JP2011246647A - Unsaturated polyester resin - Google Patents

Unsaturated polyester resin Download PDF

Info

Publication number
JP2011246647A
JP2011246647A JP2010123163A JP2010123163A JP2011246647A JP 2011246647 A JP2011246647 A JP 2011246647A JP 2010123163 A JP2010123163 A JP 2010123163A JP 2010123163 A JP2010123163 A JP 2010123163A JP 2011246647 A JP2011246647 A JP 2011246647A
Authority
JP
Japan
Prior art keywords
unsaturated polyester
compound
polyester resin
acid
rosin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010123163A
Other languages
Japanese (ja)
Other versions
JP4699558B1 (en
Inventor
Tetsuji Moroiwa
哲治 諸岩
Nobutaka Yoshida
信貴 吉田
Koji Aihara
宏次 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan U-Pica Co Ltd
Original Assignee
Japan U-Pica Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010123163A priority Critical patent/JP4699558B1/en
Application filed by Japan U-Pica Co Ltd filed Critical Japan U-Pica Co Ltd
Priority to PCT/JP2011/001219 priority patent/WO2011148545A1/en
Priority to KR1020127032160A priority patent/KR101815267B1/en
Priority to EP11786249.0A priority patent/EP2578611B1/en
Priority to US13/700,422 priority patent/US8828636B2/en
Priority to CN201180026548.8A priority patent/CN102918075B/en
Priority to TW100110139A priority patent/TWI504588B/en
Application granted granted Critical
Publication of JP4699558B1 publication Critical patent/JP4699558B1/en
Publication of JP2011246647A publication Critical patent/JP2011246647A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a polyester resin having excellent performance in water-resistance, low shrinkage property and mechanical physical property and having small load affected to the environment to various fields.SOLUTION: The compound is represented by the chemical formula. In the formula, X is an aliphatic or aromatic group, Y is a purified rosin residual group, a disproportionated rosin residual group or a hydrogenated rosin residual group, and n=0-1. Further, in the unsaturated polyester resin, the compound is an indispensable component for an alcohol component.

Description

本発明は、アルコール化合物、及び該化合物を利用した不飽和ポリエステル樹脂に関する。   The present invention relates to an alcohol compound and an unsaturated polyester resin using the compound.

不飽和ポリエステル樹脂は、ガラス繊維、炭素繊維、有機繊維等により強化された繊維強化成形品のバインダー樹脂として運輸、電気、建築、土木、住宅設備等、広範な用途に使用されている。しかしながら、未だに成形時の反りや耐水性といった課題が残っている。一方で熱硬化性樹脂であるが故にリサイクルが難しく、使用後の成形品あるいは成形時に発生する端材の処理が問題となってきた。最近、廃棄成形品をモノマーまで分解して再生利用する技術が開発されたが、いまだに埋め立て処理または焼却処理が一般的である。そのため、微生物による分解あるいは焼却時に発生する二酸化炭素が温室効果ガスとして地球温暖化を促進するという問題点がある。近年、再生可能なバイオマス資源より得られる原料を用いたプラスチックの開発が盛んになってきている。これらバイオマス資源より生産されるプラスチックの意義の一つは、これらのプラスチックを埋め立て処理時あるいは焼却処理時に発生する二酸化炭素をまた植物が吸収してバイオマスを再生産することにより、実質的に環境中の二酸化炭素量に影響を及ぼさない、いわゆるカーボンニュートラルの実現にある。   Unsaturated polyester resins are used in a wide range of applications such as transportation, electricity, architecture, civil engineering, and housing facilities as binder resins for fiber reinforced molded products reinforced with glass fibers, carbon fibers, organic fibers, and the like. However, problems such as warpage and water resistance still remain. On the other hand, since it is a thermosetting resin, it is difficult to recycle, and the treatment of the molded product after use or the end material generated at the time of molding has become a problem. Recently, a technology for decomposing and recycling a waste molded product into a monomer has been developed, but a landfill process or an incineration process is still common. Therefore, there is a problem that carbon dioxide generated at the time of decomposition or incineration by microorganisms promotes global warming as a greenhouse gas. In recent years, development of plastics using raw materials obtained from renewable biomass resources has become active. One of the significance of plastics produced from these biomass resources is that the plant absorbs carbon dioxide generated during landfilling or incineration, and the plant regenerates biomass, substantially in the environment. It is in the realization of so-called carbon neutral that does not affect the amount of carbon dioxide.

不飽和ポリエステルとして、例えば、ロジン−無水マレイン酸付加物を飽和酸として用いた不飽和ポリエステルが知られている(非特許文献1)。   As an unsaturated polyester, for example, an unsaturated polyester using a rosin-maleic anhydride adduct as a saturated acid is known (Non-Patent Document 1).

滝山栄一郎著 プラスチック材料講座10 ポリエステル樹脂、25頁日刊工業新聞社(昭和45年)Eiichiro Takiyama, Plastic Materials Course 10 Polyester resin, 25 pages Nikkan Kogyo Shimbun (Showa 45)

しかしながら、従来では、不飽和ポリエステル樹脂において、バイオマス資源より誘導される原料として油脂より誘導される脂肪族ジカルボン酸類、脂肪族モノカルボン酸類が使用される例はあるが用途に応じた性能付与が主たる目的であり、積極的に環境負荷低減のためにバイオマス資源より誘導される原料を使用する提案は見当たらない。   However, conventionally, in unsaturated polyester resins, there are examples in which aliphatic dicarboxylic acids and aliphatic monocarboxylic acids derived from fats and oils are used as raw materials derived from biomass resources. There are no proposals to use raw materials derived from biomass resources in order to reduce the environmental burden.

したがって、石油由来の原料を用いた不飽和ポリエステル樹脂に比べて同等以上の性能を有し、環境へ及ぼす負荷の小さいバイオマス由来原料を用いた不飽和ポリエステル樹脂の開発が望まれている。   Therefore, development of an unsaturated polyester resin using a biomass-derived raw material having a performance equal to or higher than that of an unsaturated polyester resin using a petroleum-derived raw material and having a small environmental impact is desired.

かかる状況下、ロジン系化合物を不飽和ポリエステル樹脂原料に使用することで耐水性や耐湿性が向上することは公知の事実として知られているが、ロジン系化合物が1官能原料であることから分子鎖の大きい物性に優れる樹脂が得られない点、分子鎖の大きいものを得ようとすると分子鎖末端にしか反応させることできず、そのコンテントが少なくなってしまい性能発揮に至らないといった課題がある。   Under such circumstances, it is known as a known fact that water resistance and moisture resistance are improved by using a rosin compound as an unsaturated polyester resin raw material. However, since a rosin compound is a monofunctional raw material, There is a problem that a resin with large chain properties cannot be obtained, and when trying to obtain a polymer with a large molecular chain, it can be reacted only at the end of the molecular chain, and its content is reduced and performance cannot be exhibited. .

本発明の目的は、耐水性、低収縮性、機械的物性において優れた性能を有し、且つ環境へ及ぼす負荷の小さいポリエステル樹脂を様々な分野へ提供することにある。   An object of the present invention is to provide a polyester resin having various performances in terms of water resistance, low shrinkage and mechanical properties and having a low environmental impact to various fields.

本発明者らは、前記課題を解決するために鋭意検討の結果、新規な化合物及び不飽和ポリエステル樹脂を見出し、本発明を完成させた。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found a novel compound and an unsaturated polyester resin and completed the present invention.

すなわち、本発明の化合物は、下記化学式[化1]、
で示される化合物(但し、式中Xは脂肪族または芳香族であり、Yは精製ロジン残基、不均化ロジン残基、又は水添ロジン残基であり、n=0〜1である。)であることを特徴とする。
That is, the compound of the present invention has the following chemical formula:
Wherein X is aliphatic or aromatic, Y is a purified rosin residue, disproportionated rosin residue, or hydrogenated rosin residue, and n = 0-1. ).

また、本発明の化合物の好ましい実施態様において、前記化合物が、1分子中に2個のエポキシ基を有する下記化合物[化2]、
で示される化合物(但し、式中Xは、脂肪族または芳香族であり、n=0〜1である。)のエポキシ基に、精製ロジン、不均化ロジン、水添ロジンから選ばれる1種以上を付加反応させて得られることを特徴とする。
In a preferred embodiment of the compound of the present invention, the compound has the following compound [2] having two epoxy groups in one molecule:
A compound selected from the group consisting of a purified rosin, a disproportionated rosin, and a hydrogenated rosin on the epoxy group of the compound represented by formula (wherein X is aliphatic or aromatic and n = 0 to 1). The above is obtained by addition reaction.

また、本発明の不飽和ポリエステル樹脂は、前記本発明の化合物が、アルコール成分の必須成分であることを特徴とする。   The unsaturated polyester resin of the present invention is characterized in that the compound of the present invention is an essential component of an alcohol component.

また、本発明の不飽和ポリエステル樹脂の好ましい実施態様において、前記本発明の化合物が、不飽和ポリエステル原料として20重量%以上配合されたことを特徴とする。   In a preferred embodiment of the unsaturated polyester resin of the present invention, the compound of the present invention is blended in an amount of 20% by weight or more as an unsaturated polyester raw material.

また、本発明のコンパウンドは、前記不飽和ポリエステル樹脂を配合されていることを特徴とする。   In addition, the compound of the present invention is characterized by blending the unsaturated polyester resin.

また、本発明のコンパウンドの好ましい実施態様において、前記コンパウンドが、シートモールディングコンパウンド、又はバルクモールディングコンパウンドであることを特徴とする。   In a preferred embodiment of the compound according to the present invention, the compound is a sheet molding compound or a bulk molding compound.

本発明の不飽和ポリエステル樹脂は、石油由来の原料を用いた不飽和ポリエステル樹脂と比較しても、耐水性、低収縮性、機械的物性において優れた性能を有するという有利な効果を奏する。   The unsaturated polyester resin of the present invention has an advantageous effect of having excellent performance in water resistance, low shrinkage, and mechanical properties as compared with an unsaturated polyester resin using a petroleum-derived raw material.

本発明の不飽和ポリエステル樹脂は、従来の不飽和ポリエステル樹脂に比べ、吸水率が低く、樹脂強度があり、硬化時の収縮が小さいため、この樹脂を使用した繊維強化成形品(以下FRP)は、耐水性に優れた寸法精度のあるものとなるという有利な効果を奏する。また、バイオマス由来原料を使用していることから環境負荷の小さい成形品を得ることができるという有利な効果を奏する。   Since the unsaturated polyester resin of the present invention has a lower water absorption, a higher resin strength, and a smaller shrinkage at the time of curing than a conventional unsaturated polyester resin, a fiber reinforced molded product (hereinafter referred to as FRP) using this resin is There is an advantageous effect that the dimensional accuracy is excellent in water resistance. Moreover, since the raw material derived from biomass is used, there exists an advantageous effect that a molded product with a small environmental load can be obtained.

また、本発明の不飽和ポリエステル樹脂を配合したシートモールディングコンパウンド及びバルクモールディングコンパウンドは、上記と同様に耐水性、寸法精度に優れた成形品を得ることができるという有利な効果を奏する。すなわち、FRPの適用範囲を広げるものである。   Moreover, the sheet molding compound and the bulk molding compound containing the unsaturated polyester resin of the present invention have an advantageous effect that a molded product having excellent water resistance and dimensional accuracy can be obtained as described above. That is, the application range of FRP is expanded.

合成例1で得られた不飽和ポリエステル樹脂のIR(赤外線吸収スペクトル)チャートを示す。The IR (infrared absorption spectrum) chart of the unsaturated polyester resin obtained in Synthesis Example 1 is shown. 合成例1で得られた不飽和ポリエステル樹脂の1H−NMR(核磁気共鳴)スペクトルを示す。The 1 H-NMR (nuclear magnetic resonance) spectrum of the unsaturated polyester resin obtained in Synthesis Example 1 is shown. 合成例1で得られたアルコール化合物の赤外線吸収スペクトルを示す。The infrared absorption spectrum of the alcohol compound obtained by the synthesis example 1 is shown. 合成例1で得られたアルコール化合物の1H−NMR(核磁気共鳴)スペクトルを示す。1 shows the 1 H-NMR (nuclear magnetic resonance) spectrum of the alcohol compound obtained in Synthesis Example 1.

以下、本発明について更に詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明の化合物は、下記化学式[化3]、
で示される化合物(但し、式中Xは脂肪族または芳香族であり、Yは精製ロジン残基、不均化ロジン残基、又は水添ロジン残基であり、n=0〜1である。)である。
The compound of the present invention has the following chemical formula:
Wherein X is aliphatic or aromatic, Y is a purified rosin residue, disproportionated rosin residue, or hydrogenated rosin residue, and n = 0-1. ).

また、本発明の化合物の好ましい実施態様において、前記[化3]に示す化合物が、1分子中に2個のエポキシ基を有する下記化合物[化4]、
で示される化合物(但し、式中Xは、脂肪族または芳香族であり、n=0〜1である。)のエポキシ基に、精製ロジン、不均化ロジン、水添ロジンから選ばれる1種以上を付加反応させることによって得られる。
In a preferred embodiment of the compound of the present invention, the compound represented by the above [Chemical Formula 3] has the following compound [Chemical Formula 4] having two epoxy groups in one molecule:
A compound selected from the group consisting of a purified rosin, a disproportionated rosin, and a hydrogenated rosin on the epoxy group of the compound represented by formula (wherein X is aliphatic or aromatic and n = 0 to 1). This can be obtained by addition reaction.

ここで、本明細書中において、ロジンとは、松類から得られる天然樹脂であり、その主成分は、アビエチン酸、パラストリン酸、ネオアビエチン酸、ピマル酸、デヒドロアビエチン酸、イソピマル酸、サンダラコピマル酸、ジヒドロアビエチン酸等の樹脂酸及びこれらの混合物のことを意味する。ロジンは、パルプを製造する工程で副産物として得られるトール油から得られるトールロジン、生松ヤニから得られるガムロジン、松の切株から得られるウッドロジン等に大別され、本発明に用いられるロジンは、精製ロジン、不均化ロジン、水添ロジンから選ばれる1種以上である。   Here, in the present specification, rosin is a natural resin obtained from pine, and its main component is abietic acid, parastrinic acid, neoabietic acid, pimaric acid, dehydroabietic acid, isopimaric acid, sandaracopi It means resin acids such as malic acid and dihydroabietic acid, and mixtures thereof. Rosin is roughly divided into tall rosin obtained from tall oil obtained as a by-product in the process of producing pulp, gum rosin obtained from raw pine ani, wood rosin obtained from pine stumps, etc. One or more selected from rosin, disproportionated rosin and hydrogenated rosin.

さらに、本発明の不飽和ポリエステル樹脂は、前記本発明の化合物が、アルコール成分の必須成分である。   Furthermore, in the unsaturated polyester resin of the present invention, the compound of the present invention is an essential component of the alcohol component.

本発明の不飽和ポリエステル樹脂は、2段反応からなり、1段目の反応で下記化合物(a)を得てから、2段目に従来と同様の方法で不飽和ポリエステルを製造するものである。   The unsaturated polyester resin of the present invention comprises a two-stage reaction, and after obtaining the following compound (a) by the first-stage reaction, an unsaturated polyester is produced in the second stage by the same method as before. .

まず、本発明の不飽和ポリエステル樹脂の必須アルコール原料となる下記化学式(2)で示した化合物(a)([化6])について説明する。化合物(a)は、例えば、化学式(1)([化5])で示される1分子中に2個のエポキシ基を有する化合物のエポキシ基に精製ロジン、不均化ロジン、水添ロジンから選ばれる1種以上を公知の触媒の存在下、窒素下、温度130〜185℃で酸価が5mgKOH/g未満まで付加反応させて得ることができる。   First, the compound (a) ([Chemical Formula 6]) represented by the following chemical formula (2), which is an essential alcohol raw material for the unsaturated polyester resin of the present invention, will be described. The compound (a) is selected from, for example, a purified rosin, a disproportionated rosin, and a hydrogenated rosin as an epoxy group of a compound having two epoxy groups in one molecule represented by the chemical formula (1) ([Chemical Formula 5]) One or more of these can be obtained by addition reaction in the presence of a known catalyst under nitrogen at a temperature of 130 to 185 ° C. until the acid value is less than 5 mg KOH / g.

化学式(1)([化5])
(式中Xは、脂肪族または芳香族であり、n=0〜1である。)
Chemical formula (1) ([Chemical formula 5])
(In the formula, X is aliphatic or aromatic, and n = 0 to 1.)

化学式(2)化合物(a)([化6])
(式中Xは、脂肪族または芳香族であり、Yは、精製ロジン残基、不均化ロジン残基、又は水添ロジン残基であり、n=0〜1である。)
Compound (a) ([Chemical Formula 6])
(Wherein X is aliphatic or aromatic, Y is a purified rosin residue, a disproportionated rosin residue, or a hydrogenated rosin residue, and n = 0 to 1.)

反応温度について特に限定されるものではないが、1段目の反応温度が185℃以上になるとエポキシ化合物分子内に存在する水酸基または、ロジンが反応して生成した水酸基と未反応のロジンが脱水反応を起こし、ポリエステル原料となるアルコールが得られない虞があるという観点から、好ましくは、1段目の反応温度は185℃未満である。   The reaction temperature is not particularly limited, but when the reaction temperature at the first stage is 185 ° C. or higher, the hydroxyl group present in the epoxy compound molecule or the hydroxyl group formed by the reaction of rosin and the unreacted rosin is dehydrated. From the viewpoint that the alcohol as the polyester raw material may not be obtained, the first stage reaction temperature is preferably less than 185 ° C.

また、反応時間を短くする観点から、好ましくは、130℃以上で反応させることができる。1段目の反応終点は、酸価で規定しているが、酸価が5mgKOH/g以上で2段目の反応に移行すると未反応のロジンが分子鎖形成を妨げる反応を起こし、目的とする分子量の不飽和ポリエステルが得られない虞がある。また化学式(1)で示される1分子中に2個のエポキシ基を有する化合物の繰り返し数nが1より大きいと生成した化合物が多官能アルコールとなり、不飽和ポリエステルが分岐し粘度が高くなったり、ゲル化を起こし、目的とする不飽和ポリエステルが得られない虞がある。1段目で生成した化合物(a)の添加量については特に限定されない。耐水性や物性面においてその効果が低く、且つ環境負荷低減効果も低くなるという観点から、1段目で生成した化合物(a)は、目的とする不飽和ポリエステル原料中の重量で20%以上含まれるのが好ましい。   Further, from the viewpoint of shortening the reaction time, the reaction can be preferably performed at 130 ° C. or higher. The reaction end point of the first stage is defined by the acid value. However, when the acid value is 5 mgKOH / g or more and the reaction proceeds to the second stage reaction, the unreacted rosin causes a reaction that hinders the formation of the molecular chain, which is the target. There is a possibility that a molecular weight unsaturated polyester cannot be obtained. Further, when the number n of the compound having two epoxy groups in one molecule represented by the chemical formula (1) is larger than 1, the resulting compound becomes a polyfunctional alcohol, the unsaturated polyester is branched and the viscosity is increased, There is a possibility that gelation occurs and the target unsaturated polyester cannot be obtained. The amount of compound (a) added in the first stage is not particularly limited. The compound (a) produced in the first stage is contained in an amount of 20% or more by weight in the target unsaturated polyester raw material from the viewpoint that the effect in terms of water resistance and physical properties is low and the effect of reducing the environmental load is also low. Preferably.

化学式(1)([化5])で示される1分子中に2個のエポキシ基を有する化合物は、特に限定はされないが、1分子中に2個のフェノール性水酸基を有するフェノール類、1分子中に2個の水酸基を有するアルコール類を、単独又は2種以上を組み合わせて、公知の方法によりエピクロルヒドリンにてエポキシ化することにより製造することができる。また、市販のエポキシ化合物を使用することもできる。市販のエポキシ化合物としては、三菱化学社製の「JER828」、旭化成ケミカルズ社製の「AER260」、DIC社製「エピクロン840、850」、東都化成社製の「エポトート128」、ダウケミカル社製の「D.E.R.317」、「D.E.R.331」、住友化学工業社製の「スミエポキシESA−011」等のビスフェノールA型エポキシ化合物、DIC社製の「エピクロン830S」、三菱化学社製の「エピコート807」、東都化成社製の「エポトートYDF−170」、旭化成ケミカルズ社製の「アラルダイトXPY306」等のビスフェノールF型エポキシ化合物、日本化薬製の「EBPS−200」、旭電化工業社製の「EPX−30」、DIC社製の「エピクロンEXA1514」等のビスフェノールS型エポキシ化合物、大阪ガスケミカル社製の「BPFG」等のビスフェノールフルオレン型エポキシ化合物、三菱化学社製の「YL−6056」、「YX−4000」等のビキシレノール型、或いはビフェニル型エポキシ化合物、又はそれらの混合物、新日本理化社製の「HBE−100」、東都化成社製の「エポトートST−2004」等の水添ビスフェノールA型エポキシ化合物、DIC社製の「エピクロン152」、阪本薬品工業社製の「SR−BSP」、東都化成社製の「エポトートYDB−400」、ダウケミカル社製の「D.E.R542」、旭化成ケミカルズ社製の「AER8018」、住友化学工業社製の「スミエポキシESB−400」等の臭素化ビスフェノールA型エポキシ化合物、新日鉄化学社製の商品名「ESN−190」、DIC社製の商品名「HP−4032」等のナフタレン骨格を有するエポキシ化合物、共栄社化学社製の商品名「エポライト400E」、「エポライト400P」、「エポライト1600」、坂本薬品工業社製の「SR−NPG」、「SR−16HL」等の脂肪族エポキシ化合物が挙げられるが、これらに限定されるものではない。これらは単独、又は2種以上を組み合わせて使用することができる。   The compound having two epoxy groups in one molecule represented by the chemical formula (1) ([Chemical Formula 5]) is not particularly limited, but phenols having two phenolic hydroxyl groups in one molecule, one molecule The alcohol having two hydroxyl groups therein can be produced by epoxidizing with epichlorohydrin by a known method alone or in combination of two or more. Commercially available epoxy compounds can also be used. Commercially available epoxy compounds include "JER828" manufactured by Mitsubishi Chemical Corporation, "AER260" manufactured by Asahi Kasei Chemicals Corporation, "Epicron 840, 850" manufactured by DIC Corporation, "Epototo 128" manufactured by Tohto Kasei Corporation, and Dow Chemical Company "D.E.R.317", "D.E.R.331", bisphenol A type epoxy compounds such as "Sumiepoxy ESA-011" manufactured by Sumitomo Chemical Co., Ltd., "Epiclon 830S" manufactured by DIC, Mitsubishi Bisphenol F type epoxy compounds such as “Epicoat 807” manufactured by Kagaku Co., Ltd., “Epototo YDF-170” manufactured by Tohto Kasei Co., Ltd., “Araldite XPY306” manufactured by Asahi Kasei Chemicals Co., Ltd., “EBPS-200” manufactured by Nippon Kayaku, Asahi Bisphenol S type such as “EPX-30” manufactured by Denka Kogyo Co., Ltd. and “Epicron EXA1514” manufactured by DIC Co., Ltd. Xyl compounds, bisphenolfluorene type epoxy compounds such as "BPFG" manufactured by Osaka Gas Chemical Company, bixylenol type compounds such as "YL-6056" and "YX-4000" manufactured by Mitsubishi Chemical Corporation, or biphenyl type epoxy compounds, or those , "HBE-100" manufactured by Shin Nippon Chemical Co., Ltd., hydrogenated bisphenol A type epoxy compounds such as "Epototo ST-2004" manufactured by Tohto Kasei Co., Ltd., "Epiclon 152" manufactured by DIC, manufactured by Sakamoto Pharmaceutical Co., Ltd. "SR-BSP", Toto Kasei "Epototo YDB-400", Dow Chemical "DE 542", Asahi Kasei Chemicals "AER8018", Sumitomo Chemical "Sumiepoxy ESB" Brominated bisphenol A type epoxy compounds such as “-400”, trade name “ESN-19” manufactured by Nippon Steel Chemical Co., Ltd. ”, An epoxy compound having a naphthalene skeleton such as a product name“ HP-4032 ”manufactured by DIC, a product name“ Epolite 400E ”,“ Epolite 400P ”,“ Epolite 1600 ”manufactured by Kyoeisha Chemical Co., Ltd., manufactured by Sakamoto Pharmaceutical Co., Ltd. Aliphatic epoxy compounds such as “SR-NPG” and “SR-16HL” are exemplified, but not limited thereto. These can be used alone or in combination of two or more.

次に2段目の反応で使用する不飽和ポリエステル原料であるカルボン酸とアルコール類は、従来の石油から熱化学的に製造されたもの、動植物原料から生化学的に製造された、または動植物原料から生化学的に製造された化合物を熱化学的処理して製造されたものを使用できるが、環境負荷、カーボンニュートラルの点から、動植物原料から生化学的に製造された、または動植物原料から生化学的に製造された化合物を熱化学的処理して製造されたものを使用するのが好ましい。順に不飽和酸、飽和酸、アルコールについて説明する。   Next, carboxylic acids and alcohols that are unsaturated polyester raw materials used in the second-stage reaction are those produced thermochemically from conventional petroleum, biochemically produced from animal and plant raw materials, or animal and plant raw materials. It is possible to use compounds produced by thermochemical treatment of biochemically produced compounds from the raw materials, but from the viewpoint of environmental impact and carbon neutral, they are biochemically produced from animal and plant raw materials, or raw from animal and plant raw materials. It is preferable to use those produced by thermochemical treatment of chemically produced compounds. The unsaturated acid, saturated acid, and alcohol will be described in order.

不飽和酸としては、従来の石油から熱化学的に製造された無水マレイン酸、マレイン酸、フマル酸が挙げられるが、環境負荷、カーボンニュートラルの点から、バイオマスのコハク酸由来の無水マレイン酸、マレイン酸、フマル酸が好ましい。   Examples of unsaturated acids include maleic anhydride, maleic acid, and fumaric acid thermochemically produced from conventional petroleum, but from the viewpoint of environmental impact and carbon neutral, maleic anhydride derived from succinic acid in biomass, Maleic acid and fumaric acid are preferred.

飽和酸としては、従来の石油から熱化学的に製造された酸類として、フタル酸、テレフタル酸、イソフタル酸、ビフェニルジカルボン酸、ナフタレンジカルボン酸、5−tert−ブチル−1,3−ベンゼンジカルボン酸及びこれらの酸無水物、低級アルキルエステル等のような誘導体等が挙げられる。テレフタル酸及びイソフタル酸は、それらの低級アルキルエステルを用いても良く、テレフタル酸及びイソフタル酸の低級アルキルエステルの例としては、例えば、テレフタル酸ジメチル、イソフタル酸ジメチル、テレフタル酸ジエチル、イソフタル酸ジエチル、テレフタル酸ジブチル、イソフタル酸ジブチル等があるが、コスト及び取り扱い(ハンドリング)の点で、テレフタル酸ジメチルやイソフタル酸ジメチルが好ましい。動植物原料から生化学的に製造された、または動植物原料から生化学的に製造された化合物を熱化学的処理して製造されたカルボン酸としては、ダイマー酸、コハク酸、イタコン酸、2,5−フランジカルボン酸などが挙げられる。これらの不飽和酸、飽和酸又はその低級アルキルエステルは、単独で用いられても、2種以上が併用されても良い。   Examples of saturated acids include phthalic acid, terephthalic acid, isophthalic acid, biphenyldicarboxylic acid, naphthalenedicarboxylic acid, 5-tert-butyl-1,3-benzenedicarboxylic acid and the like, which are thermochemically produced from conventional petroleum. These acid anhydrides, derivatives such as lower alkyl esters and the like can be mentioned. The lower alkyl esters of terephthalic acid and isophthalic acid may be used. Examples of lower alkyl esters of terephthalic acid and isophthalic acid include, for example, dimethyl terephthalate, dimethyl isophthalate, diethyl terephthalate, diethyl isophthalate, Although there are dibutyl terephthalate, dibutyl isophthalate, and the like, dimethyl terephthalate and dimethyl isophthalate are preferable in terms of cost and handling (handling). Carboxylic acids produced biochemically from animal or plant raw materials or produced by thermochemical treatment of compounds biochemically produced from animal or plant raw materials include dimer acid, succinic acid, itaconic acid, 2, 5 -Flange carboxylic acid etc. are mentioned. These unsaturated acids, saturated acids or lower alkyl esters thereof may be used alone or in combination of two or more.

また、本発明の効果を損なわない範囲で、3価以上の芳香族ポリカルボン酸も更に用いることができる。3価以上の芳香族ポリカルボン酸としては、トリメリット酸、ピロメリット酸、ナフタレントリカルボン酸、ベンゾフェノンテトラカルボン酸、ビフェニルテトラカルボン酸やその無水物等が挙げられ、これらは単独で用いても、2種以上を併用しても良い。3価以上の芳香族ポリカルボン酸としては、反応性の観点から、無水トリメリット酸が好ましい。   In addition, trivalent or higher aromatic polycarboxylic acids can be further used within a range not impairing the effects of the present invention. Examples of the trivalent or higher valent aromatic polycarboxylic acid include trimellitic acid, pyromellitic acid, naphthalenetricarboxylic acid, benzophenonetetracarboxylic acid, biphenyltetracarboxylic acid, and anhydrides thereof. Two or more kinds may be used in combination. The trivalent or higher aromatic polycarboxylic acid is preferably trimellitic anhydride from the viewpoint of reactivity.

アルコール類は、従来の石油から熱化学的に製造されたものとして、脂肪族アルコール及びエーテル化ジフェノールが挙げられる。脂肪族アルコールの例としては、例えば、エチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、1,4−ブテンジオール、2−メチル−1,3−プロパンジオール、1,5−ペンタンジオール、ネオペンチルグリコール、2−エチル−2−メチルプロパン−1,3−ジオール、2−ブチル−2−エチルプロパン−1,3−ジオール、1,6−ヘキサンジオール、3−メチル−1,5−ペンタンジオール、2−エチル−1,3−ヘキサンジオール、2,4−ジメチル−1,5−ペンタンジオール、2,2,4−トリメチル−1,3−ペンタンジオール、1,7−へプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、3−ヒドロキシ−2,2−ジメチルプロピル−3−ヒドロキシ−2,2−ジメチルプロパノエート、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール等が挙げられる。脂肪族アルコールとしては、酸との反応性及び樹脂のガラス転移温度の観点から、エチレングリコール、1,3−プロパンジオール、ネオペンチルグリコールが好ましい。動植物原料から生化学的に製造された、または動植物原料から生化学的に製造された化合物を熱化学的処理して製造されたアルコールとしては、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、2,3−ブタンジオール、2−メチル−1,4−ブタンジオール、グリセリン、2,5−ジヒドロキシメチルフランが挙げられる。これら脂肪族アルコールは単独で用いても、二種以上を併用しても良い。また、本発明において、脂肪族アルコールとともに、エーテル化ジフェノールを更に用いても良い。エーテル化ジフェノールとは、ビスフェノールAとアルキレンンオキサイドを付加反応させて得られるジオールであり、該アルキレンオキサイドとしては、エチレンオキサイドやプロピレンオキサイドであり、該アルキレンオキサイドの平均付加モル数がビスフェノールAの1モルに対して2〜16モルであるものが好ましい。環境負荷、カーボンニュートラルの点から、動植物原料から生化学的に製造されたエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,4−ブタンジオールの使用が好ましい。   Alcohols include aliphatic alcohols and etherified diphenols as those produced thermochemically from conventional petroleum. Examples of the aliphatic alcohol include, for example, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2, 3-butanediol, 1,4-butenediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, neopentyl glycol, 2-ethyl-2-methylpropane-1,3-diol, 2 -Butyl-2-ethylpropane-1,3-diol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 2-ethyl-1,3-hexanediol, 2,4-dimethyl-1 , 5-pentanediol, 2,2,4-trimethyl-1,3-pentanediol, 1,7-heptanediol, 1,8-octanediol, , 9-nonanediol, 1,10-decanediol, 3-hydroxy-2,2-dimethylpropyl-3-hydroxy-2,2-dimethylpropanoate, diethylene glycol, triethylene glycol, dipropylene glycol and the like. . As the aliphatic alcohol, ethylene glycol, 1,3-propanediol, and neopentyl glycol are preferable from the viewpoints of reactivity with acid and glass transition temperature of the resin. Alcohols produced biochemically from animal or plant raw materials or produced by thermochemical treatment of compounds biochemically produced from animal or plant raw materials include ethylene glycol, 1,2-propylene glycol, 1,3 -Propylene glycol, 1,4-butanediol, 2,3-butanediol, 2-methyl-1,4-butanediol, glycerin and 2,5-dihydroxymethylfuran. These aliphatic alcohols may be used alone or in combination of two or more. In the present invention, an etherified diphenol may be further used together with the aliphatic alcohol. Etherified diphenol is a diol obtained by addition reaction of bisphenol A and alkylene oxide. The alkylene oxide is ethylene oxide or propylene oxide, and the average added mole number of the alkylene oxide is bisphenol A. What is 2-16 mol with respect to 1 mol is preferable. From the viewpoint of environmental load and carbon neutral, it is preferable to use ethylene glycol, 1,2-propanediol, 1,3-propanediol, and 1,4-butanediol produced biochemically from animal and plant raw materials.

ポリエステル原料のその他の成分として、本発明の目的を損なわない範囲で、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸、シクロヘキサンカルボン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸等の脂環族ポリカルボン酸、ヘット酸、テトラブロム無水フタル酸等の含ハロゲンジカルボン酸、乳酸、3−ヒドロキシブタン酸、3−ヒドロキシ−4−エトキシ安息香酸等のヒドロキシカルボン酸等を用いることもできる。   As other components of the polyester raw material, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, cyclohexanecarboxylic acid, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, endo, as long as the object of the present invention is not impaired. Alicyclic polycarboxylic acids such as methylenetetrahydrophthalic anhydride, halogen-containing dicarboxylic acids such as heptic acid and tetrabromophthalic anhydride, hydroxycarboxylic acids such as lactic acid, 3-hydroxybutanoic acid, and 3-hydroxy-4-ethoxybenzoic acid Etc. can also be used.

本発明の不飽和ポリエステル樹脂は、前記化合物(a)([化1])と所定のカルボン酸成分、アルコール成分を原料として、公知慣用の製造方法によって調製される。その反応方法としては、エステル交換反応又は直接エステル化反応の何れも適用可能である。また、加圧して反応温度を高くする方法、減圧法又は常圧下で不活性ガスを流す方法によって重縮合を促進することもできる。2段目の反応は、無触媒でも良いし、アンチモン、チタン、スズ、亜鉛、アルミニウム及びマンガンより選ばれる少なくとも1種の金属化合物等、公知慣用の反応触媒を用いて、反応を促進しても良い。これら反応触媒の添加量は、カルボン酸成分とアルコール成分の総量100重量部に対して、0.01〜1.0重量部が好ましい。   The unsaturated polyester resin of the present invention is prepared by a known and usual production method using the compound (a) ([Chemical Formula 1]), a predetermined carboxylic acid component, and an alcohol component as raw materials. As the reaction method, either a transesterification reaction or a direct esterification reaction can be applied. Further, polycondensation can be promoted by a method of increasing the reaction temperature by pressurization, a pressure reduction method, or a method of flowing an inert gas under normal pressure. The second-stage reaction may be non-catalyzed, or may be promoted using a known and commonly used reaction catalyst such as at least one metal compound selected from antimony, titanium, tin, zinc, aluminum and manganese. good. The addition amount of these reaction catalysts is preferably 0.01 to 1.0 part by weight with respect to 100 parts by weight of the total amount of the carboxylic acid component and the alcohol component.

不飽和ポリエステル樹脂は、所定量の不飽和ポリエステルと重合性単量体とを混合して相互に溶解させ、または相互に混合することにより調製することができる。   The unsaturated polyester resin can be prepared by mixing a predetermined amount of an unsaturated polyester and a polymerizable monomer and dissolving each other, or mixing each other.

本発明において用いられる重合性単量体として、例えば、従来から使用されているスチレン、ビニルトルエン、α−メチルスチレン、酢酸ビニル、メタクリル酸メチル、メタクリル酸、アクリル酸、ベンジル(メタ)アクリレート、n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、グリシジル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ノルボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、アクリル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、コハク酸2−(メタ)アクロイルオキシエチル、マレイン酸2−(メタ)アクロイルオキシエチル、フタル酸2−(メタ)アクロイルオキシエチル、ヘキサヒドロフタル酸2−(メタ)アクリオイルオキシエチル、ペンタメチルピペリジル(メタ)アクリレート、テトラメチルピペリジル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート等が例示できる。これらは、2種類以上を適宜混合して用いてもよい。   Examples of the polymerizable monomer used in the present invention include conventionally used styrene, vinyl toluene, α-methyl styrene, vinyl acetate, methyl methacrylate, methacrylic acid, acrylic acid, benzyl (meth) acrylate, n -Butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate, glycidyl (Meth) acrylate, hydroxypropyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, norvo Nyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, acrylic (meth) acrylate, 2-hydroxyethyl (meth) acrylate, succinic acid 2- (meth) acryloyloxyethyl, 2- (meth) acryloyloxyethyl maleate, 2- (meth) acryloyloxyethyl phthalate, 2- (meth) acryloyloxyethyl hexahydrophthalate, pentamethyl Examples include piperidyl (meth) acrylate, tetramethylpiperidyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, and diethylaminoethyl (meth) acrylate. Two or more of these may be used in appropriate mixture.

本発明においては、例えば、不飽和ポリエステル100重量部を重合性単量体20〜120重量部に溶解することができる。好ましくは、不飽和ポリエステル100重量部を重合性単量体40〜100重量部に溶解する。不飽和ポリエステル100重量部に対する重合性単量体の量が40部未満の場合、極めて高い粘度になり成形性に劣る虞がある。不飽和ポリエステル100重量部に対する重合性単量体の量が100部を超えると、得られる硬化成形物の性能が劣る虞がある。不飽和ポリエステルを重合性単量体に溶解あるいは混合する際、ゲル化させることなく安定に調製するために、および調製された不飽和ポリエステル樹脂の成形時の可使時間確保のために、更には調製された不飽和ポリエステル樹脂の貯蔵安定性のために通常重合禁止剤を添加することができる。重合禁止剤は、例えば、ハイドロキノン、パラベンゾキノン、メチルハイドロキノン、トリメチルハイドロキノン等の多価フェノール系重合禁止剤が挙げられる。これらの重合禁止剤は、本発明の不飽和ポリエステル樹脂中、通常0.001〜0.5重量%、好ましくは0.005〜0.15重量%が用いられる。   In the present invention, for example, 100 parts by weight of unsaturated polyester can be dissolved in 20 to 120 parts by weight of polymerizable monomer. Preferably, 100 parts by weight of unsaturated polyester is dissolved in 40 to 100 parts by weight of polymerizable monomer. When the amount of the polymerizable monomer relative to 100 parts by weight of the unsaturated polyester is less than 40 parts, the viscosity becomes extremely high and the moldability may be inferior. When the amount of the polymerizable monomer with respect to 100 parts by weight of the unsaturated polyester exceeds 100 parts, the performance of the resulting cured molded product may be inferior. In order to stably prepare an unsaturated polyester without being gelled when the unsaturated polyester is dissolved or mixed in the polymerizable monomer, and to secure a usable time when molding the prepared unsaturated polyester resin, A polymerization inhibitor can be usually added for the storage stability of the prepared unsaturated polyester resin. Examples of the polymerization inhibitor include polyhydric phenol polymerization inhibitors such as hydroquinone, parabenzoquinone, methylhydroquinone, and trimethylhydroquinone. These polymerization inhibitors are usually used in an amount of 0.001 to 0.5% by weight, preferably 0.005 to 0.15% by weight, in the unsaturated polyester resin of the present invention.

本発明の不飽和ポリエステル樹脂において、不飽和ポリエステル樹脂に通常使用されているラジカル硬化剤と必要に応じて硬化促進剤を添加することにより、常温下あるいは加熱下に硬化させることができる。また、光ラジカル開始剤を添加し、可視光線、紫外線、電子線を照射することにより硬化させることができる。   The unsaturated polyester resin of the present invention can be cured at room temperature or under heating by adding a radical curing agent usually used in the unsaturated polyester resin and, if necessary, a curing accelerator. Moreover, it can harden | cure by adding a photoradical initiator and irradiating visible light, an ultraviolet-ray, and an electron beam.

ラジカル硬化剤として、例えば、メチルエチルケトンパーオキサイド、アセチルアセトンパーオキサイドなどのケトンパーオキサイド系、ベンゾイルパーオキサイドなどのジアシルパーオキサイド系、t−ブチルパーオキシベンゾエートなどのパーオキシエステル系、クメンハイドロパーオキサイドなどのハイドロパーオキサイド系、ジクミルパーオキサイドなどジアルキルパーオキサイド系等、従来より知られているものが使用できる。硬化剤の添加量は、不飽和ポリエステル樹脂100重量部に対して、0.05〜5重量部である。   Examples of radical curing agents include ketone peroxides such as methyl ethyl ketone peroxide and acetylacetone peroxide, diacyl peroxides such as benzoyl peroxide, peroxyesters such as t-butylperoxybenzoate, cumene hydroperoxide, etc. Conventionally known ones such as hydroperoxides and dialkyl peroxides such as dicumyl peroxide can be used. The addition amount of the curing agent is 0.05 to 5 parts by weight with respect to 100 parts by weight of the unsaturated polyester resin.

硬化促進剤としては、例えばナフテン酸コバルト、オクチル酸コバルト、オクチル酸亜鉛、オクチル酸バナジウム、ナフテン酸銅、ナフテン酸バリウム等金属石鹸類、バナジウムアセチルアセテート、コバルトアセチルアセテート、鉄アセチルアセトネート等の金属キレート類、アニリン、N,N−ジメチルアニリン、N,N−ジエチルアニリン、p−トルイジン、N,N−ジメチル−p−トルイジン、N,N−ビス(2-ヒドロキシエチル)−p−トルイジン、4−(N,N−ジメチルアミノ)ベンズアルデヒド、4−[N,N−ビス(2-ヒドロキシエチル)アミノ]ベンズアルデヒド、4−(N−メチル−N−ヒドロキシエチルアミノ)ベンズアルデヒド、N,N−ビス(2−ヒドロキシプロピル)−p−トルイジン、N−エチル−m−トルイジン、トリエタノールアミン、m−トルイジン、ジエチレントリアミン、ピリジン、フェニリモルホリン、ピペリジン、N,N−ビス(ヒドロキシエチル)アニリン、ジエタノールアニリン等のN,N−置換アニリン、N,N−置換−p−トルイジン,4−(N,N−置換アミノ)ベンズアルデヒド等のアミン類等、従来より知られているものが使用できる。硬化促進剤の添加量は、0.05〜5重量部である。   Examples of the curing accelerator include metal soaps such as cobalt naphthenate, cobalt octylate, zinc octylate, vanadium octylate, copper naphthenate, and barium naphthenate, metals such as vanadium acetyl acetate, cobalt acetyl acetate, and iron acetylacetonate. Chelates, aniline, N, N-dimethylaniline, N, N-diethylaniline, p-toluidine, N, N-dimethyl-p-toluidine, N, N-bis (2-hydroxyethyl) -p-toluidine, 4 -(N, N-dimethylamino) benzaldehyde, 4- [N, N-bis (2-hydroxyethyl) amino] benzaldehyde, 4- (N-methyl-N-hydroxyethylamino) benzaldehyde, N, N-bis ( 2-hydroxypropyl) -p-toluidine, N-ethyl-m- N, N-substituted anilines such as Louisin, triethanolamine, m-toluidine, diethylenetriamine, pyridine, phenylmorpholine, piperidine, N, N-bis (hydroxyethyl) aniline, diethanolaniline, N, N-substituted-p- Conventionally known amines such as toluidine, 4- (N, N-substituted amino) benzaldehyde and the like can be used. The addition amount of a hardening accelerator is 0.05-5 weight part.

光ラジカル開始剤としては、例えば、ベンゾフェノン、ベンジル、メチルオルソベンゾイルベンゾエートなどのベンゾフェノン系、ベンゾインアルキルエーテルのようなベンゾインエーテル系、ベンジルジメチルケタール、2,2−ジエトキシアセトフェノン、2−ヒドロキシ−2−メチルプロピオフェノン、4−イソプロピル−2−ヒドロキシ−2−メチルプロピオフェノン、1,1−ジクロロアセトフェノンなどのアセトフェノン系、2−クロロチオキサントン、2−メチルチオキサントン、2−イソプロピルチオキサントンなどのチオキサントン系等、従来より知られているものが使用できる。光ラジカル開始剤の添加量は、不飽和ポリエステル樹脂100重量部に対して、0.1〜5重量部である。   Examples of the photo-radical initiator include benzophenones such as benzophenone, benzyl and methyl orthobenzoylbenzoate, benzoin ethers such as benzoin alkyl ether, benzyl dimethyl ketal, 2,2-diethoxyacetophenone, 2-hydroxy-2- Acetphenone series such as methylpropiophenone, 4-isopropyl-2-hydroxy-2-methylpropiophenone, 1,1-dichloroacetophenone, thioxanthone series such as 2-chlorothioxanthone, 2-methylthioxanthone, 2-isopropylthioxanthone, etc. Conventionally known ones can be used. The addition amount of the photo radical initiator is 0.1 to 5 parts by weight with respect to 100 parts by weight of the unsaturated polyester resin.

本発明の不飽和ポリエステル樹脂に、繊維補強材及び又は充填材を加えて不飽和ポリエステル樹脂組成物とすることができる。使用される繊維補強材として、例えば、ガラス繊維、炭素繊維、金属繊維、セラミック繊維、ナイロン繊維、アラミド繊維、ビニロン繊維、ポリエステル繊維等、従来より知られているものが使用できる。特に好ましいのはガラス繊維である。平織り、朱子織り、不織布、マット、ロービング、チョップ等、種々の形態のものが使用できる。不飽和ポリエステル樹脂組成物に占める繊維補強材の割合は、10〜50重量%が好ましい。充填材として、例えば、炭酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、硫酸バリウム、タルク、クレー、ガラス粉末、ガラスバブル、金属粉、珪砂、砂利、砕石等、従来より知られているものが使用できる。不飽和ポリエステル樹脂組成物に占める充填材の割合は、1〜90重量%が好ましい。   A fiber reinforcing material and / or a filler can be added to the unsaturated polyester resin of the present invention to obtain an unsaturated polyester resin composition. As the fiber reinforcing material used, conventionally known materials such as glass fiber, carbon fiber, metal fiber, ceramic fiber, nylon fiber, aramid fiber, vinylon fiber, and polyester fiber can be used. Particularly preferred is glass fiber. Various forms such as plain weave, satin weave, non-woven fabric, mat, roving and chop can be used. The proportion of the fiber reinforcing material in the unsaturated polyester resin composition is preferably 10 to 50% by weight. As fillers, for example, conventionally known materials such as calcium carbonate, aluminum hydroxide, magnesium hydroxide, barium sulfate, talc, clay, glass powder, glass bubble, metal powder, quartz sand, gravel, crushed stone and the like can be used. . The proportion of the filler in the unsaturated polyester resin composition is preferably 1 to 90% by weight.

また、本発明のコンパウンドは、前記不飽和ポリエステル樹脂(A)を配合されている。コンパウンドとしては、シートモールディングコンパウンド、又はバルクモールディングコンパウンドを挙げることができる。すなわち、本発明の不飽和ポリエステル樹脂は、従来のシートモールディングコンパウンド(以下SMC)及びバルクモールディングコンパウンド(以下BMC)にも適用可能である。すなわち、不飽和ポリエステル樹脂に充填剤、繊維補強剤、内部離型剤、低収縮剤、減粘剤、増粘剤を配合してなるシート状またはバルク状の成形材料である。   Moreover, the compound of this invention is mix | blended with the said unsaturated polyester resin (A). Examples of the compound include a sheet molding compound and a bulk molding compound. That is, the unsaturated polyester resin of the present invention can also be applied to conventional sheet molding compounds (hereinafter SMC) and bulk molding compounds (hereinafter BMC). That is, it is a sheet-shaped or bulk-shaped molding material obtained by blending an unsaturated polyester resin with a filler, a fiber reinforcing agent, an internal mold release agent, a low shrinkage agent, a thickening agent, and a thickening agent.

以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例により何等限定されるものではない。なお、以下においては、部数は全て重量部を、原料にバイオマス由来と記載のないものについては石油燃料由来の原料を表す。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited at all by these Examples. In the following, all parts are parts by weight, and the raw materials derived from petroleum fuel are those that are not described as being derived from biomass.

(合成例1) 新規不飽和ポリエステル樹脂
化合物(a)のエポキシ樹脂としてビスフェノールA型樹脂1046gと不均化ロジン(酸価156mgKOH/g、バイオマス由来)1990g及び反応触媒としてトリフェニルホスフィン1.5gを撹拌装置、加熱装置、温度計、分留装置、窒素ガス導入管を備えたステンレス製反応容器に仕込み、窒素雰囲気下、撹拌しながら180℃で5時間反応させ、酸価が5mgKOH/g未満に達したことを確認し化合物(a)を得た。反応式については以下の通りである。すなわち、下記[化7]に示すように、まずビスフェノールA型エポキシ樹脂と不均化ロジンを反応させ、化合物(a)を合成した。
(Synthesis example 1) Novel unsaturated polyester resin As an epoxy resin of compound (a), 1046 g of bisphenol A type resin and disproportionated rosin (acid value 156 mgKOH / g, derived from biomass) 1990 g and 1.5 g of triphenylphosphine as a reaction catalyst A stainless steel reaction vessel equipped with a stirrer, heating device, thermometer, fractionator, and nitrogen gas inlet tube was charged and reacted at 180 ° C. for 5 hours with stirring in a nitrogen atmosphere, so that the acid value was less than 5 mgKOH / g. It was confirmed that the compound (a) was obtained. The reaction formula is as follows. That is, as shown in the following [Chemical Formula 7], a bisphenol A type epoxy resin and a disproportionated rosin were first reacted to synthesize a compound (a).

次いでエチレングリコール(バイオマス由来)307g、1,2−プロパンジオール549g、無水マレイン酸1356gを仕込み、反応温度210℃で14時間重縮合反応させ、所定の酸価に達したこところで反応を終了し、スチレンモノマー2692gを加え、不揮発分65%の不飽和ポリエステル樹脂(A−1)(合成配合については、表1を参照。)を得た。反応式については、以下の通りである。すなわち、下記[化8]に示すように、化合物(a)を不飽和ポリエステル原料のアルコール成分として、従来どおりの反応を行った。   Next, 307 g of ethylene glycol (derived from biomass), 549 g of 1,2-propanediol, and 1356 g of maleic anhydride were charged, and a polycondensation reaction was carried out at a reaction temperature of 210 ° C. for 14 hours. When the predetermined acid value was reached, the reaction was terminated. 2692 g of styrene monomers were added to obtain an unsaturated polyester resin (A-1) having a non-volatile content of 65% (see Table 1 for the composition). The reaction formula is as follows. That is, as shown in [Chemical Formula 8] below, the conventional reaction was carried out using compound (a) as the alcohol component of the unsaturated polyester raw material.

(合成例2及び3)
表1は、合成配合を示す。表の数値は、重量部を示す。
(Synthesis Examples 2 and 3)
Table 1 shows the synthetic formulation. The numerical values in the table indicate parts by weight.

表1に示す配合割合とすることを除き、合成例1と同様にして、不飽和ポリエステル樹脂(A−2)、(A−3:参照例)を合成した。   An unsaturated polyester resin (A-2) and (A-3: Reference Example) were synthesized in the same manner as in Synthesis Example 1 except that the blending ratio shown in Table 1 was used.

(合成例4)比較用ポリエステル樹脂合成例
不飽和ポリエステル樹脂のアルコール成分として、エチレングリコール683g、1,2−プロパンジオール1425g、酸成分としてテレフタル酸2286g及び反応触媒としてテトラ−n−ブチルチタネート4.7gを撹拌装置、加熱装置、温度計、分留装置、窒素ガス導入管を備えたステンレス製反応容器に仕込み、窒素雰囲気下、撹拌しながら220℃で14時間重縮合反応させた。ついで無水マレイン酸1349gを加え、所定の酸価に達したところで反応を終了し、スチレンモノマー2692gを加え、不揮発分65%の不飽和ポリエステル樹脂ポリエステル樹脂(B−1)を得た。
(Synthesis example 4) Polyester resin synthesis example for comparison As an alcohol component of an unsaturated polyester resin, 683 g of ethylene glycol, 1425 g of 1,2-propanediol, 2286 g of terephthalic acid as an acid component, and tetra-n-butyl titanate as a reaction catalyst 7 g was charged into a stainless steel reaction vessel equipped with a stirrer, a heating device, a thermometer, a fractionator, and a nitrogen gas introduction tube, and subjected to a polycondensation reaction at 220 ° C. for 14 hours with stirring in a nitrogen atmosphere. Next, 1349 g of maleic anhydride was added and the reaction was terminated when a predetermined acid value was reached, and 2692 g of styrene monomer was added to obtain an unsaturated polyester resin polyester resin (B-1) having a nonvolatile content of 65%.

(合成例5)比較用ポリエステル樹脂合成例
表1に示す配合割合とすることを除き、合成例4と同様にして、不飽和ポリエステル樹脂(B−2)を合成した。
(Synthesis Example 5) Comparative Polyester Resin Synthesis Example An unsaturated polyester resin (B-2) was synthesized in the same manner as in Synthesis Example 4 except that the blending ratio shown in Table 1 was used.

表1には、合成配合に加え、化合物(a)の原料中の割合、終点酸価、バイオマス由来原料含有量を示した。バイオマス含有量は、以下の式よりを算出した。   Table 1 shows the ratio of the compound (a) in the raw material, the end point acid value, and the biomass-derived raw material content in addition to the synthetic blending. The biomass content was calculated from the following equation.

バイオマス由来原料含有量=
(バイオマス成分仕込量)×100/(総仕込量−理論脱水量)
Biomass-derived raw material content =
(Biomass component charge) x 100 / (Total charge-Theoretical dehydration)

ただし、バイオマス成分仕込量は以下のように算出する。すなわち、バイオマス成分が酸の場合はその分子量よりOH相当分の分子量である17.01を、バイオマス成分がアルコールの場合はその分子量よりH相当分の分子量である1.01をそれぞれ引いた値にモル数を掛けて算出した。   However, the biomass component charge is calculated as follows. That is, when the biomass component is an acid, the molecular weight is 17.01 which is a molecular weight corresponding to OH, and when the biomass component is an alcohol, the molecular weight is 1.01 which is a molecular weight corresponding to H. Calculated by multiplying by the number of moles.

実施例1 注型板による物性評価
合成した各不飽和ポリエステル樹脂に硬化促進剤として市販の6%ナフテン酸コバルト0.5%を所定の樹脂に添加混合し、硬化剤として55%メチルエチルケトンパーオキサイドをその樹脂に1%添加混合し硬化させた。注型板の作製はJIS K 6919、5.2.3項に準拠した。硬化条件は、室温で24時間硬化後、80℃×2時間+120℃×2時間の後硬化を行って試験に供した。注型板の引張り強さ及びその弾性率は、JIS K 7113に、曲げ強さおよび曲げ弾性率はJIS K 7203に、バーコル硬度はJIS K 6919に、アイゾット衝撃はJIS K 7110に、熱変形温度及び吸水率はJIS K 6911に、体積収縮率はJIS K 6919にそれぞれ従い測定し、その結果を表2に示した。表2は、注型板物性結果を示す。
Example 1 Evaluation of Physical Properties by Casting Plate Each of the synthesized unsaturated polyester resins was mixed with 0.5% of commercially available 6% cobalt naphthenate as a curing accelerator and added to a predetermined resin, and 55% methyl ethyl ketone peroxide was added as a curing agent. 1% of the resin was added and mixed to cure. The casting plate was produced in accordance with JIS K 6919, paragraph 5.2.3. The curing conditions were as follows: after curing for 24 hours at room temperature, post-curing was performed at 80 ° C. × 2 hours + 120 ° C. × 2 hours. The tensile strength and elastic modulus of the casting plate are JIS K 7113, the bending strength and bending elastic modulus are JIS K 7203, the Barcol hardness is JIS K 6919, the Izod impact is JIS K 7110, and the heat deformation temperature. The water absorption was measured according to JIS K 6911, and the volume shrinkage was measured according to JIS K 6919, and the results are shown in Table 2. Table 2 shows the cast plate physical properties results.

実施例2 積層板による物性評価
合成した各不飽和ポリエステル樹脂に硬化促進剤として市販の6%ナフテン酸コバルト0.5%を添加混合し、次いで硬化剤として市販の55%メチルエチルケトンパーオキサイドを1%添加混合する。次に予め用意しておいた450g/mのチョップドストランドマット3プライに上記樹脂を含浸、積層して3mm厚の積層板を作製した。硬化条件は、室温で24時間硬化後、80℃×2時間+120℃×2時間の後硬化を行って試験に供した。積層板の引張り強さおよびその弾性率はJIS K 7113に、曲げ強さおよびその弾性率はJIS K 7171に、アイゾット衝撃強さはJIS K 7110にそれぞれ従い測定し、その結果を表3に示した。表3は、積層板物性結果を示す。
Example 2 Evaluation of Physical Properties by Laminating Plate 0.5% of commercially available cobalt naphthenate 0.5% as a curing accelerator was added to and mixed with each unsaturated polyester resin synthesized, and then 1% of 55% methyl ethyl ketone peroxide commercially available as a curing agent was added. Add and mix. Next, the above resin was impregnated and laminated in a 450 g / m 2 chopped strand mat 3 ply prepared in advance to produce a 3 mm thick laminate. The curing conditions were as follows: after curing for 24 hours at room temperature, post-curing was performed at 80 ° C. × 2 hours + 120 ° C. × 2 hours. The tensile strength and its elastic modulus of the laminate were measured according to JIS K 7113, the bending strength and its elastic modulus were measured according to JIS K 7171, and the Izod impact strength was measured according to JIS K 7110. The results are shown in Table 3. It was. Table 3 shows the results of laminated sheet physical properties.

実施例3 SMCによる物性評価
合成した各不飽和ポリエステル樹脂(A−2、比較用B-2)800部に低収縮剤として30%ポリスチレン溶液を200部、減粘剤としてビックケミー社製BYK972を2部、離型剤としてステアリン酸亜鉛50部、充填剤として炭酸カルシウムを1800部、ガラス繊維としてチョップドガラス780部、重合開始剤として日油製パーヘキシルHIを20部、増粘剤として酸化マグネシウムを20部配合したSMCを作製した。作製したSMCを金型にて、成形温度145℃、時間6分でプレス成形し、SMC成形品を得た。SMCの各物性は、実施例1、2と同様の方法で測定し、成形収縮率は型寸法と得られた成形品の寸法の差から算出した。また、煮沸試験として、SMC面を90℃の熱水に漬け800時間後の表面状態を目視により確認した。その結果を表4に示した。表4は、SMC物性結果を示す。
Example 3 Physical property evaluation by SMC 800 parts of each unsaturated polyester resin (A-2, B-2 for comparison) was synthesized with 200 parts of 30% polystyrene solution as a low shrinkage agent, and 2 BYK972 manufactured by BYK Chemie as a viscosity reducing agent. Parts, 50 parts of zinc stearate as a release agent, 1800 parts of calcium carbonate as a filler, 780 parts of chopped glass as glass fiber, 20 parts of NOF perhexyl HI as a polymerization initiator, and 20 parts of magnesium oxide as a thickener Partially formulated SMC was prepared. The produced SMC was press-molded with a mold at a molding temperature of 145 ° C. for 6 minutes to obtain an SMC molded product. Each physical property of SMC was measured by the same method as in Examples 1 and 2, and the molding shrinkage was calculated from the difference between the mold dimensions and the dimensions of the obtained molded product. Moreover, as a boiling test, the SMC surface was immersed in 90 degreeC hot water, and the surface state after 800 hours was confirmed visually. The results are shown in Table 4. Table 4 shows the SMC physical property results.

実施例4 BMCによる物性評価
合成した各不飽和ポリエステル樹脂(A−2、比較用B-2)1000部に低収縮剤としてポリスチレンペレットを5部、離型剤としてステアリン酸亜鉛40部、充填剤として水酸化アルミニウムを2800部、ガラス繊維としてチョップドガラス100部、重合開始剤として日油製パーヘキサ3Mを10部、増粘剤として酸化マグネシウムを8部配合したBMCをニーダーにて作製した。作製したBMCを金型にて、成形温度135℃、時間8分でプレス成形し、厚さ5mmのBMC成形品を得た。BMCの各物性は、実施例1、2と同様の方法で測定し、成形収縮率は型寸法と得られた成形品の寸法の差から算出した。
Example 4 Physical property evaluation by BMC 1000 parts of each unsaturated polyester resin (A-2, B-2 for comparison) was synthesized with 5 parts of polystyrene pellets as a low shrinkage agent, 40 parts of zinc stearate as a release agent, and a filler. BMC containing 2800 parts of aluminum hydroxide, 100 parts of chopped glass as glass fibers, 10 parts of NOF PERHEXA 3M as a polymerization initiator, and 8 parts of magnesium oxide as a thickener was prepared with a kneader. The produced BMC was press-molded with a mold at a molding temperature of 135 ° C. for 8 minutes to obtain a BMC molded product having a thickness of 5 mm. Each physical property of BMC was measured by the same method as in Examples 1 and 2, and the molding shrinkage was calculated from the difference between the mold dimensions and the dimensions of the obtained molded product.

実施例5 二酸化炭素排出量比較
環境への負荷の指標として、不飽和ポリエステル樹脂1kgを燃焼廃棄した際の発生する二酸化炭素量を算出した。ただし、バイオマス原料由来の二酸化炭素は、カーボンニュートラルの概念により排出量から除いた。表5は、BMC物性結果を示す。また、表6は、算出結果、すなわち、不飽和ポリエステル樹脂1kg燃焼廃棄時の二酸化炭素排出量を示す。表6において、バイオマス原料由来の二酸化炭素は、カーポンニュートラルの概念により排出量から除いている。
Example 5 Comparison of carbon dioxide emissions The amount of carbon dioxide generated when 1 kg of unsaturated polyester resin was combusted and discarded was calculated as an index of environmental load. However, carbon dioxide derived from biomass raw materials was excluded from emissions by the concept of carbon neutral. Table 5 shows the BMC physical property results. Table 6 shows calculation results, that is, carbon dioxide emissions when 1 kg of unsaturated polyester resin is burned and discarded. In Table 6, carbon dioxide derived from biomass material is excluded from emissions by the concept of carpon neutral.

本発明の不飽和ポリエステル樹脂及びそれを用いたFRP成形品は、表2〜5より、従来の不飽和ポリエステル樹脂及びそれを用いたFRP成形品と比較して機械的物性面で劣ることなく、吸水率が低く、硬化収縮が小さいことが判る。また、本発明の不飽和ポリエステル樹脂は、カーボンニュートラルの概念を適用すると、表6より燃焼時の二酸化炭素排出量が従来の石油系原料使用不飽和ポリエステル樹脂より少なく、環境負荷が小さい材料であることが判る。   From Tables 2 to 5, the unsaturated polyester resin of the present invention and the FRP molded product using the same are not inferior in mechanical properties compared to the conventional unsaturated polyester resin and the FRP molded product using the same, It can be seen that the water absorption is low and the curing shrinkage is small. In addition, when the concept of carbon neutral is applied, the unsaturated polyester resin of the present invention is a material that emits less carbon dioxide at the time of combustion than the conventional petroleum-based raw material unsaturated polyester resin and has a low environmental impact, as shown in Table 6. I understand that.

本発明の化合物を用いた樹脂は、繊維強化品のバインダー樹脂として、石油由来の原料を用いた不飽和ポリエステル樹脂に比べて、耐水性、低収縮性、機械的物性において優れた性能を有し、且つ環境へ及ぼす負荷の小さい、バイオマス資源より誘導される原料を多く含有した不飽和ポリエステル樹脂を様々な分野へ提供することが可能である。   The resin using the compound of the present invention has excellent performance in water resistance, low shrinkage, and mechanical properties as compared with unsaturated polyester resins using petroleum-derived raw materials as binder resins for fiber reinforced products. In addition, it is possible to provide unsaturated polyester resins containing a large amount of raw materials derived from biomass resources, which have a low environmental impact, to various fields.

また、本発明の不飽和ポリエステル樹脂組成物は、前記本発明の化合物がアルコール成分の必須成分であり、前記アルコール成分と不飽和酸とを重縮合することによって得られる不飽和ポリエステルを、重合性単量体に溶解したことを特徴とする
Further, the unsaturated polyester resin composition of the present invention, the compounds of the present invention Ri essential component der alcohol component, an unsaturated polyester obtained by polycondensation of said alcohol component and an unsaturated acid, polymerized It is characterized by being dissolved in a functional monomer .

また、本発明の不飽和ポリエステル樹脂組成物の好ましい実施態様において、前記本発明の化合物が、不飽和ポリエステル原料として20重量%以上配合されたことを特徴とする。
In a preferred embodiment of the unsaturated polyester resin composition of the present invention, the compound of the present invention is blended in an amount of 20% by weight or more as an unsaturated polyester raw material.

また、本発明のコンパウンドは、前記不飽和ポリエステル樹脂組成物が配合されていることを特徴とする。 In addition, the compound of the present invention is characterized in that the unsaturated polyester resin composition is blended.

Claims (6)

下記化学式[化1] 、
で示される化合物(但し、式中Xは脂肪族または芳香族であり、Yは精製ロジン残基、不均化ロジン残基、又は水添ロジン残基であり、n=0〜1である。)。
The following chemical formula [Chemical Formula 1]
Wherein X is aliphatic or aromatic, Y is a purified rosin residue, disproportionated rosin residue, or hydrogenated rosin residue, and n = 0-1. ).
1分子中に2個のエポキシ基を有する下記化合物[化2]、
で示される化合物(但し、式中Xは、脂肪族または芳香族であり、n=0〜1である。)のエポキシ基に、精製ロジン、不均化ロジン、水添ロジンから選ばれる1種以上を付加反応させて得られることを特徴とする請求項1記載の化合物。
The following compound having two epoxy groups in one molecule [Chemical Formula 2],
A compound selected from the group consisting of a purified rosin, a disproportionated rosin, and a hydrogenated rosin on the epoxy group of the compound represented by formula (wherein X is aliphatic or aromatic and n = 0 to 1). The compound according to claim 1, which is obtained by addition reaction of the above.
請求項1又は2項に記載の化合物がアルコール成分の必須成分である不飽和ポリエステル樹脂。   An unsaturated polyester resin, wherein the compound according to claim 1 or 2 is an essential component of an alcohol component. 請求項1又は2項に記載の化合物が、不飽和ポリエステル原料として20重量%以上配合された請求項3記載の不飽和ポリエステル樹脂。   The unsaturated polyester resin according to claim 3, wherein the compound according to claim 1 or 2 is blended in an amount of 20% by weight or more as an unsaturated polyester raw material. 請求項3又は4項に記載の前記不飽和ポリエステル樹脂を配合したコンパウンド。   The compound which mix | blended the said unsaturated polyester resin of Claim 3 or 4. 前記コンパウンドが、シートモールディングコンパウンド、又はバルクモールディングコンパウンドである請求項5記載のコンパウンド。   The compound according to claim 5, wherein the compound is a sheet molding compound or a bulk molding compound.
JP2010123163A 2010-05-28 2010-05-28 Unsaturated polyester resin Active JP4699558B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2010123163A JP4699558B1 (en) 2010-05-28 2010-05-28 Unsaturated polyester resin
KR1020127032160A KR101815267B1 (en) 2010-05-28 2011-03-02 Alcohol compound, polyester resin, unsaturated polyester resin, resin particle and electrophotography toner
EP11786249.0A EP2578611B1 (en) 2010-05-28 2011-03-02 Polyester resin, unsaturated polyester resin, resin particle and electrophotography toner
US13/700,422 US8828636B2 (en) 2010-05-28 2011-03-02 Alcohol compound, a polyester resin, an unsaturated particle resin, a resin particle and an electrophotographic toner
PCT/JP2011/001219 WO2011148545A1 (en) 2010-05-28 2011-03-02 Alcohol compound, polyester resin, unsaturated polyester resin, resin particle and electrophotography toner
CN201180026548.8A CN102918075B (en) 2010-05-28 2011-03-02 Alcoholic compound, polyester resin, unsaturated polyester resin, resin particle and electrophotography powdered ink
TW100110139A TWI504588B (en) 2010-05-28 2011-03-24 Alcohol compound, polyester resin, unsaturated polyester resin, resin particle, and toner for electronograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010123163A JP4699558B1 (en) 2010-05-28 2010-05-28 Unsaturated polyester resin

Publications (2)

Publication Number Publication Date
JP4699558B1 JP4699558B1 (en) 2011-06-15
JP2011246647A true JP2011246647A (en) 2011-12-08

Family

ID=44237051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010123163A Active JP4699558B1 (en) 2010-05-28 2010-05-28 Unsaturated polyester resin

Country Status (1)

Country Link
JP (1) JP4699558B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012230374A (en) * 2011-04-15 2012-11-22 Fuji Xerox Co Ltd Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
KR101292675B1 (en) 2012-03-27 2013-08-02 세원화성 주식회사 Method of preparing for unsaturated polyester resin from bio-mass(plant oils and fats)
US20130244170A1 (en) * 2012-03-19 2013-09-19 Fuji Xerox Co., Ltd. Polyester resin for toner, electrostatic charge image developing toner, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
US20130244171A1 (en) * 2012-03-19 2013-09-19 Fuji Xerox Co., Ltd. Polyester resin for toner, electrostatic charge image developing toner, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
US8663889B2 (en) 2011-04-15 2014-03-04 Fuji Xerox Co., Ltd. Polyester resin for toner, toner, developer, toner cartridge, process cartridge, and image forming apparatus
JP2014059462A (en) * 2012-09-18 2014-04-03 Fuji Xerox Co Ltd Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, mage forming apparatus, and image forming method
JP2021016895A (en) * 2019-07-24 2021-02-15 千住金属工業株式会社 Modified rosin, soldering flux and solder paste
CN112513132A (en) * 2018-08-24 2021-03-16 哈利玛化成株式会社 Ester resin and method for producing ester resin

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5310903B2 (en) * 2011-04-15 2013-10-09 富士ゼロックス株式会社 Toner for developing electrostatic image and method for producing the same, developer for electrostatic image, toner cartridge, process cartridge, image forming apparatus, and image forming method
US8883387B2 (en) 2011-04-15 2014-11-11 Fuji Xerox Co., Ltd. Electrostatic image developing toner and manufacturing method of the same, electrostatic image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP5718783B2 (en) * 2011-10-07 2015-05-13 富士フイルム株式会社 Electrophotographic photoreceptor, copier using the same, and dope for forming photosensitive layer thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8663889B2 (en) 2011-04-15 2014-03-04 Fuji Xerox Co., Ltd. Polyester resin for toner, toner, developer, toner cartridge, process cartridge, and image forming apparatus
JP2012229420A (en) * 2011-04-15 2012-11-22 Fuji Xerox Co Ltd Polyester resin for toner, toner, developer, toner cartridge, process cartridge, and image forming apparatus
US8808956B2 (en) 2011-04-15 2014-08-19 Fuji Xerox Co., Ltd. Polyester resin for toner, toner, developer, toner cartridge, process cartridge, and image forming apparatus
JP2012230374A (en) * 2011-04-15 2012-11-22 Fuji Xerox Co Ltd Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
US20130244170A1 (en) * 2012-03-19 2013-09-19 Fuji Xerox Co., Ltd. Polyester resin for toner, electrostatic charge image developing toner, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
US20130244171A1 (en) * 2012-03-19 2013-09-19 Fuji Xerox Co., Ltd. Polyester resin for toner, electrostatic charge image developing toner, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
US8709692B2 (en) * 2012-03-19 2014-04-29 Fuji Xerox Co., Ltd. Polyester resin for toner, electrostatic charge image developing toner, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
US8709693B2 (en) * 2012-03-19 2014-04-29 Fuji Xerox Co., Ltd. Polyester resin for toner, electrostatic charge image developing toner, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
KR101292675B1 (en) 2012-03-27 2013-08-02 세원화성 주식회사 Method of preparing for unsaturated polyester resin from bio-mass(plant oils and fats)
JP2014059462A (en) * 2012-09-18 2014-04-03 Fuji Xerox Co Ltd Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, mage forming apparatus, and image forming method
CN112513132A (en) * 2018-08-24 2021-03-16 哈利玛化成株式会社 Ester resin and method for producing ester resin
CN112513132B (en) * 2018-08-24 2023-07-11 哈利玛化成株式会社 Ester resin and method for producing ester resin
JP2021016895A (en) * 2019-07-24 2021-02-15 千住金属工業株式会社 Modified rosin, soldering flux and solder paste

Also Published As

Publication number Publication date
JP4699558B1 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP4699558B1 (en) Unsaturated polyester resin
Kandelbauer et al. Unsaturated polyesters and vinyl esters
JP4699559B1 (en) Polyester resin
JP2012521469A (en) Unsaturated polyester resin
US20040010061A1 (en) Styrene-free unsaturated polyester resin compositions
US6900261B2 (en) Sheet molding compound resins from plant oils
JP6372922B2 (en) Resin composition, coating method using the same, and coating structure coated by the method
KR101806228B1 (en) Vinylester resin composition for UV curable sheet and preparation method thereof
JP2010235777A (en) Unsaturated polyester resin
JP5138978B2 (en) Thermosetting resin composition, molding material, molded article, decomposition method of molded article, and urethane (meth) acrylate resin
JP2008056823A (en) Radically polymerizable unsaturated resin composition, and molded article using the same
JP2006282767A (en) Unsaturated polyester resin composition and cured product thereof
JP4102379B2 (en) Unsaturated polyester resin composition and cured product thereof
JP5160310B2 (en) Method for producing unsaturated polyester, unsaturated polyester resin composition, and unsaturated polyester resin cured molded article
EP3310844A1 (en) Cross-linked unsaturated polycarbonate resins
JP2005054068A (en) Unsaturated polyester resin, unsaturated polyester resin composite, and cured product of the resin composite
WO2020040052A1 (en) Curable resin composition and cured product therefrom
JP3906122B2 (en) Vinyl ester resin composition for artificial marble with excellent storage stability
EP1132429B1 (en) Unsaturated polyester resin compositions
US20040076830A1 (en) Polyester-based dimethacrylates designed for laminating applications
JP2005179388A (en) Curable resin composition, method for producing the same and method for utilizing the same resin composition
JP5166967B2 (en) Unsaturated polyester resin composition for applications requiring alcohol resistance performance, resin composite composition for applications requiring alcohol resistance performance using the same, and FRP double shell tank for alcohol fuel
JP3538481B2 (en) Unsaturated polyester, method for producing the same, and unsaturated polyester resin composition
JP7085602B2 (en) A structure using a radically polymerizable resin composition, a composite material, the radically polymerizable resin composition, or the like.
AU2008294810B2 (en) Polyester hybrid resins

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110302

R150 Certificate of patent or registration of utility model

Ref document number: 4699558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250