JP2011243834A - Plasma processing apparatus, substrate holding mechanism, and substrate position shift detecting method - Google Patents

Plasma processing apparatus, substrate holding mechanism, and substrate position shift detecting method Download PDF

Info

Publication number
JP2011243834A
JP2011243834A JP2010116145A JP2010116145A JP2011243834A JP 2011243834 A JP2011243834 A JP 2011243834A JP 2010116145 A JP2010116145 A JP 2010116145A JP 2010116145 A JP2010116145 A JP 2010116145A JP 2011243834 A JP2011243834 A JP 2011243834A
Authority
JP
Japan
Prior art keywords
substrate
pressure
gas
processed
substrate holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010116145A
Other languages
Japanese (ja)
Other versions
JP5871453B2 (en
Inventor
Toshihiro Tojo
利洋 東条
Atsuki Furuya
敦城 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2010116145A priority Critical patent/JP5871453B2/en
Priority to KR1020110047409A priority patent/KR101314511B1/en
Priority to TW100117607A priority patent/TWI549220B/en
Priority to CN201110135922.XA priority patent/CN102299091B/en
Publication of JP2011243834A publication Critical patent/JP2011243834A/en
Application granted granted Critical
Publication of JP5871453B2 publication Critical patent/JP5871453B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance detection precision of a position shift of a substrate by eliminating an effect of pressure loss in a gas passage for heat transfer gas.SOLUTION: There are provided a gas passage 352 for supplying gas from a gas supply source therethrough to the gap between a mount table 300 and a processing target substrate held on a substrate holding surface of the mount table 300, plural gas holes 354 formed in the substrate holding surface of the mount table to guide the gas from the gas passage onto a substrate holding surface Ls, plural pressure detecting holes 370a to 370b formed at the outside of a gas hole forming area R in the substrate holding surface to detect a pressure applied to the back surface of the substrate, and pressure sensors 380a to 380d connected to the pressure detecting holes. A position shift of the substrate is detected on the basis of the detected pressure from the pressure sensors.

Description

本発明は,フラットパネルディスプレイ(FPD)用ガラス基板等の大型基板にプラズマ処理を施すプラズマ処理装置,基板保持機構,基板位置ずれ検出方法に関する。   The present invention relates to a plasma processing apparatus that performs plasma processing on a large substrate such as a glass substrate for a flat panel display (FPD), a substrate holding mechanism, and a substrate misalignment detection method.

FPDのパネル製造においては,一般にガラスなどの絶縁体からなる基板上に画素のデバイスまたは電極や配線等が形成される。このようなパネル製造の様々な工程のうち,エッチング,CVD,アッシング,スパッタリング等の微細加工は,プラズマ処理装置によって行われる。プラズマ処理装置は,例えば減圧可能な処理容器内で基板を下部電極を構成するサセプタを備える載置台の上に載置し,サセプタに高周波電力を供給することによって,基板上に処理ガスのプラズマを形成し,このプラズマによって基板上にエッチングなどの所定の処理を行うようになっている。   In the manufacture of FPD panels, pixel devices or electrodes and wirings are generally formed on a substrate made of an insulator such as glass. Of these various panel manufacturing processes, fine processing such as etching, CVD, ashing, and sputtering is performed by a plasma processing apparatus. The plasma processing apparatus, for example, places a substrate on a mounting table including a susceptor that constitutes a lower electrode in a depressurized processing container, and supplies high frequency power to the susceptor, thereby generating plasma of a processing gas on the substrate. Then, a predetermined process such as etching is performed on the substrate by the plasma.

この場合,プラズマ処理中の発熱による温度上昇を抑えて基板の温度を一定に制御する必要がある。このため,チラー装置より温調された冷媒を載置台内の冷媒通路に循環供給すると同時に,Heガスなどの伝熱性の良いガス(伝熱ガス)を載置台の中を通して基板の裏面に供給して,基板を間接的に冷却する方式がよく用いられている。この冷却方式は,Heガスの供給圧力に抗して基板を載置台上に固定保持する必要があるため,載置台上に基板保持部を設け,例えば静電吸着力より基板保持部の基板保持面に基板を吸着保持するようになっている。   In this case, it is necessary to control the temperature of the substrate to be constant while suppressing a temperature rise due to heat generation during plasma processing. For this reason, a coolant whose temperature is controlled by the chiller is circulated and supplied to the coolant passage in the mounting table, and at the same time, a gas having good heat transfer property (heat transfer gas) such as He gas is supplied to the back surface of the substrate through the mounting table. Therefore, a method of indirectly cooling the substrate is often used. Since this cooling method requires that the substrate be fixed and held on the mounting table against the He gas supply pressure, a substrate holding unit is provided on the mounting table. For example, the substrate holding unit holds the substrate by electrostatic attraction force. The substrate is sucked and held on the surface.

載置台上の基板保持面に対して基板が位置ずれしていると,サセプタ上で基板保持面が露出するので,この状態でサセプタに高周波電力を印加してプラズマを発生させると,異常放電が発生してサセプタを損傷させる虞がある。従って,このような基板の位置ずれをプラズマを発生させる前に検出することができれば,異常放電の発生を未然に防ぐことができる。   If the substrate is displaced with respect to the substrate holding surface on the mounting table, the substrate holding surface is exposed on the susceptor. If high-frequency power is applied to the susceptor in this state to generate plasma, abnormal discharge will occur. May occur and damage the susceptor. Therefore, if such a position shift of the substrate can be detected before the plasma is generated, the occurrence of abnormal discharge can be prevented in advance.

FPD用基板は,半導体ウエハに比べてはるかにサイズが大きいため,半導体ウエハ用に開発された技術をそのまま適用しても,基板の位置ずれを正確に検出できないという問題がある。例えば特許文献1に記載の技術のように,載置台の上部に圧力測定孔を設け,圧力測定孔を介して圧力測定ガスを載置台と半導体ウエハとの間に供給して圧力測定ガスの圧力を監視するものがある。この方法では,例えば半導体ウエハがない場合や静電保持力が小さい場合には,圧力測定孔から圧力測定ガスが漏れて圧力が低下するため,その圧力を監視することによって,載置台上の半導体ウエハの有無や保持状態を検出するものであるが,半導体ウエハの位置ずれまでは検出できない。特許文献2に記載の技術も載置台の上部に圧力測定孔を設けて圧力を検出するものであるが,これについても上記と同様に位置ずれまでは検出できない。   Since the FPD substrate is much larger than the semiconductor wafer, there is a problem that even if the technology developed for the semiconductor wafer is applied as it is, the positional deviation of the substrate cannot be detected accurately. For example, as in the technique described in Patent Document 1, a pressure measurement hole is provided in the upper part of the mounting table, and a pressure measurement gas is supplied between the mounting table and the semiconductor wafer through the pressure measurement hole to thereby adjust the pressure of the pressure measurement gas. There is something to monitor. In this method, for example, when there is no semiconductor wafer or when the electrostatic holding force is small, the pressure measurement gas leaks from the pressure measurement hole and the pressure decreases, so the semiconductor on the mounting table is monitored by monitoring the pressure. It detects the presence / absence of the wafer and the holding state, but cannot detect even the positional deviation of the semiconductor wafer. The technique described in Patent Document 2 also detects a pressure by providing a pressure measurement hole in the upper part of the mounting table, but this cannot be detected until the positional deviation as well.

このようなFPD用基板の位置ずれを正確に検出するため,特許文献3の図16A,図16Bに示すように伝熱ガスのガス孔形成領域を囲む枠部の4つ角部に位置ずれ検出孔を設け,これら位置ずれ検出孔をガス孔形成領域の凹部空間(ガス孔から伝熱ガスが排出される空間)に連通するようにした載置台の開発も進められている。これによれば,基板が位置ずれしていると,位置ずれ検出孔からガス漏れするのでガス孔に接続されたガス流路の圧力も変化する。これを圧力調整バルブ(PCV)の内蔵マノメータでモニタリングすることで基板の位置ずれを検出するものである。   In order to accurately detect such misalignment of the FPD substrate, as shown in FIGS. 16A and 16B of Patent Document 3, misalignment detection is performed at the four corners of the frame portion surrounding the gas hole formation region of the heat transfer gas. Development of a mounting table in which holes are provided so that these displacement detection holes communicate with a recessed space (a space where heat transfer gas is discharged from the gas holes) in the gas hole forming region is also underway. According to this, when the substrate is displaced, gas leaks from the displacement detection hole, so that the pressure of the gas flow path connected to the gas hole also changes. This is monitored by a built-in manometer of the pressure adjusting valve (PCV) to detect the positional deviation of the substrate.

特開平04−359539号公報Japanese Patent Laid-Open No. 04-359539 特開平07−231032号公報JP 07-2331032 A 特開2008−172170号公報JP 2008-172170 A

しかしながら,近年ではFPD用基板のサイズがより一層大型化しており,これに伴って載置台のサイズも従来以上に大型化している。このような装置の大型化の傾向は今後も続くと考えられる。このように装置が大型化するほど,伝熱ガスのガス孔の数を増大させるとともに,これらガス孔に伝熱ガスを供給するガス流路も長くせざるを得なくなっている。   However, in recent years, the size of the FPD substrate has been further increased, and accordingly, the size of the mounting table has been increased more than ever. Such a trend toward larger devices is expected to continue. As the apparatus becomes larger in this manner, the number of gas holes for the heat transfer gas is increased, and the gas flow path for supplying the heat transfer gas to these gas holes must be lengthened.

ところが,このようにガス流路が長くなるほどコンダクタンスも悪くなるので,ガス流路による圧力損失が大きくなり,基板の裏面まで所望の圧力で伝熱ガスが供給され難くなる。このため,基板が位置ずれしている場合と位置ずれしていない場合とにおける伝熱ガスの漏れ流量の差が僅かになるので,基板の位置ずれ検出が難しくなり,その検出精度も低下してしまうという問題がある。   However, the longer the gas flow path becomes, the worse the conductance becomes. Therefore, the pressure loss due to the gas flow path increases, and it becomes difficult to supply the heat transfer gas to the back surface of the substrate at a desired pressure. For this reason, the difference in the leakage flow rate of heat transfer gas between when the substrate is misaligned and when it is not misaligned is small, making it difficult to detect the substrate misalignment and reducing the detection accuracy. There is a problem of end.

そこで,本発明は,このような問題に鑑みてなされたもので,その目的とするところは,伝熱ガスのガス流路の圧力損失の影響をなくして基板の位置ずれ検出の精度を向上させることができるプラズマ処理装置等を提供することにある。   Therefore, the present invention has been made in view of such a problem, and an object of the present invention is to improve the accuracy of detection of substrate displacement by eliminating the effect of pressure loss in the gas flow path of the heat transfer gas. An object of the present invention is to provide a plasma processing apparatus and the like that can be used.

上記課題を解決するために,本発明のある観点によれば,プラズマが生成される空間内で矩形の被処理基板を載置保持する基板保持機構であって,前記被処理基板を載置保持する矩形の載置台と,前記載置台とその基板保持面に保持された被処理基板との間にガス供給源からのガスを供給するためのガス流路と,前記載置台の基板保持面に形成され,前記ガス流路からのガスを前記基板保持面上に案内する複数のガス孔と,前記基板保持面における前記ガス孔形成領域の外側に形成され,被処理基板の裏面にかかる圧力を検出する複数の圧力検出孔と,前記複数の圧力検出孔に接続された圧力センサと,前記圧力センサからの検出圧力に基づいて前記被処理基板の位置ずれ検出を行う位置ずれ検出手段と,を備えることを特徴とする基板保持機構が提供される。   In order to solve the above-described problems, according to an aspect of the present invention, there is provided a substrate holding mechanism for mounting and holding a rectangular substrate to be processed in a space where plasma is generated. A rectangular mounting table, a gas flow path for supplying gas from a gas supply source between the mounting table and the substrate to be processed held on the substrate holding surface, and a substrate holding surface of the mounting table And a plurality of gas holes for guiding the gas from the gas flow path onto the substrate holding surface, and formed outside the gas hole forming region on the substrate holding surface, and applying pressure on the back surface of the substrate to be processed. A plurality of pressure detection holes to be detected, a pressure sensor connected to the plurality of pressure detection holes, and a position shift detection means for detecting a position shift of the substrate to be processed based on a detected pressure from the pressure sensor; Substrate holding characterized by comprising Structure is provided.

上記課題を解決するために,本発明の別の観点によれば,プラズマが生成される空間内で矩形の被処理基板を載置保持する基板保持機構における基板位置ずれ検出方法であって,前記基板保持機構は,前記被処理基板を載置保持する矩形の載置台と,前記載置台とその基板保持面に保持された被処理基板との間にガス供給源からのガスを供給するためのガス流路と,前記載置台の基板保持面に形成され,前記ガス流路からのガスを前記基板保持面上に案内する複数のガス孔と,前記基板保持面における前記ガス孔形成領域の外側に形成され,被処理基板の裏面にかかる圧力を検出する複数の圧力検出孔と,前記複数の圧力検出孔に接続された圧力センサと,前記ガス供給源からのガス流量を調整する流量調整器と,を備え,前記圧力センサからの検出圧力に基づいて前記被処理基板の位置ずれ検出を行うとともに,前記流量調整器によるガス流量の調整を行うことを特徴とする基板位置ずれ検出方法が提供される。   In order to solve the above-mentioned problem, according to another aspect of the present invention, there is provided a substrate positional deviation detection method in a substrate holding mechanism for mounting and holding a rectangular substrate to be processed in a space where plasma is generated, The substrate holding mechanism is for supplying a gas from a gas supply source between the rectangular mounting table for mounting and holding the substrate to be processed, and the mounting table and the substrate to be processed held on the substrate holding surface. A gas flow path, a plurality of gas holes formed on the substrate holding surface of the mounting table and guiding the gas from the gas flow path onto the substrate holding surface, and an outside of the gas hole forming region on the substrate holding surface A plurality of pressure detection holes for detecting pressure applied to the back surface of the substrate to be processed, pressure sensors connected to the plurality of pressure detection holes, and a flow rate regulator for adjusting a gas flow rate from the gas supply source And the pressure sensor On the basis of the detection pressure performs the positional deviation detection of the substrate, the substrate displacement detection method characterized by adjusting the gas flow rate by the flow regulator is provided.

上記課題を解決するために,本発明の別の観点によれば,処理室内に処理ガスを導入し,前記処理ガスのプラズマを発生させることによって,処理室内の載置台に載置保持された絶縁体からなる被処理基板に所定のプラズマ処理を施すプラズマ処理装置であって,前記載置台とその基板保持面に保持された被処理基板との間にガス供給源からのガスを供給するためのガス流路と,前記載置台の基板保持面に形成され,前記ガス流路からのガスを前記基板保持面上に案内する複数のガス孔と,前記基板保持面における前記ガス孔形成領域の外側に形成され,被処理基板の裏面にかかる圧力を検出する複数の圧力検出孔と,前記複数の圧力検出孔に接続された圧力センサと,前記圧力センサからの検出圧力に基づいて前記被処理基板の位置ずれ検出を行う位置ずれ検出手段と,を備えることを特徴とするプラズマ処理装置が提供される。   In order to solve the above problems, according to another aspect of the present invention, by introducing a processing gas into a processing chamber and generating a plasma of the processing gas, the insulation placed and held on a mounting table in the processing chamber is obtained. A plasma processing apparatus for performing predetermined plasma processing on a substrate to be processed comprising a body for supplying a gas from a gas supply source between the mounting table and the substrate to be processed held on the substrate holding surface. A gas flow path, a plurality of gas holes formed on the substrate holding surface of the mounting table and guiding the gas from the gas flow path onto the substrate holding surface, and an outside of the gas hole forming region on the substrate holding surface A plurality of pressure detection holes for detecting pressure applied to the back surface of the substrate to be processed, a pressure sensor connected to the plurality of pressure detection holes, and the substrate to be processed based on the detected pressure from the pressure sensor Misalignment detection The plasma processing apparatus characterized by comprising a displacement detection means for performing is provided.

このような本発明によれば,伝熱ガス用のガス孔とは別に複数の圧力検出孔を設け,これら圧力検出孔から基板裏面圧力を直接検出でき,その検出圧力に基づいて基板の位置ずれを検出できる。これにより,伝熱ガス用のガス孔による圧力損失の影響を受けずに被処理基板の位置ずれを検出できる。また,複数の圧力検出孔は,ガス孔形成領域の外側に形成するので,被処理基板が少しずれただけで圧力が変化するため,位置ずれ検出し易くなる。   According to the present invention, a plurality of pressure detection holes are provided in addition to the gas holes for the heat transfer gas, and the substrate back surface pressure can be directly detected from these pressure detection holes. Can be detected. Thereby, the position shift of the substrate to be processed can be detected without being affected by the pressure loss due to the gas hole for the heat transfer gas. In addition, since the plurality of pressure detection holes are formed outside the gas hole formation region, the pressure changes when the substrate to be processed is slightly displaced, so that it is easy to detect displacement.

本発明によれば,伝熱ガスのガス流路の圧力損失の影響をなくして基板の位置ずれ検出の精度を向上させることができるので,より大型の装置にも適用することができる。   According to the present invention, it is possible to eliminate the influence of the pressure loss in the gas flow path of the heat transfer gas and improve the accuracy of detecting the positional deviation of the substrate, so that the present invention can be applied to a larger apparatus.

本発明の実施形態にかかる処理装置の外観斜視図である。1 is an external perspective view of a processing apparatus according to an embodiment of the present invention. 同実施形態におけるプラズマ処理装置を構成する処理室の断面図である。It is sectional drawing of the process chamber which comprises the plasma processing apparatus in the embodiment. 同実施形態における伝熱ガス供給機構の構成例を説明するための図である。It is a figure for demonstrating the structural example of the heat transfer gas supply mechanism in the embodiment. 図3に示す載置台の表面を上方から見た図であって,基板が載置されていない状態を示したものである。It is the figure which looked at the surface of the mounting base shown in FIG. 3 from upper direction, Comprising: The state in which the board | substrate is not mounted is shown. 図3に示す載置台の表面を上方から見た図であって,基板が載置された状態を示したものである。It is the figure which looked at the surface of the mounting base shown in FIG. 3 from upper direction, Comprising: The state in which the board | substrate was mounted is shown. 圧力調整バルブ(PCV)の内蔵の圧力センサを用いて設定されたHeガス圧力と,基板裏面におけるHeガス圧力との関係をグラフに示した図である。It is the figure which showed the relationship between the He gas pressure set using the pressure sensor with a built-in pressure control valve (PCV), and the He gas pressure in a substrate back surface. 同実施形態における伝熱ガス制御のメインルーチンを示すフローチャートである。It is a flowchart which shows the main routine of the heat transfer gas control in the embodiment. 図6に示す基板ずれ判定処理のサブルーチンを示すフローチャートである。It is a flowchart which shows the subroutine of the board | substrate deviation determination process shown in FIG. 位置ずれパターンを説明するための図であって,一方向の基板平行ずれが発生した場合の具体例を示したものである。It is a figure for demonstrating a position shift pattern, Comprising: The specific example in case the board | substrate parallel shift | offset | difference of one direction generate | occur | produces is shown. 位置ずれパターンを説明するための図であって,一方向の基板平行ずれが発生した場合の他の具体例を示したものである。It is a figure for demonstrating a position shift pattern, Comprising: Another specific example in case the board | substrate parallel shift of one direction generate | occur | produces is shown. 位置ずれパターンを説明するための図であって,二方向の基板平行ずれが発生した場合の具体例を示したものである。It is a figure for demonstrating a position shift pattern, Comprising: The specific example in case the board | substrate parallel shift | offset | difference of two directions has shown is shown. 位置ずれパターンを説明するための図であって,二方向の基板平行ずれが発生した場合の他の具体例を示したものである。It is a figure for demonstrating a position shift pattern, Comprising: The other specific example at the time of the board | substrate parallel shift | offset | difference of two directions showing is shown. 位置ずれパターンを説明するための図であって,基板斜行ずれが発生した場合の具体例を示したものである。It is a figure for demonstrating a position shift pattern, Comprising: The specific example in case the board | substrate skew deviation generate | occur | produces is shown. 位置ずれパターンを説明するための図であって,基板斜行ずれが発生した場合の他の具体例を示したものである。It is a figure for demonstrating a position shift pattern, Comprising: The other example when a board | substrate skew deviation generate | occur | produces is shown. 同実施形態における圧力検出孔の他の構成例を説明するための断面図である。It is sectional drawing for demonstrating the other structural example of the pressure detection hole in the embodiment. 図11の変形例を説明するための断面図である。It is sectional drawing for demonstrating the modification of FIG. 図12の変形例を説明するための断面図である。It is sectional drawing for demonstrating the modification of FIG. 図13の変形例を説明するための断面図である。It is sectional drawing for demonstrating the modification of FIG. 図14の変形例を説明するための断面図である。It is sectional drawing for demonstrating the modification of FIG. 圧力検出孔の配置位置を説明するための図である。It is a figure for demonstrating the arrangement position of a pressure detection hole. 圧力検出孔に嵌め込む流路コマの構成例を示す斜視図である。It is a perspective view which shows the structural example of the flow-path piece fitted in a pressure detection hole.

以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

(プラズマ処理装置の構成例)
先ず,本発明を複数のプラズマ処理装置を備えるマルチチャンバータイプの処理装置に適用した場合の実施形態について図面を参照しながら説明する。図1は,本実施形態にかかる処理装置100の外観斜視図である。同図に示す処理装置100は,フラットパネルディスプレイ用基板(FPD用基板)Gに対してプラズマ処理を施すための3つのプラズマ処理装置を備える。プラズマ処理装置はそれぞれ処理室200を備える。
(Configuration example of plasma processing equipment)
First, an embodiment when the present invention is applied to a multi-chamber type processing apparatus including a plurality of plasma processing apparatuses will be described with reference to the drawings. FIG. 1 is an external perspective view of a processing apparatus 100 according to the present embodiment. The processing apparatus 100 shown in the figure includes three plasma processing apparatuses for performing plasma processing on a flat panel display substrate (FPD substrate) G. Each plasma processing apparatus includes a processing chamber 200.

処理室200内には,例えばFPD用基板Gを載置する載置台が設けられており,この載置台の上方に処理ガス(例えばプロセスガス)を導入するためのシャワーヘッドが設けられている。載置台は下部電極を構成するサセプタを備え,これと平行に対向して設けられるシャワーヘッドは上部電極としての機能も兼ねる。各処理室200では同一の処理(例えばエッチング処理等)を行っても良いし,互いに異なった処理(例えばエッチング処理とアッシング処理等)を行うようにしても良い。なお,処理室200内の具体的構成例については後述する。   In the processing chamber 200, for example, a mounting table for mounting the FPD substrate G is provided, and a shower head for introducing a processing gas (for example, process gas) is provided above the mounting table. The mounting table includes a susceptor constituting the lower electrode, and the shower head provided in parallel with the susceptor also functions as the upper electrode. Each processing chamber 200 may perform the same processing (for example, etching processing) or different processing (for example, etching processing and ashing processing). A specific configuration example in the processing chamber 200 will be described later.

各処理室200はそれぞれ,断面多角形状(例えば断面矩形状)の搬送室110の側面にゲートバルブ102を介して連結されている。搬送室110にはさらに,ロードロック室120がゲートバルブ104を介して連結されている。ロードロック室120には,基板搬出入機構130がゲートバルブ106を介して隣設されている。   Each processing chamber 200 is connected via a gate valve 102 to a side surface of a transfer chamber 110 having a polygonal cross section (for example, a rectangular cross section). A load lock chamber 120 is further connected to the transfer chamber 110 via a gate valve 104. A substrate carry-in / out mechanism 130 is provided adjacent to the load lock chamber 120 via a gate valve 106.

基板搬出入機構130にそれぞれ2つのインデクサ140が隣設されている。インデクサ140には,FPD用基板Gを収納するカセット142が載置される。カセット142は複数枚(例えば25枚)のFPD用基板Gが収納可能に構成されている。   Two indexers 140 are provided adjacent to the substrate carry-in / out mechanism 130, respectively. A cassette 142 for storing the FPD substrate G is placed on the indexer 140. The cassette 142 is configured to accommodate a plurality of (for example, 25) FPD substrates G.

このようなプラズマ処理装置によってFPD用基板Gに対してプラズマ処理を行う際には,先ず基板搬出入機構130によりカセット142内のFPD用基板Gをロードロック室120内へ搬入する。このとき,ロードロック室120内に処理済みのFPD用基板Gがあれば,その処理済みのFPD用基板Gをロードロック室120内から搬出し,未処理のFPD用基板Gと置き換える。ロードロック室120内へFPD用基板Gが搬入されると,ゲートバルブ106を閉じる。   When plasma processing is performed on the FPD substrate G by using such a plasma processing apparatus, first, the FPD substrate G in the cassette 142 is carried into the load lock chamber 120 by the substrate carry-in / out mechanism 130. At this time, if there is a processed FPD substrate G in the load lock chamber 120, the processed FPD substrate G is carried out of the load lock chamber 120 and replaced with an unprocessed FPD substrate G. When the FPD substrate G is carried into the load lock chamber 120, the gate valve 106 is closed.

次いで,ロードロック室120内を所定の真空度まで減圧した後,搬送室110とロードロック室120間のゲートバルブ104を開く。そして,ロードロック室120内のFPD用基板Gを搬送室110内の搬送機構(図示せず)により搬送室110内へ搬入した後,ゲートバルブ104を閉じる。   Next, after reducing the pressure in the load lock chamber 120 to a predetermined degree of vacuum, the gate valve 104 between the transfer chamber 110 and the load lock chamber 120 is opened. Then, after the FPD substrate G in the load lock chamber 120 is loaded into the transfer chamber 110 by a transfer mechanism (not shown) in the transfer chamber 110, the gate valve 104 is closed.

搬送室110と処理室200との間のゲートバルブ102を開き,上記搬送機構により処理室200内の載置台に未処理のFPD用基板Gを搬入する。このとき,処理済みのFPD用基板Gがあれば,その処理済みのFPD用基板Gを搬出し,未処理のFPD用基板Gと置換える。   The gate valve 102 between the transfer chamber 110 and the processing chamber 200 is opened, and the unprocessed FPD substrate G is loaded onto the mounting table in the processing chamber 200 by the transfer mechanism. At this time, if there is a processed FPD substrate G, the processed FPD substrate G is unloaded and replaced with an unprocessed FPD substrate G.

処理室200内では,処理ガスをシャワーヘッドを介して処理室内に導入し,下部電極或は上部電極,又は上部電極と下部電極の両方に高周波電力を供給することによって,下部電極と上部電極との間に処理ガスのプラズマを発生させることによって,載置台上に保持されたFPD用基板Gに対して所定のプラズマ処理を行う。   In the processing chamber 200, a processing gas is introduced into the processing chamber through a shower head, and high frequency power is supplied to the lower electrode or the upper electrode, or both the upper electrode and the lower electrode, so that the lower electrode, the upper electrode, During this time, plasma of the processing gas is generated to perform predetermined plasma processing on the FPD substrate G held on the mounting table.

(処理室の構成例) (Configuration example of processing chamber)

次に,処理室200の具体的構成例について図面を参照しながら説明する。ここでは,本発明のプラズマ処理装置を,例えばガラス基板などのFPD用の絶縁基板(以下,単に「基板」とも称する)Gをエッチングする容量結合型プラズマ(CCP)エッチング装置に適用した場合の処理室の構成例について説明する。図2は,処理室200の概略構成を示す断面図である。   Next, a specific configuration example of the processing chamber 200 will be described with reference to the drawings. Here, processing when the plasma processing apparatus of the present invention is applied to a capacitively coupled plasma (CCP) etching apparatus that etches an FPD insulating substrate (hereinafter, also simply referred to as “substrate”) G such as a glass substrate, for example. A configuration example of the chamber will be described. FIG. 2 is a cross-sectional view illustrating a schematic configuration of the processing chamber 200.

図2に示す処理室200は,例えば表面が陽極酸化処理(アルマイト処理)されたアルミニウムからなる略角筒形状の処理容器202を備える。処理容器202は接地されている。処理室200内の底部には,下部電極を構成するサセプタ310を有する載置台300が配設されている。載置台300は,矩形の基板Gを固定保持する基板保持機構として機能し,矩形の基板Gに対応した矩形形状に形成される。この載置台の具体的構成例は後述する。   The processing chamber 200 shown in FIG. 2 includes a processing container 202 having a substantially rectangular tube shape made of aluminum whose surface is anodized (anodized), for example. The processing container 202 is grounded. A mounting table 300 having a susceptor 310 that constitutes a lower electrode is disposed at the bottom of the processing chamber 200. The mounting table 300 functions as a substrate holding mechanism that fixes and holds the rectangular substrate G, and is formed in a rectangular shape corresponding to the rectangular substrate G. A specific configuration example of the mounting table will be described later.

載置台300の上方には,サセプタ310と平行に対向するように,上部電極として機能するシャワーヘッド210が対向配置されている。シャワーヘッド210は処理容器202の上部に支持されており,内部にバッファ室222を有するとともに,サセプタ310と対向する下面には処理ガスを吐出する多数の吐出孔224が形成されている。このシャワーヘッド210は接地されており,サセプタ310とともに一対の平行平板電極を構成している。   Above the mounting table 300, a shower head 210 that functions as an upper electrode is disposed so as to face the susceptor 310 in parallel. The shower head 210 is supported on the upper portion of the processing container 202, has a buffer chamber 222 therein, and has a plurality of discharge holes 224 for discharging a processing gas on the lower surface facing the susceptor 310. The shower head 210 is grounded and forms a pair of parallel plate electrodes together with the susceptor 310.

シャワーヘッド210の上面にはガス導入口226が設けられ,ガス導入口226にはガス導入管228が接続されている。ガス導入管228には,開閉バルブ230,マスフローコントローラ(MFC)232を介して処理ガス供給源234が接続されている。   A gas inlet 226 is provided on the upper surface of the shower head 210, and a gas inlet tube 228 is connected to the gas inlet 226. A processing gas supply source 234 is connected to the gas introduction pipe 228 via an open / close valve 230 and a mass flow controller (MFC) 232.

処理ガス供給源234からの処理ガスは,マスフローコントローラ(MFC)232によって所定の流量に制御され,ガス導入口226を通ってシャワーヘッド210のバッファ室222に導入される。処理ガス(エッチングガス)としては,例えばハロゲン系のガス,Oガス,Arガスなど,通常この分野で用いられるガスを用いることができる。 The processing gas from the processing gas supply source 234 is controlled to a predetermined flow rate by a mass flow controller (MFC) 232 and is introduced into the buffer chamber 222 of the shower head 210 through the gas introduction port 226. As the processing gas (etching gas), for example, a gas usually used in this field such as a halogen-based gas, O 2 gas, Ar gas, or the like can be used.

処理室200の側壁には基板搬入出口204を開閉するためのゲートバルブ102が設けられている。また,処理室200の側壁の下方には排気口が設けられ,排気口には排気管208を介して真空ポンプ(図示せず)を含む排気装置209が接続される。この排気装置209により処理室200の室内を排気することによって,プラズマ処理中に処理室200内を所定の真空雰囲気(たとえば10mTorr=約1.33Pa)に維持することができる。   A gate valve 102 for opening and closing the substrate loading / unloading port 204 is provided on the side wall of the processing chamber 200. In addition, an exhaust port is provided below the side wall of the processing chamber 200, and an exhaust device 209 including a vacuum pump (not shown) is connected to the exhaust port via an exhaust pipe 208. By exhausting the inside of the processing chamber 200 by the exhaust device 209, the inside of the processing chamber 200 can be maintained in a predetermined vacuum atmosphere (for example, 10 mTorr = about 1.33 Pa) during the plasma processing.

(基板保持機構を適用した載置台の構成例)
ここで,本発明にかかる基板保持機構を適用した載置台300の具体的な構成例について図2,図3を参照しながら説明する。図3は,載置台300の伝熱ガス供給機構の構成例を説明する図である。図3は,図2に示す載置台300の上部分の断面を簡略化して示したものである。図3では,説明を簡単にするために図2に示す静電保持部320を省略している。図4A,図4Bは,載置台300の表面を上方から見た図である。図4Aは,基板Gが載置されていない状態を示したものであり,図4Bは基板Gが位置ずれ無しで載置された状態を示したものである。
(Configuration example of a mounting table to which a substrate holding mechanism is applied)
Here, a specific configuration example of the mounting table 300 to which the substrate holding mechanism according to the present invention is applied will be described with reference to FIGS. FIG. 3 is a diagram illustrating a configuration example of the heat transfer gas supply mechanism of the mounting table 300. FIG. 3 shows a simplified cross section of the upper part of the mounting table 300 shown in FIG. In FIG. 3, the electrostatic holding part 320 shown in FIG. 4A and 4B are views of the surface of the mounting table 300 as viewed from above. FIG. 4A shows a state where the substrate G is not placed, and FIG. 4B shows a state where the substrate G is placed without positional deviation.

図2に示すように,載置台300は,絶縁性のベース部材302と,このベース部材302上に設けられる導電体(例えばアルミニウム)からなる矩形ブロック状のサセプタ310とを備える。なお,サセプタ310の側面は,図2に示すように絶縁被膜311で覆われている。   As shown in FIG. 2, the mounting table 300 includes an insulating base member 302 and a rectangular block-shaped susceptor 310 made of a conductor (for example, aluminum) provided on the base member 302. The side surface of the susceptor 310 is covered with an insulating film 311 as shown in FIG.

サセプタ310上には,基板Gを基板保持面で保持する基板保持部の1例としての静電保持部320が設けられる。静電保持部320は,例えば下部誘電体層と上部誘電体層との間に電極板322を挟んで構成される。載置台300の外枠を構成し,上記ベース部材302,サセプタ310,静電保持部320の周りを囲むように,例えばセラミックや石英の絶縁部材からなる矩形枠状の外枠部330が配設される。   On the susceptor 310, an electrostatic holding unit 320 is provided as an example of a substrate holding unit that holds the substrate G on the substrate holding surface. The electrostatic holding unit 320 is configured, for example, by sandwiching an electrode plate 322 between a lower dielectric layer and an upper dielectric layer. A rectangular frame-shaped outer frame 330 made of, for example, an insulating member made of ceramic or quartz is disposed so as to constitute an outer frame of the mounting table 300 and surround the base member 302, the susceptor 310, and the electrostatic holding unit 320. Is done.

静電保持部320の電極板322には,直流(DC)電源315がスイッチ316を介して電気的に接続されている。スイッチ316は,例えば電極板322に対してDC電源315と接地電位とを切り換えられるようになっている。なお,電極板322と直流(DC)電源315との間に,サセプタ310側からの高周波を遮断して,サセプタ310側の高周波がDC電源315側に漏洩するのを阻止する高周波遮断部(図示しない)を設けてもよい。高周波遮断部は,1MΩ以上の高い抵抗値を有する抵抗器または直流を通すローパスフィルタで構成するのが好ましい。   A direct current (DC) power source 315 is electrically connected to the electrode plate 322 of the electrostatic holding unit 320 via a switch 316. For example, the switch 316 can switch between the DC power source 315 and the ground potential with respect to the electrode plate 322. A high-frequency cutoff unit (illustrated) that blocks high-frequency waves from the susceptor 310 side between the electrode plate 322 and the direct current (DC) power source 315 and prevents leakage of high-frequency waves on the susceptor 310 side to the DC power source 315 side. No) may be provided. The high-frequency cutoff unit is preferably constituted by a resistor having a high resistance value of 1 MΩ or more or a low-pass filter that passes direct current.

スイッチ316がDC電源315側に切り換えられると,DC電源315からのDC電圧が電極板322に印加される。このDC電圧が正極性の電圧である場合,基板Gの上面には負の電荷(電子,負イオン)が引き付けられるようにして蓄積する。これにより,基板G上面の負の面電荷と電極板322との間に基板Gおよび上部誘電体層を挟んで互いに引き合う静電吸着力つまりクーロン力が働き,この静電吸着力で基板Gは載置台300上に吸着保持される。スイッチ316がグランド側に切り換えられると,電極板322が除電され,これに伴って基板Gも除電され,上記クーロン力つまり静電吸着力が解除される。   When the switch 316 is switched to the DC power source 315 side, a DC voltage from the DC power source 315 is applied to the electrode plate 322. When this DC voltage is a positive voltage, negative charges (electrons and negative ions) are accumulated on the upper surface of the substrate G so as to be attracted. As a result, an electrostatic attracting force, that is, a Coulomb force attracting each other with the substrate G and the upper dielectric layer sandwiched between the negative surface charge on the upper surface of the substrate G and the electrode plate 322 acts. It is sucked and held on the mounting table 300. When the switch 316 is switched to the ground side, the electrode plate 322 is neutralized, and accordingly, the substrate G is also neutralized, and the Coulomb force, that is, the electrostatic adsorption force is released.

サセプタ310には,整合器312を介して高周波電源314の出力端子が電気的に接続されている。高周波電源314の出力周波数は,比較的高い周波数たとえば13.56MHzに選ばれる。サセプタ310に印加される高周波電源314からの高周波電力によって,基板Gの上には処理ガスのプラズマPZが生成され,基板G上に所定のプラズマエッチング処理が施される。   The output terminal of the high frequency power supply 314 is electrically connected to the susceptor 310 via the matching unit 312. The output frequency of the high frequency power supply 314 is selected to be a relatively high frequency, for example, 13.56 MHz. A plasma PZ of a processing gas is generated on the substrate G by the high frequency power from the high frequency power source 314 applied to the susceptor 310, and a predetermined plasma etching process is performed on the substrate G.

サセプタ310の内部には冷媒流路340が設けられており,チラー装置(図示せず)から所定の温度に調整された冷媒が冷媒流路340を流れるようになっている。この冷媒によって,サセプタ310の温度を所定の温度に調整することができる。   A refrigerant flow path 340 is provided inside the susceptor 310, and a refrigerant adjusted to a predetermined temperature flows from the chiller device (not shown) through the refrigerant flow path 340. With this refrigerant, the temperature of the susceptor 310 can be adjusted to a predetermined temperature.

載置台300は,静電保持部320の基板保持面と基板Gの裏面との間に伝熱ガス(例えばHeガス)を所定の圧力で供給する伝熱ガス供給機構を備える。伝熱ガス供給機構は,伝熱ガスをサセプタ310内部のガス流路352を介して基板Gの裏面に所定の圧力で供給するようになっている。   The mounting table 300 includes a heat transfer gas supply mechanism that supplies heat transfer gas (for example, He gas) at a predetermined pressure between the substrate holding surface of the electrostatic holding unit 320 and the back surface of the substrate G. The heat transfer gas supply mechanism supplies the heat transfer gas to the back surface of the substrate G at a predetermined pressure via the gas flow path 352 inside the susceptor 310.

伝熱ガス供給機構は,具体的には例えば図3に示すように構成される。すなわち,サセプタ310の上面及びその上の静電保持部320(図3では省略)にはガス孔354が多数設けられており,これらのガス孔354は上記ガス流路352に連通している。ガス孔354は,例えば基板保持面Lsの外周から内側に離間したガス孔形成領域Rに所定間隔で多数配列されている。   Specifically, the heat transfer gas supply mechanism is configured as shown in FIG. 3, for example. That is, a large number of gas holes 354 are provided in the upper surface of the susceptor 310 and the electrostatic holding portion 320 (not shown in FIG. 3) above the susceptor 310, and these gas holes 354 communicate with the gas flow path 352. For example, a large number of gas holes 354 are arranged at predetermined intervals in a gas hole forming region R spaced inward from the outer periphery of the substrate holding surface Ls.

ガス流路352には,例えば伝熱ガスとしてHeガスを供給するHeガス供給源366が圧力調整バルブ(PCV:Pressure Control Valve)362を介して接続されている。圧力調整バルブ(PCV)362は,ガス孔354側へ供給されるHeガスの圧力が所定の圧力になるように流量を調整するものである。   For example, a He gas supply source 366 that supplies He gas as a heat transfer gas is connected to the gas flow path 352 via a pressure control valve (PCV) 362. The pressure adjustment valve (PCV) 362 adjusts the flow rate so that the pressure of the He gas supplied to the gas hole 354 side becomes a predetermined pressure.

圧力調整バルブ(PCV)362は,図示はしないが,例えばガス流路352を通流する伝熱ガスの圧力を測定する圧力センサ等を備えるとともに,図示しない流量調整バルブ(例えばピエゾバルブ),流量計(フローメータ),流量調整バルブであるピエゾバルブを制御するコントローラとが一体化されて構成されている。   Although not shown, the pressure adjustment valve (PCV) 362 includes, for example, a pressure sensor that measures the pressure of the heat transfer gas flowing through the gas flow path 352, a flow rate adjustment valve (for example, a piezo valve), and a flow meter (not shown). (Flow meter) and a controller for controlling a piezo valve which is a flow rate adjusting valve are integrated.

なお,図3ではガス流路352に圧力センサと流量調整バルブとが一体化された圧力調整バルブ(PCV)362を用いた例を示したが,これに限られるものはなく,ガス流路352にこれら圧力センサと流量調整バルブとを別個に設けるようにしてもよい。   Although FIG. 3 shows an example in which a pressure adjustment valve (PCV) 362 in which a pressure sensor and a flow rate adjustment valve are integrated in the gas flow path 352 is shown, the present invention is not limited to this, and the gas flow path 352 is not limited thereto. The pressure sensor and the flow rate adjusting valve may be provided separately.

また,このような圧力センサとしては,例えばマノメータ(例えばキャパシタンスマノメータ(CM))が挙げられる。この圧力センサとしては,その他のマノメータを用いることができ,流量調整バルブとしてもピエゾバルブに限らず,例えばソレノイドバルブであってもよい。   An example of such a pressure sensor is a manometer (for example, a capacitance manometer (CM)). As this pressure sensor, other manometers can be used, and the flow rate adjusting valve is not limited to the piezo valve but may be a solenoid valve, for example.

これら圧力調整バルブ(PCV)362,Heガス供給源366はそれぞれ,処理装置100の各部を制御する制御部400に接続されている。制御部400は,Heガス供給源366を制御してHeガスを流出させて,圧力調整バルブ(PCV)362に設定圧力をセットし,圧力調整バルブ(PCV)362にHeガスを所定の流量に調整させてガス流路352に供給する。圧力調整バルブ(PCV)362のコントローラは例えばPID制御によりガス圧力が設定圧力になるようにピエゾバルブを制御してHeガス流量を制御する。これにより,Heガスは,ガス流路352及びガス孔354を通って基板Gの裏面に所定の圧力で供給される。   These pressure adjustment valves (PCV) 362 and He gas supply source 366 are connected to a control unit 400 that controls each part of the processing apparatus 100. The control unit 400 controls the He gas supply source 366 to flow out He gas, sets the set pressure in the pressure adjustment valve (PCV) 362, and sets the He gas to a predetermined flow rate in the pressure adjustment valve (PCV) 362. It is adjusted and supplied to the gas flow path 352. The controller of the pressure adjustment valve (PCV) 362 controls the He gas flow rate by controlling the piezo valve so that the gas pressure becomes a set pressure by, for example, PID control. Thereby, the He gas is supplied to the back surface of the substrate G at a predetermined pressure through the gas flow path 352 and the gas hole 354.

ところで,このような伝熱ガス供給機構では,圧力調整バルブ(PCV)362に内蔵のマノメータでガス流路352の圧力を測定できるので,その測定したHeガスの圧力に基づいてHeガスの流量を制御できるとともに,内臓の流量計(フローメータ)を使用してHeガスの漏れ流量をモニタリングすることもできる。Heガスの漏れ流量は,基板Gの位置ずれによって変化するので,Heガスの漏れ流量をモニタリングすることで基板Gの位置ずれを検出できる。   By the way, in such a heat transfer gas supply mechanism, since the pressure of the gas flow path 352 can be measured with a manometer built in the pressure adjusting valve (PCV) 362, the flow rate of He gas is adjusted based on the measured He gas pressure. In addition to being controllable, it is also possible to monitor the He gas leakage flow rate using a built-in flow meter. Since the He gas leakage flow rate varies depending on the displacement of the substrate G, the displacement of the substrate G can be detected by monitoring the He gas leakage flow rate.

ところが,近年では基板Gのサイズがより一層大型化しており,これに伴って載置台300のサイズも従来以上に大型化している。これに対応させるためには,Heガスのガス孔354の数を増大させるとともに,これらガス孔354にHeガスを供給するガス流路352も長くせざるを得なくなっている。   However, in recent years, the size of the substrate G is further increased, and accordingly, the size of the mounting table 300 is also increased more than before. In order to cope with this, the number of He gas holes 354 must be increased, and the gas flow path 352 for supplying He gas to these gas holes 354 must be lengthened.

このようにガス流路352が長くなるほどコンダクタンスも悪くなるので,ガス流路352による圧力損失が大きくなり基板Gの裏面まで所望の圧力でHeガスが供給され難くなる。このため,基板Gが位置ずれしている場合と位置ずれしていない場合とにおけるHeガスの漏れ流量の差が僅かになるので,基板Gの位置ずれ検出が難しくなり,その検出精度も低下してしまうという問題がある。   As the gas flow path 352 becomes longer as described above, the conductance becomes worse. Therefore, the pressure loss due to the gas flow path 352 increases, and it is difficult to supply He gas to the back surface of the substrate G at a desired pressure. For this reason, the difference in the He gas leakage flow rate between when the substrate G is displaced and when it is not displaced becomes small, making it difficult to detect the displacement of the substrate G and reducing the detection accuracy. There is a problem that it ends up.

ここで,大型の基板処理装置を用いて行った実験結果を参照しながら,より詳細に説明する。図5は,圧力調整バルブ(PCV)362の内蔵の圧力センサを用いて設定されたHeガス設定圧力と,基板Gの裏面に生じるHeガス圧力(基板裏面圧力)との関係をグラフに示したものである。図5において黒丸のグラフは基板裏面圧力の目標値である。これに対して白丸のグラフは外枠部330に近いガス孔354近傍における基板裏面圧力であり,白四角のグラフはガス孔354よりさらに外枠部330近傍における基板裏面圧力である。   Here, it demonstrates in detail, referring the experimental result performed using the large sized substrate processing apparatus. FIG. 5 is a graph showing the relationship between the He gas set pressure set using the pressure sensor built in the pressure regulating valve (PCV) 362 and the He gas pressure (substrate back pressure) generated on the back surface of the substrate G. Is. In FIG. 5, the black circle graph is the target value of the substrate back surface pressure. On the other hand, the white circle graph represents the substrate back surface pressure in the vicinity of the gas hole 354 close to the outer frame portion 330, and the white square graph represents the substrate back surface pressure in the vicinity of the outer frame portion 330 further than the gas hole 354.

図5の黒丸で示すグラフのように,基板裏面圧力は圧力調整バルブ(PCV)362の設定圧力と同じであることが好ましい。ところが,大型の基板処理装置のようにガス流路352及びガス孔354の圧力損失によりコンダクタンスが低下している場合,基板裏面圧力は図5の白丸で示すグラフのように設定圧力よりも低下してしまう。ガス孔354より外枠部330近傍では基板裏面圧力はさらに低下する。これによれば基板Gの中央から外側に向かうほど,流路352も長くなりコンダクタンスも悪くなり,基板裏面圧力もより低下することが分かる。   As shown in the graph shown by the black circle in FIG. 5, the substrate back surface pressure is preferably the same as the set pressure of the pressure adjustment valve (PCV) 362. However, when the conductance is reduced due to the pressure loss of the gas flow path 352 and the gas hole 354 as in a large substrate processing apparatus, the pressure on the back surface of the substrate is lower than the set pressure as shown by the white circle in FIG. End up. In the vicinity of the outer frame 330 from the gas hole 354, the substrate back surface pressure further decreases. According to this, it turns out that the flow path 352 becomes long and conductance worsens and the substrate back surface pressure decreases further from the center of the substrate G toward the outside.

そこで,本実施形態では,図3に示すように載置台300の基板載置面Lsにおけるガス孔形成領域Rよりも外側に,基板載置面Lsを貫通する複数の圧力検出孔370を配設し,これら圧力検出孔370から基板Gの裏面圧力(ここでは基板載置面Lsの表面と基板Gの裏面との間の圧力)を直接検出するようにしている。これによれば,基板裏面圧力の低下が大きい部位に圧力検出孔370を複数設けて,その部位の圧力を検出できる。   Therefore, in the present embodiment, as shown in FIG. 3, a plurality of pressure detection holes 370 penetrating the substrate mounting surface Ls are disposed outside the gas hole forming region R on the substrate mounting surface Ls of the mounting table 300. The pressure detection hole 370 directly detects the back pressure of the substrate G (here, the pressure between the surface of the substrate placement surface Ls and the back surface of the substrate G). According to this, it is possible to provide a plurality of pressure detection holes 370 at a portion where the decrease in the pressure on the back surface of the substrate is large and detect the pressure at that portion.

さらに,このような圧力検出孔370から検出された基板裏面圧力を用いて圧力調整バルブ(PCV)362を制御すれば,圧力損失による基板裏面圧力の低下を補うようにHeガスの流量を制御できる。しかも,検出された基板裏面圧力は,基板Gの位置ずれ検出にも利用できる。これによれば,圧力損失の影響を受けずに測定された基板裏面圧力で位置ずれを検出できるので,位置ずれの検出精度を向上させることができる。また基板裏面圧力を直接検出しながらHeガスの流量を制御することで,基板裏面圧力が安定するまでの時間を短縮できる。   Furthermore, if the pressure regulating valve (PCV) 362 is controlled using the substrate back surface pressure detected from the pressure detection hole 370, the flow rate of He gas can be controlled to compensate for the decrease in the substrate back surface pressure due to pressure loss. . In addition, the detected substrate back pressure can also be used for detecting the displacement of the substrate G. According to this, since the position shift can be detected by the measured pressure on the back surface of the substrate without being affected by the pressure loss, the detection accuracy of the position shift can be improved. Further, by controlling the flow rate of the He gas while directly detecting the substrate back surface pressure, the time until the substrate back surface pressure is stabilized can be shortened.

以下,このような圧力検出孔370を備える本実施形態の載置台300の構成についてより詳細に説明する。図3は,4つの圧力検出孔370a〜370dをガス孔354とは別系統により独立して設けた例である。図3に示す圧力検出孔370a〜370dはそれぞれ,サセプタ310から基板載置面Lsの表面まで貫通して形成されている。   Hereinafter, the structure of the mounting table 300 of this embodiment provided with such a pressure detection hole 370 will be described in more detail. FIG. 3 shows an example in which four pressure detection holes 370a to 370d are provided independently from the gas hole 354 by a separate system. Each of the pressure detection holes 370a to 370d shown in FIG. 3 is formed to penetrate from the susceptor 310 to the surface of the substrate placement surface Ls.

ここでの圧力検出孔370a〜370dは図4Aに示すように,基板載置面Lsの4つの角部に配設されている。これらの配設位置は,図4Bに示すように基板Gが位置ずれなく載置されると,基板Gに隠れる位置である。各圧力検出孔370a〜370dにはそれぞれ,図3に示す圧力センサ380a〜380dが接続されている。このような圧力センサ380a〜380dとしては,例えばキャパシタンスマノメータ(CM)が挙げられるが,その他のマノメータや圧力センサを用いてもよい。   The pressure detection holes 370a to 370d here are arranged at four corners of the substrate placement surface Ls as shown in FIG. 4A. These arrangement positions are positions that are hidden by the substrate G when the substrate G is placed without displacement as shown in FIG. 4B. Pressure sensors 380a to 380d shown in FIG. 3 are connected to the pressure detection holes 370a to 370d, respectively. Examples of the pressure sensors 380a to 380d include a capacitance manometer (CM), but other manometers and pressure sensors may be used.

各圧力センサ380a〜380dからの検出圧力は,制御部400を介して圧力調整バルブ(PCV)362に入力され,圧力調整バルブ(PCV)362はこれらの検出圧力に基づいてHeガスの流量を制御するようになっている。このように各圧力センサ380a〜380dによって直接検出した基板裏面圧力に基づいてHeガスの流量を制御することで,基板裏面圧力が安定するまでの時間を短縮できるとともに,安定後は設定圧力に保持することができる。   The detected pressure from each of the pressure sensors 380a to 380d is input to the pressure regulating valve (PCV) 362 via the control unit 400, and the pressure regulating valve (PCV) 362 controls the flow rate of He gas based on these detected pressures. It is supposed to be. By controlling the flow rate of the He gas based on the substrate back pressure directly detected by the pressure sensors 380a to 380d in this way, the time until the substrate back pressure is stabilized can be shortened and maintained at the set pressure after stabilization. can do.

また,基板載置面Lsの4つ角部にそれぞれ圧力検出孔370a〜370dを別々に設けることにより,各圧力検出孔370a〜370dからの圧力を別々に検出できるので,これらの各検出圧力に基づいて基板ずれ判定など基板載置状態の確認も行う。基板Gの位置ずれのパターン(平行ずれ,斜行ずれなど)を判定することもできる。   Further, by separately providing the pressure detection holes 370a to 370d at the four corners of the substrate mounting surface Ls, the pressures from the pressure detection holes 370a to 370d can be detected separately. Based on this, the substrate placement state such as substrate displacement determination is also confirmed. It is also possible to determine a positional deviation pattern (parallel deviation, skew deviation, etc.) of the substrate G.

ここで,このような基板Gの位置ずれ判定を含む伝熱ガス制御の具体例を図面を参照しながら説明する。図6は,本実施形態における伝熱ガス制御のメインルーチンを示すフローチャートであり,図7は,図6に示す基板ずれ判定処理のサブルーチンを示すフローチャートである。伝熱ガス制御は,載置台300上に基板Gが載置され静電吸着保持された後に制御部400により実行される。   Here, a specific example of the heat transfer gas control including the position shift determination of the substrate G will be described with reference to the drawings. FIG. 6 is a flowchart showing a main routine of heat transfer gas control in the present embodiment, and FIG. 7 is a flowchart showing a subroutine of substrate misalignment determination processing shown in FIG. The heat transfer gas control is executed by the control unit 400 after the substrate G is placed on the mounting table 300 and held by electrostatic attraction.

先ず,図6に示すように制御部400はステップS110にてHeガス供給源366から伝熱ガスであるHeガスをガス流路352に導入を開始し,ステップS120にて各圧力センサ380a〜380dで基板裏面圧力を検出しながら,その各検出圧力が設定圧力になるように圧力調整バルブ(PCV)362による流量制御を開始する。   First, as shown in FIG. 6, the controller 400 starts introducing He gas, which is a heat transfer gas, from the He gas supply source 366 into the gas flow path 352 in Step S110, and in Step S120, the pressure sensors 380a to 380d. Then, while detecting the substrate back surface pressure, flow control by the pressure adjustment valve (PCV) 362 is started so that each detected pressure becomes a set pressure.

具体的には,制御部400は設定圧力を圧力調整バルブ(PCV)362にセットし,圧力センサ380a〜380dからの各検出圧力をリアルタイムで出力してHeガスの流量を制御させる。すなわち,圧力調整バルブ(PCV)362は制御部400から各検出圧力を入力すると,各検出圧力が設定圧力になるように自動的にバルブの開度を制御してHeガスの流量を調整する。   Specifically, the control unit 400 sets the set pressure in the pressure adjustment valve (PCV) 362, outputs the detected pressures from the pressure sensors 380a to 380d in real time, and controls the flow rate of the He gas. That is, when each detected pressure is input from the control unit 400, the pressure adjustment valve (PCV) 362 automatically adjusts the opening of the valve so that each detected pressure becomes the set pressure, thereby adjusting the flow rate of He gas.

このようにHeガスの供給が開始されると,ガス流路352や静電保持部320の基板保持面と基板Gの裏面との間に充填され始める。この場合,ガス流路352が長いほど,Heガスが完全に充填されてその圧力が安定するまでに時間がかかるが,ここでは裏面圧力を直接検出しながらHeガスの流量を調整するので,最初に充填されるまでは流量が多くなるように調整され,ある程度時間が経つと流量を微調整するように制御できるため,圧力が安定するまでの時間を短縮できる。   When the supply of the He gas is started in this way, the gas channel 352 or the electrostatic holding unit 320 starts to be filled between the substrate holding surface and the back surface of the substrate G. In this case, the longer the gas flow path 352 is, the longer it takes for the He gas to be completely filled and the pressure to stabilize, but here, the flow rate of the He gas is adjusted while directly detecting the back surface pressure. Since the flow rate is adjusted to increase until it is filled, and the flow rate can be finely adjusted after a certain amount of time, the time until the pressure stabilizes can be shortened.

次に,制御部400は圧力センサ380a〜380dの各検出圧力に基づいて基板載置状態の確認を行う(ステップS130,S200,S300)。すなわち,先ずステップS130にて制御部400は各検出圧力のすべてが均衡しているか否かを判断する。なお,上述したようにHeガス導入開始直後の流量は多くなるので,ステップS130での判断は,流量がある程度安定するまで(所定時間経過まで)待ってから行うようにしてもよい。   Next, the controller 400 confirms the substrate placement state based on the detected pressures of the pressure sensors 380a to 380d (steps S130, S200, S300). That is, first in step S130, the control unit 400 determines whether or not all the detected pressures are balanced. Since the flow rate immediately after the start of He gas introduction increases as described above, the determination in step S130 may be made after waiting for the flow rate to stabilize to some extent (until a predetermined time elapses).

ステップS130にて各検出圧力が不均衡であると判断した場合は,ステップS200にて基板ずれ判定処理を行い,ステップS300にて基板ずれエラー処理を行う。ステップS300の基板ずれエラー処理では,Heガスの供給を停止する共に,ステップS200の判定結果をディスプレイに表示したり,アラームで報知したりする。なお,ステップS200の基板ずれ判定処理についての具体例は後述する。   If it is determined in step S130 that the detected pressures are unbalanced, substrate deviation determination processing is performed in step S200, and substrate deviation error processing is performed in step S300. In the substrate misalignment error process in step S300, the supply of He gas is stopped, and the determination result in step S200 is displayed on the display or notified by an alarm. A specific example of the substrate deviation determination process in step S200 will be described later.

これに対して,ステップS130にて各検出圧力のすべてが均衡していると判断した場合は,圧力センサ380a〜380dの各検出圧力に基づいてHeガス供給状態の確認を行う(ステップS140,S150,S170,S172)。すなわち,先ずステップS140にて各検出圧力のすべてが設定圧力に到達しているか否かを判断する。   On the other hand, if it is determined in step S130 that all the detected pressures are balanced, the He gas supply state is confirmed based on the detected pressures of the pressure sensors 380a to 380d (steps S140 and S150). , S170, S172). That is, first, in step S140, it is determined whether all the detected pressures have reached the set pressure.

ステップ140にて各検出圧力のすべてが設定圧力に到達していると判断した場合は,ステップS150にて圧力調整バルブ(PCV)362のHeガス流量が所定値以下か否かを判断する。このとき,Heガス流量が所定値以下であると判断した場合は,ステップS160にて基板載置状態OK,Heガスの供給状態OKと判断し,基板Gの処理を開始する。   If it is determined in step 140 that all the detected pressures have reached the set pressure, it is determined in step S150 whether or not the He gas flow rate of the pressure adjustment valve (PCV) 362 is equal to or less than a predetermined value. At this time, if it is determined that the He gas flow rate is equal to or less than the predetermined value, it is determined in step S160 that the substrate placement state is OK and the He gas supply state is OK, and the processing of the substrate G is started.

また,ステップS140にていずれかの検出圧力が設定圧力に到達していないと判断した場合,あるいはステップS150にてHeガス流量が所定値を超えていると判断した場合にはステップS170の処理に移る。   If it is determined in step S140 that any of the detected pressures has not reached the set pressure, or if it is determined in step S150 that the He gas flow rate exceeds a predetermined value, the process of step S170 is performed. Move.

ステップS170では,Heガス導入開始からの経過時間と予め設定されたタイムアウト時間を比較し,タイムアウト時間を超えたか否かを判断する。ステップS170にてタイムアウト時間を超えていないと判断した場合は,ステップS120に戻ってHeガスの流量制御を続行する。ステップS170にてタイムアウト時間を超えたと判断した場合は何らかの異常が発生しているため,ステップS172にて安定待ちエラー処理を行う。   In step S170, the elapsed time from the start of He gas introduction is compared with a preset timeout time to determine whether or not the timeout time has been exceeded. If it is determined in step S170 that the time-out period has not been exceeded, the flow returns to step S120 to continue He gas flow control. If it is determined in step S170 that the time-out period has been exceeded, an abnormality has occurred, and thus a stability wait error process is performed in step S172.

例えば各検出圧力のすべてが均衡しているのに(S130),Heガス流量が所定値を超えたまま(S150),タイムアウト時間を超えている場合(S170)には,載置台300上に基板Gが載置されていなかったり,基板Gの吸着不良が発生している可能性がある。そこで,このような場合は,ステップS172にて安定待ちエラー処理を行うものとする。安定待ちエラー処理では,例えばHeガスの供給を停止すると共に,ディスプレイにエラー表示したり,アラームで報知したりする。   For example, if all of the detected pressures are balanced (S130), the He gas flow rate exceeds a predetermined value (S150), and the timeout time is exceeded (S170), the substrate is placed on the mounting table 300. There is a possibility that G is not placed or a substrate G adsorption failure has occurred. Therefore, in such a case, it is assumed that a stability waiting error process is performed in step S172. In the stabilization wait error process, for example, the supply of He gas is stopped, and an error is displayed on the display or an alarm is given.

ステップS160に基づいて基板Gの処理を開始した後は,圧力センサ380a〜380dからの基板裏面の各検出圧力に基づくHeガスの流量制御が継続して行われる。これにより,ガス流路352などのコンダクタンスの影響を受けることなく,Heガスの基板裏面圧力を常に設定圧力に保持される。その後,ステップS162にて基板Gの処理の終了待ちを行い,処理終了と判断した場合にはステップS164にてHeガスの供給を停止し,圧力調整バルブ(PCV)362による流量制御も停止して一連の電熱ガス制御を終了する。   After the processing of the substrate G is started based on step S160, the He gas flow rate control based on the detected pressures on the back surface of the substrate from the pressure sensors 380a to 380d is continuously performed. As a result, the substrate back pressure of the He gas is always maintained at the set pressure without being affected by the conductance of the gas flow path 352 and the like. After that, the process waits for the end of the processing of the substrate G in step S162. If it is determined that the processing is ended, the supply of He gas is stopped in step S164, and the flow rate control by the pressure adjustment valve (PCV) 362 is also stopped. A series of electric heating gas control is completed.

なお,基板Gの処理を行っている間もステップS130,S200,S300の監視を行うようにしてもよい。これによれば,基板Gの処理中に基板載置状態の異常が発生したときでも異常放電のリスクを軽減できる。   Note that the steps S130, S200, and S300 may be monitored while the substrate G is being processed. According to this, even when a substrate mounting state abnormality occurs during the processing of the substrate G, the risk of abnormal discharge can be reduced.

次に,図6に示す基板ずれ判定処理の具体例を図7を参照しながら説明する。ここでは,圧力センサ380a〜380dによって検出される圧力検出孔370a〜370dでの各検出圧力の不均衡パターンに応じて基板Gの位置ずれパターンを判定する。なお,載置台300上の基板Gの有無や基板Gの静電吸着不良の有無については,ここでは判定されず,上述したようにステップS172にて安定待ちエラー処理となる。   Next, a specific example of the substrate deviation determination process shown in FIG. 6 will be described with reference to FIG. Here, the positional deviation pattern of the substrate G is determined according to the imbalance pattern of the detected pressures in the pressure detection holes 370a to 370d detected by the pressure sensors 380a to 380d. The presence / absence of the substrate G on the mounting table 300 and the presence / absence of defective electrostatic attraction of the substrate G are not determined here, and the stability waiting error processing is performed in step S172 as described above.

図7に示すように基板ずれ判定処理では,ステップS210,S230,S250にて圧力検出孔370a〜370dでの各検出圧力にどのような不均衡があるかを判断する。具体的にはステップS210では平行2角同士の検出圧力の不均衡か否かを判断し,ステップS230では3角と他の1角の検出圧力の不均衡か否かを判断し,ステップS250では対角2角同士の検出圧力の不均衡か否かを判断する。   As shown in FIG. 7, in the substrate misalignment determination process, it is determined in steps S210, S230, and S250 what imbalance exists in the detected pressures in the pressure detection holes 370a to 370d. More specifically, in step S210, it is determined whether or not the detected pressure is imbalanced between the two parallel corners. In step S230, it is determined whether or not the detected pressure is unbalanced between the three corners and the other one corner. It is determined whether or not there is an imbalance in the detected pressure between the two diagonals.

ステップS210にて平行2角同士の検出圧力の不均衡であると判断した場合は,ステップS220にて一方向の基板平行ずれと判定する。例えば図8Aに示すように基板Gが圧力検出孔370c,370d側の一方向に平行にずれている場合は,平行する2角にある圧力検出孔370a,370bの検出圧力が,他の平行2角にある圧力検出孔370c,370dの検出圧力よりも低くなるからである。   If it is determined in step S210 that there is an imbalance in the detected pressure between the two parallel corners, it is determined in step S220 that the substrate is parallelly displaced in one direction. For example, as shown in FIG. 8A, when the substrate G is displaced in parallel in one direction on the pressure detection holes 370c and 370d side, the detection pressures of the pressure detection holes 370a and 370b in the two parallel corners are different from each other. This is because the pressure is lower than the detection pressure of the pressure detection holes 370c and 370d at the corners.

また,図8Bに示すように基板Gが圧力検出孔370a,370c側の一方向に平行にずれている場合は,平行する2角にある圧力検出孔370b,370dの検出圧力が,他の平行2角にある圧力検出孔370a,370cの検出圧力よりも低くなる。ステップS220にて一方向の基板平行ずれと判定した場合は,図6に示すメインルーチンに戻り,ステップS300にてその判定結果をディスプレイ表示しアラームで報知する。   Also, as shown in FIG. 8B, when the substrate G is displaced in parallel in one direction on the pressure detection holes 370a, 370c side, the detection pressures of the pressure detection holes 370b, 370d in the two parallel corners are different from each other. It becomes lower than the detection pressure of the pressure detection holes 370a and 370c at the two corners. If it is determined in step S220 that the substrate is parallel in one direction, the process returns to the main routine shown in FIG. 6, and the determination result is displayed on the display and notified by an alarm in step S300.

また,ステップS230にて3角と他の1角の検出圧力の不均衡であると判断した場合は,ステップS240にて二方向の基板平行ずれと判定する。これは例えば図9Aに示すように,基板Gが圧力検出孔370c,370d側と圧力検出孔370a,370c側の二方向に平行にずれている場合は,3角にある圧力検出孔370a,370b,370dの検出圧力が,他の1角にある圧力検出孔370cの検出圧力よりも低くなるからである。   If it is determined in step S230 that there is an imbalance between the detected pressure at the three corners and the other corner, it is determined at step S240 that the substrate is parallelly displaced in two directions. For example, as shown in FIG. 9A, when the substrate G is displaced in parallel in the two directions of the pressure detection holes 370c and 370d and the pressure detection holes 370a and 370c, the pressure detection holes 370a and 370b at the three corners. This is because the detected pressure of 370d is lower than the detected pressure of the pressure detection hole 370c at the other corner.

また,図9Bに示すように基板Gが圧力検出孔370a,370b側と圧力検出孔370b,370d側の二方向に平行にずれている場合は,3角にある圧力検出孔370a,370c,370dの検出圧力が,他の1角にある圧力検出孔370bの検出圧力よりも低くなる。ステップS240にて二方向の基板平行ずれと判定すると,図6に示すメインルーチンに戻り,ステップS300にてその判定結果をディスプレイ表示しアラームで報知する。   Further, as shown in FIG. 9B, when the substrate G is displaced in parallel in the two directions of the pressure detection holes 370a and 370b and the pressure detection holes 370b and 370d, the pressure detection holes 370a, 370c and 370d at the three corners. Is lower than the detection pressure of the pressure detection hole 370b at the other corner. If it is determined in step S240 that the substrate is parallel in two directions, the process returns to the main routine shown in FIG. 6, and the determination result is displayed on the display and notified by an alarm in step S300.

ステップS250にて対角2角同士の検出圧力の不均衡であると判断した場合は,ステップS260にて基板斜行ずれと判定する。これは例えば図10Aに示すように,基板Gが左回りに斜行ずれしている場合は,対角2角にある圧力検出孔370a,370dの検出圧力が,他の対角2角にある圧力検出孔370b,370cの検出圧力よりも低くなるからである。   If it is determined in step S250 that the detected pressure is not balanced between the two diagonal corners, it is determined in step S260 that the substrate is skewed. For example, as shown in FIG. 10A, when the substrate G is skewed counterclockwise, the detection pressures of the pressure detection holes 370a and 370d in the diagonal two corners are in the other two diagonal corners. This is because the pressure is lower than the detection pressure of the pressure detection holes 370b and 370c.

また,図10Bに示すように基板Gが右回りに斜行ずれしている場合は,対角2角にある圧力検出孔370b,370cの検出圧力が,他の対角2角にある圧力検出孔370a,370dの検出圧力よりも低くなる。このように,各圧力検出孔370a〜370dからの検出圧力の不均衡パターンに基づいて,基板Gの位置ずれパターンまで判定することができる。ステップS260にて基板斜行ずれと判定すると,図6に示すメインルーチンに戻り,ステップS300にてその判定結果をディスプレイ表示しアラームで報知する。   When the substrate G is skewed clockwise as shown in FIG. 10B, the pressure detected by the pressure detection holes 370b and 370c at the diagonal two corners is the pressure detection at the other diagonal two corners. It becomes lower than the detected pressure of the holes 370a and 370d. As described above, it is possible to determine the positional deviation pattern of the substrate G based on the imbalance pattern of the detected pressures from the pressure detection holes 370a to 370d. If it is determined in step S260 that the substrate is skewed, the process returns to the main routine shown in FIG. 6. In step S300, the determination result is displayed on the display and notified by an alarm.

なお,ステップS210,S230,S250以外の検出圧力の不均衡がある場合は,ステップS270にて判定エラーとする。この場合は,例えば基板割れや圧力センサの故障など別の原因が発生している可能性があるからである。   If there is an imbalance in the detected pressure other than steps S210, S230, and S250, a determination error is determined in step S270. In this case, another cause such as a substrate crack or a pressure sensor failure may occur.

このように本実施形態によれば,各圧力検出孔370a〜370dを基板載置面Lsの4つ角部にガス孔354とは独立して配設することで,基板裏面圧力を直接検出でき,その検出圧力に基づいて伝熱ガスの流量調整と基板Gの位置ずれ検出の両方を行うことができる。これにより,載置台300の更なる大型化にも十分に対応できる。すなわち,ガス流路352が長くなったとしても,そのガス流路352の圧力損失を補うように伝熱ガスの流量調整ができ,基板Gの位置ずれ検出精度を向上させることができる。また,伝熱ガスの圧力が安定するまでの時間を短縮できるので,基板Gの位置ずれ検出にかかる時間も短縮できる。   As described above, according to the present embodiment, the pressure on the substrate back surface can be directly detected by disposing the pressure detection holes 370a to 370d at the four corners of the substrate mounting surface Ls independently of the gas holes 354. , Both the flow rate adjustment of the heat transfer gas and the detection of the positional deviation of the substrate G can be performed based on the detected pressure. Thereby, it can fully respond to further enlargement of the mounting table 300. That is, even if the gas flow path 352 becomes longer, the flow rate of the heat transfer gas can be adjusted so as to compensate for the pressure loss of the gas flow path 352, and the accuracy of detecting the displacement of the substrate G can be improved. In addition, since the time until the pressure of the heat transfer gas is stabilized can be shortened, the time required for detecting the displacement of the substrate G can also be shortened.

なお,各圧力検出孔370a〜370dの構成は図3に示すものに限定されるものではない。各圧力検出孔370a〜370dにもHeガスを供給するように構成してもよい。具体的には例えば図11に示すように各圧力検出孔370a〜370dと連通路372を接続するようにしてもよい。これによれば,各圧力検出孔370a〜370dからも連通路372を介して基板載置面Lsの4つの角部へHeガスが供給されるので,伝熱ガスの圧力が安定するまでの時間を短縮でき,しかも基板Gの位置ずれが発生したときは漏れ流量が増加するため,位置ずれをより検出し易くなる。   The configuration of each of the pressure detection holes 370a to 370d is not limited to that shown in FIG. You may comprise so that He gas may be supplied also to each pressure detection hole 370a-370d. Specifically, for example, as shown in FIG. 11, the pressure detection holes 370 a to 370 d may be connected to the communication path 372. According to this, since the He gas is supplied also from each of the pressure detection holes 370a to 370d to the four corners of the substrate placement surface Ls via the communication path 372, the time until the pressure of the heat transfer gas is stabilized. In addition, when the positional deviation of the substrate G occurs, the leakage flow rate increases, and it becomes easier to detect the positional deviation.

また,図12に示すように各圧力検出孔370a〜370dに,Heガス供給源366を圧力調整バルブ(PCV)362を介して直接接続するようにしてもよい。これによれば,ガス流路352の圧力損失の影響を受けることなく,各圧力検出孔370a〜370dにHeガスを供給できるので,伝熱ガスの圧力が安定するまでの時間を短縮でき,しかも基板Gの位置ずれが発生したときは漏れ流量が増加するため,位置ずれをより検出し易くなる。   Further, as shown in FIG. 12, a He gas supply source 366 may be directly connected to each of the pressure detection holes 370 a to 370 d via a pressure adjustment valve (PCV) 362. According to this, since the He gas can be supplied to each of the pressure detection holes 370a to 370d without being affected by the pressure loss of the gas flow path 352, it is possible to shorten the time until the pressure of the heat transfer gas is stabilized, and When the displacement of the substrate G occurs, the leakage flow rate increases, so that it becomes easier to detect the displacement.

さらに図13に示すように各圧力検出孔370a〜370dに圧力センサを設けず,圧力センサ363及び流量計(フローメータ)364を内蔵する圧力調整バルブ(PCV)362を用いて,各圧力検出孔370a〜370dからの圧力または総漏れ流量をモニタリングして,基板Gの位置ずれ有無だけを検出するようにしてもよい。   Further, as shown in FIG. 13, each pressure detection hole 370a to 370d is not provided with a pressure sensor, and each pressure detection hole is formed by using a pressure control valve (PCV) 362 having a built-in pressure sensor 363 and a flow meter (flow meter) 364. The pressure from 370a to 370d or the total leakage flow rate may be monitored to detect only whether or not the substrate G is misaligned.

さらに各圧力検出孔370a〜370dとは別に基板裏面圧力を検出する他の圧力検出孔を配設してもよい。具体的には例えば図14に示すように,基板載置面Lsのガス孔形成領域Rの外側に,各圧力検出孔370a〜370dとは別の位置に他の圧力検出孔374を設けてもよい。他の圧力検出孔374には圧力センサ382を接続し,その検出圧力により圧力調整バルブ(PCV)362を制御する。   In addition to the pressure detection holes 370a to 370d, other pressure detection holes for detecting the substrate back surface pressure may be provided. Specifically, as shown in FIG. 14, for example, other pressure detection holes 374 may be provided outside the gas hole formation region R of the substrate placement surface Ls at positions different from the pressure detection holes 370a to 370d. Good. A pressure sensor 382 is connected to the other pressure detection hole 374, and the pressure adjustment valve (PCV) 362 is controlled by the detected pressure.

これによれば,各圧力検出孔370a〜370dでは基板Gの位置ずれだけを検出して,他の圧力検出孔374により圧力調整バルブ(PCV)362を制御するための裏面圧力を検出するように役割分担することができる。   According to this, the pressure detection holes 370a to 370d detect only the positional deviation of the substrate G, and the other pressure detection holes 374 detect the back surface pressure for controlling the pressure adjustment valve (PCV) 362. The role can be divided.

さらに,各圧力検出孔370a〜370dにHeガス供給源366を圧力調整バルブ(PCV)362を介して直接接続する代わりに,図15に示すように各圧力検出孔370a〜370dと連通路372を接続するようにしてもよい。この場合においても,他の圧力検出孔374の検出圧力により圧力調整バルブ(PCV)362を調整するため,伝熱ガスの圧力が安定するまでの時間は短縮できる。   Further, instead of directly connecting the He gas supply source 366 to the pressure detection holes 370a to 370d via the pressure adjusting valve (PCV) 362, the pressure detection holes 370a to 370d and the communication passages 372 are connected as shown in FIG. You may make it connect. Even in this case, since the pressure adjustment valve (PCV) 362 is adjusted by the detected pressure of the other pressure detection hole 374, the time until the heat transfer gas pressure is stabilized can be shortened.

なお,このような他の圧力検出孔374の配置位置としては,基板載置面Lsのガス孔形成領域Rの外側部位(例えば図16のA1部位)に配置する。この場合,他の圧力検出孔は1つだけ設けても,複数設けてもよい。複数設ける場合は,ガス孔形成領域Rの内側部位(例えば図16のA2部位)や,ガス孔形成領域Rの中央部位(例えば図16のA3部位)にさらに配置してもよい。   In addition, as another arrangement position of such other pressure detection holes 374, it arrange | positions in the outer site | part (for example, A1 site | part of FIG. 16) of the gas hole formation area | region R of the board | substrate mounting surface Ls. In this case, only one or a plurality of other pressure detection holes may be provided. In the case where a plurality of gas holes are provided, they may be further arranged at the inner part of the gas hole forming region R (for example, the A2 part in FIG. 16) or at the central part (for example, the A3 part of FIG. 16).

また,上述した圧力検出孔370a〜370d及び他の圧力検出孔374は,ガス孔354よりも大きい孔径にすることが好ましいが,露出したときに異常放電が発生することを防止するため,例えば図17に示すような多数の孔378が形成された流路コマ376を嵌め込むようにしてもよい。これによれば,圧力検出孔370a〜370d及び他の圧力検出孔374の径を大きくしても露出時の異常放電を防止することができる。しかも,流路コマ376に多数の孔378を設けることでコンダクタンスの低下も防止できる。   Further, the pressure detection holes 370a to 370d and the other pressure detection holes 374 described above are preferably larger in diameter than the gas holes 354, but in order to prevent abnormal discharge from occurring when exposed, for example, FIG. Alternatively, a flow channel piece 376 having a large number of holes 378 as shown in FIG. 17 may be fitted. According to this, even if the diameters of the pressure detection holes 370a to 370d and the other pressure detection holes 374 are increased, abnormal discharge at the time of exposure can be prevented. In addition, a decrease in conductance can be prevented by providing a large number of holes 378 in the flow path piece 376.

以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明は係る例に限定されないことは言うまでもない。当業者であれば,特許請求の範囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to the example which concerns. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

例えば上記実施形態では,本発明を適用可能なプラズマ処理装置として,容量結合型プラズマ(CCP)処理装置を例に挙げて説明したが,必ずしもこれに限定されるものではなく,低圧で高密度のプラズマ生成を可能な誘導結合プラズマ(ICP)処理装置に本発明を適用してもよい。   For example, in the above-described embodiment, a capacitively coupled plasma (CCP) processing apparatus has been described as an example of a plasma processing apparatus to which the present invention can be applied. The present invention may be applied to an inductively coupled plasma (ICP) processing apparatus capable of generating plasma.

また,その他,プラズマ生成としてヘリコン波プラズマ生成,ECR(Electron Cyclotron Resonance)プラズマ生成を用いたプラズマ処理装置等にも本発明を適用可能である。   In addition, the present invention can also be applied to a plasma processing apparatus using helicon wave plasma generation or ECR (Electron Cyclotron Resonance) plasma generation as plasma generation.

本発明は,フラットパネルディスプレイ(FPD)用ガラス基板等の大型基板にプラズマ処理を施すプラズマ処理装置,基板保持機構,基板位置ずれ検出方法に適用可能である。   The present invention is applicable to a plasma processing apparatus, a substrate holding mechanism, and a substrate misalignment detection method for performing plasma processing on a large substrate such as a glass substrate for a flat panel display (FPD).

100 処理装置
102,104,106 ゲートバルブ
110 搬送室
120 ロードロック室
130 基板搬出入機構
140 インデクサ
142 カセット
200 処理室
202 処理容器
204 基板搬入出口
208 排気管
209 排気装置
210 シャワーヘッド
222 バッファ室
224 吐出孔
226 ガス導入口
228 ガス導入管
230 開閉バルブ
232 マスフローコントローラ(MFC)
234 処理ガス供給源
300 載置台
302 ベース部材
310 サセプタ
311 絶縁被膜
312 整合器
314 高周波電源
315 直流電源
316 スイッチ
320 静電保持部
322 電極板
330 外枠部
340 冷媒流路
352 ガス流路
354 ガス孔
362 圧力調整バルブ(PCV)
363 圧力センサ
364 流量計(フローメータ)
366 Heガス供給源
370 圧力検出孔
370a〜370d 圧力検出孔
372 連通路
374 他の圧力検出孔
376 流路コマ
378 多数の孔
380a〜380d 圧力センサ
382 圧力センサ
400 制御部
G 基板
Ls 基板保持面
R ガス孔形成領域
100 processing apparatus 102, 104, 106 gate valve 110 transfer chamber 120 load lock chamber 130 substrate loading / unloading mechanism 140 indexer 142 cassette 200 processing chamber 202 processing container 204 substrate loading / unloading port 208 exhaust pipe 209 exhaust device 210 shower head 222 buffer chamber 224 discharge Hole 226 Gas introduction port 228 Gas introduction pipe 230 On-off valve 232 Mass flow controller (MFC)
234 Processing gas supply source 300 Mounting base 302 Base member 310 Susceptor 311 Insulating coating 312 Matching unit 314 High frequency power supply 315 DC power supply 316 Switch 320 Electrostatic holding part 322 Electrode plate 330 Outer frame part 340 Refrigerant flow path 352 Gas flow path 354 Gas hole 362 Pressure control valve (PCV)
363 Pressure sensor 364 Flow meter
366 He gas supply source 370 Pressure detection hole 370a to 370d Pressure detection hole 372 Communication path 374 Other pressure detection hole 376 Channel piece 378 Many holes 380a to 380d Pressure sensor 382 Pressure sensor 400 Control unit G substrate Ls substrate holding surface R Gas hole formation area

Claims (16)

プラズマが生成される空間内で矩形の被処理基板を載置保持する基板保持機構であって,
前記被処理基板を載置保持する矩形の載置台と,
前記載置台とその基板保持面に保持された被処理基板との間にガス供給源からのガスを供給するためのガス流路と,
前記載置台の基板保持面に形成され,前記ガス流路からのガスを前記基板保持面上に案内する複数のガス孔と,
前記基板保持面における前記ガス孔形成領域の外側に形成され,被処理基板の裏面にかかる圧力を検出する複数の圧力検出孔と,
前記複数の圧力検出孔に接続された圧力センサと,
前記圧力センサからの検出圧力に基づいて前記被処理基板の位置ずれ検出を行う位置ずれ検出手段と,
を備えることを特徴とする基板保持機構。
A substrate holding mechanism for mounting and holding a rectangular substrate to be processed in a space where plasma is generated,
A rectangular mounting table for mounting and holding the substrate to be processed;
A gas flow path for supplying gas from a gas supply source between the mounting table and the substrate to be processed held on the substrate holding surface;
A plurality of gas holes formed on the substrate holding surface of the mounting table for guiding the gas from the gas flow path onto the substrate holding surface;
A plurality of pressure detection holes which are formed outside the gas hole forming region on the substrate holding surface and detect pressure applied to the back surface of the substrate to be processed;
A pressure sensor connected to the plurality of pressure detection holes;
A displacement detection means for detecting a displacement of the substrate to be processed based on a detected pressure from the pressure sensor;
A substrate holding mechanism comprising:
前記圧力センサからの検出圧力に基づいて,前記ガス供給源からのガス流量を調整する流量調整器を備えることを特徴とする請求項1に記載の基板保持機構。 The substrate holding mechanism according to claim 1, further comprising a flow rate adjuster that adjusts a gas flow rate from the gas supply source based on a detected pressure from the pressure sensor. 前記圧力検出孔は,矩形の前記基板保持面の4つ角部にそれぞれ形成されたことを特徴とする請求項2に記載の基板保持機構。 The substrate holding mechanism according to claim 2, wherein the pressure detection holes are respectively formed at four corners of the rectangular substrate holding surface. 前記圧力センサは,前記各圧力検出孔にそれぞれ別々に接続された複数の圧力センサであり,前記4つ角部における前記被処理基板の裏面圧力を検出することを特徴とする請求項3に記載の基板保持機構。 The pressure sensor is a plurality of pressure sensors respectively connected to the pressure detection holes, and detects a back surface pressure of the substrate to be processed at the four corners. Substrate holding mechanism. 前記位置ずれ検出手段は,前記各圧力センサからの検出圧力に基づいて,前記被処理基板の有無及び位置ずれ状態を判定することを特徴とする請求項4に記載の基板保持機構。 5. The substrate holding mechanism according to claim 4, wherein the misregistration detection unit determines the presence / absence of the substrate to be processed and the misregistration state based on the detected pressure from each of the pressure sensors. 前記4つ角部に形成された圧力検出孔は,前記複数のガス孔と連通路を介して連通したことを特徴とする請求項2〜5のいずれかに記載の基板保持機構。 The substrate holding mechanism according to claim 2, wherein the pressure detection holes formed in the four corners communicate with the plurality of gas holes through a communication path. 前記4つ角部に形成された圧力検出孔は,前記流量調整器を介して前記ガス供給源に接続したことを特徴とする請求項2〜5のいずれかに記載の基板保持機構。 The substrate holding mechanism according to claim 2, wherein the pressure detection holes formed in the four corners are connected to the gas supply source via the flow rate regulator. 前記圧力検出孔は,前記基板保持面の4つ角部にそれぞれ形成されたものとは別に形成された他の圧力検出孔を含むことを特徴とする請求項3〜7のいずれかに記載の基板保持機構。 The said pressure detection hole contains the other pressure detection hole formed separately from what was each formed in the four corner | angular parts of the said board | substrate holding surface, The Claim 3 characterized by the above-mentioned. Substrate holding mechanism. 前記4つ角部に形成された圧力検出孔からの検出圧力に基づいて前記被処理基板の位置ずれを検出し,
前記他の圧力検出孔からの検出圧力に基づいて前記流量調整器によるガス流量の調整を行うことを特徴とする請求項8に記載の基板保持機構。
Detecting a displacement of the substrate to be processed based on a detected pressure from a pressure detecting hole formed in the four corners;
The substrate holding mechanism according to claim 8, wherein the gas flow rate is adjusted by the flow rate regulator based on a detected pressure from the other pressure detection hole.
前記圧力検出孔には,複数の孔を形成した流路コマを嵌め込んだことを特徴とする請求項1〜9のいずれかに記載の基板保持機構。 The substrate holding mechanism according to claim 1, wherein a channel piece having a plurality of holes is fitted in the pressure detection hole. プラズマが生成される空間内で矩形の被処理基板を載置保持する基板保持機構における基板位置ずれ検出方法であって,
前記基板保持機構は,
前記被処理基板を載置保持する矩形の載置台と,
前記載置台とその基板保持面に保持された被処理基板との間にガス供給源からのガスを供給するためのガス流路と,
前記載置台の基板保持面に形成され,前記ガス流路からのガスを前記基板保持面上に案内する複数のガス孔と,
前記基板保持面における前記ガス孔形成領域の外側に形成され,被処理基板の裏面にかかる圧力を検出する複数の圧力検出孔と,
前記複数の圧力検出孔に接続された圧力センサと,
前記ガス供給源からのガス流量を調整する流量調整器と,を備え,
前記圧力センサからの検出圧力に基づいて前記被処理基板の位置ずれ検出を行うとともに,前記流量調整器によるガス流量の調整を行うことを特徴とする基板位置ずれ検出方法。
A substrate misalignment detection method in a substrate holding mechanism for mounting and holding a rectangular substrate to be processed in a space where plasma is generated,
The substrate holding mechanism is
A rectangular mounting table for mounting and holding the substrate to be processed;
A gas flow path for supplying gas from a gas supply source between the mounting table and the substrate to be processed held on the substrate holding surface;
A plurality of gas holes formed on the substrate holding surface of the mounting table for guiding the gas from the gas flow path onto the substrate holding surface;
A plurality of pressure detection holes which are formed outside the gas hole forming region on the substrate holding surface and detect pressure applied to the back surface of the substrate to be processed;
A pressure sensor connected to the plurality of pressure detection holes;
A flow rate regulator for regulating the gas flow rate from the gas supply source,
A substrate misalignment detection method characterized by detecting misalignment of the substrate to be processed based on a detected pressure from the pressure sensor and adjusting a gas flow rate by the flow rate regulator.
前記複数の圧力検出孔は,矩形の前記基板保持面の4つ角部にそれぞれ形成され,前記圧力センサはこれらの圧力検出孔にそれぞれ別々に接続された複数の圧力センサであり,
前記各圧力センサからの検出圧力に基づいて前記被処理基板の有無及び位置ずれ状態を判定することを特徴とする請求項11に記載の基板位置ずれ検出方法。
The plurality of pressure detection holes are respectively formed at four corners of the rectangular substrate holding surface, and the pressure sensors are a plurality of pressure sensors respectively connected to the pressure detection holes,
The substrate positional deviation detection method according to claim 11, wherein the presence / absence of the substrate to be processed and the positional deviation state are determined based on a detected pressure from each pressure sensor.
前記被処理基板の位置ずれの有無は,前記各圧力センサで検出された前記4つ角部における検出圧力のすべてが設定圧力に到達したか否かにより判断し,
いずれかの検出圧力が設定圧力に到達していない場合には,前記被処理基板の有無及び位置ずれ状態を判定することを特徴とする請求項12に記載の基板位置ずれ検出方法。
Whether or not the substrate to be processed is misaligned is determined based on whether or not all of the detected pressures at the four corners detected by the pressure sensors have reached a set pressure.
The substrate positional deviation detection method according to claim 12, wherein when any of the detected pressures does not reach a set pressure, the presence / absence of the substrate to be processed and the positional deviation state are determined.
前記被処理基板の有無及び位置ずれ状態を判定では,
前記各圧力センサで検出された前記4つ角部の検出圧力が均衡しており,かつ設定圧力に到達していない場合は,前記載置台上に前記被処理基板が無い状態である又は前記被処理基板が吸着不良状態であると判定し,
前記4つ角部の検出圧力のいずれかに不均衡が発生している場合は,前記載置台上の前記被処理基板が位置ずれ状態であると判定することを特徴とする請求項13に記載の基板位置ずれ検出方法。
In determining the presence / absence of the substrate to be processed and the misalignment state,
If the detected pressures of the four corners detected by the pressure sensors are balanced and have not reached the set pressure, the substrate to be processed is not on the mounting table or the substrate to be processed is not present. It is determined that the processing substrate is in an adsorption failure state,
14. The method according to claim 13, wherein when any of the detected pressures at the four corners is unbalanced, it is determined that the substrate to be processed on the mounting table is in a position shift state. Detection method for substrate misalignment.
前記4つ角部の検出圧力のいずれかに不均衡が発生している場合は,前記4つ角部のうちの平行2角同士の不均衡であれば,一方向の基板平行ずれと判定し,
前記4つ角部のうちの3角と残りの1角との不均衡であれば,二方向の基板平行ずれと判定し,
前記4つ角部のうちの対角2角同士の不均衡であれば,基板斜行ずれと判定することを特徴とする請求項14に記載の基板位置ずれ検出方法。
If an imbalance has occurred in any of the detected pressures at the four corners, it is determined that the substrate parallel displacement in one direction is an imbalance between the two parallel corners of the four corners. ,
If there is an imbalance between the three corners of the four corners and the remaining one corner, it is determined that the substrate is parallelly displaced in two directions.
The substrate positional deviation detection method according to claim 14, wherein if the diagonal two of the four corners are imbalanced, it is determined that the substrate is skewed.
処理室内に処理ガスを導入し,前記処理ガスのプラズマを発生させることによって,処理室内の載置台に載置保持された絶縁体からなる被処理基板に所定のプラズマ処理を施すプラズマ処理装置であって,
前記載置台とその基板保持面に保持された被処理基板との間にガス供給源からのガスを供給するためのガス流路と,
前記載置台の基板保持面に形成され,前記ガス流路からのガスを前記基板保持面上に案内する複数のガス孔と,
前記基板保持面における前記ガス孔形成領域の外側に形成され,被処理基板の裏面にかかる圧力を検出する複数の圧力検出孔と,
前記複数の圧力検出孔に接続された圧力センサと,
前記圧力センサからの検出圧力に基づいて前記被処理基板の位置ずれ検出を行う位置ずれ検出手段と,
を備えることを特徴とするプラズマ処理装置。
A plasma processing apparatus for introducing a processing gas into a processing chamber and generating a plasma of the processing gas, thereby performing a predetermined plasma processing on a substrate to be processed made of an insulator mounted and held on a mounting table in the processing chamber. And
A gas flow path for supplying gas from a gas supply source between the mounting table and the substrate to be processed held on the substrate holding surface;
A plurality of gas holes formed on the substrate holding surface of the mounting table for guiding the gas from the gas flow path onto the substrate holding surface;
A plurality of pressure detection holes which are formed outside the gas hole forming region on the substrate holding surface and detect pressure applied to the back surface of the substrate to be processed;
A pressure sensor connected to the plurality of pressure detection holes;
A displacement detection means for detecting a displacement of the substrate to be processed based on a detected pressure from the pressure sensor;
A plasma processing apparatus comprising:
JP2010116145A 2010-05-20 2010-05-20 Plasma processing apparatus, substrate holding mechanism, and substrate misalignment detection method Active JP5871453B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010116145A JP5871453B2 (en) 2010-05-20 2010-05-20 Plasma processing apparatus, substrate holding mechanism, and substrate misalignment detection method
KR1020110047409A KR101314511B1 (en) 2010-05-20 2011-05-19 Plasma processing apparatus, substrate holding mechanism, and method for substrate position deviation detection
TW100117607A TWI549220B (en) 2010-05-20 2011-05-19 A plasma processing apparatus, a substrate holding mechanism, and a substrate displacement detecting method
CN201110135922.XA CN102299091B (en) 2010-05-20 2011-05-20 Plasma processing apparatus, substrate holding mechanism, and method for substrate position deviation detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010116145A JP5871453B2 (en) 2010-05-20 2010-05-20 Plasma processing apparatus, substrate holding mechanism, and substrate misalignment detection method

Publications (2)

Publication Number Publication Date
JP2011243834A true JP2011243834A (en) 2011-12-01
JP5871453B2 JP5871453B2 (en) 2016-03-01

Family

ID=45359406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010116145A Active JP5871453B2 (en) 2010-05-20 2010-05-20 Plasma processing apparatus, substrate holding mechanism, and substrate misalignment detection method

Country Status (4)

Country Link
JP (1) JP5871453B2 (en)
KR (1) KR101314511B1 (en)
CN (1) CN102299091B (en)
TW (1) TWI549220B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017044201A1 (en) * 2015-09-11 2017-03-16 Applied Materials, Inc. Substrate support with real time force and film stress control
WO2019046054A1 (en) * 2017-08-29 2019-03-07 Applied Materials, Inc. Esc substrate support with chucking force control
CN110872690A (en) * 2018-08-31 2020-03-10 佳能特机株式会社 Film forming apparatus, film forming method, and method for manufacturing electronic device
WO2020179283A1 (en) * 2019-03-04 2020-09-10 株式会社Screenホールディングス Heat processing apparatus and heat processing method
US10985047B2 (en) 2017-10-13 2021-04-20 Samsung Electronics Co., Ltd. Semiconductor manufacturing apparatus and driving method of the same
WO2022237975A1 (en) * 2021-05-12 2022-11-17 Applied Materials, Inc. Method of substrate checking, and substrate processing system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6010433B2 (en) * 2012-11-15 2016-10-19 東京エレクトロン株式会社 Substrate mounting table and substrate processing apparatus
CN103292934B (en) * 2013-05-15 2015-04-08 北京京东方光电科技有限公司 Carried object detecting system
CN104538334B (en) * 2014-12-17 2017-08-08 中国地质大学(北京) A kind of multi-functional plasma chamber processing system
CN106876237B (en) * 2015-12-10 2018-11-20 中微半导体设备(上海)有限公司 A kind of plasma processing apparatus and method equipped with feedback de-clamping system
CN106298453A (en) * 2016-08-31 2017-01-04 上海华力微电子有限公司 A kind of method maintaining wafer back pressure stable
CN111466156A (en) * 2017-12-20 2020-07-28 株式会社富士 Plasma irradiation device
CN109483429B (en) * 2018-10-18 2020-10-16 武汉华星光电半导体显示技术有限公司 Bearing device and bearing method
CN112501581B (en) * 2020-11-12 2022-02-22 北京北方华创微电子装备有限公司 Shielding disc bearing device in semiconductor processing equipment and semiconductor processing equipment
CN112614797B (en) * 2021-03-08 2021-07-02 杭州众硅电子科技有限公司 Wafer position detection device
CN114070197B (en) * 2021-11-26 2024-04-16 阿特斯阳光电力集团股份有限公司 Testing method of photovoltaic module
CN114345742A (en) * 2021-12-31 2022-04-15 苏州汇川控制技术有限公司 Method, apparatus, device and medium for detecting chip mounting position

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419186U (en) * 1987-07-25 1989-01-31
JPH04359539A (en) * 1991-06-06 1992-12-11 Fujitsu Ltd Electrostatic attraction apparatus
JPH07231032A (en) * 1994-02-15 1995-08-29 Oki Electric Ind Co Ltd Sample holder
JPH08139170A (en) * 1994-11-02 1996-05-31 Sony Corp Substrate stage
JP2005117007A (en) * 2003-09-19 2005-04-28 Dainippon Screen Mfg Co Ltd Substrate treatment unit, detecting method of substrate mounting state, and substrate treatment apparatus
JP2008172170A (en) * 2007-01-15 2008-07-24 Tokyo Electron Ltd Substrate holding mechanism and plasma processing apparatus
JP2010045071A (en) * 2008-08-08 2010-02-25 Nikon Corp Detecting device, substrate holding member, transfer device, and bonding device
JP2010083663A (en) * 2008-10-02 2010-04-15 Olympus Corp Substrate flotation device, substrate inspection device and substrate inspection method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980067497U (en) * 1997-05-27 1998-12-05 문정환 Wafer position sensing device
JP4450106B1 (en) * 2008-03-11 2010-04-14 東京エレクトロン株式会社 Mounting table structure and processing device
JP5271586B2 (en) * 2008-04-09 2013-08-21 東京エレクトロン株式会社 Plasma processing vessel and plasma processing apparatus
JP5378706B2 (en) * 2008-05-22 2013-12-25 東京エレクトロン株式会社 Plasma processing apparatus and processing gas supply apparatus used therefor
TW201005825A (en) * 2008-05-30 2010-02-01 Panasonic Corp Plasma processing apparatus and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419186U (en) * 1987-07-25 1989-01-31
JPH04359539A (en) * 1991-06-06 1992-12-11 Fujitsu Ltd Electrostatic attraction apparatus
JPH07231032A (en) * 1994-02-15 1995-08-29 Oki Electric Ind Co Ltd Sample holder
JPH08139170A (en) * 1994-11-02 1996-05-31 Sony Corp Substrate stage
JP2005117007A (en) * 2003-09-19 2005-04-28 Dainippon Screen Mfg Co Ltd Substrate treatment unit, detecting method of substrate mounting state, and substrate treatment apparatus
JP2008172170A (en) * 2007-01-15 2008-07-24 Tokyo Electron Ltd Substrate holding mechanism and plasma processing apparatus
JP2010045071A (en) * 2008-08-08 2010-02-25 Nikon Corp Detecting device, substrate holding member, transfer device, and bonding device
JP2010083663A (en) * 2008-10-02 2010-04-15 Olympus Corp Substrate flotation device, substrate inspection device and substrate inspection method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017044201A1 (en) * 2015-09-11 2017-03-16 Applied Materials, Inc. Substrate support with real time force and film stress control
US10879046B2 (en) 2015-09-11 2020-12-29 Applied Materials, Inc. Substrate support with real time force and film stress control
US11676802B2 (en) 2015-09-11 2023-06-13 Applied Materials, Inc. Substrate support with real time force and film stress control
US11915913B2 (en) 2015-09-11 2024-02-27 Applied Materials, Inc. Substrate support with real time force and film stress control
WO2019046054A1 (en) * 2017-08-29 2019-03-07 Applied Materials, Inc. Esc substrate support with chucking force control
US11114327B2 (en) 2017-08-29 2021-09-07 Applied Materials, Inc. ESC substrate support with chucking force control
US10985047B2 (en) 2017-10-13 2021-04-20 Samsung Electronics Co., Ltd. Semiconductor manufacturing apparatus and driving method of the same
CN110872690A (en) * 2018-08-31 2020-03-10 佳能特机株式会社 Film forming apparatus, film forming method, and method for manufacturing electronic device
WO2020179283A1 (en) * 2019-03-04 2020-09-10 株式会社Screenホールディングス Heat processing apparatus and heat processing method
JP2020145215A (en) * 2019-03-04 2020-09-10 株式会社Screenホールディングス Thermal treatment apparatus and thermal treatment method
JP7249814B2 (en) 2019-03-04 2023-03-31 株式会社Screenホールディングス Heat treatment apparatus and heat treatment method
WO2022237975A1 (en) * 2021-05-12 2022-11-17 Applied Materials, Inc. Method of substrate checking, and substrate processing system

Also Published As

Publication number Publication date
KR20110128150A (en) 2011-11-28
TW201220422A (en) 2012-05-16
JP5871453B2 (en) 2016-03-01
CN102299091A (en) 2011-12-28
CN102299091B (en) 2014-09-03
KR101314511B1 (en) 2013-10-07
TWI549220B (en) 2016-09-11

Similar Documents

Publication Publication Date Title
JP5871453B2 (en) Plasma processing apparatus, substrate holding mechanism, and substrate misalignment detection method
JP4753888B2 (en) Substrate holding mechanism and plasma processing apparatus
JP5102706B2 (en) Baffle plate and substrate processing apparatus
KR101892960B1 (en) Plasma processing apparatus and plasma processing method
KR101050641B1 (en) Substrate Processing Unit and Shower Head
JP5759718B2 (en) Plasma processing equipment
JP5492578B2 (en) Plasma processing equipment
CN109509694B (en) Plasma processing apparatus and plasma processing method
US20060207725A1 (en) Substrate mounting table, substrate processing apparatus and substrate processing method
JP5689283B2 (en) Substrate processing method and storage medium storing program for executing the method
TWI475610B (en) Electrode construction and substrate processing device
KR20180132534A (en) Plasma processing apparatus, electrostatic attraction method, and electrostatic attraction program
KR20200051494A (en) Placing table, positioning method of edge ring and substrate processing apparatus
JP2012104579A (en) Plasma processing device
JP7101628B2 (en) Plasma processing equipment and electrode structure
JP6994981B2 (en) Manufacturing method of plasma processing equipment and mounting table
KR102263417B1 (en) Substrate processing apparatus and substrate processing method
KR20210084260A (en) Stage, substrate processing apparatus, and heat transfer gas supply method
TW201604982A (en) Substrate treating apparatus and substrate treating apparatus monitoring method
JP2015220441A (en) Semiconductor production apparatus
US12027346B2 (en) Substrate processing apparatus and method of driving relay member
US20220037125A1 (en) Substrate processing apparatus and method of driving relay member
CN113496865A (en) Substrate processing apparatus
JP2019091756A (en) Stage and plasma processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160112

R150 Certificate of patent or registration of utility model

Ref document number: 5871453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250