The measurement results are shown in FIG.

図9に示すように、ランダムに取り出した粉末の全てが、鉄粉と二酸化珪素粉末が酸化還元反応を発生している。各粉末は、鉄粉の表面におけるSi濃度が4.0%以上6.0%以下の範囲で収束していた。そして、各粉末は、鉄粉の表面から鉄粉の中心部へ向かってSi濃度が減少する割合がほぼ同じであった。更に、各粉末は、珪素浸透層の鉄粉の表面からの距離(珪素浸透層の厚さ)が約20μmであり、粉末間で珪素浸透層の鉄粉の表面からの距離が均一化されていた。   As shown in FIG. 9, iron powder and silicon dioxide powder all cause a redox reaction in all of the randomly extracted powders. Each powder was converged in a range where the Si concentration on the surface of the iron powder was 4.0% or more and 6.0% or less. Each powder had substantially the same rate of decrease in Si concentration from the surface of the iron powder toward the center of the iron powder. Furthermore, each powder has a distance from the surface of the iron powder of the silicon-permeable layer (thickness of the silicon-permeable layer) of about 20 μm, and the distance from the surface of the iron powder of the silicon-permeable layer is made uniform between the powders. It was.

よって、浸珪処理時に、二酸化珪素粉末で表面をコーティングされた焼結防止材と、炭素−鉄金属粉末の混合粉を回転炉に投入した後、回転炉を処理温度に加熱した状態で回転させることにより、各鉄粉の表層に形成される珪素浸透層が均一な圧粉磁心用粉末を製造でき、圧粉磁心用粉末の品質が向上することが実証された。   Therefore, at the time of the siliconization treatment, a mixture of an anti-sintering material whose surface is coated with silicon dioxide powder and a carbon-iron metal powder is put into a rotary furnace, and then the rotary furnace is rotated while being heated to the processing temperature. As a result, it was proved that a powder for a magnetic core having a uniform silicon permeation layer formed on the surface layer of each iron powder can be produced, and the quality of the powder for a powder magnetic core is improved.

[実施例2]
次に、実施例2について説明する。実施例2では、実施例1の実験条件のうち、焼結防止材の平均粒径のみを変化させながら、実施例1と同様の手順で浸珪処理を行った。したがって、実施例2においても、炭素−鉄金属粉末(鉄粉)の平均粒径は、150〜212μmであり、二酸化珪素粉末の平均粒径は、50nmである。
[Example 2]
Next, Example 2 will be described. In Example 2, the siliconizing treatment was performed in the same procedure as in Example 1 while changing only the average particle size of the sintering preventing material among the experimental conditions of Example 1. Therefore, also in Example 2, the average particle diameter of the carbon-iron metal powder (iron powder) is 150 to 212 μm, and the average particle diameter of the silicon dioxide powder is 50 nm.

<平均粒径の測定について>
まず、発明者らが実施した平均粒径の測定態様について、図10を参照しながら説明する。本明細書における「平均粒径」の数値は、この測定態様により決定したものである。
発明者らは、目開きの異なるいくつかの篩(ふるい)を用意した。そして、測定対象の粒子を、それぞれの篩にかけた。このとき、図10に示すように、各篩ごとに、目開きを通過した粒子の重量百分率(重量%)を測定した。そして、目開きを通過した粒子の重量百分率が、全体の50%であった時の目開きの径(図中の1点鎖線参照)を、その粒子の平均粒径とした。
<Measurement of average particle size>
First, the average particle size measurement mode implemented by the inventors will be described with reference to FIG. The numerical value of “average particle diameter” in the present specification is determined by this measurement mode.
The inventors prepared several sieves with different openings. Then, the particles to be measured were passed through each sieve. At this time, as shown in FIG. 10, the weight percentage (% by weight) of the particles that passed through the openings was measured for each sieve. The diameter of the openings when the weight percentage of the particles that passed through the openings was 50% of the total (see the one-dot chain line in the figure) was taken as the average particle diameter of the particles.

<平均粒径と歩留まりとの関係について>
実施例2により得られた焼結防止材の平均粒径と歩留まりとの関係について、図11を参照しながら説明する。
図11に示すように、焼結防止材の平均粒径が30μm以上になると、歩留まりが顕著に低下することが分かった。これは、鉄粉の平均粒径150〜212μmに対して、焼結防止材の平均粒径が大きすぎると、鉄粉と焼結防止材とが均一に混合されずに、偏析が生じてしまうためと考えられる。このように鉄粉と焼結防止材とが偏析した状態では、焼結防止材の表面にコーティングされた二酸化珪素粉末が、鉄粉と酸化還元反応を生じ難くなり、浸珪反応率や歩留まりが低下する問題が生じてしまう。したがって、焼結防止材の平均粒径は、30μm以下(比率にすると鉄粉の平均粒径の約1/5以下)であることが好ましい。
<Relationship between average particle size and yield>
The relationship between the average particle size of the sintering preventing material obtained in Example 2 and the yield will be described with reference to FIG.
As shown in FIG. 11, it was found that when the average particle size of the sintering preventing material is 30 μm or more, the yield is significantly reduced. This is because when the average particle size of the sintering preventing material is too large for the average particle size of iron powder of 150 to 212 μm, the iron powder and the sintering preventing material are not uniformly mixed, and segregation occurs. This is probably because of this. In this state where the iron powder and the anti-sintering material are segregated, the silicon dioxide powder coated on the surface of the anti-sintering material is less likely to cause an oxidation-reduction reaction with the iron powder, resulting in a silicidation reaction rate and yield. Decreasing problems will occur. Therefore, it is preferable that the average particle diameter of the sintering preventing material is 30 μm or less (about 1/5 or less of the average particle diameter of iron powder in terms of ratio).

一方、焼結防止材の平均粒径が、7μm以下の場合にも(特に1μm以下の場合には顕著に)、歩留まりが低下することが分かった。これは、二酸化珪素粉末の平均粒径50nmに対して、焼結防止材の平均粒径が小さすぎると、焼結防止材の表面が二酸化珪素粉末で緊密にコーティングされず、二酸化珪素粉末の焼結が生じ易くなるためと考えられる。このように焼結が生じ易くなると、二次粒子の発生割合が増加して、歩留まりが低下する問題が生じてしまう。したがって、焼結防止材の平均粒径は、7μm以上(比率にすると二酸化珪素粉末の平均粒径の約140倍以上)であることが好ましい。   On the other hand, it was found that even when the average particle size of the sintering preventing material is 7 μm or less (particularly when it is 1 μm or less), the yield decreases. This is because if the average particle size of the sintering preventing material is too small for the average particle size of the silicon dioxide powder, the surface of the sintering preventing material is not closely coated with the silicon dioxide powder. This is thought to be due to the tendency of crystallization. When sintering is likely to occur in this way, the generation rate of secondary particles increases, resulting in a problem that yield decreases. Therefore, the average particle diameter of the sintering preventing material is preferably 7 μm or more (in terms of the ratio, it is about 140 times or more the average particle diameter of the silicon dioxide powder).

上記実験結果から、実施例2の条件、すなわち鉄粉の平均粒径が150〜212μmであり、二酸化珪素粉末の平均粒径が50nmである場合には、焼結防止材の平均粒径を7〜30μmとすることにより、鉄粉と焼結防止材との偏析や二酸化珪素粉末の焼結を確実に防止して、圧粉磁心用粉末の品質と生産性を向上させることができることが確認できた。
なお、実施例2と異なる条件、すなわち鉄粉や酸化珪素粉末の平均粒径を変更した場合には、その変更比率に応じて、焼結防止材の平均粒径の選定範囲を変更すればよい。具体的には、鉄粉や酸化珪素粉末の変更後の平均粒径に対して、焼結防止材の平均粒径を、鉄粉の平均粒径の約1/5以下、かつ、二酸化珪素粉末の平均粒径の約140倍以上となるように選定すればよい。これにより、鉄粉と焼結防止材との偏析や二酸化珪素粉末の焼結を確実に防止して、圧粉磁心用粉末の品質と生産性を向上させることができる。
From the above experimental results, when the conditions of Example 2, that is, the average particle diameter of the iron powder is 150 to 212 μm and the average particle diameter of the silicon dioxide powder is 50 nm, the average particle diameter of the sintering inhibitor is 7 It can be confirmed that by setting the thickness to ~ 30 μm, segregation of iron powder and anti-sintering material and sintering of silicon dioxide powder can be surely prevented, and the quality and productivity of powder for powder magnetic core can be improved. It was.
In addition, when the conditions different from Example 2, that is, when the average particle diameter of iron powder or silicon oxide powder is changed, the selection range of the average particle diameter of the sintering preventing material may be changed according to the change ratio. . Specifically, with respect to the average particle diameter after the change of the iron powder or silicon oxide powder, the average particle diameter of the sintering preventing material is about 1/5 or less of the average particle diameter of the iron powder, and the silicon dioxide powder. What is necessary is just to select so that it may become about 140 times or more of the average particle diameter of. Thereby, segregation of the iron powder and the sintering preventing material and sintering of the silicon dioxide powder can be reliably prevented, and the quality and productivity of the powder for the dust core can be improved.

(第2実施形態)
続いて、本発明の第2実施形態について説明する。図12は、本発明の第2実施形態に係り、圧粉磁心用粉末製造装置30で使用される回転炉34の縦断面図である。図13は、図12のA部拡大図である。尚、図12に示す二酸化珪素膜33は、図面上見やすくするために、実際より厚く記載している。
本実施形態では、二酸化珪素粉末23をコーティングされた回転炉34の内壁により、「二酸化珪素保持部材」が構成されている点が、第1実施形態と相違し、その他は、第1実施形態と構成が共通している。ここでは、第1実施形態と相違する点を中心に説明し、第1実施形態と共通する点は図面に同一符号を付し、適宜説明を省略する。
(Second Embodiment)
Subsequently, a second embodiment of the present invention will be described. FIG. 12 is a longitudinal sectional view of a rotary furnace 34 used in the powder core manufacturing apparatus 30 according to the second embodiment of the present invention. FIG. 13 is an enlarged view of a portion A in FIG. Note that the silicon dioxide film 33 shown in FIG. 12 is shown thicker than it actually is to make it easier to see in the drawing.
The present embodiment is different from the first embodiment in that the “silicon dioxide holding member” is configured by the inner wall of the rotary furnace 34 coated with the silicon dioxide powder 23, and the rest is the same as the first embodiment. The configuration is common. Here, the difference from the first embodiment will be mainly described, and the points common to the first embodiment will be denoted by the same reference numerals in the drawings, and the description will be omitted as appropriate.

図12に示すように、回転炉34の内壁と攪拌板10及び温度センサ8の表面は、二酸化珪素膜33で覆われている。図13に示すように、二酸化珪素膜33は、回転炉34の内壁と攪拌板10及び温度センサ8の表面に二酸化珪素粉末23を焼き付けや接着剤等により剥がれないように固定したものである。   As shown in FIG. 12, the inner wall of the rotary furnace 34 and the surfaces of the stirring plate 10 and the temperature sensor 8 are covered with a silicon dioxide film 33. As shown in FIG. 13, the silicon dioxide film 33 is formed by fixing the silicon dioxide powder 23 on the inner wall of the rotary furnace 34 and the surfaces of the stirring plate 10 and the temperature sensor 8 so as not to be peeled off by an adhesive or the like.

このような圧粉磁心用粉末製造装置30は、炭素−鉄金属粉末21と焼結防止材31との混合粉32が投入される。焼結防止材31は、外周面が二酸化珪素粉末23でコーティングされていない点を除き、第1実施形態の焼結防止材22と同じ構成である。圧粉磁心用粉末製造装置30は、処理ガスの供給と排気が開始された後、回転炉34が回転されない状態で、ヒータ7による加熱が開始される。温度センサ8が所定の処理温度を検出すると、回転炉34が回転され、混合粉32が攪拌板10により攪拌混合される。   In such a powder magnetic core manufacturing apparatus 30, a mixed powder 32 of the carbon-iron metal powder 21 and the sintering preventing material 31 is input. The anti-sintering material 31 has the same configuration as the anti-sintering material 22 of the first embodiment except that the outer peripheral surface is not coated with the silicon dioxide powder 23. In the powder core manufacturing apparatus 30 for powder magnetic cores, heating by the heater 7 is started in a state where the rotary furnace 34 is not rotated after the supply and exhaust of the processing gas are started. When the temperature sensor 8 detects a predetermined processing temperature, the rotary furnace 34 is rotated, and the mixed powder 32 is stirred and mixed by the stirring plate 10.

炭素−鉄金属粉末21は、攪拌混合時に、二酸化珪素膜33上を転がり、二酸化珪素膜33の二酸化珪素粉末23と接触する。炭素−鉄金属粉末21と二酸化珪素粉末23は、ヒータ7の熱により、所定の処理温度(例えば1000℃)に加熱されている。そのため、炭素−鉄金属粉末21と二酸化珪素粉末23が酸化還元反応を発生し、二酸化珪素粉末23から脱離した珪素元素が炭素−鉄金属粉末21の表面に拡散浸透すると共に、COガスが発生する。炭素−鉄金属粉末21は、焼結防止材31と一緒に回転炉34に投入されている。そのため、炭素−鉄金属粉末21の表面に拡散接合した二酸化珪素粉末23は、所定の処理温度に加熱されていても、焼結防止材31により、他の二酸化珪素粉末23と焼結することを防がれる。つまり、炭素−鉄金属粉末21を核として、二酸化珪素粉末23が焼結し、雪だるまのように二次粒子が成長することが防がれる。   The carbon-iron metal powder 21 rolls on the silicon dioxide film 33 and comes into contact with the silicon dioxide powder 23 of the silicon dioxide film 33 at the time of stirring and mixing. The carbon-iron metal powder 21 and the silicon dioxide powder 23 are heated to a predetermined processing temperature (for example, 1000 ° C.) by the heat of the heater 7. For this reason, the carbon-iron metal powder 21 and the silicon dioxide powder 23 undergo a redox reaction, and the silicon element desorbed from the silicon dioxide powder 23 diffuses and permeates the surface of the carbon-iron metal powder 21 and also generates CO gas. To do. The carbon-iron metal powder 21 is put into the rotary furnace 34 together with the sintering preventing material 31. Therefore, even if the silicon dioxide powder 23 diffusion-bonded to the surface of the carbon-iron metal powder 21 is heated to a predetermined processing temperature, the silicon dioxide powder 23 is sintered with the other silicon dioxide powder 23 by the sintering preventing material 31. It is prevented. That is, the silicon dioxide powder 23 is sintered with the carbon-iron metal powder 21 as a nucleus, and secondary particles are prevented from growing like a snowman.

よって、本実施形態の圧粉磁心用粉末製造装置30は、浸珪処理時に二次粒子が生成されることを防ぎ、圧粉磁心用粉末の品質と生産性を向上させることができる。   Therefore, the powder magnetic core powder manufacturing apparatus 30 according to the present embodiment can prevent the generation of secondary particles during the siliconization treatment, and can improve the quality and productivity of the powder for the powder magnetic core.

本発明は、上記実施形態に限定されることなく、色々な応用が可能である。
(1)例えば、上記実施形態では、焼結防止材22,31にAl23粉末を使用したが、炭素−鉄金属粉末21(鉄粉24)より平均粒径が小さく、炭素−鉄金属粉末21(鉄粉24)や二酸化珪素粉末23と反応しないものであれば、焼結防止材22,31はこれに限定されない。例えば、焼結防止材22,31は、ジルコニア(ZrO2)等であっても良い。
(2)例えば、上記実施形態では、回転炉2内を、Arと、Arの供給量に対して30%の水素を混合した混合ガスを充填した雰囲気としたが、回転炉2内を真空状態にした雰囲気としても良い。また、減圧雰囲気下、あるいは生成したガス分圧が低い、具体的には低一酸化炭素(CO)雰囲気下、或いは、低窒素(N2)雰囲気下で浸珪処理を行っても良い。また、処理ガスは、軟磁性金属粉末と浸珪用粉末との酸化還元反応を促進するものであれば、炭素ガス等の別のガスであっても良い。
(3)例えば、上記実施形態では、回転炉2の内壁に固設される攪拌板10を回転炉2の軸心と平行な直線状に設けたが、回転炉2の内壁に固定される攪拌板を螺旋状に設けても良い。この場合、回転炉2に供給した混合粉が螺旋状の攪拌板に載せられて、回転炉2の回転に従って少しずつ落下するため、回転炉2の底部にある混合粉が上方から落ちてきた混合粉の重みで圧縮されにくくなる。この結果、より確実に混合粉の二次粒子化を防ぎ、圧粉磁心用粉末の歩留まりを向上させることができる。
(4)例えば、上記実施形態では、軟磁性金属粉末の一例として炭素−鉄金属粉末21を上げたが、Fe−Si合金、Fe−Al合金、Fe−Si−Al合金、チタン、アルミニウムなどを軟磁性金属粉末としても良い。
The present invention is not limited to the above embodiment, and various applications are possible.
(1) For example, in the above embodiment, the anti-sintering materials 22 and 31 were using Al 2 O 3 powder, carbon - average particle diameter is smaller than the iron metal powder 21 (iron powder 24), carbon - ferrous metal As long as it does not react with the powder 21 (iron powder 24) or the silicon dioxide powder 23, the sintering preventing materials 22 and 31 are not limited thereto. For example, the sintering preventing materials 22 and 31 may be zirconia (ZrO 2 ) or the like.
(2) For example, in the above embodiment, the inside of the rotary furnace 2 is filled with a mixed gas obtained by mixing Ar and 30% hydrogen with respect to the supply amount of Ar. It is good also as an atmosphere. Further, the siliconizing treatment may be performed in a reduced pressure atmosphere, or in a low gas partial pressure, specifically in a low carbon monoxide (CO) atmosphere or in a low nitrogen (N 2 ) atmosphere. The processing gas may be another gas such as carbon gas as long as it promotes the oxidation-reduction reaction between the soft magnetic metal powder and the silicon immersion powder.
(3) For example, in the above embodiment, the stirring plate 10 fixed to the inner wall of the rotary furnace 2 is provided in a straight line parallel to the axis of the rotary furnace 2, but the stirring is fixed to the inner wall of the rotary furnace 2. The plate may be provided in a spiral shape. In this case, since the mixed powder supplied to the rotary furnace 2 is placed on a spiral stirring plate and gradually falls as the rotary furnace 2 rotates, the mixed powder at the bottom of the rotary furnace 2 is dropped from above. It becomes difficult to be compressed by the weight of the powder. As a result, it is possible to more reliably prevent the mixed powder from becoming secondary particles and improve the yield of the powder for the powder magnetic core.
(4) For example, in the said embodiment, although the carbon-iron metal powder 21 was raised as an example of a soft magnetic metal powder, Fe-Si alloy, Fe-Al alloy, Fe-Si-Al alloy, titanium, aluminum etc. were used. Soft magnetic metal powder may be used.

1,30 圧粉磁心用粉末製造装置
2 回転炉
7 ヒータ
8 温度センサ
10 攪拌板
20 混合粉
21 炭素−鉄金属粉末(軟磁性金属粉末の一例)
22 焼結防止材
23 二酸化珪素粉末(浸珪用粉末の一例)
24 鉄粉(軟磁性金属粉末の一例)
25 珪素浸透層
28 圧粉磁心用粉末
31 焼結防止材
33 二酸化珪素膜
34 回転炉(二酸化珪素保持部材)
DESCRIPTION OF SYMBOLS 1,30 Powder manufacturing apparatus 2 for powder magnetic cores Rotary furnace 7 Heater 8 Temperature sensor 10 Stirring plate 20 Mixed powder 21 Carbon-iron metal powder (an example of soft magnetic metal powder)
22 Sintering prevention material 23 Silicon dioxide powder (an example of powder for siliconization)
24 Iron powder (an example of soft magnetic metal powder)
25 Silicon penetration layer 28 Powder 31 for powder magnetic core Sintering prevention material 33 Silicon dioxide film 34 Rotary furnace (silicon dioxide holding member)

Claims (8)

圧粉磁心用粉末の製造方法において、
軟磁性金属粉末と、二酸化珪素粉末によってコーティングされた二酸化珪素保持部材とを加熱しながら接触させることにより、前記軟磁性金属粉末と前記二酸化珪素粉末の酸化還元反応を発生させ、前記二酸化珪素粉末から離脱した珪素元素を前記軟磁性金属粉末の表面に拡散浸透させて珪素浸透層を前記軟磁性金属粉末の表面に形成する
ことを特徴とする圧粉磁心用粉末の製造方法。
In the method for producing a powder for a dust core,
By bringing the soft magnetic metal powder and the silicon dioxide holding member coated with the silicon dioxide powder into contact with heating, an oxidation-reduction reaction between the soft magnetic metal powder and the silicon dioxide powder is generated. A method for producing a powder for a powder magnetic core, comprising diffusing and infiltrating the detached silicon element into the surface of the soft magnetic metal powder to form a silicon infiltration layer on the surface of the soft magnetic metal powder.
請求項1に記載する圧粉磁心用粉末の製造方法において、
前記二酸化珪素保持部材は、焼結を防止するものであって、表面が二酸化珪素粉末にコーティングされた焼結防止材であり、
前記軟磁性金属粉末と前記焼結防止材を混合して加熱攪拌する
ことを特徴とする圧粉磁心用粉末の製造方法。
In the manufacturing method of the powder for powder magnetic cores described in claim 1,
The silicon dioxide holding member is for preventing sintering, and is a sintering preventing material whose surface is coated with silicon dioxide powder,
A method for producing a powder for a powder magnetic core, comprising mixing the soft magnetic metal powder and the anti-sintering material and stirring with heating.
請求項1に記載する圧粉磁心用粉末の製造方法において、
前記二酸化珪素保持部材は、二酸化珪素粉末がコーティングされた回転炉の内壁であり、
前記軟磁性金属粉末と、焼結を防止するための焼結防止材とを、前記回転炉に投入して加熱攪拌する
ことを特徴とする圧粉磁心用粉末の製造方法。
In the manufacturing method of the powder for powder magnetic cores described in claim 1,
The silicon dioxide holding member is an inner wall of a rotary furnace coated with silicon dioxide powder,
A method for producing a powder for a powder magnetic core, wherein the soft magnetic metal powder and a sintering preventing material for preventing sintering are put into the rotary furnace and heated and stirred.
請求項2又は請求項3に記載する圧粉磁心用粉末の製造方法において、
前記焼結防止材は、前記軟磁性金属粉末より平均粒径が小さく、かつ、前記軟磁性金属粉末及び前記二酸化珪素粉末と反応しないものである
ことを特徴とする圧粉磁心用粉末の製造方法。
In the manufacturing method of the powder for powder magnetic cores described in Claim 2 or Claim 3,
The method for producing a powder for a powder magnetic core, wherein the sintering preventing material has an average particle size smaller than that of the soft magnetic metal powder and does not react with the soft magnetic metal powder and the silicon dioxide powder. .
請求項4に記載する圧粉磁心用粉末の製造方法において、
前記焼結防止材の平均粒径は、7μm〜30μmである
ことを特徴とする圧粉磁心用粉末の製造方法。
In the manufacturing method of the powder for powder magnetic cores described in claim 4,
The method for producing a powder for a powder magnetic core, wherein an average particle diameter of the anti-sintering material is 7 μm to 30 μm.
圧粉磁心用粉末を製造するための圧粉磁心用粉末製造装置において、
回転可能に保持され、熱伝導性を有する材質からなる回転炉と、
前記回転炉に回転力を付与する駆動手段と、
前記回転炉を加熱する加熱手段と、を有し、
前記回転炉が、軟磁性金属粉末と、表面が二酸化珪素粉末でコーティングされた焼結防止材との混合粉を投入される
ことを特徴とする圧粉磁心用粉末製造装置。
In the powder core production apparatus for dust core for producing the powder for dust core,
A rotary furnace made of a material that is rotatably held and has thermal conductivity;
Drive means for applying a rotational force to the rotary furnace;
Heating means for heating the rotary furnace,
The powder manufacturing apparatus for a powder magnetic core, wherein the rotary furnace is charged with a mixed powder of a soft magnetic metal powder and a sintering preventing material whose surface is coated with a silicon dioxide powder.
請求項6に記載する圧粉磁心用粉末製造装置において、
前記焼結防止材の平均粒径は、7μm〜30μmである
ことを特徴とする圧粉磁心用粉末製造装置。
In the powder magnetic core production apparatus according to claim 6,
The powder manufacturing apparatus for a powder magnetic core according to claim 1, wherein an average particle size of the anti-sintering material is 7 μm to 30 μm.
圧粉磁心用粉末を製造するための圧粉磁心用粉末製造装置において、
回転可能に保持され、熱伝導性を有する材質からなる回転炉と、
前記回転炉に回転力を付与する駆動手段と、
前記回転炉を加熱する加熱手段と、を有し、
前記回転炉が、二酸化珪素粉末で内壁をコーティングされ、軟磁性金属粉末と焼結防止材との混合粉を投入される
ことを特徴とする圧粉磁心用粉末製造装置。
In the powder core production apparatus for dust core for producing the powder for dust core,
A rotary furnace made of a material that is rotatably held and has thermal conductivity;
Drive means for applying a rotational force to the rotary furnace;
Heating means for heating the rotary furnace,
An apparatus for producing a powder for a dust core, wherein the rotary furnace has an inner wall coated with silicon dioxide powder, and a mixed powder of a soft magnetic metal powder and an anti-sintering material is introduced.
JP2011030573A 2010-04-26 2011-02-16 Method for producing powder for dust core and device for producing the powder for the dust core Withdrawn JP2011246812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011030573A JP2011246812A (en) 2010-04-26 2011-02-16 Method for producing powder for dust core and device for producing the powder for the dust core

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010100844 2010-04-26
JP2010100844 2010-04-26
JP2011030573A JP2011246812A (en) 2010-04-26 2011-02-16 Method for producing powder for dust core and device for producing the powder for the dust core

Publications (1)

Publication Number Publication Date
JP2011246812A true JP2011246812A (en) 2011-12-08

Family

ID=45412431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011030573A Withdrawn JP2011246812A (en) 2010-04-26 2011-02-16 Method for producing powder for dust core and device for producing the powder for the dust core

Country Status (1)

Country Link
JP (1) JP2011246812A (en)

Similar Documents

Publication Publication Date Title
JP5187438B2 (en) Powder core powder manufacturing method, powder magnetic core powder using powder core powder manufactured by the powder core manufacturing method, and powder core powder manufacturing apparatus
JP5726663B2 (en) Method for interfacial strengthening of carbon materials using nanosilicon carbide coating
EP2523766B1 (en) Powder for dust core, dust core made of the powder for dust core by powder compaction, and method of producing the powder for dust core
EP2227344B1 (en) Powder for magnetic core, method for manufacturing powder for magnetic core, and dust core
JP4422773B2 (en) Powder for powder magnetic core and manufacturing method thereof
JP2019511133A (en) Intergranular engineering of sintered magnetic alloys and compositions derived therefrom
KR102326418B1 (en) Composite material powder with synthetic grains for additive synthesis
CN102237168B (en) Rare-earth magnet, method of manufacturing rare-earth magnet and rotator
JP2010177271A (en) Powder magnetic core material and method of manufacturing the same
JP2011157591A (en) Method for producing powder for dust core and apparatus for producing powder for dust core
CN106987752A (en) A kind of gradient hard alloy preparation method of case-carbonizing
JP2007251125A (en) Soft magnetic alloy consolidation object and method for fabrication thereof
JP2019532175A (en) Coating of ferromagnetic particle surface to obtain soft magnetic composite (SMC)
JP2004323891A (en) Method for surface improvement of steel
JP2011246812A (en) Method for producing powder for dust core and device for producing the powder for the dust core
JP5954297B2 (en) Method for producing soft magnetic member and soft magnetic member
JP2011231364A (en) Method of producing powder for dust core, dust core using powder for dust core produced by the method of producing powder for dust core, and apparatus for producing powder for dust core
JP4576206B2 (en) Method for producing soft magnetic material
EP3425073A1 (en) Method for producing carbon composite material, and carbon composite material
CN113319271A (en) Oxide coated powder with core-shell structure and preparation method and application thereof
CN107564648B (en) A kind of deposition method preparing high-performance Ne-Fe-B magnetic powder
JP2000144301A (en) Tungsten carbide sintered body and its production
CN109573952A (en) A kind of porous metal oxide particle and preparation method thereof
JP2006213944A (en) Apparatus for coating powder and method for producing coated powder
JP5846362B2 (en) Composite ceramics and method for producing the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513