JP2011231364A - Method of producing powder for dust core, dust core using powder for dust core produced by the method of producing powder for dust core, and apparatus for producing powder for dust core - Google Patents

Method of producing powder for dust core, dust core using powder for dust core produced by the method of producing powder for dust core, and apparatus for producing powder for dust core Download PDF

Info

Publication number
JP2011231364A
JP2011231364A JP2010101827A JP2010101827A JP2011231364A JP 2011231364 A JP2011231364 A JP 2011231364A JP 2010101827 A JP2010101827 A JP 2010101827A JP 2010101827 A JP2010101827 A JP 2010101827A JP 2011231364 A JP2011231364 A JP 2011231364A
Authority
JP
Japan
Prior art keywords
powder
furnace
silicon dioxide
silicon
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010101827A
Other languages
Japanese (ja)
Inventor
Toshiya Yamaguchi
登士也 山口
Masaki Sugiyama
昌揮 杉山
Atsuhiko Kanda
敦彦 神田
Shota Ohira
翔太 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010101827A priority Critical patent/JP2011231364A/en
Publication of JP2011231364A publication Critical patent/JP2011231364A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing powder for dust cores for preventing production of a secondary particle in siliconizing treatment and for increasing quality and productivity of powder for dust cores; to provide a dust core using powder for dust cores produced by the method of producing powder for dust cores; and to provide an apparatus for producing powder for dust cores.SOLUTION: In the method of producing powder for dust cores for producing powder for dust cores, powder for siliconizing including a prescribed amount of soft magnetic metal powder 21 and a prescribed amount of silicon dioxide 22 is heated for a prescribed treatment time within a furnace 2, and a silicon-penetrated layer is formed on a surface of the soft magnetic metal powder 21, thus dividing a prescribed amount of powder for siliconizing along a time base for adding to the furnace 2 while the furnace 2 is heated and rotated simultaneously.

Description

本発明は、圧粉磁心用粉末の製造方法、その圧粉磁心用粉末の製造方法により製造された圧粉磁心用粉末を用いた圧粉磁心、及び、圧粉磁心用粉末製造装置に関する。   The present invention relates to a method for producing a powder for a powder magnetic core, a powder magnetic core using the powder for a powder magnetic core produced by the method for producing the powder for a powder magnetic core, and a powder production apparatus for the powder magnetic core.

圧粉磁心は、軟磁性金属粉末からなる圧粉磁心用粉末をプレス成形したものである。圧粉磁心は、電磁鋼板を積層してなるコア材と比べて、周波数に応じて生じる高周波損失(以下「鉄損」という。)が少ない磁気特性を有していること、形状バリエーションに臨機且つ安価に対応できること、材料費が廉価であること等、多くの利点を有する。このような圧粉磁心は、例えば車両の駆動用モータのステータコアやロータコア、電力変換回路を構成するリアクトルコアなどに適用されている。   The dust core is obtained by press-molding a dust core powder made of soft magnetic metal powder. Compared to the core material made by laminating electromagnetic steel sheets, the dust core has magnetic properties with less high frequency loss (hereinafter referred to as “iron loss”) depending on the frequency, and is suitable for shape variations. It has many advantages such as being able to cope with low cost and low material cost. Such a powder magnetic core is applied to, for example, a stator core and a rotor core of a vehicle drive motor, a reactor core constituting a power conversion circuit, and the like.

例えば、圧粉磁心用粉末101は、図16に示すように、二酸化珪素粉末103を鉄粉102の表面から浸透拡散させ、珪素元素が濃化した珪素浸透層104を鉄粉102の表層に形成する浸珪処理が施されている。浸珪処理は、鉄粉102と二酸化珪素粉末103を攪拌混合して鉄粉102の表面に二酸化珪素粉末103を付着させ、鉄粉102と二酸化珪素粉末103の混合粉を炉に入れる。そして、混合粉を1000℃に加熱する。すると、二酸化珪素粉末103から珪素元素が脱離して鉄粉102の表層に浸透拡散し、珪素浸透層104が形成される。   For example, as shown in FIG. 16, the powder 101 for the powder magnetic core allows the silicon dioxide powder 103 to permeate and diffuse from the surface of the iron powder 102, thereby forming a silicon permeation layer 104 in which the silicon element is concentrated on the surface layer of the iron powder 102. The siliconization process to be performed is performed. In the siliconization treatment, the iron powder 102 and the silicon dioxide powder 103 are stirred and mixed to adhere the silicon dioxide powder 103 to the surface of the iron powder 102, and the mixed powder of the iron powder 102 and the silicon dioxide powder 103 is put into a furnace. Then, the mixed powder is heated to 1000 ° C. Then, the silicon element is detached from the silicon dioxide powder 103 and permeates and diffuses into the surface layer of the iron powder 102 to form the silicon permeation layer 104.

鉄粉102の中心部まで珪素元素を浸透させると、圧粉磁心用粉末101の硬度が高くなる。この場合、圧粉磁心用粉末101を加圧して圧粉成形したときに、圧粉磁心用粉末101が変形せず、圧粉磁心用粉末101の間に形成される隙間が大きくなるため、磁心密度が低くなる。磁心密度が低いと、磁束密度が低くなる問題がある。そのため、珪素浸透層104は、鉄粉102の表面から鉄粉102の中心部側への距離X2を、鉄粉102の直径Dの0.15倍未満とすることが、好ましいとされている。但し、珪素浸透層104が薄かったり、珪素浸透層104における珪素元素濃度が低いと、鉄粉102の接触部分を十分絶縁することができず、鉄損(主にヒステリシス損失と渦電流損失)が高くなる。よって、圧粉磁心用粉末101に形成する珪素浸透層104の距離X2や濃度は、圧粉磁心の比抵抗を管理する上で、とても重要である(例えば、特許文献1及び特許文献2参照)。   When the silicon element is infiltrated to the center of the iron powder 102, the hardness of the powder 101 for dust core becomes high. In this case, when the dust core powder 101 is pressed and compacted, the dust core powder 101 is not deformed and the gap formed between the dust core powders 101 becomes larger. Density decreases. When the magnetic core density is low, there is a problem that the magnetic flux density is lowered. Therefore, it is preferable that the silicon permeation layer 104 has a distance X2 from the surface of the iron powder 102 to the center of the iron powder 102 that is less than 0.15 times the diameter D of the iron powder 102. However, if the silicon permeation layer 104 is thin or the silicon element concentration in the silicon permeation layer 104 is low, the contact portion of the iron powder 102 cannot be sufficiently insulated, and iron loss (mainly hysteresis loss and eddy current loss) is caused. Get higher. Therefore, the distance X2 and the concentration of the silicon permeation layer 104 formed on the powder 101 for dust core are very important in managing the specific resistance of the dust core (see, for example, Patent Document 1 and Patent Document 2). .

特開2009−256750号公報JP 2009-256750 A 特開2009−123774号公報JP 2009-123774 A

しかしながら、従来の圧粉磁心用粉末の製造方法は、図17に示すように、製造された圧粉磁心用粉末101をランダムに10個取り出して、珪素浸透層104が鉄粉102の表面から鉄粉102の中心部へ向かって形成される距離(表面からの距離)X2と珪素浸透層における珪素元素の濃度(Si濃度)を測定したところ、表面からの距離X2とSi濃度が、粉末間でおおきくばらついていた。具体的には、取り出された粉末の中には、浸珪反応が乏しい粉末(浸珪反応量が低い粉末)が含まれていた(図17中の細い実線で記載するグラフ参照)。また、浸珪反応が豊富な粉末(浸珪反応量が高い粉末)であっても(図17中の太い実線で記載するグラフ参照)、鉄粉102の表面におけるSi濃度が、約2.0%〜約5.0%と幅広くばらついている上に、珪素浸透層104の鉄粉102の表面からの距離(厚さ)X2が約4μm〜約20μmにばらついている。更に、浸珪反応が豊富な粉末は、珪素浸透層104の鉄粉102の表面から鉄粉102の中心部へ向かってSi濃度が低下する割合がおおきくばらついている。よって、従来の圧粉磁心用粉末の製造方法では、各鉄粉102に均一な浸珪反応をさせることができず、各圧粉磁心用粉末101に形成される珪素浸透層104の均一化を図ることができなかった。そのため、圧粉成形時に、圧粉磁心用粉末101に形成される珪素浸透層104の厚さ(表面からの距離)X2の薄い部分やSi濃度の低い部分同士が接触すると、当該接触部分の絶縁性が低いため、圧粉磁心に発生する渦電流が大きくなり、ひいては、比抵抗が低くなる問題がある。また、珪素浸透層104の厚さ(表面からの距離)X2が大きい圧粉磁心用粉末101は、硬く、磁心密度や磁束密度を低下させる原因となる。   However, as shown in FIG. 17, the conventional method for manufacturing a powder for a powder magnetic core is to randomly extract 10 powders 101 for a powder magnetic core, and the silicon-penetrating layer 104 is iron from the surface of the iron powder 102. When the distance (distance from the surface) X2 formed toward the center of the powder 102 and the concentration of silicon element (Si concentration) in the silicon permeation layer were measured, the distance X2 from the surface and the Si concentration were between the powders. There was a lot of variation. Specifically, the extracted powder contained a powder having a poor silicification reaction (a powder having a low silicidation reaction amount) (see the graph described by a thin solid line in FIG. 17). Further, even if the powder is rich in the silicification reaction (powder having a high silicidation reaction amount) (see the graph described by the thick solid line in FIG. 17), the Si concentration on the surface of the iron powder 102 is about 2.0. The distance (thickness) X2 from the surface of the iron powder 102 of the silicon permeation layer 104 varies from about 4 μm to about 20 μm. Furthermore, the ratio of the Si concentration decreasing from the surface of the iron powder 102 of the silicon-penetrating layer 104 toward the center of the iron powder 102 varies greatly in the powder rich in the silicon immersion reaction. Therefore, in the conventional method for producing a powder for a powder magnetic core, it is not possible to cause each iron powder 102 to undergo a uniform silicidation reaction, and the silicon permeation layer 104 formed in each powder for a powder magnetic core 101 is made uniform. I couldn't plan. Therefore, when a portion having a small thickness (distance from the surface) X2 or a portion having a low Si concentration of the silicon permeation layer 104 formed on the powder 101 for dust core is in contact with each other at the time of compacting, insulation of the contact portion is performed. Therefore, there is a problem that the eddy current generated in the dust core becomes large and the specific resistance becomes low. Moreover, the powder 101 for a dust core having a large thickness (distance from the surface) X2 of the silicon-penetrating layer 104 is hard and causes a decrease in the core density and magnetic flux density.

従来の圧粉磁心用粉末の製造方法によって、珪素浸透層104の厚さ(表面からの距離)X2やSi濃度が圧粉磁心用粉末101間でばらつく理由は、鉄粉102と二酸化珪素粉末103の混合粉を供給した炉を回転させずに混合粉を加熱していたため、浸珪処理を行う間、鉄粉102と二酸化珪素粉末103の配置が変わらず、周囲に二酸化珪素粉末103がたくさんある鉄粉102では、珪素元素が表層にたくさん浸透拡散して、珪素浸透層104の厚さやSi濃度が大きくなるのに対して、周囲に二酸化珪素粉末103が少ない鉄粉102では、珪素元素が表層に浸透拡散する量が少なく、珪素浸透層104の厚さやSi濃度が小さくなるからと考えられる。   The reason why the thickness (distance from the surface) X2 and the Si concentration of the silicon-penetrating layer 104 varies between the powders 101 for powder magnetic cores by the conventional method for producing powders for powder magnetic cores is as follows. Because the mixed powder was heated without rotating the furnace to which the mixed powder was supplied, the arrangement of the iron powder 102 and the silicon dioxide powder 103 did not change during the siliconization treatment, and there were many silicon dioxide powders 103 around In the iron powder 102, a large amount of silicon element penetrates and diffuses into the surface layer, and the thickness and the Si concentration of the silicon infiltrated layer 104 increase. This is considered to be because the amount permeating and diffusing into the silicon is small, and the thickness and the Si concentration of the silicon-permeable layer 104 are small.

そこで、発明者らは、図19に示すように、平均粒径200μmの鉄粉102と平均粒径50nmの二酸化珪素粉末103を攪拌混合した混合粉を炉105に供給した後、炉105をヒータ106で加熱し、その後、炉105の内部温度を1000℃に温度調整しながら、炉105を回転させて混合粉を1時間連続して攪拌することにより、圧粉磁心用粉末を製造することを試みた。これにより、発明者らは、浸珪処理時に二酸化珪素粉末103が配置を変えながら鉄粉102の周りに均一に付着し、各鉄粉102に均一な浸珪反応を発生させることができると考えた。   Therefore, as shown in FIG. 19, the inventors supply mixed powder obtained by stirring and mixing iron powder 102 having an average particle diameter of 200 μm and silicon dioxide powder 103 having an average particle diameter of 50 nm to a furnace 105, and then heating the furnace 105 with a heater. The powder for a magnetic core is manufactured by heating at 106 and then stirring the mixed powder continuously for 1 hour by rotating the furnace 105 while adjusting the internal temperature of the furnace 105 to 1000 ° C. Tried. As a result, the inventors believe that the silicon dioxide powder 103 is uniformly attached around the iron powder 102 while changing the arrangement during the silicidation treatment, and a uniform silicification reaction can be generated in each iron powder 102. It was.

ところが、上記圧粉磁心用粉末の製造方法を実施して炉105から生成物を取り出したところ、図18に示すように、鉄粉102と二酸化珪素粉末103が団子状に固まって二次粒子110になってしまっていた。二次粒子110は、二酸化珪素粉末103(ドット部分参照)が焼結して複数の鉄粉102を結合させており、直径が600μm〜700μmにも及んでいた。二次粒子110ができる理由は、次のように考えられる。   However, when the above method for producing a powder for a powder magnetic core was carried out and the product was taken out from the furnace 105, as shown in FIG. It had become. The secondary particles 110 were sintered with silicon dioxide powder 103 (see dot portion) to combine a plurality of iron powders 102, and the diameters ranged from 600 μm to 700 μm. The reason why the secondary particles 110 are formed is considered as follows.

焼結は、融点の3分の2程度の温度で始まることが知られている。二酸化珪素の融点は、1600℃±75℃である。一方、浸珪処理時の混合粉の加熱温度は約1000℃である。よって、混合粉の加熱温度1000℃は、二酸化珪素の融点のちょうど3分の2程度の温度に相当する。混合粉を1000℃に加熱することにより、鉄粉102の表面に付着した二酸化珪素粉末103から珪素元素が脱離して鉄粉102に拡散浸透するが、加熱時間が長くなると、二酸化珪素粉末103間で物質が移動し、焼結が発生する。焼結は、鉄粉102の表面に拡散接合した二酸化珪素粉末103にも発生するため、焼結した二酸化珪素粉末103を介して鉄粉102同士が結合される。特に、上記圧粉磁心用粉末の製造方法は、図19に示すように、混合粉を1000℃に加熱した状態で、炉105を1時間連続回転させ、鉄粉102と二酸化珪素粉末103の混合粉を高所から低所に繰り返し落下させて攪拌を行う。この場合、低所にある二酸化珪素粉末103は、上方から落ちてきた混合粉の重みで圧縮され、焼結が促進される。このように、単に、浸珪処理時に混合粉を1000℃に加熱しながら攪拌しただけでは、二酸化珪素粉末103が加圧焼結されて二次粒子110を生成してしまっていた。この結果、圧粉磁心用粉末の品質及び生産性が悪くなってしまった。   It is known that sintering begins at a temperature of about two-thirds of the melting point. The melting point of silicon dioxide is 1600 ° C. ± 75 ° C. On the other hand, the heating temperature of the mixed powder during the siliconizing treatment is about 1000 ° C. Accordingly, the heating temperature of the mixed powder of 1000 ° C. corresponds to a temperature that is about two thirds of the melting point of silicon dioxide. By heating the mixed powder to 1000 ° C., silicon element is detached from the silicon dioxide powder 103 adhering to the surface of the iron powder 102 and diffuses and penetrates into the iron powder 102. The material moves and sintering occurs. Sintering also occurs in the silicon dioxide powder 103 that is diffusion bonded to the surface of the iron powder 102, so that the iron powders 102 are bonded together via the sintered silicon dioxide powder 103. In particular, as shown in FIG. 19, the method for producing a powder for a powder magnetic core is to mix the iron powder 102 and the silicon dioxide powder 103 by continuously rotating the furnace 105 for 1 hour while the mixed powder is heated to 1000 ° C. Agitate by repeatedly dropping the powder from high to low. In this case, the silicon dioxide powder 103 in the low place is compressed by the weight of the mixed powder falling from above, and the sintering is promoted. As described above, when the mixed powder is simply stirred while being heated to 1000 ° C. during the siliconization treatment, the silicon dioxide powder 103 is pressure-sintered to generate secondary particles 110. As a result, the quality and productivity of the powder for powder magnetic cores have deteriorated.

本発明は、上記問題点を解決するためになされたものであり、浸珪処理時に二次粒子が生成されることを防ぎ、圧粉磁心用粉末の品質と生産性を向上させることができる圧粉磁心用粉末の製造方法、その圧粉磁心用粉末の製造方法により製造された圧粉磁心用粉末を用いた圧粉磁心、及び、圧粉磁心用粉末製造装置を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and prevents the generation of secondary particles during the siliconization treatment, and improves the quality and productivity of the powder for powder magnetic core. An object of the present invention is to provide a method for producing a powder for a powder magnetic core, a powder magnetic core using the powder for a powder magnetic core produced by the method for producing a powder for a powder magnetic core, and a powder production apparatus for the powder magnetic core. .

上記課題を解決するために、本発明の一態様に係る圧粉磁心用粉末の製造方法は、所定量の軟磁性金属粉末と所定量の二酸化珪素を含む浸珪用粉末を炉の内部で所定の処理時間加熱し、前記軟磁性金属粉末の表面に珪素浸透層を形成することにより、圧粉磁心用粉末を製造する圧粉磁心用粉末の製造方法において、前記炉を加熱しながら回転させた状態で、前記所定量の浸珪用粉末を時間軸に沿って分けて前記炉に添加する浸珪用粉末添加工程を有する。   In order to solve the above-described problems, a method for manufacturing a powder for a powder magnetic core according to one aspect of the present invention includes a step of supplying a siliconizing powder containing a predetermined amount of soft magnetic metal powder and a predetermined amount of silicon dioxide inside a furnace. In the method for producing a powder magnetic core powder for producing a powder magnetic core powder by heating the treatment time and forming a silicon permeation layer on the surface of the soft magnetic metal powder, the furnace was rotated while being heated. In the state, there is a silicified powder addition step of adding the predetermined amount of the silicified powder along the time axis to the furnace.

上記構成の圧粉磁心用粉末の製造方法は、前記軟磁性金属粉末の焼結を防止する焼結防止材を前記炉に供給する焼結防止材供給工程を有することが望ましい。   The method for producing a powder for a powder magnetic core having the above-described configuration desirably includes a sintering preventing material supplying step of supplying a sintering preventing material for preventing the sintering of the soft magnetic metal powder to the furnace.

上記構成の圧粉磁心用粉末の製造方法は、前記浸珪用粉末添加手工程において、前記所定量の浸珪用粉末を前記炉に噴射して分散させることにより、添加する、或いは、前記所定量の浸珪用粉末を前記炉に連続的に添加することが、望ましい。   In the method for manufacturing a powder for a powder magnetic core having the above-described structure, in the silicon powder addition step, the predetermined amount of silicon powder is added by being sprayed and dispersed in the furnace. It is desirable to add a certain amount of siliconizing powder continuously to the furnace.

上記課題を解決するために、本発明の一態様に係る圧粉磁心は、上記何れかの圧粉磁心用粉末の製造方法により製造された圧粉磁心用粉末を成形金型に充填して加圧することにより製造されている。   In order to solve the above problems, a dust core according to one aspect of the present invention is obtained by filling a molding die with the powder for a dust core produced by any one of the above methods for producing a powder for a dust core. It is manufactured by pressing.

上記課題を解決するために、本発明の一態様に係る圧粉磁心用粉末製造装置は、所定の軟磁性金属粉末と二酸化珪素粉末を含む所定量の浸珪用粉末が供給される炉と、前記炉を加熱する加熱手段と、前記加熱手段が前記炉を加熱する熱によって前記軟磁性金属粉末の表面に前記二酸化珪素粉末を拡散浸透させることを促進する処理ガスを前記炉に供給する処理ガス供給手段と、前記炉からガスを排気する排気手段と、を備える圧粉磁心用粉末製造装置において、前記炉を回転させる回転手段と、前記所定量の浸珪用粉末を時間軸に沿って分けて前記炉に添加する浸珪用粉末添加手段を有する。   In order to solve the above problems, a powder magnetic core manufacturing apparatus according to an aspect of the present invention includes a furnace in which a predetermined amount of siliconizing powder containing a predetermined soft magnetic metal powder and silicon dioxide powder is supplied; Heating means for heating the furnace, and a processing gas for supplying to the furnace a processing gas for accelerating the diffusion and permeation of the silicon dioxide powder into the surface of the soft magnetic metal powder by heat for heating the furnace by the heating means In a powder magnetic core powder manufacturing apparatus comprising a supply means and an exhaust means for exhausting gas from the furnace, the rotating means for rotating the furnace and the predetermined amount of the siliconized powder are divided along a time axis. A means for adding silicon powder to the furnace.

上記態様に係る圧粉磁心用粉末の製造方法と圧粉磁心用粉末製造装置は、炉を加熱しながら回転させた状態で、所定量の浸珪用粉末を時間軸に沿って分けて炉に添加することにより、軟磁性金属粉末の表面に浸珪用粉末を付着させ、浸珪反応を進行させる。浸珪用粉末を時間軸に沿って少しずつ炉に添加するため、浸珪反応時に、軟磁性金属粉末と一緒に攪拌混合される浸珪用粉末が少ない。そのため、軟磁性金属粉末を攪拌混合する場合に、浸珪用粉末が焼結しない。よって、上記態様に係る圧粉磁心用粉末の製造方法と圧粉磁心用粉末製造装置によれば、浸珪処理時に二次粒子が生成されることを防ぎ、圧粉磁心用粉末の品質と生産性を向上させることができる。   The method for manufacturing a powder for a powder magnetic core and the powder core manufacturing apparatus for a powder magnetic core according to the above aspect are configured in such a manner that a predetermined amount of siliconized powder is divided along the time axis while being rotated while the furnace is heated. By adding, the siliconization powder is adhered to the surface of the soft magnetic metal powder, and the siliconization reaction proceeds. Since the siliconizing powder is gradually added to the furnace along the time axis, there is little siliconizing powder stirred and mixed together with the soft magnetic metal powder during the siliconizing reaction. Therefore, when the soft magnetic metal powder is mixed with stirring, the siliconizing powder is not sintered. Therefore, according to the method for manufacturing a powder for a powder magnetic core and the powder core manufacturing apparatus for a powder magnetic core according to the above aspect, secondary particles are prevented from being generated during the siliconization treatment, and the quality and production of the powder for a powder magnetic core Can be improved.

上記構成の圧粉磁心用粉末の製造方法によれば、軟磁性金属粉末と焼結防止材が供給された炉を加熱する場合に、焼結防止材が軟磁性金属粉末の焼結を防止するので、焼結した軟磁性金属粉末が核となって二次粒子が発生されることを防止できる。   According to the method for manufacturing a powder for a powder magnetic core having the above configuration, when the furnace supplied with the soft magnetic metal powder and the anti-sintering material is heated, the anti-sintering material prevents the soft magnetic metal powder from being sintered. Therefore, it is possible to prevent secondary particles from being generated by using the sintered soft magnetic metal powder as a nucleus.

上記構成の圧粉磁心用粉末の製造方法によれば、所定量の浸珪用粉末を炉に噴射して分散させるので、浸珪用粉末を炉内に広く行き渡らせて炉に供給された所定量の軟磁性金属粉末の表面に均一に付着させることができる。   According to the method of manufacturing a powder for a powder magnetic core having the above-described configuration, since a predetermined amount of siliconized powder is sprayed and dispersed in the furnace, the siliconized powder is widely distributed in the furnace and supplied to the furnace. It can be uniformly attached to the surface of a fixed amount of soft magnetic metal powder.

上記構成の圧粉磁心用粉末の製造方法によれば、所定量の浸珪用粉末を炉に複数回に分けて断続的に添加し、或いは、所定量の浸珪用粉末を炉に連続的に添加するので、浸珪反応時に浸珪用粉末が炉内で余剰する量が、少なく、二次粒子の発生を抑制できる。   According to the method of manufacturing a powder for a powder magnetic core having the above-described configuration, a predetermined amount of siliconized powder is intermittently added to the furnace in a plurality of times, or a predetermined amount of siliconized powder is continuously added to the furnace. Therefore, the amount of surplus silicon powder in the furnace during the silicification reaction is small, and the generation of secondary particles can be suppressed.

また、上記態様に係る圧粉磁心は、品質の良い圧粉磁心用粉末を用いて製造されるので、鉄損を小さくできる。   Moreover, since the powder magnetic core which concerns on the said aspect is manufactured using the powder for powder magnetic cores with sufficient quality, an iron loss can be made small.

本発明の第1実施形態に係り、圧粉磁心用粉末製造装置の概略構成図である。It is a schematic block diagram of the powder manufacturing apparatus for dust cores according to the first embodiment of the present invention. 図1のAA断面図である。It is AA sectional drawing of FIG. 圧粉磁心用粉末の製造方法を説明する図である。It is a figure explaining the manufacturing method of the powder for dust cores. 焼結防止材供給工程を説明する図である。It is a figure explaining a sintering prevention material supply process. 二酸化珪素粉末投入前の炉内の状態を示す模式図である。It is a schematic diagram which shows the state in the furnace before injection | throwing-in silicon dioxide powder. 二酸化珪素粉末投入後の炉内の状態を示す模式図である。It is a schematic diagram which shows the state in the furnace after injection | throwing-in silicon dioxide powder. 浸珪反応を説明する図であって、二酸化珪素粉末が鉄粉の表面に付着した状態を示す。It is a figure explaining silicification reaction, Comprising: The state which silicon dioxide powder adhered to the surface of iron powder is shown. 浸珪反応を説明する図であって、二酸化珪素粉末と鉄粉が加熱された状態を示す。It is a figure explaining silicification reaction, Comprising: The silicon dioxide powder and the iron powder are shown in the heated state. 浸珪反応を説明する図であって、二酸化珪素粉末が鉄粉の表面に拡散接合した状態を示す。It is a figure explaining a silicon immersion reaction, Comprising: The silicon dioxide powder shows the state which carried out the diffusion joining to the surface of the iron powder. 浸珪反応を説明する図であって、二酸化珪素粉末が鉄粉の表面に拡散浸透し、次の二酸化珪素粉末が鉄粉の表面に付着しようとする状態を示す。It is a figure explaining silicification reaction, Comprising: The silicon dioxide powder diffuses osmose | permeates on the surface of iron powder, The state which the following silicon dioxide powder tends to adhere to the surface of iron powder is shown. 圧粉磁心用粉末の断面を示す模式図である。It is a schematic diagram which shows the cross section of the powder for dust cores. 実施例と比較例の条件を示す図である。It is a figure which shows the conditions of an Example and a comparative example. 比較例における圧粉磁心用粉末の製造方法を示す図である。It is a figure which shows the manufacturing method of the powder for powder magnetic cores in a comparative example. 比較例と実施例の歩留まり率を示す図である。It is a figure which shows the yield rate of a comparative example and an Example. 実施例の圧粉磁心用粉末について、鉄粉の表面から鉄粉の中心部へ向かって形成される珪素浸透層の距離を、圧粉磁心用粉末別に調べた結果を示すグラフである。It is a graph which shows the result of having investigated the distance of the silicon osmosis | permeation layer formed toward the center part of iron powder from the surface of iron powder about the powder for powder magnetic cores of an Example according to powder for powder magnetic cores. 浸珪処理のイメージ図である。It is an image figure of a siliconization process. 鉄粉の表面から鉄粉の中心部へ向かって形成される珪素浸透層の距離を、圧粉磁心用粉末別に調べた結果を示すグラフである。It is a graph which shows the result of having investigated the distance of the silicon osmosis | permeation layer formed toward the center part of iron powder from the surface of iron powder according to the powder for powder magnetic cores. 混合粉を攪拌しながら加熱した場合に得られる圧粉磁心用粉末の顕微鏡写真を図面化したものである。It is drawing which made the micrograph of the powder for powder magnetic cores obtained when heating mixed powder while stirring. 混合粉を攪拌しながら加熱する装置の概念図である。It is a conceptual diagram of the apparatus heated while stirring mixed powder.

次に、本発明の一実施形態について図面を参照して説明する。   Next, an embodiment of the present invention will be described with reference to the drawings.

(第1実施形態)
<圧粉磁心用粉末製造装置の概略構成>
図1は、本発明の第1実施形態に係り、圧粉磁心用粉末製造装置1の概略構成図である。
圧粉磁心用粉末製造装置1は、所定量の炭素−鉄系金属粉末21(軟磁性金属粉末の一例)と所定量の二酸化珪素粉末22(浸珪用粉末の一例)が供給される炉2と、炉2を加熱するヒータ3(加熱手段の一例)と、ヒータ3が炉2を加熱する熱によって炭素−鉄系金属粉末21の表面に二酸化珪素粉末22を拡散浸透させることを促進する処理ガスを炉2に供給する処理ガス供給手段4と、炉2からガスを排気する排気手段5を備える。更に、圧粉磁心用粉末製造装置1は、所定量の二酸化珪素粉末22を時間軸に沿って分けて炉2に添加する浸珪用粉末添加手段15を有する。
(First embodiment)
<Schematic configuration of powder manufacturing apparatus for dust core>
FIG. 1 is a schematic configuration diagram of a powder magnetic core manufacturing apparatus 1 according to the first embodiment of the present invention.
The powder manufacturing apparatus 1 for a dust core includes a furnace 2 to which a predetermined amount of carbon-iron-based metal powder 21 (an example of soft magnetic metal powder) and a predetermined amount of silicon dioxide powder 22 (an example of siliconization powder) are supplied. And a heater 3 that heats the furnace 2 (an example of a heating means) and a treatment that promotes diffusion and permeation of the silicon dioxide powder 22 on the surface of the carbon-iron-based metal powder 21 by the heat that the heater 3 heats the furnace 2. A processing gas supply means 4 for supplying gas to the furnace 2 and an exhaust means 5 for exhausting the gas from the furnace 2 are provided. Further, the powder magnetic core production apparatus 1 includes a siliconizing powder adding means 15 for adding a predetermined amount of silicon dioxide powder 22 along the time axis to the furnace 2.

図2は、図1のAA断面図である。
炉2は、ステンレスなどの熱伝導率の高い材料を円筒状に成形したものである。炉2は、図示しないモータ(回転手段の一例)により、長手方向の軸心を中心にして回転されるようになっている。炉2の外側には、ヒータ3が、炉2を均一に加熱するように設けられている。炉2の内周面には、長い板状の攪拌板6が3個立設されている。各攪拌板6は、炉2の長手方向に沿って固定されている。そして、3個の攪拌板6は、炉2の長手方向に対して直交する断面の周方向に等間隔となるように配置されている。炉2の内壁には、温度センサ7が固定され、炉2の内部温度が計測されるようになっている。
2 is a cross-sectional view taken along the line AA in FIG.
The furnace 2 is formed by cylindrically molding a material having high thermal conductivity such as stainless steel. The furnace 2 is rotated about a longitudinal axis by a motor (not shown) (an example of a rotating means). A heater 3 is provided outside the furnace 2 so as to heat the furnace 2 uniformly. Three long plate-like stirring plates 6 are erected on the inner peripheral surface of the furnace 2. Each stirring plate 6 is fixed along the longitudinal direction of the furnace 2. The three stirring plates 6 are arranged at equal intervals in the circumferential direction of the cross section orthogonal to the longitudinal direction of the furnace 2. A temperature sensor 7 is fixed to the inner wall of the furnace 2 so that the internal temperature of the furnace 2 is measured.

図1に示すように、炉2の一方の端面には、処理ガス供給手段4と浸珪用粉末添加手段15が接続され、炉2に処理ガスと二酸化珪素粉末22が供給されるようになっている。一方、炉2の他方の端面には、排気手段5が接続されている。そのため、炉2は、処理ガスと二酸化珪素粉末22の供給に応じて炉2からガスが排気され、内部圧力が所定圧に維持されるようになっている。   As shown in FIG. 1, a processing gas supply means 4 and a siliconization powder addition means 15 are connected to one end face of the furnace 2 so that the processing gas and silicon dioxide powder 22 are supplied to the furnace 2. ing. On the other hand, the exhaust means 5 is connected to the other end face of the furnace 2. Therefore, the furnace 2 is configured such that the gas is exhausted from the furnace 2 in response to the supply of the processing gas and the silicon dioxide powder 22, and the internal pressure is maintained at a predetermined pressure.

図1に示すように、処理ガス供給手段4は、炉2の一方の端面に設けられた給気側配管接続部8と、処理ガスが充填されたボンベ11と、給気側配管接続部8とボンベ11とを接続する処理ガス供給配管12と、処理ガス供給配管12上に配設されて処理ガスの供給量を制御する処理ガス制御バルブ13と、を有する。ここで、処理ガスは、炭素−鉄系金属粉末21と二酸化珪素粉末22の酸化還元反応を促進するために、少なくとも水素を含むことが好ましい。   As shown in FIG. 1, the processing gas supply means 4 includes an air supply side pipe connection portion 8 provided on one end face of the furnace 2, a cylinder 11 filled with the processing gas, and an air supply side pipe connection portion 8. And a processing gas supply pipe 12 that connects the cylinder 11 and a processing gas control valve 13 that is disposed on the processing gas supply pipe 12 and controls the supply amount of the processing gas. Here, the processing gas preferably contains at least hydrogen in order to promote the oxidation-reduction reaction between the carbon-iron-based metal powder 21 and the silicon dioxide powder 22.

また、排気手段5は、炉2の他方の端面に設けられた排気側配管接続部10と、排気側配管接続部10を図示しない排気ポンプに接続する排気管5aと、排気管5a上に配設されて排気流量を制御する排気バルブ5bと、を有する。   Further, the exhaust means 5 is disposed on the exhaust pipe 5a, the exhaust pipe connection 10 provided on the other end face of the furnace 2, the exhaust pipe 5a connecting the exhaust pipe connection 10 to an exhaust pump (not shown), and the exhaust pipe 5a. And an exhaust valve 5b for controlling the exhaust flow rate.

そして、浸珪用粉末添加手段15は、炉2の一方の端面に固定された噴射ノズル9と、二酸化珪素粉末22を収納する収納タンク16と、収納タンク16が内設された密閉ボックス17と、収納タンク16に加圧ガスを供給する加圧ガス供給配管18と、処理タンク16を噴射ノズル9に接続して二酸化珪素粉末22を炉2へ搬送する浸珪用粉末搬送配管19と。浸珪用粉末搬送配管19上に設けられて噴射ノズル9から二酸化珪素粉末22を噴出する動作を制御する噴出制御バルブ20と、を備える。   The powder addition means 15 for siliconization includes an injection nozzle 9 fixed to one end face of the furnace 2, a storage tank 16 for storing the silicon dioxide powder 22, and a sealed box 17 in which the storage tank 16 is provided. A pressurized gas supply pipe 18 for supplying a pressurized gas to the storage tank 16, and a silicon powder feed pipe 19 for connecting the treatment tank 16 to the injection nozzle 9 and carrying the silicon dioxide powder 22 to the furnace 2. An ejection control valve 20 provided on the silicon powder delivery pipe 19 for controlling the operation of ejecting the silicon dioxide powder 22 from the ejection nozzle 9.

密閉ボックス17は、内圧が外圧より高くなるように、N2ガスなどの不活性ガスで満たされている。これにより、外気が収納タンク16内の二酸化珪素粉末22と接触して二酸化珪素粉末22を変質させることが、防止されている。
また、加圧ガスは、炉2内の浸珪反応させる雰囲気を阻害しないように、不活性ガス又は処理ガスと同一成分のガスであることが好ましい。本実施形態では、収納タンク16とボンベ11が加圧ガス供給配管18で接続され、処理ガスが加圧ガスとして使用されている。
The sealed box 17 is filled with an inert gas such as N 2 gas so that the internal pressure becomes higher than the external pressure. This prevents the outside air from contacting the silicon dioxide powder 22 in the storage tank 16 and altering the silicon dioxide powder 22.
Further, the pressurized gas is preferably a gas having the same component as the inert gas or the processing gas so as not to hinder the atmosphere in which the silicidation reaction in the furnace 2 is performed. In the present embodiment, the storage tank 16 and the cylinder 11 are connected by a pressurized gas supply pipe 18, and the processing gas is used as the pressurized gas.

このような浸珪用粉末添加手段15は、ボンベ11と噴出制御バルブ20との間が加圧ガス(処理ガス)によって常時加圧されている。そのため、噴出制御バルブ20を弁閉状態から弁開状態に変化させると、収納タンク16内の二酸化珪素粉末22が、処理ガスと一緒に、噴射ノズル9から炉2の内部へ噴射される。噴射ノズル9は、炉2の長手方向軸線に沿って配置され、噴出口9aが炉2の軸線上に配置されている。これは、炉2が回転して混合粉23を攪拌混合する際に炉2の上部から底部へ落下する混合粉23に対して、二酸化珪素粉末22を吹きつけ、炭素−鉄系金属粉末21の表面に二酸化珪素粉末22が付着しやすくするためである。   In such a silicon powder addition means 15, the space between the cylinder 11 and the ejection control valve 20 is constantly pressurized by a pressurized gas (processing gas). Therefore, when the ejection control valve 20 is changed from the valve closed state to the valve opened state, the silicon dioxide powder 22 in the storage tank 16 is injected into the furnace 2 from the injection nozzle 9 together with the processing gas. The injection nozzle 9 is disposed along the longitudinal axis of the furnace 2, and the ejection port 9 a is disposed on the axis of the furnace 2. This is because when the furnace 2 rotates and the mixed powder 23 is stirred and mixed, the silicon dioxide powder 22 is blown against the mixed powder 23 that falls from the top to the bottom of the furnace 2, and the carbon-iron-based metal powder 21. This is because the silicon dioxide powder 22 easily adheres to the surface.

噴射ノズル9の近くには、給気側配管接続部8が設けられている。これにより、噴射ノズル9から噴射された二酸化珪素粉末22は、給気側配管接続部8から噴出される処理ガスに乗って噴出口9aから遠い位置まで運ばれ、炉2の全体に行き渡るようにされている。   An air supply side pipe connection portion 8 is provided near the injection nozzle 9. Thereby, the silicon dioxide powder 22 injected from the injection nozzle 9 is carried to the position far from the outlet 9 a on the processing gas injected from the air supply side pipe connection portion 8, and reaches the entire furnace 2. Has been.

<圧粉磁心用粉末の構成>
図11は、圧粉磁心用粉末28の断面を示す模式図である。
上記圧粉磁心用粉末製造装置1により浸珪処理を施された粉体26は、鉄粉24の表面に所定の厚さX1の珪素浸透層25が形成される。ここで、所定の厚さX1とは、珪素浸透層25の鉄粉24の表面から中心部へ向かう距離をいう。所定の厚さX1は、圧粉密度や磁束密度を高くするために、鉄粉24の直径Dの0.15倍とすることが望ましい。圧粉磁心用粉末28は、浸珪処理を施された粉体26の表面をシリコーン樹脂でコーティングすることにより、シリコーン樹脂被膜層27が形成されている。
<Composition of powder for powder magnetic core>
FIG. 11 is a schematic view showing a cross section of the powder 28 for a powder magnetic core.
In the powder 26 that has been subjected to the siliconization treatment by the powder magnetic core powder manufacturing apparatus 1, a silicon permeation layer 25 having a predetermined thickness X 1 is formed on the surface of the iron powder 24. Here, the predetermined thickness X1 refers to a distance from the surface of the iron powder 24 of the silicon permeation layer 25 toward the center. The predetermined thickness X1 is desirably 0.15 times the diameter D of the iron powder 24 in order to increase the dust density and the magnetic flux density. The powder 28 for powder magnetic core has a silicone resin coating layer 27 formed by coating the surface of the powder 26 that has been subjected to siliconization treatment with a silicone resin.

<圧粉磁心用粉末の製造方法>
図3は、圧粉磁心用粉末の製造方法を説明する図である。図4は、焼結防止材供給工程を説明する図である。図5は、二酸化珪素粉末投入前の炉内の状態を示す模式図である。図6は、二酸化珪素粉末投入後の炉内の状態を示す模式図である。図7〜図10は、浸珪反応を説明する図である。
<Method for producing powder for powder magnetic core>
FIG. 3 is a diagram for explaining a method for producing a powder for a powder magnetic core. FIG. 4 is a diagram for explaining a sintering preventing material supplying step. FIG. 5 is a schematic diagram showing a state in the furnace before the silicon dioxide powder is charged. FIG. 6 is a schematic diagram showing a state in the furnace after the silicon dioxide powder is charged. 7-10 is a figure explaining the silicification reaction.

A:焼結防止材供給工程
図4に示すように、所定量の炭素−鉄系金属粉末21と所定量の焼結防止材31とを攪拌混合した混合粉23が、炉2の壁面に設けられた開口部2aから炉2の内部へ供給される。焼結防止材31は、炭素−鉄系金属粉末21の焼結を防止するものである。焼結防止材31は、炭素−鉄系金属粉末21及び二酸化珪素粉末22と反応しにくい材料で構成されることが望ましい。焼結防止材31は、二酸化珪素粉末22より平均粒径が大きく、且つ、炭素−鉄系金属粉末21より平均粒径が小さい外観をなす。これは、炉2の回転時に焼結防止材31が、炭素−鉄系金属粉末21の間に入り込んで、炭素−鉄系金属粉末21を分離させやすくするためである。焼結防止材31は、炭素−鉄系金属粉末21の浸珪反応を阻害せず、且つ、炭素−鉄系金属粉末21の攪拌混合時に炭素−鉄系金属粉末21の間に介在して焼結を防止するように、供給量が調整されている。混合粉23は、例えば投入装置により自動的に炉2に投入されても良いし、作業者によって手動で炉2に投入されても良い。尚、開口部2aは、開閉扉2bにより開閉されるようになっている。
A: Sintering Preventive Material Supply Step As shown in FIG. 4, a mixed powder 23 obtained by stirring and mixing a predetermined amount of carbon-iron-based metal powder 21 and a predetermined amount of sintering preventive material 31 is provided on the wall surface of the furnace 2. It is supplied to the inside of the furnace 2 from the opened opening 2a. The sintering preventing material 31 prevents the carbon-iron-based metal powder 21 from being sintered. The sintering preventing material 31 is preferably made of a material that does not easily react with the carbon-iron-based metal powder 21 and the silicon dioxide powder 22. The anti-sintering material 31 has an appearance with an average particle size larger than that of the silicon dioxide powder 22 and smaller than that of the carbon-iron-based metal powder 21. This is because the sintering preventing material 31 enters between the carbon-iron-based metal powders 21 during the rotation of the furnace 2 to facilitate separation of the carbon-iron-based metal powders 21. The anti-sintering material 31 does not inhibit the silicidation reaction of the carbon-iron-based metal powder 21, and is interposed between the carbon-iron-based metal powder 21 during the stirring and mixing of the carbon-iron-based metal powder 21. The supply amount is adjusted to prevent ligation. The mixed powder 23 may be automatically charged into the furnace 2 by, for example, a charging device, or may be manually charged into the furnace 2 by an operator. The opening 2a is opened and closed by the open / close door 2b.

ここで、二酸化珪素粉末22は、炉2が浸珪反応に必要な処理温度に達するまで、炉2に供給されない。これは、二酸化珪素粉末22を最初から入れると、炉2が処理温度に達した時点で二酸化珪素粉末22同士が焼結する可能性があるからである。   Here, the silicon dioxide powder 22 is not supplied to the furnace 2 until the furnace 2 reaches the processing temperature required for the silicidation reaction. This is because if the silicon dioxide powder 22 is put in from the beginning, the silicon dioxide powders 22 may be sintered when the furnace 2 reaches the processing temperature.

B:昇温工程
図1に示す圧粉磁心用粉末製造装置1は、待機時には、処理ガス制御バルブ13と排気バルブ5bと噴出制御バルブ20とが弁閉されている。圧粉磁心用粉末製造装置1は、炉2に混合粉23が投入された後、処理ガス制御バルブ13と排気バルブ5bが弁閉状態から弁開状態に切り替えられ、処理ガスの供給とガスの排気が開始される。そして、圧粉磁心用粉末製造装置1は、ヒータ3に炉2の加熱を開始させる。炉2の内部温度は、温度センサ7により監視されている。炭素−鉄系金属粉末21は、焼結防止材31と攪拌混合されて一緒に炉2に入れられている。そのため、炉2が処理温度に達しても、炭素−鉄系金属粉末21は、他の炭素−鉄系金属粉末21の間に介在する焼結防止材31によって焼結を防止される。
B: Temperature rising step In the powder core manufacturing apparatus 1 shown in FIG. 1, the processing gas control valve 13, the exhaust valve 5b, and the ejection control valve 20 are closed during standby. After the powder mixture 23 is charged into the furnace 2, the powder magnetic core powder manufacturing apparatus 1 switches the processing gas control valve 13 and the exhaust valve 5 b from the valve closed state to the valve opened state, and supplies the processing gas and the gas flow. Exhaust starts. And the powder manufacturing apparatus 1 for powder magnetic cores makes the heater 3 start the heating of the furnace 2. The internal temperature of the furnace 2 is monitored by a temperature sensor 7. The carbon-iron-based metal powder 21 is stirred and mixed with the sintering preventing material 31 and put into the furnace 2 together. Therefore, even if the furnace 2 reaches the processing temperature, the carbon-iron-based metal powder 21 is prevented from being sintered by the anti-sintering material 31 interposed between the other carbon-iron-based metal powders 21.

C:浸珪用粉末添加工程
図3の実線に示すように、温度センサ7が計測する計測値から、炉2の内部温度が浸珪反応に必要な処理温度(浸珪処理温度)に達したことが確認されると、圧粉磁心用粉末製造装置1は、図示しないモータに炉2を回転させ始める。これにより、炉2内の混合粉23は、攪拌板6によって炉2の底部から所定の高さまで持ち上げられた後、斜め下方を向いた攪拌板6から滑り落ちることを繰り返し、攪拌混合される。
尚、ヒータ3は、炉2が回転される間、温度センサ7が計測する計測値が処理温度を維持するように、加熱動作が制御される。
C: Silica powder addition process As shown by the solid line in FIG. 3, the internal temperature of the furnace 2 has reached a treatment temperature (silica treatment temperature) required for the silicification reaction from the measured value measured by the temperature sensor 7. If it is confirmed, the powder magnetic core production apparatus 1 starts rotating the furnace 2 by a motor (not shown). Thereby, after the mixed powder 23 in the furnace 2 is lifted from the bottom of the furnace 2 to a predetermined height by the stirring plate 6, the mixed powder 23 is repeatedly stirred and mixed by sliding down from the stirring plate 6 facing obliquely downward.
Note that the heating operation of the heater 3 is controlled so that the measured value measured by the temperature sensor 7 maintains the processing temperature while the furnace 2 is rotated.

圧粉磁心用粉末製造装置1は、炉2を回転させると同時に、噴出制御バルブ20を弁閉状態から弁開状態に切り替える。これにより、二酸化珪素粉末22は、処理ガスと一緒に収納タンク16から噴射ノズル9へ流れ、噴射ノズル9の噴出口9aから炉2内へ噴射される。このとき、二酸化珪素粉末22は、処理ガスに乗って炉2内へ広がるように分散し、炉2内を雪のように舞い散る。しかも、炉2には、処理ガスが給気側配管接続部8から軸線方向に沿って噴出されている。これにより、炉2の内部には乱気流が発生している。そのため、炉2に噴出された二酸化珪素粉末22は、炉2内の乱気流に乗って炉2の内部空間全体に広がるように飛び、乱れ散る。よって、二酸化珪素粉末22は、炉2の全体にほぼ均一に行き渡る。   The powder manufacturing apparatus 1 for a powder magnetic core rotates the furnace 2 and simultaneously switches the ejection control valve 20 from the valve closed state to the valve open state. Thereby, the silicon dioxide powder 22 flows from the storage tank 16 to the injection nozzle 9 together with the processing gas, and is injected into the furnace 2 from the outlet 9 a of the injection nozzle 9. At this time, the silicon dioxide powder 22 disperses so as to spread on the processing gas and spread into the furnace 2, and flies like snow in the furnace 2. Moreover, the processing gas is jetted into the furnace 2 along the axial direction from the supply side pipe connection portion 8. Thereby, turbulence is generated inside the furnace 2. Therefore, the silicon dioxide powder 22 ejected to the furnace 2 rides on the turbulent air flow in the furnace 2 so as to spread over the entire internal space of the furnace 2 and is scattered. Therefore, the silicon dioxide powder 22 is distributed almost uniformly throughout the furnace 2.

そして、浸珪用粉末添加手段15は、図2に示すように、炉2の回転に従って落下する混合粉23(炭素−鉄系金属粉末21、焼結防止材31)に向かって、噴射ノズル9の噴出口9aから二酸化珪素粉末22を吹き付けている。そのため、炭素−鉄系金属粉末21は、図5に示すように、二酸化珪素粉末22の噴出前は、焼結防止材31によって、焼結を防止されているが、図6に示すように、二酸化珪素粉末22が炉2に噴出された後は、炉2の内部に広く飛散する二酸化珪素粉末22の中を通過し、表面が二酸化珪素粉末22と接触する。これにより、炉2内で攪拌混合される各炭素−鉄系金属粉末21は、焼結防止材31によって焼結を防止されつつ、表面に二酸化珪素粉末22がほぼ均一に付着する。   Then, as shown in FIG. 2, the silicon powder addition means 15 is directed toward the mixed powder 23 (carbon-iron metal powder 21, sintering preventing material 31) that falls according to the rotation of the furnace 2. The silicon dioxide powder 22 is sprayed from the nozzle 9a. Therefore, as shown in FIG. 5, the carbon-iron-based metal powder 21 is prevented from being sintered by the sintering preventing material 31 before the silicon dioxide powder 22 is jetted, but as shown in FIG. 6, After the silicon dioxide powder 22 is ejected into the furnace 2, the silicon dioxide powder 22 passes through the silicon dioxide powder 22 widely scattered inside the furnace 2, and the surface comes into contact with the silicon dioxide powder 22. As a result, each carbon-iron-based metal powder 21 stirred and mixed in the furnace 2 is prevented from being sintered by the sintering preventing material 31, and the silicon dioxide powder 22 adheres almost uniformly to the surface.

炭素−鉄系金属粉末21は、炉2をヒータ3で処理温度に加熱することにより、処理温度に加熱されている。図7に示すように炭素−鉄系金属粉末21の表面に付着した二酸化珪素粉末22は、図8に示すように、炭素−鉄系金属粉末21が持つ熱によって加熱される。この熱により、炭素−鉄系金属粉末21と二酸化珪素粉末22とが酸化還元反応を発生し、図9に示すように、二酸化珪素粉末22から脱離した珪素元素が炭素−鉄系金属粉末21の表面に徐々に拡散浸透していく。そして、図10に示すように、二酸化珪素粉末22が炭素−鉄系金属粉末21の表面に拡散浸透すると、別の二酸化珪素粉末22が炭素−鉄系金属粉末21の表面に付着し、上記と同様にして、二酸化珪素粉末22が炭素−鉄系金属粉末21の表面に拡散浸透していく。このような浸珪反応を繰り返すことにより、炭素−鉄系金属粉末21の表面に形成される珪素浸透層25は、炭素−鉄系金属粉末21の表面からの距離(厚さ)が長くされ、珪素濃度が高められていく。   The carbon-iron-based metal powder 21 is heated to the processing temperature by heating the furnace 2 to the processing temperature with the heater 3. As shown in FIG. 7, the silicon dioxide powder 22 adhering to the surface of the carbon-iron-based metal powder 21 is heated by the heat of the carbon-iron-based metal powder 21 as shown in FIG. Due to this heat, the carbon-iron-based metal powder 21 and the silicon dioxide powder 22 cause an oxidation-reduction reaction, and the silicon element desorbed from the silicon dioxide powder 22 is carbon-iron-based metal powder 21 as shown in FIG. It gradually diffuses and penetrates into the surface. Then, as shown in FIG. 10, when the silicon dioxide powder 22 diffuses and penetrates into the surface of the carbon-iron-based metal powder 21, another silicon dioxide powder 22 adheres to the surface of the carbon-iron-based metal powder 21, and Similarly, the silicon dioxide powder 22 diffuses and penetrates into the surface of the carbon-iron-based metal powder 21. By repeating such a siliconization reaction, the silicon permeation layer 25 formed on the surface of the carbon-iron-based metal powder 21 has a longer distance (thickness) from the surface of the carbon-iron-based metal powder 21, The silicon concentration is increased.

炭素−鉄系金属粉末21と二酸化珪素粉末22との酸化還元反応は、処理ガスに含まれる水素によって促進される。浸珪処理を行う際には、炭素−鉄系金属粉末21の炭素元素が二酸化珪素粉末22の酸素と結合し、一酸化ガス(COガス)が発生するが、COガスが排気手段5により炉2の外部へ排出される。そのため、炉2の内部圧力は、浸珪処理を実行する間、所定圧に維持される。   The oxidation-reduction reaction between the carbon-iron-based metal powder 21 and the silicon dioxide powder 22 is promoted by hydrogen contained in the processing gas. When performing the siliconizing treatment, the carbon element of the carbon-iron-based metal powder 21 is combined with the oxygen of the silicon dioxide powder 22 to generate a monoxide gas (CO gas). 2 is discharged to the outside. Therefore, the internal pressure of the furnace 2 is maintained at a predetermined pressure while the siliconization process is performed.

ところで、浸珪反応に必要な二酸化珪素粉末22と炭素−鉄系金属粉末21の量の配分は、珪素浸透層25の厚さX1を鉄粉24の直径Dの0.15倍以下とするために、予め規定される。図3のt1,t2,t3に示すように、浸珪用粉末添加手段15は、浸珪処理時に噴出制御バルブ20の弁閉状態と弁開状態が定期的に切り替えられることにより、予め規定された所定量の二酸化珪素粉末22を炉2に複数回に分けて断続的に添加する。   By the way, the distribution of the amount of the silicon dioxide powder 22 and the carbon-iron-based metal powder 21 necessary for the siliconization reaction is to make the thickness X1 of the silicon-penetrating layer 25 0.15 times the diameter D of the iron powder 24 or less. In advance. As shown at t1, t2, and t3 in FIG. 3, the silicon powder adding means 15 is defined in advance by periodically switching between the valve closing state and the valve opening state of the ejection control valve 20 during the siliconizing process. The predetermined amount of silicon dioxide powder 22 is intermittently added to the furnace 2 in a plurality of times.

図3のドット部に示す三角P1,P2,P3は、炭素−鉄系金属粉末21に拡散浸透せずに炉2に残存する二酸化珪素粉末22の量を示す。浸珪用粉末添加手段15は、前回添加した二酸化珪素粉末22の全てが炭素−鉄系金属粉末21に拡散浸透し、炉2内に残存しなくなったら、次の二酸化珪素粉末22を添加する。この場合、図3の点線部に示すように、浸珪用粉末添加手段15は、二酸化珪素粉末22の各回の添加量を積算した添加量積算値P4が、浸珪反応に必要な二酸化珪素粉末22の量(浸珪反応に必要SiO2量)に一致するように、噴出制御バルブ20の動作(開閉タイミング、弁開時間、弁開度)を制御する。 Triangles P <b> 1, P <b> 2, P <b> 3 shown in the dot part of FIG. 3 indicate the amount of silicon dioxide powder 22 remaining in the furnace 2 without diffusing and penetrating into the carbon-iron-based metal powder 21. When all of the previously added silicon dioxide powder 22 diffuses and penetrates into the carbon-iron-based metal powder 21 and does not remain in the furnace 2, the silicon dioxide powder addition means 15 adds the next silicon dioxide powder 22. In this case, as shown by the dotted line portion in FIG. 3, the silicon dioxide powder adding means 15 has an addition amount integrated value P4 obtained by integrating the addition amounts of the silicon dioxide powder 22 each time. The operation (opening / closing timing, valve opening time, valve opening) of the ejection control valve 20 is controlled so as to match the amount of 22 (the amount of SiO 2 required for the silicidation reaction).

よって、上記浸珪処理では、二酸化珪素粉末22の添加(噴射)と、炭素−鉄系金属粉末21の表面に珪素元素を拡散浸透させる浸珪反応とが、交互に繰り返し行われるように、二酸化珪素粉末22の添加量が調整されている。そのため、炭素−鉄系金属粉末21及び焼結防止材31と一緒に攪拌される二酸化珪素粉末22の量が、浸珪処理開始時に一度に所定量の二酸化珪素粉末22を炉2に供給する場合と比較して少ない。よって、炉2内で加熱された二酸化珪素粉末22が、炉2の回転に伴って攪拌混合されることにより加圧圧縮されることがなく、二次粒子が生成されない。また、炭素−鉄系金属粉末21(鉄粉24)も、焼結防止材31により焼結が防止され、処理温度の条件下で連続して攪拌混合されても二次粒子化しない。更には、焼結した炭素−鉄金属粉末21を核として二酸化珪素粉末22が雪だるまのように焼結して、二次粒子化することもない。   Therefore, in the siliconization treatment, the addition (injection) of the silicon dioxide powder 22 and the siliconization reaction for diffusing and penetrating the silicon element into the surface of the carbon-iron-based metal powder 21 are repeated alternately. The amount of silicon powder 22 added is adjusted. Therefore, when the amount of the silicon dioxide powder 22 stirred together with the carbon-iron-based metal powder 21 and the sintering preventing material 31 supplies a predetermined amount of the silicon dioxide powder 22 to the furnace 2 at the start of the siliconization treatment. Less than Therefore, the silicon dioxide powder 22 heated in the furnace 2 is not pressure-compressed by being stirred and mixed as the furnace 2 rotates, and secondary particles are not generated. Further, the carbon-iron-based metal powder 21 (iron powder 24) is also prevented from being sintered by the sintering preventing material 31, and is not formed into secondary particles even when continuously stirred and mixed under the processing temperature condition. Furthermore, the silicon dioxide powder 22 does not sinter like a snowman with the sintered carbon-iron metal powder 21 as a core, and does not become secondary particles.

D:取り出し工程
圧粉磁心用粉末製造装置1は、処理時間が経過すると、処理ガス制御バルブ13と排気バルブ5bと噴出制御バルブ20を弁閉状態とした後、炉2の回転とヒータ3による加熱を中止し、炉2内の粉末を冷却する。炉2の内部温度が常温まで低下したら、浸珪処理を施された粉体26を炉2から取り出す。ここで、処理時間とは、浸珪反応に必要な所定の比率で炉2に供給される炭素−鉄系金属粉末21と二酸化珪素粉末22が、浸珪反応に必要な温度(所定の処理温度)の下で、浸珪反応を開始してから浸珪反応を終了するまでの時間をいう。本実施形態においては、図3に示すように、最初に二酸化珪素粉末22が炉2に添加(噴射)されてから最後に添加(噴射)した二酸化珪素粉末22が炭素−鉄系金属粉末21に拡散浸透し終わるまでの時間が、処理時間に相当する。
D: Extraction process After the processing time has elapsed, the powder magnetic core manufacturing apparatus 1 causes the processing gas control valve 13, the exhaust valve 5b, and the ejection control valve 20 to be closed, and then the rotation of the furnace 2 and the heater 3 are used. The heating is stopped and the powder in the furnace 2 is cooled. When the internal temperature of the furnace 2 decreases to room temperature, the powder 26 subjected to the siliconization treatment is taken out of the furnace 2. Here, the processing time is the temperature required for the silicification reaction between the carbon-iron-based metal powder 21 and the silicon dioxide powder 22 supplied to the furnace 2 at a predetermined ratio necessary for the silicidation reaction (predetermined processing temperature). The time from the start of the siliconization reaction to the end of the siliconization reaction. In this embodiment, as shown in FIG. 3, the silicon dioxide powder 22 first added (injected) to the furnace 2 after the silicon dioxide powder 22 is added (injected) to the carbon-iron-based metal powder 21. The time until the diffusion and penetration is completed corresponds to the processing time.

E:洗浄工程
浸珪処理を施された粉体26は、鉄粉24に混じっている焼結防止材31や二酸化珪素粉末22を洗い流すように洗浄された後、乾燥される。これにより、鉄粉24のみが残る。
E: Washing Step The powder 26 subjected to the siliconization treatment is washed so as to wash away the sintering preventing material 31 and the silicon dioxide powder 22 mixed in the iron powder 24 and then dried. Thereby, only the iron powder 24 remains.

F:被膜処理
上記のように生成された粉体26は、エタノールにシリコーン樹脂を溶解させた液に投入され、攪拌される。所定時間攪拌したら、更にエタノールを蒸発させながら攪拌し、シリコーン樹脂を浸珪処理を施された粉体26の表面に固着させる。これにより、珪素浸透層25がシリコーン樹脂被膜層27で覆われた圧粉磁心用粉末28が生成される。
F: Coating treatment The powder 26 produced as described above is put into a solution obtained by dissolving a silicone resin in ethanol and stirred. After stirring for a predetermined time, the ethanol is further stirred while evaporating, and the silicone resin is fixed to the surface of the powder 26 subjected to the siliconization treatment. Thereby, the powder 28 for dust cores in which the silicon permeation layer 25 is covered with the silicone resin coating layer 27 is generated.

上記のように製造された圧粉磁心用粉末28は、成形金型に充填されて加圧される。これにより、圧粉磁心が製造される。   The powder 28 for powder magnetic core manufactured as described above is filled into a molding die and pressed. Thereby, a dust core is manufactured.

図12は、比較例と実施例における浸珪処理の条件を示す図である。
実施例の圧粉磁心用粉末は以下の条件で製造される。平均粒径が150〜212μmで比重が7.8の炭素−鉄系金属粉末(鉄紛)と、平均粒径7μm・比重2.2であって二酸化珪素からなる焼結防止材を攪拌混合したものを、炉2に供給する。混合粉の総重量に対し、焼結防止材3重量%、炭素−鉄系金属粉末21は97重量%の割合で供給される。そして、水素と窒素を混合した処理ガスの供給と排気を行いながら、炉2を加熱する。炉2が、処理温度(1000℃)に加熱されたら、炉2を回転速度25rpmで回転させ、炭素−鉄系金属粉末と焼結防止材を攪拌混合する。また、炉2の回転と同時に、平均粒径が50nmで比重が2.2の二酸化珪素粉末を、水素と窒素の混合ガスと一緒に炉2に噴出し始める。浸珪反応は、95〜97重量%の炭素−鉄系金属粉末と、3〜5重量%の二酸化珪素粉末の条件で行われる。この場合、二酸化珪素粉末は、その浸珪反応に必要な量(3〜5重量%)を3等分する。そして、炉2を回転させ始めたときに、浸珪反応に必要な量の3分の1の二酸化珪素粉末を炉2に噴射し、最初に二酸化珪素粉末を噴射してから20分が経過したときに浸珪反応に必要な量の3分の1の二酸化珪素粉末を炉2に噴射し、さらにその後、最初に二酸化珪素粉末を噴射してから40分経過したときに残り3分の1の量の二酸化珪素粉末を炉2に噴射する。処理時間(1時間)が経過したら、炉2の加熱と回転を停止させ、浸珪処理を終了する。
FIG. 12 is a diagram showing conditions for the siliconizing treatment in the comparative example and the example.
The powder for powder magnetic cores of the examples is manufactured under the following conditions. A carbon-iron-based metal powder (iron powder) having an average particle size of 150 to 212 μm and a specific gravity of 7.8 and an antisintering material made of silicon dioxide having an average particle size of 7 μm and a specific gravity of 2.2 were mixed with stirring. Things are fed into the furnace 2. With respect to the total weight of the mixed powder, 3% by weight of the sintering preventing material and 97% by weight of the carbon-iron-based metal powder 21 are supplied. Then, the furnace 2 is heated while supplying and exhausting a processing gas in which hydrogen and nitrogen are mixed. When the furnace 2 is heated to the processing temperature (1000 ° C.), the furnace 2 is rotated at a rotational speed of 25 rpm, and the carbon-iron-based metal powder and the sintering preventing material are mixed with stirring. Simultaneously with the rotation of the furnace 2, silicon dioxide powder having an average particle diameter of 50 nm and a specific gravity of 2.2 starts to be ejected into the furnace 2 together with a mixed gas of hydrogen and nitrogen. The silicon immersion reaction is performed under the conditions of 95 to 97% by weight of carbon-iron metal powder and 3 to 5% by weight of silicon dioxide powder. In this case, the silicon dioxide powder divides the amount (3 to 5% by weight) necessary for the silicification reaction into three equal parts. Then, when the furnace 2 was started to rotate, one third of the silicon dioxide powder necessary for the silicification reaction was injected into the furnace 2, and 20 minutes had elapsed since the first silicon dioxide powder was injected. Sometimes one third of the silicon dioxide powder required for the silicidation reaction is injected into the furnace 2, and then the remaining one third when 40 minutes have passed since the first silicon dioxide powder was injected. An amount of silicon dioxide powder is injected into the furnace 2. If processing time (1 hour) passes, the heating and rotation of the furnace 2 will be stopped, and the siliconization process will be complete | finished.

ここで、焼結防止材は、二酸化珪素粉末と同様に二酸化珪素で構成されている。しかし、焼結防止材は、平均粒径が二酸化珪素粉末の平均流量の10倍以上大きく、二酸化珪素粉末より硬く加熱されにくい。そのため、焼結防止材は、炉2が回転して攪拌混合されても、他の焼結防止材や炭素−鉄系金属粉末と焼結しない。   Here, the sintering preventing material is composed of silicon dioxide as in the case of silicon dioxide powder. However, the anti-sintering material has an average particle size larger than 10 times the average flow rate of the silicon dioxide powder, and is harder than the silicon dioxide powder and difficult to be heated. Therefore, even when the furnace 2 rotates and is stirred and mixed, the sintering preventing material does not sinter with other sintering preventing materials or carbon-iron metal powder.

一方、比較例の圧粉磁心用粉末は以下の条件で製造される。平均粒径が150〜212μmで比重が7.8の炭素−鉄系金属粉末(鉄紛)と、平均粒径が50nmで比重が2.2の二酸化珪素粉末を、炭素−鉄系金属粉末が95〜97重量%、二酸化珪素粉末が3〜5重量%となる割合で、炉2に投入する。つまり、図13の太線に示すように、二酸化珪素粉末は、浸珪反応に必要な量の全てが、浸珪処理開始時に炉2に投入される。そして、図13の実線に示すように、水素と窒素を混合した処理ガスの供給と排気を行いながら、炉2を加熱する。炉2が、処理温度(1000℃)に加熱されたら、炉2を回転速度25rpmで回転させ、炭素−鉄系金属粉末と二酸化珪素粉末を攪拌混合する。炉2を回転させてから処理時間(1時間)が経過したら、炉2の加熱と回転を停止させ、浸珪処理を終了する。   On the other hand, the powder for powder magnetic core of the comparative example is manufactured under the following conditions. A carbon-iron-based metal powder (iron powder) having an average particle diameter of 150 to 212 μm and a specific gravity of 7.8, a silicon dioxide powder having an average particle diameter of 50 nm and a specific gravity of 2.2, It puts in the furnace 2 in the ratio which becomes 95 to 97 weight% and silicon dioxide powder becomes 3 to 5 weight%. That is, as shown by the thick line in FIG. 13, all of the silicon dioxide powder necessary for the siliconization reaction is put into the furnace 2 at the start of the siliconization process. Then, as shown by the solid line in FIG. 13, the furnace 2 is heated while supplying and exhausting the processing gas mixed with hydrogen and nitrogen. When the furnace 2 is heated to the processing temperature (1000 ° C.), the furnace 2 is rotated at a rotation speed of 25 rpm, and the carbon-iron-based metal powder and the silicon dioxide powder are mixed with stirring. If processing time (1 hour) passes after rotating the furnace 2, the heating and rotation of the furnace 2 will be stopped, and the siliconization process will be complete | finished.

<実施例と比較例の歩留まりについて>
発明者は、実施例と比較例の歩留まりについて調べた。図14にその実験結果を示す。ここで、歩留まりは、0%に近い程、二次粒子の発生割合が高く、100%に近いほど二次粒子の発生割合が低い(粉末状である)ものとする。
比較例の歩留まりは約5%であった。つまり、比較例は殆ど二次粒子化してしまった。
一方、実施例の歩留まりは、ほぼ100%に近かった。つまり、実施例は、各鉄粉の表面に珪素浸透層を形成して細かい粉状の圧粉磁心用粉末を製造することができ、殆ど二次粒子化しなかった。
<About the yield of an Example and a comparative example>
The inventor examined the yield of the example and the comparative example. FIG. 14 shows the experimental results. Here, it is assumed that as the yield is closer to 0%, the generation rate of secondary particles is higher, and as the yield is closer to 100%, the generation rate of secondary particles is lower (in powder form).
The yield of the comparative example was about 5%. That is, almost all of the comparative examples were secondary particles.
On the other hand, the yield of the example was almost 100%. That is, in the example, a fine powdery magnetic core powder could be produced by forming a silicon permeation layer on the surface of each iron powder, and almost no secondary particles were formed.

上記実験結果より、浸珪処理時においては、浸珪反応に必要な所定量の二酸化珪素粉末を時間軸に沿って分けて炉2に分散して供給することにより、二次粒子を発生させることなく鉄粉に珪素浸透層を形成することができ、圧粉磁心用粉末の生産性が向上することが実証された。   From the above experimental results, at the time of the siliconization treatment, a predetermined amount of silicon dioxide powder necessary for the siliconization reaction is divided along the time axis and supplied to the furnace 2 to generate secondary particles. It was proved that a silicon permeation layer can be formed on the iron powder and the productivity of the powder for the dust core is improved.

<珪素浸透層の均一化について>
発明者らは、実施例からランダムに10個の粉末を取り出して切断し、電子顕微鏡で切断面を観察した。そして、鉄粉の表面から鉄粉の中心部へ向かって形成される珪素浸透層の距離を、圧粉磁心用粉末別に測定した。その測定結果を、図15に示す。
<Regarding the uniformization of the silicon-permeable layer>
The inventors took out 10 powders at random from the examples, cut them, and observed the cut surfaces with an electron microscope. And the distance of the silicon osmosis | permeation layer formed toward the center part of iron powder from the surface of iron powder was measured according to the powder for powder magnetic cores. The measurement results are shown in FIG.

図15に示すように、ランダムに取り出した粉末の全てが、鉄粉と二酸化珪素粉末が酸化還元反応を発生している。各粉末は、鉄粉の表面におけるSi濃度が4.0%以上6.0%以下の範囲で収束していた。そして、各粉末は、鉄粉の表面から鉄粉の中心部へ向かってSi濃度が減少する割合がほぼ同じであった。更に、各粉末は、珪素浸透層の鉄粉の表面からの距離(珪素浸透層の厚さ)が約20μmであり、粉末間で珪素浸透層の鉄粉の表面からの距離が均一化されていた。   As shown in FIG. 15, iron powder and silicon dioxide powder cause oxidation-reduction reaction in all of the randomly extracted powder. Each powder was converged in a range where the Si concentration on the surface of the iron powder was 4.0% or more and 6.0% or less. Each powder had substantially the same rate of decrease in Si concentration from the surface of the iron powder toward the center of the iron powder. Furthermore, each powder has a distance from the surface of the iron powder of the silicon-permeable layer (thickness of the silicon-permeable layer) of about 20 μm, and the distance from the surface of the iron powder of the silicon-permeable layer is made uniform between the powders. It was.

よって、浸珪処理時に、浸珪反応に必要な所定量の二酸化珪素粉末を時間軸に沿って分けて炉2に分散して供給することにより、各鉄粉の表層に形成される珪素浸透層が均一な圧粉磁心用粉末を製造でき、圧粉磁心用粉末の品質が向上することが実証された。   Therefore, a silicon permeation layer formed on the surface layer of each iron powder by supplying a predetermined amount of silicon dioxide powder necessary for the silicidation reaction along the time axis and supplying it to the furnace 2 during the silicidation treatment. Was able to produce a uniform powder for powder magnetic cores, and proved that the quality of powder for powder magnetic cores was improved.

尚、このように、珪素浸透層が均一で品質のよい圧粉磁心用粉末を用いて製造された圧粉磁心は、圧粉密度や磁心密度が高くなり、鉄損を小さくできる。   In addition, the dust core manufactured using the powder for a dust core having a uniform silicon permeation layer and high quality as described above can increase the dust density and the core density and reduce the iron loss.

(第2実施形態)
続いて、本発明の第2実施形態について説明する。
本実施形態の圧粉磁心用粉末の製造方法は、圧粉磁心用粉末製造装置1を用いて行われ、二酸化珪素粉末22の添加方法を除き、第1実施形態の圧粉磁心用粉末の製造方法と共通している。ここでは、第1実施形態と相違する点を中心に説明し、第1実施形態と共通する構成については第1実施形態と同じ符号を用い、適宜説明を省略する。
(Second Embodiment)
Subsequently, a second embodiment of the present invention will be described.
The method for manufacturing a powder for a powder magnetic core according to the present embodiment is performed using the powder core powder manufacturing apparatus 1, and the powder for a powder magnetic core according to the first embodiment is manufactured except for the method of adding the silicon dioxide powder 22. It is common with the method. Here, it demonstrates centering on a different point from 1st Embodiment, about the structure which is common in 1st Embodiment, the code | symbol same as 1st Embodiment is used and description is abbreviate | omitted suitably.

本実施形態では、炉2が処理温度に達すると、浸珪用粉末添加手段15が噴出制御バルブ20を弁閉状態から弁開状態に切り替え、二酸化珪素粉末22を連続的に炉2に噴射する。つまり、浸珪反応の処理時間中、噴出制御バルブ20は弁開状態を維持する。浸珪用粉末添加手段15は、処理時間内に炉2に連続して噴出される二酸化珪素粉末の積算量が、浸珪反応に必要とされる二酸化珪素粉末22の量と一致するように、噴出制御バルブ20の動作(弁開時間、弁開度)を制御する。   In the present embodiment, when the furnace 2 reaches the processing temperature, the silicon powder addition means 15 switches the ejection control valve 20 from the valve closed state to the valve opened state, and continuously injects the silicon dioxide powder 22 into the furnace 2. . That is, the ejection control valve 20 maintains the valve open state during the processing time of the siliconization reaction. The silicon powder addition means 15 is configured so that the integrated amount of silicon dioxide powder continuously ejected into the furnace 2 within the processing time matches the amount of silicon dioxide powder 22 required for the siliconization reaction. The operation (valve opening time, valve opening) of the ejection control valve 20 is controlled.

このような本実施形態の圧粉磁心用粉末1及び圧粉磁心用粉末の製造方法は、炉2の内部温度が処理温度に達してから処理時間が経過するまで噴出制御バルブ20を開け続けることにより、浸珪反応に必要とされる所定量の二酸化珪素粉末22を少量ずつ炉2に添加する。この場合、二酸化珪素粉末22の噴射量は、噴射された二酸化珪素粉末22が炭素−鉄系金属粉末21の表面に付着して浸珪反応するように、調整される。つまり、二酸化珪素粉末22が、炉2内で余剰して、炭素−鉄系金属粉末21と一緒に攪拌混合されないように噴射量を調整される。これにより、二酸化珪素粉末22の添加と、炭素−鉄系金属粉末21の表面に珪素元素を拡散浸透させる浸珪反応とが、並行して進められる。そのため、炭素−鉄系金属粉末21及び焼結防止材31と一緒に攪拌される二酸化珪素粉末22の量が、浸珪処理開始時に一度に浸珪反応に必要とされる二酸化珪素粉末22を炉2に全て供給する場合と比較して少ない。よって、炉2内で加熱された二酸化珪素粉末22が、炉2の回転に伴って攪拌混合されることにより加圧圧縮されることがなく、二次粒子が生成されない。また、炭素−鉄系金属粉末21(鉄粉24)も、焼結防止材31により焼結が防止され、処理温度の条件下で連続して攪拌混合されても二次粒子化しない。   In the powder magnetic core powder 1 and the powder magnetic core manufacturing method of this embodiment, the ejection control valve 20 is kept open until the processing time elapses after the internal temperature of the furnace 2 reaches the processing temperature. Thus, a predetermined amount of silicon dioxide powder 22 required for the siliconization reaction is added to the furnace 2 little by little. In this case, the injection amount of the silicon dioxide powder 22 is adjusted so that the injected silicon dioxide powder 22 adheres to the surface of the carbon-iron-based metal powder 21 and undergoes a silicification reaction. That is, the injection amount is adjusted so that the silicon dioxide powder 22 is not surplus in the furnace 2 and is stirred and mixed together with the carbon-iron-based metal powder 21. Thereby, the addition of the silicon dioxide powder 22 and the silicon immersion reaction for diffusing and penetrating silicon element into the surface of the carbon-iron-based metal powder 21 proceed in parallel. Therefore, the amount of the silicon dioxide powder 22 stirred together with the carbon-iron-based metal powder 21 and the sintering preventing material 31 causes the silicon dioxide powder 22 required for the siliconization reaction at the time of the siliconization treatment to be processed in the furnace. 2 compared with the case where all are supplied. Therefore, the silicon dioxide powder 22 heated in the furnace 2 is not pressure-compressed by being stirred and mixed as the furnace 2 rotates, and secondary particles are not generated. Further, the carbon-iron-based metal powder 21 (iron powder 24) is also prevented from being sintered by the sintering preventing material 31, and is not formed into secondary particles even when continuously stirred and mixed under the processing temperature condition.

以上説明したように、本実施形態の圧粉磁心用粉末製造装置及び圧粉磁心用粉末製造方法は、炉2を加熱しながら回転させた状態で、所定量の二酸化珪素粉末を時間軸に沿って連続的に分けて炉2に添加することにより、炭素−鉄系金属粉末21の表面に二酸化珪素粉末22を付着させ、浸珪反応を進行させる。二酸化珪素粉末22を時間軸に沿って少しずつ連続して炉2に添加するため、浸珪反応時に、炭素−鉄系金属粉末21と一緒に攪拌混合される二酸化珪素粉末22が少ない。そのため、炭素−鉄系金属粉末21を攪拌混合する場合に、二酸化珪素粉末22が焼結しない。よって、上記圧粉磁心用粉末の製造方法と圧粉磁心用粉末製造装置1によれば、浸珪処理時に二次粒子が生成されることを防ぎ、圧粉磁心用粉末28(浸珪処理を施された粉体26)の品質と生産性を向上させることができる。   As described above, the powder magnetic core powder manufacturing apparatus and the powder magnetic core powder manufacturing method of the present embodiment are configured so that a predetermined amount of silicon dioxide powder is applied along the time axis while the furnace 2 is rotated while being heated. Then, the silicon dioxide powder 22 is attached to the surface of the carbon-iron-based metal powder 21 and the silicidation reaction is advanced by adding it separately to the furnace 2. Since the silicon dioxide powder 22 is continuously added to the furnace 2 little by little along the time axis, there is little silicon dioxide powder 22 stirred and mixed together with the carbon-iron-based metal powder 21 during the silicidation reaction. Therefore, when the carbon-iron-based metal powder 21 is mixed with stirring, the silicon dioxide powder 22 is not sintered. Therefore, according to the method for manufacturing a powder for a powder magnetic core and the powder manufacturing apparatus 1 for a powder magnetic core, secondary particles are prevented from being generated during the siliconization treatment, and the powder 28 for powder magnetic core (the siliconization treatment is performed). The quality and productivity of the applied powder 26) can be improved.

本発明は、上記実施形態に限定されることなく、色々な応用が可能である。
(1)例えば、上記実施形態では、二酸化珪素を材質とする焼結防止材を使用したが、ジルコニアやアルミナ等のセラミックスを材質とする焼結防止材を使用しても良い。
(2)例えば、上記実施形態では、回転炉2内を、酸素と窒素の混合ガスを充填した雰囲気としたが、回転炉2内を真空状態にした雰囲気としても良い。また、減圧雰囲気下、あるいは生成したガス分圧が低い、具体的には低一酸化炭素(CO)雰囲気下、或いは、低窒素(N2)雰囲気下で浸珪処理を行っても良い。また、処理ガスは、軟磁性金属粉末と浸珪用粉末との酸化還元反応を促進するものであれば、炭素ガス等の別のガスであっても良い。
(3)例えば、上記実施形態では、回転炉2の内壁に固設される攪拌板6を回転炉2の軸心と平行な直線状に設けたが、回転炉2の内壁に固定される攪拌板を螺旋状に設けても良い。この場合、回転炉2に供給した混合粉が螺旋状の攪拌板に載せられて、回転炉2の回転に従って少しずつ落下するため、浸珪用粉末添加手段15が添加する二酸化珪素粉末が炭素−鉄系金属粉末21の表面に付着しやすくできる。
(4)例えば、上記実施形態では、軟磁性金属粉末の一例として炭素−鉄系金属粉末21を上げたが、Fe−Si合金、Fe−Al合金、Fe−Si−Al合金、チタン、アルミニウムなどを軟磁性金属粉末としても良い。
(5)例えば、上記実施形態では、ヒータ2を加熱手段の一例に挙げた。これに対して、絶縁材料で設けた炉の周りにコイルを配置し、誘導加熱により軟磁性金属粉末を加熱する加熱手段としても良い。
The present invention is not limited to the above embodiment, and various applications are possible.
(1) For example, in the above-described embodiment, a sintering inhibitor made of silicon dioxide is used, but a sintering inhibitor made of ceramics such as zirconia or alumina may be used.
(2) For example, in the above embodiment, the inside of the rotary furnace 2 is an atmosphere filled with a mixed gas of oxygen and nitrogen, but an atmosphere in which the rotary furnace 2 is in a vacuum state may be used. Further, the siliconizing treatment may be performed in a reduced pressure atmosphere, or in a low gas partial pressure, specifically in a low carbon monoxide (CO) atmosphere or in a low nitrogen (N 2 ) atmosphere. The processing gas may be another gas such as carbon gas as long as it promotes the oxidation-reduction reaction between the soft magnetic metal powder and the silicon immersion powder.
(3) For example, in the above embodiment, the stirring plate 6 fixed to the inner wall of the rotary furnace 2 is provided in a straight line parallel to the axis of the rotary furnace 2, but the stirring is fixed to the inner wall of the rotary furnace 2. The plate may be provided in a spiral shape. In this case, since the mixed powder supplied to the rotary furnace 2 is placed on a spiral stirring plate and gradually falls as the rotary furnace 2 rotates, the silicon dioxide powder added by the siliconization powder adding means 15 is carbon- It can be easily attached to the surface of the iron-based metal powder 21.
(4) For example, in the said embodiment, although the carbon-iron type metal powder 21 was raised as an example of a soft magnetic metal powder, Fe-Si alloy, Fe-Al alloy, Fe-Si-Al alloy, titanium, aluminum, etc. May be soft magnetic metal powder.
(5) For example, in the said embodiment, the heater 2 was mentioned as an example of a heating means. On the other hand, it is good also as a heating means which arrange | positions a coil around the furnace provided with the insulating material, and heats a soft magnetic metal powder by induction heating.

1 圧粉磁心用粉末製造装置
2 炉
3 ヒータ(加熱手段の一例)
15 浸珪用粉末添加手段
21 炭素−鉄系金属粉末(軟磁性金属材料の一例)
22 二酸化珪素(浸珪用粉末の一例)
25 珪素浸透層
28 圧粉磁心用粉末
DESCRIPTION OF SYMBOLS 1 Powder manufacturing apparatus for dust core 2 Furnace 3 Heater (an example of a heating means)
15 Powder Addition Means for Silica 21 Carbon-Iron Metal Powder (Example of Soft Magnetic Metal Material)
22 Silicon dioxide (an example of powder for silicon immersion)
25 Silicon permeation layer 28 Powder for powder magnetic core

Claims (7)

所定量の軟磁性金属粉末と所定量の二酸化珪素を含む浸珪用粉末を炉の内部で所定の処理時間加熱し、前記軟磁性金属粉末の表面に珪素浸透層を形成することにより、圧粉磁心用粉末を製造する圧粉磁心用粉末の製造方法において、
前記炉を加熱しながら回転させた状態で、前記所定量の浸珪用粉末を時間軸に沿って分けて前記炉に添加する浸珪用粉末添加工程を有する
ことを特徴とする圧粉磁心用粉末の製造方法。
A powder for siliconization containing a predetermined amount of soft magnetic metal powder and a predetermined amount of silicon dioxide is heated in a furnace for a predetermined processing time, and a silicon-penetrating layer is formed on the surface of the soft magnetic metal powder, thereby compacting the powder. In the method for producing a powder for a powder magnetic core for producing a powder for a magnetic core,
A powder magnetic core comprising a step of adding a powder for siliconization, wherein the predetermined amount of powder for siliconization is added along the time axis while the furnace is rotated while being heated. Powder manufacturing method.
請求項1に記載する圧粉磁心用粉末の製造方法において、
前記軟磁性金属粉末の焼結を防止する焼結防止材を前記炉に供給する焼結防止材供給工程を有する
ことを特徴とする圧粉磁心用粉末の製造方法。
In the manufacturing method of the powder for powder magnetic cores described in claim 1,
A method for producing a powder for a powder magnetic core, comprising: a sintering preventing material supplying step of supplying a sintering preventing material for preventing sintering of the soft magnetic metal powder to the furnace.
請求項1又は請求項2に記載する圧粉磁心用粉末の製造方法において、
前記浸珪用粉末添加手工程では、前記所定量の浸珪用粉末を前記炉に噴射して分散させることにより、添加する
ことを特徴とする圧粉磁心用粉末の製造方法。
In the manufacturing method of the powder for powder magnetic cores described in Claim 1 or Claim 2,
In the silicon powder addition step, the predetermined amount of silicon powder is added by spraying and dispersing the powder into the furnace.
請求項1乃至請求項3の何れか1つに記載する圧粉磁心用粉末の製造方法において、
前記浸珪用粉末添加手工程では、前記所定量の浸珪用粉末を前記炉に複数回に分けて断続的に添加する
ことを特徴とする圧粉磁心用粉末の製造方法。
In the manufacturing method of the powder for powder magnetic cores as described in any one of Claims 1 thru | or 3,
In the said siliconization powder addition manual process, the said predetermined amount of siliconization powder is intermittently added to the said furnace in multiple times, The manufacturing method of the powder for powder magnetic cores characterized by the above-mentioned.
請求項1乃至請求項3の何れか1つに記載する圧粉磁心用粉末の製造方法において、
前記浸珪用粉末添加手工程では、前記所定量の浸珪用粉末を前記炉に連続的に添加する
ことを特徴とする圧粉磁心用粉末の製造方法。
In the manufacturing method of the powder for powder magnetic cores as described in any one of Claims 1 thru | or 3,
In the said siliconization powder addition manual process, the said predetermined amount of siliconization powder is continuously added to the said furnace, The manufacturing method of the powder for powder magnetic cores characterized by the above-mentioned.
請求項1乃至請求項5の何れか1つに記載する圧粉磁心用粉末の製造方法により製造された圧粉磁心用粉末を成形金型に充填して加圧することにより製造されたことを特徴とする圧粉磁心。   A powder magnetic core powder produced by the method for producing a powder magnetic core powder according to any one of claims 1 to 5 is filled in a molding die and pressed. Dust magnetic core. 所定の軟磁性金属粉末と二酸化珪素粉末を含む所定量の浸珪用粉末が供給される炉と、前記炉を加熱する加熱手段と、前記加熱手段が前記炉を加熱する熱によって前記軟磁性金属粉末の表面に前記二酸化珪素粉末を拡散浸透させることを促進する処理ガスを前記炉に供給する処理ガス供給手段と、前記炉からガスを排気する排気手段と、を備える圧粉磁心用粉末製造装置において、
前記炉を回転させる回転手段と、
前記所定量の浸珪用粉末を時間軸に沿って分けて前記炉に添加する浸珪用粉末添加手段を有する
ことを特徴とする圧粉磁心用粉末製造装置。
A furnace supplied with a predetermined amount of siliconizing powder containing a predetermined soft magnetic metal powder and silicon dioxide powder, a heating means for heating the furnace, and the soft magnetic metal by heat that the heating means heats the furnace A powder manufacturing apparatus for a powder magnetic core, comprising: a processing gas supply means for supplying a processing gas for promoting diffusion and permeation of the silicon dioxide powder to the surface of the powder; and an exhaust means for exhausting the gas from the furnace. In
Rotating means for rotating the furnace;
An apparatus for producing a powder for a powder magnetic core, comprising means for adding a silicon powder for dividing the predetermined amount of silicon powder along the time axis and adding the powder to the furnace.
JP2010101827A 2010-04-27 2010-04-27 Method of producing powder for dust core, dust core using powder for dust core produced by the method of producing powder for dust core, and apparatus for producing powder for dust core Withdrawn JP2011231364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010101827A JP2011231364A (en) 2010-04-27 2010-04-27 Method of producing powder for dust core, dust core using powder for dust core produced by the method of producing powder for dust core, and apparatus for producing powder for dust core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010101827A JP2011231364A (en) 2010-04-27 2010-04-27 Method of producing powder for dust core, dust core using powder for dust core produced by the method of producing powder for dust core, and apparatus for producing powder for dust core

Publications (1)

Publication Number Publication Date
JP2011231364A true JP2011231364A (en) 2011-11-17

Family

ID=45320983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010101827A Withdrawn JP2011231364A (en) 2010-04-27 2010-04-27 Method of producing powder for dust core, dust core using powder for dust core produced by the method of producing powder for dust core, and apparatus for producing powder for dust core

Country Status (1)

Country Link
JP (1) JP2011231364A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103971924A (en) * 2014-05-07 2014-08-06 黟县越驰科技电子有限公司 Magnetic powder crystallizing furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103971924A (en) * 2014-05-07 2014-08-06 黟县越驰科技电子有限公司 Magnetic powder crystallizing furnace

Similar Documents

Publication Publication Date Title
JP5187438B2 (en) Powder core powder manufacturing method, powder magnetic core powder using powder core powder manufactured by the powder core manufacturing method, and powder core powder manufacturing apparatus
US20190214172A1 (en) Powder for magnetic core, method of producing dust core, dust core, and method of producing powder for magnetic core
US20180236544A1 (en) Multi-phase sintering in binder jetting fabrication of metal objects
CN106471588B (en) Dust core, magnetic core powder and their manufacturing method
JP6706608B2 (en) Manufacturing method of parts
CN106041061B (en) A kind of preparation method of the low-loss composite magnetic powder core of high-performance
KR20190050981A (en) Composite powder with synthetic grains for laminate synthesis
CN102691027A (en) Plasma spray method for producing an ion conducting membrane
US20190304647A1 (en) Near net shape bulk laminated silicon iron electric steel for improved electrical resistance and low high frequency loss
JP2011157591A (en) Method for producing powder for dust core and apparatus for producing powder for dust core
JP2011231364A (en) Method of producing powder for dust core, dust core using powder for dust core produced by the method of producing powder for dust core, and apparatus for producing powder for dust core
TW201338894A (en) Manufacturing method of debinding body and manufacturing method of sintering body
CN114703394A (en) High-temperature material and preparation method and application thereof
CN107881357A (en) A kind of preparation method of zirconium oxide base metal-ceramic material
KR101118615B1 (en) Manufacturing apparatus of mixed powders for depositing nano particles on surface of micro particles and mixed powders manufactured by apparatus thereof
CN100522607C (en) Al2O3/Al-Si-Cr composite coatings and preparation method thereof
JP2011246812A (en) Method for producing powder for dust core and device for producing the powder for the dust core
CN107876753A (en) A kind of dynamic iron unit yoke and preparation method thereof
JP2005154863A (en) Method for manufacturing metal powder for dust core
JP4576206B2 (en) Method for producing soft magnetic material
CN113319271A (en) Oxide coated powder with core-shell structure and preparation method and application thereof
JP4055617B2 (en) Powder coating method
JP2016160441A (en) Surface treatment method and intermetallic compound coat-attached component made of metal
JP2002211907A (en) Multiple oxide and manufacturing method thereof
TWI669153B (en) Magnetic powder composite material and preparation method thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130702