JP2011157591A - Method for producing powder for dust core and apparatus for producing powder for dust core - Google Patents

Method for producing powder for dust core and apparatus for producing powder for dust core Download PDF

Info

Publication number
JP2011157591A
JP2011157591A JP2010020213A JP2010020213A JP2011157591A JP 2011157591 A JP2011157591 A JP 2011157591A JP 2010020213 A JP2010020213 A JP 2010020213A JP 2010020213 A JP2010020213 A JP 2010020213A JP 2011157591 A JP2011157591 A JP 2011157591A
Authority
JP
Japan
Prior art keywords
powder
rotary furnace
silicon
magnetic core
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010020213A
Other languages
Japanese (ja)
Inventor
Masaki Sugiyama
昌揮 杉山
Toshiya Yamaguchi
登士也 山口
Shota Ohira
翔太 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010020213A priority Critical patent/JP2011157591A/en
Publication of JP2011157591A publication Critical patent/JP2011157591A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing powder for dust core, in which secondary particles are prevented from being produced upon siliconizing treatment, to improve the quality and productivity of the powder for dust core, and an apparatus for producing the powder for dust core. <P>SOLUTION: In the method for producing the powder 28 for dust core, the operation of heating a powdery mixture 23 of iron powder 24 and silicon dioxide powder 22 to a soaking temperature upon heating required for eliminating a silicon element from the silicon dioxide powder 22 so as to be diffused and penetrated in the iron powder 24, without stirring, and thereafter, stirring the powdery mixture 23 in a state where the heated powdery mixture 23 is cooled to a soaking temperature upon cooling at which the silicon dioxide powder 22 is not sintered, is repeatedly performed to form a silicon-penetrated layer 25 having the silicon element diffused and penetrated in the surface layer of the iron powder 24. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、圧粉磁心用粉末を製造するための圧粉磁心用粉末製造方法及び圧粉磁心用粉末製造装置に関する。   The present invention relates to a dust core powder manufacturing method and a dust core powder manufacturing apparatus for manufacturing a dust core powder.

圧粉磁心は、軟磁性金属粉末からなる圧粉磁心用粉末をプレス成形したものである。圧粉磁心は、電磁鋼板を積層してなるコア材と比べて、周波数に応じて生じる高周波損失(以下「鉄損」という。)が少ない磁気特性を有していること、形状バリエーションに臨機且つ安価に対応できること、材料費が廉価であること等、多くの利点を有する。このような圧粉磁心は、例えば車両の駆動用モータのステータコアやロータコア、電力変換回路を構成するリアクトルコアなどに適用されている。   The dust core is obtained by press-molding a dust core powder made of soft magnetic metal powder. Compared to the core material made by laminating electromagnetic steel sheets, the dust core has magnetic properties with less high frequency loss (hereinafter referred to as “iron loss”) depending on the frequency, and is suitable for shape variations. It has many advantages such as being able to cope with low cost and low material cost. Such a powder magnetic core is applied to, for example, a stator core and a rotor core of a vehicle drive motor, a reactor core constituting a power conversion circuit, and the like.

例えば、圧粉磁心用粉末101は、図13に示すように、二酸化珪素粉末103を鉄粉102の表面から浸透拡散させ、珪素元素が濃化した珪素浸透層104を鉄粉102の表層に形成する浸珪処理が施されている。浸珪処理は、鉄粉102と二酸化珪素粉末103を攪拌混合して鉄粉102の表面に二酸化珪素粉末103を付着させ、鉄粉102と二酸化珪素粉末103の混合粉を炉に入れる。そして、混合粉を1000℃に加熱する。すると、二酸化珪素粉末103から珪素元素が脱離して鉄粉201の表層に浸透拡散し、珪素浸透層104が形成される。   For example, as shown in FIG. 13, the powder 101 for the powder magnetic core diffuses and diffuses the silicon dioxide powder 103 from the surface of the iron powder 102, thereby forming a silicon-permeable layer 104 in which the silicon element is concentrated on the surface layer of the iron powder 102. The siliconization process to be performed is performed. In the siliconization treatment, the iron powder 102 and the silicon dioxide powder 103 are stirred and mixed to adhere the silicon dioxide powder 103 to the surface of the iron powder 102, and the mixed powder of the iron powder 102 and the silicon dioxide powder 103 is put into a furnace. Then, the mixed powder is heated to 1000 ° C. Then, the silicon element is detached from the silicon dioxide powder 103 and permeates and diffuses into the surface layer of the iron powder 201, so that the silicon permeation layer 104 is formed.

鉄粉102の中心部まで珪素元素を浸透させると、圧粉磁心用粉末101の硬度が高くなる。この場合、圧粉磁心用粉末101を加圧して圧粉成形したときに、圧粉磁心用粉末101が変形せず、圧粉磁心用粉末101の間に形成される隙間が大きくなるため、磁心密度が低くなる。磁心密度が低いと、磁束密度が低くなる問題がある。そのため、珪素浸透層104は、鉄粉102の表面から鉄粉102の中心部側への距離X2を、鉄粉102の直径Dの0.15倍未満とすることが、好ましいとされている。但し、珪素浸透層104が薄かったり、珪素浸透層104における珪素元素濃度が低いと、鉄粉102の接触部分を十分絶縁することができず、鉄損(主にヒステリシス損失と渦電流損失)が高くなる。よって、圧粉磁心用粉末101に形成する珪素浸透層104の距離X2や濃度は、圧粉磁心の比抵抗を管理する上で、とても重要である(例えば、特許文献1及び特許文献2参照)。   When the silicon element is infiltrated to the center of the iron powder 102, the hardness of the powder 101 for dust core becomes high. In this case, when the dust core powder 101 is pressed and compacted, the dust core powder 101 is not deformed and the gap formed between the dust core powders 101 becomes larger. Density decreases. When the magnetic core density is low, there is a problem that the magnetic flux density is lowered. Therefore, it is preferable that the silicon permeation layer 104 has a distance X2 from the surface of the iron powder 102 to the center of the iron powder 102 that is less than 0.15 times the diameter D of the iron powder 102. However, if the silicon permeation layer 104 is thin or the silicon element concentration in the silicon permeation layer 104 is low, the contact portion of the iron powder 102 cannot be sufficiently insulated, and iron loss (mainly hysteresis loss and eddy current loss) is caused. Get higher. Therefore, the distance X2 and the concentration of the silicon permeation layer 104 formed on the powder 101 for dust core are very important in managing the specific resistance of the dust core (see, for example, Patent Document 1 and Patent Document 2). .

特開2009−256750号公報JP 2009-256750 A 特開2009−123774号公報JP 2009-123774 A

しかしながら、従来の圧粉磁心用粉末製造方法は、図14に示すように、製造された圧粉磁心用粉末101をランダムに10個取り出して、珪素浸透層104が鉄粉102の表面から鉄粉102の中心部へ向かって形成される距離(表面からの距離)X2と珪素浸透層における珪素元素の濃度(Si濃度)を測定したところ、表面からの距離X2とSi濃度が、粉末間でおおきくばらついていた。具体的には、取り出された粉末の中には、浸珪反応が乏しい粉末(浸珪反応量が低い粉末)が含まれていた(図14中の細い実線で記載するグラフ参照)。また、浸珪反応が豊富な粉末(浸珪反応量が高い粉末)であっても(図14中の太い実線で記載するグラフ参照)、鉄粉102の表面におけるSi濃度が、約2.0%〜約5.0%と幅広く分散している上に、珪素浸透層104の鉄粉102の表面からの距離(厚さ)X2が約4μm〜約20μmに分散している。更に、浸珪反応が豊富な粉末は、珪素浸透層104の鉄粉102の表面から鉄粉102の中心部へ向かってSi濃度が低下する割合がおおきくばらついている。よって、従来の圧粉磁心用粉末製造方法では、各鉄粉102に均一な浸珪反応をさせることができず、各圧粉磁心用粉末101に形成される珪素浸透層104の均一化を図ることができなかった。そのため、圧粉成形時に、圧粉磁心用粉末101に形成される珪素浸透層104の厚さ(表面からの距離)X2の薄い部分やSi濃度の低い部分同士が接触すると、当該接触部分の絶縁性が低いため、圧粉磁心に発生する渦電流が大きくなり、ひいては、比抵抗が低くなる問題がある。また、珪素浸透層104の厚さ(表面からの距離)X2が大きい圧粉磁心用粉末101は、硬く、磁心密度や磁束密度を低下させる原因となる。   However, in the conventional powder magnetic core powder manufacturing method, as shown in FIG. 14, ten manufactured powder magnetic core powders 101 are taken out at random, and the silicon permeation layer 104 is iron powder from the surface of the iron powder 102. When the distance (distance from the surface) X2 formed toward the center of 102 and the concentration of silicon element (Si concentration) in the silicon permeation layer were measured, the distance X2 from the surface and the Si concentration increased greatly between the powders. It was scattered. Specifically, the extracted powder contained a powder having a poor silicification reaction (a powder having a low silicidation reaction amount) (see the graph described by a thin solid line in FIG. 14). Moreover, even if the powder is rich in silicification reaction (powder having a high silicidation reaction amount) (see the graph described by the thick solid line in FIG. 14), the Si concentration on the surface of the iron powder 102 is about 2.0. In addition, the distance (thickness) X2 from the surface of the iron powder 102 of the silicon permeation layer 104 is dispersed to about 4 μm to about 20 μm. Furthermore, the ratio of the Si concentration decreasing from the surface of the iron powder 102 of the silicon-penetrating layer 104 toward the center of the iron powder 102 varies greatly in the powder rich in the silicon immersion reaction. Therefore, in the conventional powder magnetic core powder manufacturing method, each iron powder 102 cannot be subjected to a uniform silicon reaction, and the silicon permeation layer 104 formed in each powder magnetic core powder 101 is made uniform. I couldn't. Therefore, when a portion having a small thickness (distance from the surface) X2 or a portion having a low Si concentration of the silicon permeation layer 104 formed on the powder 101 for dust core is in contact with each other at the time of compacting, insulation of the contact portion is performed. Therefore, there is a problem that the eddy current generated in the dust core becomes large and the specific resistance becomes low. Moreover, the powder 101 for a dust core having a large thickness (distance from the surface) X2 of the silicon-penetrating layer 104 is hard and causes a decrease in the core density and magnetic flux density.

従来の圧粉磁心用粉末製造方法によって、珪素浸透層104の厚さ(表面からの距離)X2やSi濃度が圧粉磁心用粉末101間でばらつく理由は、鉄粉102と二酸化珪素粉末103の混合粉を投入した炉を回転させずに混合粉を加熱していたため、浸珪処理を行う間、鉄粉102と二酸化珪素粉末103の配置が変わらず、周囲に二酸化珪素粉末103がたくさんある鉄粉102では、珪素元素が表層にたくさん浸透拡散して、珪素浸透層104の厚さやSi濃度が大きくなるのに対して、周囲に二酸化珪素粉末103が少ない鉄粉102では、珪素元素が表層に浸透拡散する量が少なく、珪素浸透層104の厚さやSi濃度が小さくなるからと考えられる。   The reason why the thickness (distance from the surface) X2 and the Si concentration of the silicon-penetrating layer 104 varies between the powders 101 for powder magnetic cores by the conventional powder manufacturing method for powder magnetic cores is that Since the mixed powder was heated without rotating the furnace in which the mixed powder was charged, the arrangement of the iron powder 102 and the silicon dioxide powder 103 did not change during the siliconization treatment, and there was a lot of silicon dioxide powder 103 around the iron. In the powder 102, a large amount of silicon element penetrates and diffuses into the surface layer, and the thickness and the Si concentration of the silicon infiltrated layer 104 increase. This is probably because the amount of permeation and diffusion is small, and the thickness and Si concentration of the silicon permeation layer 104 are small.

そこで、発明者らは、図15及び図17に示すように、平均粒径200μmの鉄粉102と平均粒径50nmの二酸化珪素粉末103を攪拌混合した混合粉を炉105に投入した後、炉105を加熱し、その後、炉105の内部温度を1000℃に温度調整しながら、炉105を回転させて混合粉を1時間連続して攪拌することにより、圧粉磁心用粉末を製造することを試みた。これにより、発明者らは、浸珪処理時に二酸化珪素粉末103が配置を変えながら鉄粉102の周りに均一に付着し、各鉄粉102に均一な浸珪反応を発生させることができると考えた。   Therefore, the inventors put a mixed powder obtained by stirring and mixing iron powder 102 having an average particle diameter of 200 μm and silicon dioxide powder 103 having an average particle diameter of 50 nm into a furnace 105 as shown in FIGS. The powder for a magnetic core is manufactured by heating 105 and then stirring the mixed powder continuously for 1 hour by rotating the furnace 105 while adjusting the internal temperature of the furnace 105 to 1000 ° C. Tried. As a result, the inventors believe that the silicon dioxide powder 103 is uniformly attached around the iron powder 102 while changing the arrangement during the silicidation treatment, and a uniform silicification reaction can be generated in each iron powder 102. It was.

ところが、上記圧粉磁心用粉末製造方法を実施して炉105から生成物を取り出したところ、図16に示すように、鉄粉102と二酸化珪素粉末103が団子状に固まって二次粒子110になってしまっていた。二次粒子110は、二酸化珪素粉末103(ドット部分参照)が焼結して複数の鉄粉102を結合させており、直径が600μm〜700μmにも及んでいた。二次粒子110ができる理由は、次のように考えられる。   However, when the above powder magnetic core powder manufacturing method was carried out and the product was taken out from the furnace 105, as shown in FIG. 16, the iron powder 102 and the silicon dioxide powder 103 were hardened into dumplings into secondary particles 110. It had become. The secondary particles 110 were sintered with silicon dioxide powder 103 (see dot portion) to combine a plurality of iron powders 102, and the diameters ranged from 600 μm to 700 μm. The reason why the secondary particles 110 are formed is considered as follows.

焼結は、融点の3分の2程度の温度で始まることが知られている。二酸化珪素の融点は、1600℃±75℃である。一方、浸珪処理時の混合粉の加熱温度は約1000℃である。よって、混合粉の加熱温度1000℃は、二酸化珪素の融点のちょうど3分の2程度の温度に相当する。混合粉を1000℃に加熱することにより、鉄粉102の表面に付着した二酸化珪素粉末103から珪素元素が脱離して鉄粉102に拡散浸透するが、加熱時間が長くなると、二酸化珪素粉末103間で物質が移動し、焼結が発生する。焼結は、鉄粉102の表面に拡散接合した二酸化珪素粉末103にも発生するため、焼結した二酸化珪素粉末103を介して鉄粉102同士が結合される。特に、上記圧粉磁心用粉末製造方法は、図15及び図17に示すように、混合粉を1000℃に加熱した状態で、炉105を1時間連続回転させ、鉄粉102と二酸化珪素粉末103の混合粉を高所から低所に繰り返し落下させて攪拌を行う。この場合、低所にある二酸化珪素粉末103は、上方から落ちてきた混合粉の重みで圧縮され、焼結が促進される。このように、単に、浸珪処理時に混合粉を1000℃に加熱しながら攪拌しただけでは、二酸化珪素粉末103が加圧焼結されて二次粒子110を生成してしまっていた。この結果、圧粉磁心用粉末の品質及び生産性が悪くなってしまった。   It is known that sintering begins at a temperature of about two-thirds of the melting point. The melting point of silicon dioxide is 1600 ° C. ± 75 ° C. On the other hand, the heating temperature of the mixed powder during the siliconizing treatment is about 1000 ° C. Accordingly, the heating temperature of the mixed powder of 1000 ° C. corresponds to a temperature that is about two thirds of the melting point of silicon dioxide. By heating the mixed powder to 1000 ° C., silicon element is detached from the silicon dioxide powder 103 adhering to the surface of the iron powder 102 and diffuses and penetrates into the iron powder 102. The material moves and sintering occurs. Sintering also occurs in the silicon dioxide powder 103 that is diffusion bonded to the surface of the iron powder 102, so that the iron powders 102 are bonded together via the sintered silicon dioxide powder 103. Particularly, in the powder core manufacturing method, as shown in FIGS. 15 and 17, the furnace 105 is continuously rotated for 1 hour in a state where the mixed powder is heated to 1000 ° C., and the iron powder 102 and the silicon dioxide powder 103. The mixed powder is repeatedly dropped from a high place to a low place and stirred. In this case, the silicon dioxide powder 103 in the low place is compressed by the weight of the mixed powder falling from above, and the sintering is promoted. As described above, when the mixed powder is simply stirred while being heated to 1000 ° C. during the siliconization treatment, the silicon dioxide powder 103 is pressure-sintered to generate secondary particles 110. As a result, the quality and productivity of the powder for powder magnetic cores have deteriorated.

本発明は、上記問題点を解決するためになされたものであり、浸珪処理時に二次粒子が生成されることを防ぎ、圧粉磁心用粉末の品質と生産性を向上させることができる圧粉磁心用粉末製造方法及び圧粉磁心用粉末製造装置を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and prevents the generation of secondary particles during the siliconization treatment, and improves the quality and productivity of the powder for powder magnetic core. It aims at providing the powder manufacturing method for powder magnetic cores, and the powder manufacturing apparatus for powder magnetic cores.

上記課題を解決するために、本発明の一態様に係る圧粉磁心用粉末製造方法は、圧粉磁心用粉末を製造する圧粉磁心用粉末製造方法において、軟磁性金属粉末と二酸化珪素を含む浸珪用粉末の混合粉を、攪拌せずに、前記浸珪用粉末から珪素元素が脱離して前記軟磁性金属粉末に拡散浸透するために必要な加熱時均熱温度に加熱する加熱処理工程と、前記加熱された混合粉を前記浸珪用粉末が焼結しない冷却時均熱温度に冷却した状態で、前記混合粉を攪拌する冷却時均熱温度時の攪拌工程と、を有し、前記加熱処理工程と前記冷却時均熱温度時の攪拌工程とを繰り返し行うことにより、前記軟磁性金属粉末の表層に前記珪素元素が拡散浸透した珪素浸透層を形成する。
尚、前記浸珪用粉末が二酸化珪素粉末である場合には、前記加熱時均熱温度が1000℃であって、前記冷却時均熱温度が700℃であることが好ましい。
In order to solve the above problems, a method for manufacturing a powder magnetic core according to one aspect of the present invention includes a soft magnetic metal powder and silicon dioxide in a powder magnetic core manufacturing method for manufacturing a powder magnetic core powder. Heat treatment step of heating the mixed powder of the siliconizing powder to a soaking temperature necessary for heating so that silicon element is detached from the siliconizing powder and diffused and penetrates into the soft magnetic metal powder without stirring. And in the state of cooling the heated mixed powder to a cooling soaking temperature at which the powder for siliconization does not sinter, a stirring step at the cooling soaking temperature for stirring the mixed powder, By repeating the heat treatment step and the stirring step at the soaking temperature during cooling, a silicon permeation layer in which the silicon element is diffused and permeated into the surface layer of the soft magnetic metal powder is formed.
When the siliconizing powder is silicon dioxide powder, it is preferable that the soaking temperature during heating is 1000 ° C. and the soaking temperature during cooling is 700 ° C.

上記態様の圧粉磁心用粉末製造方法は、前記加熱処理工程における加熱時間を累計した累計時間が、前記珪素浸透層の前記軟磁性金属粉末の表面からの距離が、前記軟磁性金属粉末の直径の0.15倍未満となるように、前記混合粉を加熱するための処理時間と等しいことが好ましい。   In the method for producing a powder for a powder magnetic core according to the above aspect, the cumulative time obtained by accumulating the heating time in the heat treatment step is the distance from the surface of the soft magnetic metal powder of the silicon-penetrating layer is the diameter of the soft magnetic metal powder. It is preferable that it is equal to the processing time for heating the mixed powder so as to be less than 0.15 times.

上記課題を解決するために、本発明の一態様に係る圧粉磁心用粉末製造装置は、圧粉磁心用粉末を製造する圧粉磁心用粉末製造装置において、軟磁性金属粉末と二酸化珪素を含む浸珪用粉末の混合粉が投入されるものであって、軸線を中心に回転可能に保持されており、内壁に攪拌部材が立設された回転炉と、前記回転炉に駆動力を付与するモータと、前記回転炉を加熱するヒータと、前記ヒータのヒーティング動作と前記モータの駆動を制御するコントローラと、を有し、前記コントローラは、前記浸珪用粉末から珪素元素が脱離して前記軟磁性金属粉末に拡散浸透するために必要な加熱時均熱温度に前記回転炉を加熱する場合、前記モータを停止させて、前記回転炉を静止させる一方、前記加熱された混合粉を前記浸珪用粉末が焼結しない冷却時均熱温度に冷却する場合、前記モータを駆動させて、前記回転炉を回転させる動作を、繰り返し行わせるものである。   In order to solve the above problems, a powder magnetic core manufacturing apparatus according to one aspect of the present invention includes a soft magnetic metal powder and silicon dioxide in a powder magnetic core manufacturing apparatus for manufacturing a powder magnetic core powder. A mixed powder of powder for siliconization is charged, and is held rotatably about an axis, and a driving force is applied to the rotary furnace in which a stirring member is erected on the inner wall. A motor, a heater for heating the rotary furnace, and a controller for controlling the heating operation of the heater and the driving of the motor, the controller desorbing silicon element from the siliconization powder and When heating the rotary furnace to a soaking temperature required for diffusion and penetration into the soft magnetic metal powder, the motor is stopped and the rotary furnace is stopped, while the heated mixed powder is immersed in the immersion powder. The silicon powder does not sinter When cooling to the cooling time of soaking temperature, the drives the motor, the operation of rotating the rotary furnace, but for repeated.

上記態様の圧粉磁心用粉末製造装置は、前記回転炉の内部温度を測定する温度センサを有し、前記コントローラは、前記温度センサの温度測定データに基づいて、前記回転炉の内部温度が前記加熱時均熱温度に安定するように、前記ヒータのヒーティング動作をフィードバック制御することが好ましい。   The powder manufacturing apparatus for a powder magnetic core according to the above aspect includes a temperature sensor that measures an internal temperature of the rotary furnace, and the controller determines whether the internal temperature of the rotary furnace is based on temperature measurement data of the temperature sensor. It is preferable to feedback control the heating operation of the heater so as to stabilize the soaking temperature during heating.

上記態様の圧粉磁心用粉末製造方法及び圧粉磁心用粉末製造装置は、軟磁性金属粉末と二酸化珪素を含む浸珪用粉末の混合粉を、浸珪用粉末から珪素元素が脱離して軟磁性金属粉末に拡散浸透するために必要な加熱時均熱温度(例えば、浸珪用粉末が二酸化珪素粉末である場合には、加熱時均熱温度は1000℃であることが好ましい。)に加熱する場合には、回転炉を静止させて混合粉を攪拌しない。そのため、この加熱処理時には、浸珪用粉末が焼結せず、浸珪用粉末から珪素元素が脱離して軟磁性金属粉末の表面から拡散浸透する処理のみが進行する。その後、加熱された混合粉を浸珪用粉末が焼結しない冷却時均熱温度(例えば、浸珪用粉末が二酸化珪素粉末である場合には、冷却時均熱温度は700℃であることが好ましい。)に冷却し、その冷却した状態で、回転炉を回転させて、混合粉を攪拌する。このように混合粉を冷却時均熱温度に冷却してから混合粉を加熱するため、浸珪用粉末が攪拌時に加圧されて焼結することがない。そして、この冷却処理
後に、再び加熱処理を行う。冷却処理時の混合粉の攪拌により、軟磁性金属粉末の表面に浸珪用粉末が均等に付着するため、加熱処理時には、各軟磁性金属粉末に珪素元素が均一に拡散浸透し、軟磁性金属粉末の表層に形成される珪素浸透層の軟磁性粉末の表面からの距離や珪素濃度が均一になる。よって、上記態様の圧粉磁心用粉末製造方法及び圧粉磁心用粉末製造装置によれば、浸珪処理時に二次粒子が生成されないので、圧粉磁心用粉末の品質と生産性を向上させることができる。
The powder magnetic core powder manufacturing method and the powder magnetic core powder manufacturing apparatus according to the above aspect are a mixture of a soft magnetic metal powder and silicon dioxide powder containing silicon dioxide. Heating to a soaking temperature required for diffusion and penetration into the magnetic metal powder (for example, when the siliconizing powder is a silicon dioxide powder, the soaking temperature is preferably 1000 ° C.). When doing so, the rotary furnace is stationary and the mixed powder is not stirred. Therefore, at the time of this heat treatment, the siliconizing powder is not sintered, and only the process of diffusing and penetrating from the surface of the soft magnetic metal powder by desorption of silicon element from the siliconizing powder proceeds. Thereafter, a soaking temperature at which the siliconized powder does not sinter the heated mixed powder (for example, when the siliconized powder is a silicon dioxide powder, the soaking temperature at cooling may be 700 ° C. The mixed powder is agitated by rotating the rotary furnace in the cooled state. In this way, since the mixed powder is cooled to the soaking temperature during cooling and then the mixed powder is heated, the powder for siliconization is not pressurized and sintered during stirring. Then, after the cooling process, the heating process is performed again. By stirring the mixed powder during the cooling treatment, the silicon powder is uniformly attached to the surface of the soft magnetic metal powder. During the heat treatment, the silicon element is uniformly diffused and penetrated into each soft magnetic metal powder. The distance from the surface of the soft magnetic powder and the silicon concentration of the silicon permeation layer formed on the surface layer of the powder become uniform. Therefore, according to the powder magnetic core powder manufacturing method and the powder magnetic core powder manufacturing apparatus of the above aspect, secondary particles are not generated during the siliconization treatment, so that the quality and productivity of the powder for the powder magnetic core can be improved. Can do.

上記態様の圧粉磁心用粉末製造方法は、加熱処理工程における加熱時間を累計した累計時間が、珪素浸透層の軟磁性金属粉末の表面からの距離が、軟磁性金属粉末の直径の0.15倍未満となるように、混合粉を加熱するための処理時間と等しいので、圧粉磁心の磁心密度や磁束密度を低下させないように、圧粉磁心用粉末の硬さを調整することができる。   In the method for producing a powder for a powder magnetic core according to the above aspect, the cumulative time obtained by accumulating the heating time in the heat treatment step is 0.15 of the diameter of the soft magnetic metal powder. Since it is equal to the processing time for heating the mixed powder so as to be less than twice, the hardness of the powder for powder magnetic core can be adjusted so as not to lower the magnetic core density and magnetic flux density of the powder magnetic core.

上記態様の圧粉磁心用粉末製造装置は、回転炉の内部温度を測定する温度センサを有し、コントローラは、温度センサの温度測定データに基づいて、回転炉の内部温度が加熱時均熱温度に安定するように、ヒータのヒーティング動作をフィードバック制御するので、加熱処理と冷却処理を繰り返す場合であっても、各加熱処理における加熱時均熱温度を一定に制御し、二次粒子の発生を防止することができる。   The powder manufacturing apparatus for a powder magnetic core according to the above aspect includes a temperature sensor that measures the internal temperature of the rotary furnace, and the controller uses the temperature measurement data of the temperature sensor to determine whether the internal temperature of the rotary furnace is a soaking temperature during heating. As the heating operation of the heater is feedback controlled so that it is stable, the soaking temperature during heating in each heating process is controlled to a constant level even when heating and cooling processes are repeated. Can be prevented.

本発明の実施形態に係り、圧粉磁心用粉末製造装置の概略構成図である。It is a schematic block diagram of the powder manufacturing apparatus for dust cores according to the embodiment of the present invention. 回転炉の縦断面図である。It is a longitudinal cross-sectional view of a rotary furnace. 浸珪処理を説明する図であって、混合粉投入工程を示す。It is a figure explaining a siliconization process, Comprising: The mixed powder injection | throwing-in process is shown. 浸珪処理を説明する図であって、加熱処理工程を示す。It is a figure explaining a siliconization process, Comprising: A heat processing process is shown. 浸珪反応のイメージ図である。It is an image figure of a silicification reaction. 浸珪処理を説明する図であって、ヒータ取り外し工程を示す。It is a figure explaining a siliconization process, Comprising: A heater removal process is shown. 浸珪処理を説明する図であって、冷却時均熱温度時の攪拌工程を示す。It is a figure explaining a siliconization process, Comprising: The stirring process at the time of soaking | uniform-heating temperature is shown. 圧粉磁心用粉末の断面を示すイメージ図である。It is an image figure which shows the cross section of the powder for dust cores. 圧粉磁心用粉末製造方法における浸珪反応を説明するための図である。It is a figure for demonstrating the silicon immersion reaction in the powder manufacturing method for dust cores. 比較例と実施例における浸珪処理の条件を示す図である。It is a figure which shows the conditions of the siliconization process in a comparative example and an Example. 比較例と実施例の歩留まり率を示す図である。It is a figure which shows the yield rate of a comparative example and an Example. 実施例の圧粉磁心用粉末について、鉄粉の表面から鉄粉の中心部へ向かって形成される珪素浸透層の距離を、圧粉磁心用粉末別に調べた結果を示すグラフである。It is a graph which shows the result of having investigated the distance of the silicon osmosis | permeation layer formed toward the center part of iron powder from the surface of iron powder about the powder for powder magnetic cores of an Example according to powder for powder magnetic cores. 浸珪処理のイメージ図である。It is an image figure of a siliconization process. 鉄粉の表面から鉄粉の中心部へ向かって形成される珪素浸透層の距離を、圧粉磁心用粉末別に調べた結果を示すグラフである。It is a graph which shows the result of having investigated the distance of the silicon osmosis | permeation layer formed toward the center part of iron powder from the surface of iron powder according to the powder for powder magnetic cores. 混合粉を攪拌しながら加熱する処理のイメージ図である。It is an image figure of the process heated while stirring mixed powder. 混合粉を攪拌しながら加熱した場合に得られる圧粉磁心用粉末の顕微鏡写真を図面化したものである。It is drawing which made the micrograph of the powder for powder magnetic cores obtained when heating mixed powder while stirring. 混合粉を攪拌しながら加熱する装置の概念図である。It is a conceptual diagram of the apparatus heated while stirring mixed powder.

次に、本発明に係る圧粉磁心用粉末製造方法の一実施形態について図面を参照して説明する。   Next, one embodiment of a powder magnetic core powder manufacturing method according to the present invention will be described with reference to the drawings.

<圧粉磁心用粉末の概略構成>
図8は、圧粉磁心用粉末28の断面を示すイメージ図である。
圧粉磁心用粉末28は、鉄粉24(軟磁性金属粉末の一例)の絶縁を確保するために、炭素−鉄金属粉末21と二酸化珪素粉末22(浸珪用粉末の一例)との酸化還元反応により鉄粉24の表層に珪素浸透層25が形成されている。そして、圧粉磁心用粉末28は、鉄粉24の表面を覆うように、シリコーン被膜層27が形成され、さらに絶縁性が高められている。
<Schematic configuration of powder for powder magnetic core>
FIG. 8 is an image diagram showing a cross section of the powder 28 for a powder magnetic core.
The powder 28 for the powder magnetic core is an oxidation-reduction between the carbon-iron metal powder 21 and the silicon dioxide powder 22 (an example of a siliconizing powder) in order to ensure insulation of the iron powder 24 (an example of a soft magnetic metal powder). A silicon permeation layer 25 is formed on the surface layer of the iron powder 24 by the reaction. And the powder 28 for powder magnetic cores is formed with a silicone coating layer 27 so as to cover the surface of the iron powder 24, and the insulation is further enhanced.

<圧粉磁心用粉末製造装置の概略構成>
図1は、本発明の実施形態に係り、圧粉磁心用粉末製造装置1の概略構成図である。
圧粉磁心用粉末製造装置1は、圧粉磁心用粉末28を製造する工程のうち、鉄粉24の表層に珪素浸透層25を形成する浸珪処理工程に用いられる。
<Schematic configuration of powder manufacturing apparatus for dust core>
FIG. 1 is a schematic configuration diagram of a powder magnetic core manufacturing apparatus 1 according to an embodiment of the present invention.
The powder magnetic core manufacturing apparatus 1 is used in a siliconizing treatment process in which a silicon permeation layer 25 is formed on the surface layer of the iron powder 24 among the processes of manufacturing the powder 28 for a powder magnetic core.

圧粉磁心用粉末製造装置1は、中空円筒形状の回転炉2を備える。回転炉2は、熱伝導率が高く、化学反応しにくい材質(例えば、SUS310S)により、構成されている。回転炉2は、両端面に回転軸3,4が固定され、その回転軸3,4を介して支柱5,6に回転自在に保持されている。回転軸3には、モータ7が連結され、回転軸3を介して回転炉2に回転力を付与するようになっている。モータ7は、コントローラ8に接続され、回転炉2を回転させる回転動作(回転量や回転速度や回転時間等)と回転炉2の回転を停止させる回転停止動作を制御される。   The powder manufacturing apparatus 1 for a dust core includes a hollow cylindrical rotary furnace 2. The rotary furnace 2 is made of a material (for example, SUS310S) that has high thermal conductivity and is difficult to chemically react. The rotary furnace 2 has rotary shafts 3 and 4 fixed to both end faces, and is rotatably held by the support columns 5 and 6 via the rotary shafts 3 and 4. A motor 7 is connected to the rotary shaft 3, and a rotational force is applied to the rotary furnace 2 through the rotary shaft 3. The motor 7 is connected to the controller 8, and is controlled for a rotation operation (rotation amount, rotation speed, rotation time, etc.) for rotating the rotary furnace 2 and a rotation stop operation for stopping the rotation of the rotary furnace 2.

回転炉2には、開閉扉9が開閉可能に設けられている。回転炉2は、開閉扉9を介して粉体の供給と取り出しが行われる。回転炉2の内壁には、直線状の板材からなる複数(ここでは3枚)の攪拌板10が固設されている。攪拌板10は、回転炉2の軸線に対して平行であって、回転炉2の縦断面周方向に均等配置され、回転炉2の中心部へ向かって立設されている。これにより、回転炉2は、モータ7によって回転された場合に、内部に供給された粉体を攪拌板10によって次々とすくい上げては落下させ、攪拌することができる。   The rotary furnace 2 is provided with an opening / closing door 9 that can be opened and closed. In the rotary furnace 2, powder is supplied and taken out via the open / close door 9. On the inner wall of the rotary furnace 2, a plurality of (here, three) stirring plates 10 made of a straight plate material are fixed. The stirring plate 10 is parallel to the axis of the rotary furnace 2, is evenly arranged in the circumferential direction of the vertical section of the rotary furnace 2, and stands up toward the center of the rotary furnace 2. As a result, when the rotary furnace 2 is rotated by the motor 7, the powder supplied inside can be scooped up and dropped one after another by the stirring plate 10 and stirred.

回転軸4の内部には、2本の流路が回転軸4の軸線に沿って形成されている。回転軸4の一方の流路には、浸珪処理時の雰囲気を生成するための処理ガスを供給する供給管11が接続され、他方の流路には、回転炉2からガスを排気するための排気管16が接続されている。供給管11には、ガス供給源12から供給される処理ガスの供給量を制御するための供給弁13が配設されている。排気管16には、回転炉2からガスを排気する排気量を制御する排気弁17が配設されている。供給弁13と排気弁17は、コントローラ8に接続され、弁開度を制御される。   Inside the rotating shaft 4, two flow paths are formed along the axis of the rotating shaft 4. A supply pipe 11 for supplying a processing gas for generating an atmosphere during the silicidation process is connected to one flow path of the rotary shaft 4, and gas is exhausted from the rotary furnace 2 to the other flow path. The exhaust pipe 16 is connected. The supply pipe 11 is provided with a supply valve 13 for controlling the supply amount of the processing gas supplied from the gas supply source 12. The exhaust pipe 16 is provided with an exhaust valve 17 for controlling an exhaust amount for exhausting gas from the rotary furnace 2. The supply valve 13 and the exhaust valve 17 are connected to the controller 8 and the valve opening degree is controlled.

図2は、回転炉2の縦断面図である。
回転炉2の外周面には、ヒータ14が取り付けられ、回転炉2内の粉体を加熱できるようになっている。ヒータ14は、第1ヒータ部材14Aと第2ヒータ部材14Bを備える。ヒータ14は、第1及び第2ヒータ部材14A,14Bが分割されることにより回転炉2から取り外され、回転炉2内の粉体を外気冷却できるようになっている。回転炉2の内壁には、回転炉2内の温度を測定するための温度センサ15が取り付けられている。第1及び第2ヒータ部材14A,14Bと温度センサ15は、コントローラ8に接続されている。コントローラ8は、温度センサ15が測定する測定温度データに基づいて回転炉2内を所定温度にフィードバック制御するように、第1及び第2ヒータ部材14A,14Bのヒーティング動作を制御する。また、コントローラ8は、第1及び第2ヒータ部材14A,14Bの連結動作と分割動作を制御し、混合粉23の加熱と冷却を制御する。
FIG. 2 is a longitudinal sectional view of the rotary furnace 2.
A heater 14 is attached to the outer peripheral surface of the rotary furnace 2 so that the powder in the rotary furnace 2 can be heated. The heater 14 includes a first heater member 14A and a second heater member 14B. The heater 14 is detached from the rotary furnace 2 by dividing the first and second heater members 14A and 14B, and the powder in the rotary furnace 2 can be cooled to the outside air. A temperature sensor 15 for measuring the temperature in the rotary furnace 2 is attached to the inner wall of the rotary furnace 2. The first and second heater members 14 </ b> A and 14 </ b> B and the temperature sensor 15 are connected to the controller 8. The controller 8 controls the heating operation of the first and second heater members 14A and 14B so as to feedback control the inside of the rotary furnace 2 to a predetermined temperature based on the measured temperature data measured by the temperature sensor 15. Further, the controller 8 controls the connecting operation and the dividing operation of the first and second heater members 14A and 14B, and controls the heating and cooling of the mixed powder 23.

<圧粉磁心用粉末の製造方法>
次に、圧粉磁心用粉末製造方法について説明する。図3は、浸珪処理を説明する図であって、混合粉投入工程を示す。図4は、浸珪処理を説明する図であって、加熱処理工程を示す。図5は、浸珪反応のイメージ図である。図6は、浸珪処理を説明する図であって、ヒータ取り外し工程を示す。図7は、浸珪処理を説明する図であって、冷却時均熱温度時の攪拌工程を示す。図8は、圧粉磁心用粉末28の断面を示すイメージ図である。図9は、圧粉磁心用粉末製造方法における浸珪反応を説明するための図である。
先ず、炭素−鉄金属粉末21に二酸化珪素粉末22を加えて混合攪拌し、二酸化珪素粉末22を炭素−鉄金属粉末21の外周面に付着させる。そして、図3に示すように、回転炉2の開閉扉9を開けて、炭素−鉄金属粉末21と二酸化珪素粉末22の混合粉23を回転炉2内へ投入し、開閉扉9を密閉する。
<Method for producing powder for powder magnetic core>
Next, a method for producing a powder for a dust core will be described. FIG. 3 is a diagram for explaining the siliconizing treatment and shows a mixed powder charging step. FIG. 4 is a diagram for explaining the siliconization treatment and shows a heat treatment step. FIG. 5 is an image diagram of the silicon immersion reaction. FIG. 6 is a diagram for explaining the siliconizing process and shows a heater removing step. FIG. 7 is a view for explaining the siliconization treatment and shows a stirring step at the time of cooling soaking temperature. FIG. 8 is an image diagram showing a cross section of the powder 28 for a powder magnetic core. FIG. 9 is a diagram for explaining a silicon immersion reaction in the method for producing a powder for a powder magnetic core.
First, the silicon dioxide powder 22 is added to the carbon-iron metal powder 21 and mixed and stirred to adhere the silicon dioxide powder 22 to the outer peripheral surface of the carbon-iron metal powder 21. Then, as shown in FIG. 3, the open / close door 9 of the rotary furnace 2 is opened, and the mixed powder 23 of the carbon-iron metal powder 21 and the silicon dioxide powder 22 is put into the rotary furnace 2 to seal the open / close door 9. .

そして、混合粉23に浸珪処理を行う。図9に示すように、本実施形態の浸珪処理は、回転炉2の内部温度を加熱時均熱温度と冷却時均熱温度に調整し、回転炉2の内部温度が冷却時均熱温度である場合のみ、回転炉2を回転させて混合粉23を攪拌混合する。   Then, a siliconization process is performed on the mixed powder 23. As shown in FIG. 9, the siliconization treatment of the present embodiment adjusts the internal temperature of the rotary furnace 2 to the soaking temperature during heating and the soaking temperature during cooling, and the internal temperature of the rotary furnace 2 is equal to the soaking temperature during cooling. Only when it is, the rotary furnace 2 is rotated and the mixed powder 23 is stirred and mixed.

より具体的には、コントローラ8は、供給弁13と排気弁17を開き、ガス供給源12から回転炉2へ、炭素−鉄金属粉末21と二酸化珪素粉末22の酸化還元反応を促すための処理ガス(ここでは、アルゴン(Ar)と水素(H2)の混合ガス)を供給する。そして、コントローラ8は、図4に示すように、第1及び第2ヒータ部材14A,14Bを回転炉2の外周面に装着させ、回転炉2を回転させない静止状態で、第1及び第2ヒータ部材14A,14Bにより回転炉2を介して混合粉23を加熱する。コントローラ8は、温度センサ15により、回転炉2の内部温度を常時測定している。コントローラ8は、温度センサ15の温度測定データにより、回転炉2の内部温度が加熱時均熱温度に達したことを検出すると、回転炉2を回転させずに静止させた状態で、加熱時均熱温度を維持するように第1及び第2ヒータ部材14A,14Bのヒーティング動作を制御する。ここで、加熱時均熱温度とは、二酸化珪素粉末22から珪素元素を離脱させて鉄粉24に拡散浸透させるために必要な温度をいう。 More specifically, the controller 8 opens the supply valve 13 and the exhaust valve 17, and performs processing for promoting the oxidation-reduction reaction of the carbon-iron metal powder 21 and the silicon dioxide powder 22 from the gas supply source 12 to the rotary furnace 2. A gas (here, a mixed gas of argon (Ar) and hydrogen (H 2 )) is supplied. Then, as shown in FIG. 4, the controller 8 attaches the first and second heater members 14 </ b> A and 14 </ b> B to the outer peripheral surface of the rotary furnace 2, and the first and second heaters are stationary in a state where the rotary furnace 2 is not rotated. The mixed powder 23 is heated via the rotary furnace 2 by the members 14A and 14B. The controller 8 constantly measures the internal temperature of the rotary furnace 2 with the temperature sensor 15. When the controller 8 detects from the temperature measurement data of the temperature sensor 15 that the internal temperature of the rotary furnace 2 has reached the soaking temperature during heating, the controller 8 keeps the rotary furnace 2 stationary without rotating. The heating operation of the first and second heater members 14A and 14B is controlled so as to maintain the heat temperature. Here, the soaking temperature during heating refers to a temperature necessary for detaching the silicon element from the silicon dioxide powder 22 and allowing it to diffuse and penetrate into the iron powder 24.

この加熱処理により、図5に示すように、二酸化珪素粉末22と炭素−鉄金属粉末21が酸化還元反応を発生し、二酸化珪素粉末22から珪素元素が脱離すると共に、一酸化炭素(CO)ガスが生成される。脱離した珪素元素は、鉄粉24の表面から浸透して鉄粉24の内部に拡散し、鉄粉24の表層に珪素浸透層25を形成する。加熱時間が経過するにつれて、珪素元素が鉄粉24の表層に濃化していく。一方、生成されたCOガスは、排気管16を介して回転炉2の外部へ排出され、回転炉2内の圧力が一定に維持される。このような浸珪処理は、珪素元素が二酸化珪素粉末22から脱離する反応生成速度が、鉄粉24の表層に浸透拡散する拡散速度よりも速い脱離拡散雰囲気下で行われる。   By this heat treatment, as shown in FIG. 5, the silicon dioxide powder 22 and the carbon-iron metal powder 21 generate an oxidation-reduction reaction, and the silicon element is desorbed from the silicon dioxide powder 22, and carbon monoxide (CO). Gas is generated. The detached silicon element penetrates from the surface of the iron powder 24 and diffuses into the iron powder 24 to form a silicon permeation layer 25 on the surface layer of the iron powder 24. As the heating time elapses, the silicon element is concentrated on the surface layer of the iron powder 24. On the other hand, the generated CO gas is discharged to the outside of the rotary furnace 2 through the exhaust pipe 16, and the pressure in the rotary furnace 2 is kept constant. Such a siliconization treatment is performed in a desorption / diffusion atmosphere in which the reaction generation rate at which silicon element is desorbed from the silicon dioxide powder 22 is faster than the diffusion rate at which the silicon powder 24 penetrates and diffuses into the surface layer of the iron powder 24.

混合粉23を加熱時均熱温度に加熱する間、回転炉2が回転されないため、加熱された二酸化珪素粉末22が混合粉23の攪拌によって圧縮されない。しかも、混合粉23を加熱時均熱温度で加熱する加熱時間t1は、二酸化珪素粉末22間の物質の移動を制限して焼結を防ぐために、珪素浸透層25を鉄粉24の表面から所定の距離(鉄粉24の直径Dの0.15倍の距離)で形成するために必要な処理時間の一部に設定されている。よって、上記加熱処理時には、回転炉2では、炭素−鉄金属粉末21の表面に付着した二酸化珪素粉末22から珪素元素が脱離して拡散浸透することのみが進行し、二酸化珪素粉末22が焼結しない。   Since the rotary furnace 2 is not rotated while the mixed powder 23 is heated to the soaking temperature during heating, the heated silicon dioxide powder 22 is not compressed by the stirring of the mixed powder 23. In addition, the heating time t1 for heating the mixed powder 23 at the soaking temperature is limited to a predetermined distance from the surface of the iron powder 24 in order to limit the movement of the substance between the silicon dioxide powders 22 and prevent sintering. (The distance of 0.15 times the diameter D of the iron powder 24) is set to a part of the processing time required. Therefore, at the time of the heat treatment, in the rotary furnace 2, only the silicon element desorbs and diffuses and penetrates from the silicon dioxide powder 22 adhering to the surface of the carbon-iron metal powder 21, and the silicon dioxide powder 22 is sintered. do not do.

図9に示すように、所定の加熱時間t1だけ、回転炉2の内部温度を加熱時均熱温度に維持したら、コントローラ8は、図6に示すように、第1及び第2ヒータ部材14A,14Bを分割して、回転炉2からヒータ14を取り外す。すると、回転炉2は、外気にさらされ、内部温度が低下する。このときも、回転炉2は、回転されていない。そのため、混合粉23が攪拌されず、二酸化珪素粉末22が焼結しない。   As shown in FIG. 9, when the internal temperature of the rotary furnace 2 is maintained at the heating soaking temperature for a predetermined heating time t1, the controller 8, as shown in FIG. 6, the first and second heater members 14A, 14B is divided and the heater 14 is removed from the rotary furnace 2. Then, the rotary furnace 2 is exposed to the outside air, and the internal temperature decreases. Also at this time, the rotary furnace 2 is not rotated. Therefore, the mixed powder 23 is not stirred and the silicon dioxide powder 22 is not sintered.

図9に示すように、コントローラ8は、温度センサ15の温度測定データにより回転炉2の内部温度が冷却時均熱温度に達したことを検出すると、モータ7を駆動して、図7に示すように、回転炉2を回転させ始める。ここで、冷却時均熱温度とは、二酸化珪素粉末22が焼結しない温度をいう。例えば、冷却時均熱温度は、二酸化珪素粉末22の融点の半分の温度に設定することが望ましい。回転炉2の回転により、混合粉23は、攪拌板10によって回転炉2の底部から所定の高さまですくい上げられた後、斜め下向きになった攪拌板10から回転炉2の底部へ滑り落とされることを繰り返し、攪拌される。この場合、底部にある混合粉23は、上方から落下してくる混合粉の重みによって加圧されるが、混合粉23が冷却時均熱温度まで冷却されているため、二酸化珪素粉末22が加圧焼結せず、粉末状態を維持する。また、鉄粉24が二酸化珪素粉末22を介して結合されることもない。すなわち、混合粉23の攪拌時に二次粒子が生成されない。この冷却処理は、回転炉2の回転に伴う攪拌によって、二酸化珪素粉末22を鉄粉24の表面に均一に付着させるために必要な所定の冷却時間t2だけ行われる。   As shown in FIG. 9, when the controller 8 detects that the internal temperature of the rotary furnace 2 has reached the soaking temperature during cooling based on the temperature measurement data of the temperature sensor 15, the controller 8 drives the motor 7, as shown in FIG. 7. Thus, the rotary furnace 2 is started to rotate. Here, the soaking temperature during cooling refers to a temperature at which the silicon dioxide powder 22 is not sintered. For example, the soaking temperature during cooling is desirably set to a temperature that is half the melting point of the silicon dioxide powder 22. Due to the rotation of the rotary furnace 2, the mixed powder 23 is scooped up from the bottom of the rotary furnace 2 to a predetermined height by the stirring plate 10, and then slid down from the stirring plate 10 inclined downward to the bottom of the rotary furnace 2. Is repeated and stirred. In this case, the mixed powder 23 at the bottom is pressed by the weight of the mixed powder falling from above, but since the mixed powder 23 is cooled to the soaking temperature at the time of cooling, the silicon dioxide powder 22 is added. The powder state is maintained without pressure sintering. Further, the iron powder 24 is not bonded via the silicon dioxide powder 22. That is, secondary particles are not generated when the mixed powder 23 is stirred. This cooling process is performed for a predetermined cooling time t2 necessary for uniformly adhering the silicon dioxide powder 22 to the surface of the iron powder 24 by stirring accompanying the rotation of the rotary furnace 2.

図9に示すように、所定の冷却時間t2だけ、回転炉2の内部温度を冷却時均熱温度に維持しつつ回転炉2を回転させたら、コントローラ8は、図4に示すように、モータ7の駆動を停止し、回転炉2を静止させる。そして、コントローラ8は、第1及び第2ヒータ部材14A,14Bを回転炉2の外周面に再装着して、回転炉2を静止させた状態で第1及び第2ヒータ部材14A,14Bに回転炉2と混合粉23を加熱させ、上記加熱処理を再度行う。この加熱処理時には、冷却処理時の攪拌によって、二酸化珪素粉末22が各鉄粉24の表面に均一に付着しているため、各鉄粉24の表面では浸珪反応が均一に進行する。   As shown in FIG. 9, when the rotary furnace 2 is rotated while maintaining the internal temperature of the rotary furnace 2 at the cooling soaking temperature for a predetermined cooling time t <b> 2, the controller 8, as shown in FIG. 4, 7 is stopped, and the rotary furnace 2 is stopped. Then, the controller 8 reattaches the first and second heater members 14A and 14B to the outer peripheral surface of the rotary furnace 2, and rotates the first and second heater members 14A and 14B while the rotary furnace 2 is stationary. The furnace 2 and the mixed powder 23 are heated, and the above heat treatment is performed again. At the time of this heat treatment, the silicon dioxide powder 22 is uniformly attached to the surface of each iron powder 24 by stirring during the cooling treatment, so that the silicon immersion reaction proceeds uniformly on the surface of each iron powder 24.

コントローラ8は、上記加熱処理と冷却処理を繰り返し行うことにより、鉄粉24の表層に珪素浸透層25を形成する。この場合、図9に示すように、加熱時間t1を累計した累計時間は、珪素浸透層25の鉄粉24の表面からの距離X1が、鉄粉24の直径Dの0.15倍未満となるように(図8参照)、混合粉23を加熱するための処理時間に、等しくなることが望ましい。このように、浸珪処理における加熱処理を、浸珪処理に必要な処理時間により管理することにより、圧粉磁心用粉末28を圧粉成形した圧粉磁心の磁心密度や磁束密度を低下させないように、圧粉磁心用粉末28の硬さを調整することができるからである。コントローラ8は、加熱処理と冷却処理を終了すると、回転炉2を静止させた状態で、供給弁13と排気弁17を弁閉する。作業者は、回転炉2の内部温度が常温に低下したことを確認してから開閉扉9を開き、浸珪処理を施された粉体26(図5参照)を回転炉2から取り出す。   The controller 8 forms the silicon permeation layer 25 on the surface layer of the iron powder 24 by repeatedly performing the heat treatment and the cooling treatment. In this case, as shown in FIG. 9, the cumulative time obtained by accumulating the heating time t1 is such that the distance X1 from the surface of the iron powder 24 of the silicon infiltration layer 25 is less than 0.15 times the diameter D of the iron powder 24. As described above (see FIG. 8), it is desirable that the processing time for heating the mixed powder 23 is equal. In this way, by controlling the heat treatment in the siliconization treatment according to the treatment time required for the siliconization treatment, the magnetic core density and magnetic flux density of the dust core formed by dusting the dust core powder 28 are not reduced. In addition, the hardness of the powder 28 for powder magnetic core can be adjusted. When the heating process and the cooling process are finished, the controller 8 closes the supply valve 13 and the exhaust valve 17 while the rotary furnace 2 is stationary. After confirming that the internal temperature of the rotary furnace 2 has dropped to room temperature, the operator opens the door 9 and takes out the powder 26 (see FIG. 5) subjected to the siliconization treatment from the rotary furnace 2.

浸珪処理を施された粉体26は、浸珪処理時に加熱処理を繰り返す度に、鉄粉24の表面から鉄粉24の中心部へ向かって形成される珪素浸透層25の距離X1が増加されると共に、珪素浸透層25の珪素元素濃度(Si濃度)が高くされている。そして、冷却処理時の攪拌によって二酸化珪素粉末22を鉄粉24の表面に均一に付着させたことにより、各粉体26では、珪素浸透層25の鉄粉24の表面からの距離X1の増加と、珪素浸透層25の濃化が均一に進行している。   The powder 26 subjected to the siliconization treatment increases the distance X1 of the silicon-penetrating layer 25 formed from the surface of the iron powder 24 toward the center of the iron powder 24 each time the heat treatment is repeated during the siliconization treatment. In addition, the silicon element concentration (Si concentration) of the silicon permeation layer 25 is increased. And by making the silicon dioxide powder 22 uniformly adhere to the surface of the iron powder 24 by stirring at the time of the cooling treatment, in each powder 26, the distance X1 from the surface of the iron powder 24 of the silicon permeation layer 25 is increased. The concentration of the silicon permeation layer 25 is progressing uniformly.

そして、各加熱処理においては、コントローラ8が、温度センサ15の温度測定データに基づいて、回転炉2の内部温度が加熱時均熱温度に安定するように、ヒータ14のヒーティング動作をフィードバック制御する。そのため、コントローラ8が加熱処理と冷却処理を繰り返す場合であっても、各加熱処理における加熱時均熱温度を一定に制御し、二次粒子の発生を防止することができる。   In each heating process, the controller 8 feedback-controls the heating operation of the heater 14 based on the temperature measurement data of the temperature sensor 15 so that the internal temperature of the rotary furnace 2 is stabilized at the heating soaking temperature. To do. Therefore, even when the controller 8 repeats the heat treatment and the cooling treatment, the soaking temperature during heating in each heat treatment can be controlled to be constant, and the generation of secondary particles can be prevented.

上記のように浸珪処理を施された粉体26は、被膜処理が施される。被膜処理では、エタノールにシリコーン樹脂を溶解させた液に粉体26を投入し、攪拌する。所定時間攪拌したら、更にエタノールを蒸発させながら攪拌し、シリコーン樹脂を粉体26の表面に固着させる。これにより、珪素浸透層25がシリコーン被膜層27で覆われた圧粉磁心用粉末28が生成される。   The powder 26 that has been subjected to the siliconization treatment as described above is subjected to a coating treatment. In the coating treatment, the powder 26 is put into a solution in which a silicone resin is dissolved in ethanol and stirred. After stirring for a predetermined time, stirring is performed while further evaporating ethanol, and the silicone resin is fixed to the surface of the powder 26. Thereby, the powder 28 for dust cores in which the silicon permeation layer 25 is covered with the silicone coating layer 27 is generated.

<圧粉磁心の製造方法>
次に、上記のように製造された圧粉磁心用粉末28を圧粉成形して圧粉磁心を製造する方法について説明する。
圧粉磁心用粉末28を、モータのコアなどの所定形状のキャビティを具備するパンチダイスに充填し、圧粉磁心用粉末28に所定圧と所定熱を加えて加圧成形する。加圧成形体は、キャビティから取り出され、内部に生じた加工歪みを除去するために、高温焼鈍処理が施される。これにより、所定形状の圧粉磁心が製造される。このように製造された圧粉磁心は、鉄粉24の直径Dに対して0.15倍以下の範囲で鉄粉24の表層に珪素浸透層25を形成する圧粉磁心用粉末28を用いているので、加圧成形時に圧粉磁心用粉末28を適度に変形させ、磁心密度や磁束密度が高い。また、圧粉磁心は、珪素浸透層25の鉄粉24の表面からの距離X1や珪素浸透層25におけるSi濃度の分布が粉末間で均一化された圧粉磁心用粉末28を用いているので、圧粉磁心用粉末28の接触面での絶縁性が確保され、渦電流を低減され、比抵抗が高くなる。
<Method of manufacturing a dust core>
Next, a method for producing a dust core by compacting the dust core powder 28 produced as described above will be described.
The powder 28 for powder magnetic core is filled in a punch die having a cavity of a predetermined shape such as a motor core, and the powder 28 for powder magnetic core 28 is pressed by applying a predetermined pressure and a predetermined heat. The pressure-molded body is taken out of the cavity and subjected to a high-temperature annealing process in order to remove processing distortion generated inside. Thereby, the dust core of a predetermined shape is manufactured. The dust core produced in this way uses the powder 28 for the dust core that forms the silicon permeation layer 25 on the surface layer of the iron powder 24 within a range of 0.15 times or less the diameter D of the iron powder 24. Therefore, the powder magnetic core powder 28 is appropriately deformed during pressure molding, and the magnetic core density and magnetic flux density are high. Further, the powder magnetic core uses the powder 28 for the powder magnetic core in which the distance X1 of the silicon-permeable layer 25 from the surface of the iron powder 24 and the Si concentration distribution in the silicon-permeable layer 25 are made uniform among the powders. Insulation is ensured at the contact surface of the powder 28 for the powder magnetic core, eddy current is reduced, and the specific resistance is increased.

図10は、比較例と実施例における浸珪処理の条件を示す図である。
実施例では、次の条件で浸珪処理を行った。平均粒径が150〜212μmの1.5重量%の炭素鋼粉末(鉄粉)を95〜97重量%、平均粒径が50nmで比重が2.2の二酸化珪素粉末を3〜5重量%の割合で攪拌混合した混合粉を回転炉2に投入した後、アルゴン(Ar)とAr供給量に対して30%の水素(H2)の混合ガスを回転炉2に供給し、回転炉2を静止させた状態で加熱する。回転炉2を静止させた状態で、回転炉2の内部温度を加熱時均熱温度の1000℃に15分間維持した後、回転炉2の内部温度が冷却時均熱温度の700℃に到達するまで回転炉2を冷却する。そして、回転炉2の内部温度を700℃に維持した状態で、回転炉2を1分間回転させ、混合粉を攪拌する。このとき、回転炉2は、回転速度25rpmで回転される。その後、回転炉2の回転を停止させ、回転炉2を1000℃に加熱する。上記加熱処理と冷却攪拌処理を4回ずつ繰り返して、加熱処理を行う加熱時間の累計時間が処理時間の1時間に達したら、回転炉2の加熱と回転を停止させ、浸珪処理を終了する。
FIG. 10 is a diagram showing conditions for the siliconizing treatment in the comparative example and the example.
In the examples, the siliconizing treatment was performed under the following conditions. 95 to 97% by weight of 1.5% by weight carbon steel powder (iron powder) having an average particle size of 150 to 212 μm, and 3 to 5% by weight of silicon dioxide powder having an average particle size of 50 nm and a specific gravity of 2.2 After the mixed powder stirred and mixed at a ratio is put into the rotary furnace 2, a mixed gas of 30% hydrogen (H 2 ) with respect to the supply amount of argon (Ar) and Ar is supplied to the rotary furnace 2. Heat in a stationary state. After the rotary furnace 2 is kept stationary, the internal temperature of the rotary furnace 2 is maintained at 1000 ° C., the soaking temperature during heating for 15 minutes, and then the internal temperature of the rotary furnace 2 reaches 700 ° C., the soaking temperature during cooling. The rotary furnace 2 is cooled to And in the state which maintained the internal temperature of the rotary furnace 2 at 700 degreeC, the rotary furnace 2 is rotated for 1 minute, and mixed powder is stirred. At this time, the rotary furnace 2 is rotated at a rotational speed of 25 rpm. Thereafter, the rotation of the rotary furnace 2 is stopped, and the rotary furnace 2 is heated to 1000 ° C. The above heat treatment and cooling agitation treatment are repeated four times each, and when the cumulative time of the heating time for performing the heat treatment reaches 1 hour of the treatment time, the heating and rotation of the rotary furnace 2 are stopped, and the siliconization treatment is finished. .

一方、比較例では、次の条件で浸珪処理を行った。平均粒径が150〜212μmの1.5重量%の炭素鋼粉末(鉄粉)を95〜97重量%、平均粒径が50nmで比重が2.2の二酸化珪素粉末を3〜5重量%の割合で攪拌混合した混合粉を回転炉2に投入した後、アルゴン(Ar)とAr供給量に対して30%の水素(H2)の混合ガスを回転炉
2に供給し、回転炉2を静止させた状態で加熱する。回転炉2の内部温度が処理温度の1000℃まで上昇したら、回転炉2を回転させる。回転炉2は、内部温度を1000℃に維持した状態で、処理時間の1時間連続回転される。その後、回転炉2の加熱と回転を停止させ、浸珪処理を終了する。
On the other hand, in the comparative example, the siliconizing treatment was performed under the following conditions. 95 to 97% by weight of 1.5% by weight carbon steel powder (iron powder) having an average particle size of 150 to 212 μm, and 3 to 5% by weight of silicon dioxide powder having an average particle size of 50 nm and a specific gravity of 2.2 After the mixed powder stirred and mixed at a ratio is put into the rotary furnace 2, a mixed gas of 30% hydrogen (H 2 ) with respect to the supply amount of argon (Ar) and Ar is supplied to the rotary furnace 2. Heat in a stationary state. When the internal temperature of the rotary furnace 2 rises to the processing temperature of 1000 ° C., the rotary furnace 2 is rotated. The rotary furnace 2 is continuously rotated for 1 hour of the processing time while maintaining the internal temperature at 1000 ° C. Thereafter, heating and rotation of the rotary furnace 2 are stopped, and the siliconization process is completed.

<実施例と比較例の歩留まりについて>
発明者は、実施例と比較例の歩留まりについて調べた。ここで、歩留まりは、0%に近い程、二酸化珪素粉末が焼結することにより生成される二次粒子の発生割合が高く、100%に近いほど二次粒子の発生割合が低い(粉末状である)ものとする。
比較例の歩留まりは約5%であった。つまり、比較例は、回転炉2に供給した混合粉の殆どが二次粒子化してしまった。
一方、実施例の歩留まりは約90%であった。つまり、実施例は、回転炉2に供給した混合粉が殆ど二次粒子化せず、各鉄粉の表面に珪素浸透層を形成して細かい粉状の圧粉磁心用粉末を製造することができた。
<About the yield of an Example and a comparative example>
The inventor examined the yield of the example and the comparative example. Here, as the yield is closer to 0%, the generation rate of secondary particles generated by sintering the silicon dioxide powder is higher, and as the yield is closer to 100%, the generation rate of secondary particles is lower (in powder form). )
The yield of the comparative example was about 5%. That is, in the comparative example, most of the mixed powder supplied to the rotary furnace 2 was converted into secondary particles.
On the other hand, the yield of the example was about 90%. In other words, in the example, the mixed powder supplied to the rotary furnace 2 hardly forms secondary particles, and a silicon-penetrating layer is formed on the surface of each iron powder to produce a fine powdery powder magnetic core powder. did it.

上記実験結果より、浸珪処理時においては、回転炉2の内部温度を、二酸化珪素粉末が焼結しない冷却時均熱温度(700℃)まで低下させてから、回転炉2を回転させれば、二次粒子を発生させることなく混合粉を攪拌でき、圧粉磁心用粉末の生産性が向上することが実証された。   From the above experimental results, during the silicidation treatment, if the internal temperature of the rotary furnace 2 is lowered to the cooling soaking temperature (700 ° C.) at which the silicon dioxide powder is not sintered, the rotary furnace 2 is rotated. It was proved that the mixed powder can be stirred without generating secondary particles, and the productivity of the powder for powder magnetic core is improved.

<珪素浸透層の均一化について>
発明者らは、実施例からランダムに10個の粉末を取り出して切断し、電子顕微鏡で切断面を観察した。そして、鉄粉の表面から鉄粉の中心部へ向かって形成される珪素浸透層の距離を、圧粉磁心用粉末別に測定した。その測定結果を、図12に示す。
<Regarding the uniformization of the silicon-permeable layer>
The inventors took out 10 powders at random from the examples, cut them, and observed the cut surfaces with an electron microscope. And the distance of the silicon osmosis | permeation layer formed toward the center part of iron powder from the surface of iron powder was measured according to the powder for powder magnetic cores. The measurement results are shown in FIG.

図12に示すように、ランダムに取り出した粉末の全てが、鉄粉と二酸化珪素粉末が酸化還元反応を発生している。各粉末は、鉄粉の表面におけるSi濃度が4.0%以上6.0%以下の範囲で収束していた。そして、各粉末は、鉄粉の表面から鉄粉の中心部へ向かってSi濃度が減少する割合がほぼ同じであった。更に、各粉末は、珪素浸透層の鉄粉の表面からの距離(珪素浸透層の厚さ)が約20μmであり、粉末間で珪素浸透層の鉄粉の表面からの距離が均一化されていた。   As shown in FIG. 12, iron powder and silicon dioxide powder generate oxidation-reduction reactions in all of the randomly extracted powders. Each powder was converged in a range where the Si concentration on the surface of the iron powder was 4.0% or more and 6.0% or less. Each powder had substantially the same rate of decrease in Si concentration from the surface of the iron powder toward the center of the iron powder. Furthermore, each powder has a distance from the surface of the iron powder of the silicon-permeable layer (thickness of the silicon-permeable layer) of about 20 μm, and the distance from the surface of the iron powder of the silicon-permeable layer is made uniform between the powders. It was.

よって、浸珪処理時に、回転炉2を静止させた状態で回転炉2を1000℃に加熱することにより、浸珪処理を進行させた後、回転炉2を700℃に冷却させ、その後に、回転炉2を回転させて混合粉を攪拌混合させる動作を繰り返すことにより、各鉄粉の表層に形成される珪素浸透層が均一な圧粉磁心用粉末を製造でき、圧粉磁心用粉末の品質が向上することが実証された。   Therefore, at the time of the silicidation process, the rotary furnace 2 is heated to 1000 ° C. while the rotary furnace 2 is stationary, so that the silicification process proceeds, and then the rotary furnace 2 is cooled to 700 ° C., By repeating the operation of rotating the rotary furnace 2 and stirring and mixing the mixed powder, it is possible to produce a powder for a powder magnetic core in which the silicon permeation layer formed on the surface layer of each iron powder is uniform, and the quality of the powder for the powder magnetic core Proved to improve.

本発明は、上記実施形態に限定されることなく、色々な応用が可能である。
(1)例えば、上記実施形態では、回転炉2内を、Arと、Arの供給量に対して30%の水素を混合した混合ガスを充填した雰囲気としたが、回転炉2内を真空状態にした雰囲気としても良い。また、減圧雰囲気下、あるいは生成したガス分圧が低い、具体的には低一酸化炭素(CO)雰囲気下、或いは、低窒素(N2)雰囲気下で浸珪処理を行っても良い。また、処理ガスは、軟磁性金属粉末と浸珪用粉末との酸化還元反応を促進するものであれば、炭素ガス等の別のガスであっても良い。
(2)例えば、上記実施形態では、回転炉2の内壁に固設される攪拌板10を回転炉2の軸心と平行な直線状に設けたが、回転炉2の内壁に固定される攪拌板を螺旋状に設けても良い。この場合、回転炉2に供給した混合粉が螺旋状の攪拌板に載せられて、回転炉2の回転に従って少しずつ落下するため、回転炉2の底部にある混合粉が上方から落ちてきた混合粉の重みで圧縮されにくくなる。この結果、より確実に混合粉の二次粒子化を防ぎ、圧粉磁心用粉末の歩留まりを向上させることができる。
(3)例えば、上記実施形態では、回転炉2から第1及び第2ヒータ部材14A,14Bを取り外して回転炉2を外気冷却したが、ヒータ14を回転炉2に常時装着するものにして、回転炉2に冷却水路を設けても良い。この場合、冷却時均熱温度の管理をより簡単で精度良く行えるようになる。
(4)例えば、上記実施形態では、軟磁性金属粉末の一例として鉄粉24を上げたが、Fe−Si合金、Fe−Al合金、Fe−Si−Al合金、チタン、アルミニウムなどを軟磁性金属粉末としても良い。
(5)例えば、上記実施形態では、二酸化珪素粉末22を浸珪用粉末の一例に挙げたが、二酸化珪素を少なくとも含む粉末と、金属炭化物又は炭素同素体の何れか一方又は双方を含む粉体とを混合した混合粉末や、二酸化珪素を含む粉末と炭化珪素の粉末とを混合した混合粉末を浸珪用粉末としても良い。或いは、軟磁性粉末として、少なくとも酸素元素を含む鉄系粉末を用い、浸珪用粉末として、少なくとも炭素元素を含む粉末を用いても良い。
The present invention is not limited to the above embodiment, and various applications are possible.
(1) For example, in the above embodiment, the inside of the rotary furnace 2 is filled with a mixed gas obtained by mixing 30% hydrogen with Ar and the supply amount of Ar. It is good also as an atmosphere. Further, the siliconizing treatment may be performed in a reduced pressure atmosphere, or in a low gas partial pressure, specifically in a low carbon monoxide (CO) atmosphere or in a low nitrogen (N 2 ) atmosphere. The processing gas may be another gas such as carbon gas as long as it promotes the oxidation-reduction reaction between the soft magnetic metal powder and the silicon immersion powder.
(2) For example, in the above embodiment, the stirring plate 10 fixed to the inner wall of the rotary furnace 2 is provided in a straight line parallel to the axis of the rotary furnace 2, but the stirring is fixed to the inner wall of the rotary furnace 2. The plate may be provided in a spiral shape. In this case, since the mixed powder supplied to the rotary furnace 2 is placed on a spiral stirring plate and gradually falls as the rotary furnace 2 rotates, the mixed powder at the bottom of the rotary furnace 2 is dropped from above. It becomes difficult to be compressed by the weight of the powder. As a result, it is possible to more reliably prevent the mixed powder from becoming secondary particles and improve the yield of the powder for the powder magnetic core.
(3) For example, in the above embodiment, the first and second heater members 14A and 14B are removed from the rotary furnace 2 to cool the rotary furnace 2 to the outside, but the heater 14 is always attached to the rotary furnace 2, A cooling water channel may be provided in the rotary furnace 2. In this case, the control of the soaking temperature during cooling can be performed more easily and accurately.
(4) For example, in the above embodiment, the iron powder 24 is raised as an example of the soft magnetic metal powder, but Fe-Si alloy, Fe-Al alloy, Fe-Si-Al alloy, titanium, aluminum and the like are used as the soft magnetic metal. It may be a powder.
(5) For example, in the said embodiment, although the silicon dioxide powder 22 was mentioned as an example of the powder for silicification, the powder containing at least silicon dioxide, and the powder containing either one or both of a metal carbide or a carbon allotrope, Alternatively, a mixed powder obtained by mixing silicon powder or a powder containing silicon dioxide and a silicon carbide powder may be used as a siliconizing powder. Alternatively, an iron-based powder containing at least an oxygen element may be used as the soft magnetic powder, and a powder containing at least a carbon element may be used as the siliconizing powder.

1 圧粉磁心用粉末製造装置
2 回転炉
7 モータ
8 コントローラ
10 攪拌板
14 ヒータ
15 温度センサ
21 鉄粉(軟磁性金属粉末の一例)
22 二酸化珪素粉末(浸珪用粉末の一例)
23 混合粉
25 珪素浸透層
28 圧粉磁心用粉末
DESCRIPTION OF SYMBOLS 1 Powder manufacturing apparatus for dust cores 2 Rotary furnace 7 Motor 8 Controller 10 Stirring plate 14 Heater 15 Temperature sensor 21 Iron powder (an example of soft magnetic metal powder)
22 Silicon dioxide powder (an example of siliconized powder)
23 Mixed powder 25 Silicon permeation layer 28 Powder for powder magnetic core

Claims (5)

圧粉磁心用粉末を製造する圧粉磁心用粉末製造方法において、
軟磁性金属粉末と二酸化珪素を含む浸珪用粉末の混合粉を、攪拌せずに、前記浸珪用粉末から珪素元素が脱離して前記軟磁性金属粉末に拡散浸透するために必要な加熱時均熱温度に加熱する加熱処理工程と、
前記加熱された混合粉を前記浸珪用粉末が焼結しない冷却時均熱温度に冷却した状態で、前記混合粉を攪拌する冷却時均熱温度時の攪拌工程と、を有し、
前記加熱処理工程と前記冷却時均熱温度時の攪拌工程とを繰り返し行うことにより、前記軟磁性金属粉末の表層に前記珪素元素が拡散浸透した珪素浸透層を形成する
ことを特徴とする圧粉磁心用粉末製造方法。
In the method for producing a powder for a powder magnetic core for producing a powder for a powder magnetic core,
During the heating necessary for diffusing and infiltrating the soft magnetic metal powder by detaching the silicon element from the silicon powder without stirring the mixed powder of the silicon powder containing the soft magnetic metal powder and silicon dioxide. A heat treatment step of heating to a soaking temperature;
In the state where the heated powder mixture is cooled to a cooling soaking temperature at which the siliconization powder does not sinter, the stirring step is performed at the cooling soaking temperature for stirring the mixed powder.
By forming the silicon-penetrated layer in which the silicon element is diffused and permeated into the surface layer of the soft magnetic metal powder by repeatedly performing the heat treatment step and the stirring step at the soaking temperature at the time of cooling, the green compact is characterized in that Magnetic core powder manufacturing method.
請求項1に記載する圧粉磁心用粉末製造方法において、
前記加熱処理工程における加熱時間を累計した累計時間が、前記珪素浸透層の前記軟磁性金属粉末の表面からの距離が、前記軟磁性金属粉末の直径の0.15倍未満となるように、前記混合粉を加熱するための処理時間と等しい
ことを特徴とする圧粉磁心用粉末製造方法。
In the method for producing a powder for a powder magnetic core according to claim 1,
The cumulative time obtained by accumulating the heating time in the heat treatment step is such that the distance of the silicon-penetrating layer from the surface of the soft magnetic metal powder is less than 0.15 times the diameter of the soft magnetic metal powder. A method for producing a powder for a powder magnetic core, characterized by being equal to a processing time for heating the mixed powder.
請求項1又は請求項2に記載する圧粉磁心用粉末製造方法において、
前記浸珪用粉末が二酸化珪素粉末であり、
前記加熱時均熱温度が1000℃であって、
前記冷却時均熱温度が700℃である
ことを特徴とする圧粉磁心用粉末製造方法。
In the method for producing a powder for a powder magnetic core according to claim 1 or 2,
The siliconizing powder is silicon dioxide powder,
The soaking temperature during heating is 1000 ° C.,
The method for producing a powder for a powder magnetic core, wherein the soaking temperature during cooling is 700 ° C.
圧粉磁心用粉末を製造する圧粉磁心用粉末製造装置において、
軟磁性金属粉末と二酸化珪素を含む浸珪用粉末の混合粉が投入されるものであって、軸線を中心に回転可能に保持されており、内壁に攪拌部材が立設された回転炉と、
前記回転炉に駆動力を付与するモータと、
前記回転炉を加熱するヒータと、
前記ヒータのヒーティング動作と前記モータの駆動を制御するコントローラと、を有し、
前記コントローラは、前記浸珪用粉末から珪素元素が脱離して前記軟磁性金属粉末に拡散浸透するために必要な加熱時均熱温度に前記回転炉を加熱する場合、前記モータを停止させて、前記回転炉を静止させる一方、前記加熱された混合粉を前記浸珪用粉末が焼結しない冷却時均熱温度に冷却する場合、前記モータを駆動させて、前記回転炉を回転させる動作を、繰り返し行わせるものである
ことを特徴とする圧粉磁心用粉末製造装置。
In the powder manufacturing apparatus for the powder magnetic core for manufacturing the powder for the powder magnetic core,
A rotary furnace in which a mixed powder of siliconizing powder containing soft magnetic metal powder and silicon dioxide is charged, is held rotatably about an axis, and a stirring member is erected on an inner wall;
A motor for applying a driving force to the rotary furnace;
A heater for heating the rotary furnace;
A controller for controlling the heating operation of the heater and the driving of the motor;
When the controller heats the rotary furnace to a soaking temperature required for heating so that silicon element is desorbed from the siliconization powder and diffused and penetrates into the soft magnetic metal powder, the motor is stopped, While cooling the rotary furnace, when cooling the heated mixed powder to a cooling soaking temperature at which the siliconization powder does not sinter, the motor is driven to rotate the rotary furnace, A powder manufacturing apparatus for a powder magnetic core, characterized by being repeatedly performed.
請求項4に記載する圧粉磁心用粉末製造装置において、
前記回転炉の内部温度を測定する温度センサを有し、
前記コントローラは、前記温度センサの温度測定データに基づいて、前記回転炉の内部温度が前記加熱時均熱温度に安定するように、前記ヒータのヒーティング動作をフィードバック制御する
ことを特徴とする圧粉磁心用粉末製造装置。
In the powder magnetic core manufacturing apparatus according to claim 4,
A temperature sensor for measuring the internal temperature of the rotary furnace,
The controller performs feedback control on the heating operation of the heater based on temperature measurement data of the temperature sensor so that the internal temperature of the rotary furnace is stabilized at the soaking temperature during heating. Powder manufacturing equipment for powder magnetic cores.
JP2010020213A 2010-02-01 2010-02-01 Method for producing powder for dust core and apparatus for producing powder for dust core Withdrawn JP2011157591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010020213A JP2011157591A (en) 2010-02-01 2010-02-01 Method for producing powder for dust core and apparatus for producing powder for dust core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010020213A JP2011157591A (en) 2010-02-01 2010-02-01 Method for producing powder for dust core and apparatus for producing powder for dust core

Publications (1)

Publication Number Publication Date
JP2011157591A true JP2011157591A (en) 2011-08-18

Family

ID=44589789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010020213A Withdrawn JP2011157591A (en) 2010-02-01 2010-02-01 Method for producing powder for dust core and apparatus for producing powder for dust core

Country Status (1)

Country Link
JP (1) JP2011157591A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103177838A (en) * 2012-12-30 2013-06-26 中南大学 Soft magnetism composite powder and preparation method thereof
CN105115187A (en) * 2015-09-18 2015-12-02 天津阜昭合金材料有限公司 Integrated heating and refrigerating device used for permanent magnet powder
WO2016129263A1 (en) * 2015-02-09 2016-08-18 Jfeスチール株式会社 Raw material powder for soft magnetic powder, and soft magnetic powder for powder magnetic core
CN115432704A (en) * 2021-06-04 2022-12-06 丰田自动车株式会社 Method for producing guest-free silicon inclusion compound and apparatus for producing guest-free silicon inclusion compound

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103177838A (en) * 2012-12-30 2013-06-26 中南大学 Soft magnetism composite powder and preparation method thereof
WO2016129263A1 (en) * 2015-02-09 2016-08-18 Jfeスチール株式会社 Raw material powder for soft magnetic powder, and soft magnetic powder for powder magnetic core
JPWO2016129263A1 (en) * 2015-02-09 2017-04-27 Jfeスチール株式会社 Raw powder for soft magnetic powder and soft magnetic powder for dust core
KR20170106415A (en) * 2015-02-09 2017-09-20 제이에프이 스틸 가부시키가이샤 Raw material powder for soft magnetic powder, and soft magnetic powder for dust core
CN107206486A (en) * 2015-02-09 2017-09-26 杰富意钢铁株式会社 Soft magnetic powder is with material powder and compressed-core soft magnetic powder
KR101963069B1 (en) * 2015-02-09 2019-03-27 제이에프이 스틸 가부시키가이샤 Raw material powder for soft magnetic powder, and soft magnetic powder for dust core
CN107206486B (en) * 2015-02-09 2021-09-10 杰富意钢铁株式会社 Raw material powder for soft magnetic powder and soft magnetic powder for dust core
CN105115187A (en) * 2015-09-18 2015-12-02 天津阜昭合金材料有限公司 Integrated heating and refrigerating device used for permanent magnet powder
CN105115187B (en) * 2015-09-18 2017-05-10 天津阜昭合金材料有限公司 Integrated heating and refrigerating device used for permanent magnet powder
CN115432704A (en) * 2021-06-04 2022-12-06 丰田自动车株式会社 Method for producing guest-free silicon inclusion compound and apparatus for producing guest-free silicon inclusion compound
CN115432704B (en) * 2021-06-04 2024-04-09 丰田自动车株式会社 Method for producing guest-free silicon clathrate and apparatus for producing guest-free silicon clathrate

Similar Documents

Publication Publication Date Title
JP5187438B2 (en) Powder core powder manufacturing method, powder magnetic core powder using powder core powder manufactured by the powder core manufacturing method, and powder core powder manufacturing apparatus
CN102473515B (en) The manufacture method of R-T-B class sintered magnet and R-T-B class sintered magnet
EP3565681A1 (en) Core-shell alloy powder for additive manufacturing, an additive manufacturing method and an additively manufactured precipitation dispersion strengthened alloy component
JP4422773B2 (en) Powder for powder magnetic core and manufacturing method thereof
CN106086530B (en) The preparation method and its device of a kind of in-situ Al-base composition
JP2011157591A (en) Method for producing powder for dust core and apparatus for producing powder for dust core
CN104831100A (en) Method for preparing graphene reinforced metal-based composite material through discharge plasma (SPS) sintering
EP2523766B1 (en) Powder for dust core, dust core made of the powder for dust core by powder compaction, and method of producing the powder for dust core
TW201026411A (en) Production of molybdenum metal powder
CN105177338B (en) A kind of preparation method of the adjustable nano porous metal material of yardstick
CN106077660A (en) A kind of powder metallurgy prepares the method for engine valve seat
JP2008266755A (en) Manufacturing method of transition metal nanoparticle
EP2227344A1 (en) Powder for magnetic core, method for manufacturing powder for magnetic core, and dust core
CN103597108B (en) RH diffuse source and use its manufacture method of R-T-B class sintered magnet
CN106987752A (en) A kind of gradient hard alloy preparation method of case-carbonizing
JPWO2009011355A1 (en) Discharge surface treatment electrode manufacturing method and discharge surface treatment electrode
JP2008099360A (en) Method of forming non-magnetic region of steel material, and steel material having non-magnetic region formed thereon
JP5315183B2 (en) Method for producing powder for powder magnetic core
CN105798319A (en) Preparation method and device for silver-tungsten electrical contact material as well as electrical contact material and electrical contact
CN109136914B (en) A kind of method of the laser melting coating of titanium-oxide-coated graphene oxide/surface of steel plate
TW200920691A (en) Method and devices for producing air sensitive electrode materials for lithium ion battery applications
CN111970778A (en) Method and device for microwave high-flux sintering of powder block
JP2011231364A (en) Method of producing powder for dust core, dust core using powder for dust core produced by the method of producing powder for dust core, and apparatus for producing powder for dust core
JP2011246812A (en) Method for producing powder for dust core and device for producing the powder for the dust core
WO2004111302A1 (en) Device for electrical discharge coating and method for electrical discharge coating

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130402