JP5378706B2 - Plasma processing apparatus and processing gas supply apparatus used therefor - Google Patents

Plasma processing apparatus and processing gas supply apparatus used therefor Download PDF

Info

Publication number
JP5378706B2
JP5378706B2 JP2008134678A JP2008134678A JP5378706B2 JP 5378706 B2 JP5378706 B2 JP 5378706B2 JP 2008134678 A JP2008134678 A JP 2008134678A JP 2008134678 A JP2008134678 A JP 2008134678A JP 5378706 B2 JP5378706 B2 JP 5378706B2
Authority
JP
Japan
Prior art keywords
processing
processing gas
chamber
gas
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008134678A
Other languages
Japanese (ja)
Other versions
JP2009283715A (en
Inventor
誠治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2008134678A priority Critical patent/JP5378706B2/en
Priority to TW98116909A priority patent/TWI471452B/en
Priority to KR1020090044655A priority patent/KR101089973B1/en
Priority to CN2009101430256A priority patent/CN101587814B/en
Publication of JP2009283715A publication Critical patent/JP2009283715A/en
Application granted granted Critical
Publication of JP5378706B2 publication Critical patent/JP5378706B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching

Abstract

The present invention discloses a processed air supply apparatus, air pressure in a pipeline downstream of which is remained below atmosphere pressure, and optimum processed air is supplied corresponding to FPD cardinal plate procession. A supplier (400) supplies processed air to an upper electrode (300), and a buffering chamber (330) in the upper electrode separates a central chamber with perimeter chamber; the processed air supply apparatus is provided with branched pipe (404, 406) that shunts processed air from an air box (410) in two; and a flow adjustment unit (420, 430) that adjusts flow that flows over these branched pipes, and imports the processed air in each branched pipe into the central chamber and the perimeter chamber; each flow adjustment unit is provided with switch valve (422, 432) and fixed throttling controller (424, 434) that set on each branched pipe; the flow adjustment unit connected with the central chamber branched pipe is provided with a bypass pipe (404A) that parallel to the switch valve and the fixed throttling controller, at the same time the bypass pipe is provided with a switch valve (422A).

Description

本発明は,液晶ディスプレイ(Liquid Crystal Display)やエレクトロルミネセンスディスプレイ(Electro−Luminescence Display)などのフラットパネルディスプレイ(Flat Panel Display)用基板に対して,所定の処理を施すプラズマ処理装置及びそれに用いられる処理ガス供給装置に関する。   INDUSTRIAL APPLICABILITY The present invention relates to a plasma processing apparatus that performs a predetermined process on a flat panel display (Flat Panel Display) substrate such as a liquid crystal display and an electroluminescence display (Electro-Luminescence Display), and a plasma processing apparatus used in the plasma processing apparatus. The present invention relates to a processing gas supply device.

例えばフラットパネルディスプレイ用基板(以下,FPD用基板」とも称する)の表面にパターンを形成するプロセスにおいては,エッチングやスパッタリング,CVD(化学気相成長)等のプラズマ処理が施される。このようなプラズマ処理を行うためのプラズマ処理装置としては例えば平行平板プラズマ処理装置が挙げられる。   For example, in the process of forming a pattern on the surface of a flat panel display substrate (hereinafter also referred to as an FPD substrate), plasma treatment such as etching, sputtering, and CVD (chemical vapor deposition) is performed. An example of a plasma processing apparatus for performing such plasma processing is a parallel plate plasma processing apparatus.

この種のプラズマ処理装置は,処理室内に下部電極を有する載置台と,処理ガス導入部を兼ねる上部電極とを平行に配置し,上部電極を介して処理ガスを処理室内に導入するとともに,電極の少なくとも一方に高周波を印加して電極間に高周波電界を形成し,この高周波電界により処理ガスのプラズマを形成してFPD用基板に対してプラズマ処理を施すようになっている。   In this type of plasma processing apparatus, a mounting table having a lower electrode in a processing chamber and an upper electrode that also serves as a processing gas introduction unit are arranged in parallel, and a processing gas is introduced into the processing chamber through the upper electrode, A high frequency electric field is applied to at least one of the electrodes to form a high frequency electric field between the electrodes, and plasma of a processing gas is formed by the high frequency electric field to perform plasma processing on the FPD substrate.

ところで,FPD用基板は半導体ウエハと異なり処理面積が大きいので,上部電極から処理ガスをFPD用基板の全面に均一に分散させて供給するために,種々の提案がなされている。例えば特許文献1に示すように,上部電極の中空部内を基板の中央部領域に処理ガスを噴出させる中央部室とその周辺部領域に処理ガスを噴出させる周辺部室に区画する区画壁を設け,例えばガス供給源を備えたガスボックスなどで構成される処理ガス供給手段からの処理ガスを分岐させて中央部室と周辺部室にそれぞれ供給する分岐配管を接続し,各分岐配管を流れる処理ガスの流量を調整するためにマスフローコントローラなどの流量調整手段を設けたものが記載されている。これによれば,各分岐配管の流量調整手段を調整することにより基板の中央部領域と周辺部領域に供給される処理ガスが均一になるようにすることができる。   By the way, since the FPD substrate has a large processing area unlike a semiconductor wafer, various proposals have been made to supply a processing gas from the upper electrode uniformly distributed over the entire surface of the FPD substrate. For example, as shown in Patent Document 1, a partition wall is provided that divides a hollow portion of the upper electrode into a central chamber that ejects processing gas into the central region of the substrate and a peripheral chamber that ejects processing gas into the peripheral region, for example, Branching the processing gas from the processing gas supply means consisting of a gas box equipped with a gas supply source, connecting branch pipes that supply the central chamber and the peripheral chamber respectively, and the flow rate of the processing gas flowing through each branch pipe A device provided with a flow rate adjusting means such as a mass flow controller for adjustment is described. According to this, the processing gas supplied to the central region and the peripheral region of the substrate can be made uniform by adjusting the flow rate adjusting means of each branch pipe.

特開2007−324331号公報JP 2007-324331 A

ところで,FPD用基板にプラズマ処理を行うための上部電極は大型のため,通常は中央部室に接続される分岐配管の長さは,周辺部室に接続される分岐配管よりも短くなる。従って,中央部室に接続される分岐配管は周辺部室に接続される分岐配管よりもコンダクタンス(流れ易さ)が大きくなり,各分岐配管の管内圧力が均一にならないという問題がある。このため,流量調整手段を調整して,中央部室に接続される分岐配管のコンダクタンスを周辺部室に接続される分岐配管のコンダクタンスよりも小さくして各分岐配管の管内圧力が均一になるようにする必要がある。この点,上述した各分岐配管の流量調整手段をマスフローコントローラで構成して,分岐配管に流れる処理ガスの流量を調整すればよいとも考えられる。   By the way, since the upper electrode for performing plasma processing on the FPD substrate is large, the length of the branch pipe connected to the central chamber is usually shorter than that of the branch pipe connected to the peripheral chamber. Therefore, there is a problem that the branch pipe connected to the central chamber has a larger conductance (ease of flow) than the branch pipe connected to the peripheral chamber, and the internal pressure of each branch pipe is not uniform. For this reason, the flow rate adjusting means is adjusted so that the conductance of the branch pipe connected to the central chamber is made smaller than the conductance of the branch pipe connected to the peripheral chamber so that the pressure in each pipe is uniform. There is a need. In this regard, it is considered that the flow rate adjusting means of each branch pipe described above may be configured by a mass flow controller to adjust the flow rate of the processing gas flowing through the branch pipe.

しかしながら,上述した各分岐配管の流量調整手段をマスフローコントローラで構成すると,一般には処理ガス供給手段を構成するガスボックスにもマスフローコントローラが設けられているので,ガスボックスの下流側(マスフローコントローラよりも下流側)は大気圧を超えてしまう。このため,もしガスボックスの下流側の配管が損傷するとその配管内から大気中にガスが漏れる虞があるので,これを防ぐため例えば各配管を二重構造にするなど配管構造を工夫しなければならなくなる。   However, when the flow rate adjusting means of each branch pipe is configured by a mass flow controller, generally, the gas box constituting the processing gas supply means is also provided with a mass flow controller, so that the downstream side of the gas box (more than the mass flow controller). The downstream side) exceeds the atmospheric pressure. For this reason, if the piping on the downstream side of the gas box is damaged, there is a risk of gas leaking from the piping into the atmosphere. To prevent this, the piping structure must be devised, for example, by making each piping a double structure. No longer.

この点,各分岐配管の流量調整手段を例えばニードルバルブなどの固定絞り弁で構成することで,ガスボックスの下流側の配管は大気圧以下にすることができるので,配管が損傷してもガスが大気中に漏れないようにすることができる。   In this regard, by configuring the flow rate adjusting means of each branch pipe with a fixed throttle valve such as a needle valve, the pipe on the downstream side of the gas box can be reduced to atmospheric pressure or lower. Can be prevented from leaking into the atmosphere.

ところが,各分岐配管の流量調整手段を固定絞り弁で構成した場合,上述したように中央部室に接続される分岐配管のコンダクタンスを周辺部室に接続される分岐配管のコンダクタンスよりも小さくするには,中央部室に接続される分岐配管の固定絞り弁の開度を絞って固定しなければならない。これでは,例えば上部電極の中央領域のみから大流量の処理ガスを供給してFPD基板の処理を行いたい場合に十分なコンダクタンスを確保できなくなるなど,FPD基板の処理に応じて最適な処理ガスの供給を行うことができなくなるという問題がある。   However, when the flow control means of each branch pipe is configured with a fixed throttle valve, as described above, the conductance of the branch pipe connected to the central chamber is smaller than the conductance of the branch pipe connected to the peripheral chamber. The opening of the fixed throttle valve of the branch pipe connected to the central chamber must be throttled and fixed. In this case, for example, when an FPD substrate is processed by supplying a large flow of processing gas only from the central region of the upper electrode, sufficient conductance cannot be ensured. There is a problem that it becomes impossible to supply.

そこで,本発明は,このような問題に鑑みてなされたもので,その目的とするところは,例えばガスボックスなどの処理ガス供給手段から処理ガスを分岐させてFPD基板の中央部領域と周辺部領域へ独立して供給する際に,処理ガス供給手段の下流側の配管内を大気圧以下に保持しつつ,FPD基板の処理に応じて最適な処理ガスの供給を行うことができるプラズマ処理装置等を提供することにある。   Accordingly, the present invention has been made in view of such problems, and the object of the present invention is to branch the processing gas from a processing gas supply means such as a gas box, for example, so that the central region and the peripheral portion of the FPD substrate A plasma processing apparatus capable of supplying an optimum processing gas in accordance with the processing of the FPD substrate while maintaining the inside of the pipe on the downstream side of the processing gas supply means at atmospheric pressure or lower when independently supplying to the region Is to provide etc.

上記課題を解決するために,本発明のある観点によれば,処理室内に第1電極と第2電極を対向して配設し,前記第2電極に支持されたフラットパネルディスプレイ用基板上に処理ガスを導入しつつ前記電極の一方又は両方に高周波電力を供給してプラズマを生成することにより,前記フラットパネルディスプレイ用基板に所定のプラズマ処理を施すプラズマ処理装置であって,前記第1電極へ処理ガスを供給する処理ガス供給装置を設け,前記第1電極は,前記第2電極に対向し,前記処理ガスを前記処理室内へ向けて噴出するための複数のガス噴出孔が形成される電極板と,前記電極板を支持する支持体と,前記支持体において前記電極板との間に形成され,前記処理ガスが導入される中空部と,前記中空部を中央部室と周辺部室に区画するためのループ状の区画壁とを備え,前記処理ガス供給装置は,処理ガス供給手段と,この処理ガス供給手段からの処理ガスを2分岐する各分岐配管と,これら各分岐配管を通る流量を調整する流量調整手段と,前記各分岐配管からの処理ガスを前記中央部室と前記周辺部室とへそれぞれ導入する配管とを備え,前記各流量調整手段は,前記各分岐配管に設けた開閉弁と固定絞り弁(例えばニードルバルブ)を備え,前記中央部室に接続される分岐配管の流量調整手段は,前記開閉弁と前記固定絞り弁に並列してバイパス配管をさらに設けるとともに,前記バイパス配管には開閉弁を設けたことを特徴とするプラズマ処理装置が提供される。   In order to solve the above-described problems, according to one aspect of the present invention, a first electrode and a second electrode are disposed to face each other in a processing chamber, and on a flat panel display substrate supported by the second electrode. A plasma processing apparatus for performing a predetermined plasma processing on the flat panel display substrate by supplying a high-frequency power to one or both of the electrodes while generating a processing gas to generate plasma. A processing gas supply device is provided for supplying a processing gas to the first electrode, and the first electrode is opposed to the second electrode, and a plurality of gas ejection holes for ejecting the processing gas into the processing chamber are formed. An electrode plate, a support for supporting the electrode plate, a hollow portion formed between the electrode plate and the support plate, into which the processing gas is introduced, and the hollow portion is divided into a central chamber and a peripheral chamber The processing gas supply device includes a processing gas supply means, branch pipes for branching the processing gas from the processing gas supply means, and flow rates through the branch pipes. And a pipe for introducing the processing gas from each branch pipe into the central chamber and the peripheral chamber, respectively. The flow regulators are on-off valves provided in the branch pipes. The branch pipe flow rate adjusting means connected to the central chamber is further provided with a bypass pipe in parallel with the on-off valve and the fixed throttle valve. Is provided with an on-off valve.

上記課題を解決するために,本発明の別の観点によれば,処理室内に第1電極と第2電極を対向して配設し,前記第2電極に支持されたフラットパネルディスプレイ用基板上に処理ガスを導入しつつ前記電極の一方又は両方に高周波電力を供給してプラズマを生成することにより,前記フラットパネルディスプレイ用基板に所定のプラズマ処理を施すプラズマ処理装置において,前記第1電極へ処理ガスを供給する処理ガス供給装置であって,前記第1電極は,前記第2電極に対向し,前記処理ガスを前記処理室内へ向けて噴出するための複数のガス噴出孔が形成される電極板と,前記電極板を支持する支持体と,前記支持体において前記電極板との間に形成され,前記処理ガスが導入される中空部と,前記中空部を中央部室と周辺部室に区画するためのループ状の区画壁とを備え,処理ガス供給手段と,この処理ガス供給手段からの処理ガスを2分岐する各分岐配管と,これら各分岐配管を通る流量を調整する流量調整手段と,前記各分岐配管からの処理ガスを前記中央部室と前記周辺部室とへそれぞれ導入する配管とを備え,前記各流量調整手段は,前記各分岐配管に設けた開閉弁と固定絞り弁(例えばニードルバルブ)を備え,前記中央部室に接続される分岐配管の流量調整手段は,前記開閉弁と前記固定絞り弁に並列してバイパス配管をさらに設けるとともに,前記バイパス配管には開閉弁を設けたことを特徴とする処理ガス供給装置が提供される。   In order to solve the above-described problems, according to another aspect of the present invention, a first electrode and a second electrode are disposed opposite to each other in a processing chamber, and a flat panel display substrate supported by the second electrode is provided. In the plasma processing apparatus for performing a predetermined plasma process on the flat panel display substrate by supplying a high frequency power to one or both of the electrodes while generating a processing gas into the flat panel display substrate, to the first electrode A processing gas supply apparatus for supplying a processing gas, wherein the first electrode is opposed to the second electrode, and a plurality of gas ejection holes for ejecting the processing gas into the processing chamber are formed. An electrode plate, a support that supports the electrode plate, a hollow portion that is formed between the electrode plate and the support plate in which the processing gas is introduced, and the hollow portion is divided into a central chamber and a peripheral chamber. A processing gas supply means, each branch pipe for branching the process gas from the process gas supply means, and a flow rate adjusting means for adjusting a flow rate through each of the branch pipes. And a pipe for introducing the processing gas from each branch pipe into the central chamber and the peripheral chamber, respectively, and each flow rate adjusting means includes an on-off valve and a fixed throttle valve (for example, a needle) provided in each branch pipe. The branch pipe flow rate adjusting means connected to the central chamber is further provided with a bypass pipe in parallel with the on-off valve and the fixed throttle valve, and the bypass pipe is provided with an on-off valve. A processing gas supply device is provided.

このような本発明によれば,処理ガス供給手段から分岐した各分岐配管に設けられる流量調整手段として,固定絞り弁を用いるので,たとえ処理ガス供給手段にマスフローコントローラを用いていても,処理ガス供給手段の下流側の配管は大気圧以下に保持することができる。これにより,処理ガス供給手段の下流側の配管が損傷してもその配管からガスが大気中に漏れることを防止できる。   According to the present invention, since the fixed throttle valve is used as the flow rate adjusting means provided in each branch pipe branched from the processing gas supply means, even if a mass flow controller is used as the processing gas supply means, the processing gas The piping on the downstream side of the supply means can be kept below atmospheric pressure. Thereby, even if the piping on the downstream side of the processing gas supply means is damaged, gas can be prevented from leaking from the piping into the atmosphere.

さらに,各分岐配管の流量調整手段は,開閉弁と固定絞り弁を備えるので,各分岐配管の長さに応じて固定絞り弁の開度を調整することによりコンダクタンスを調整することができる。これにより,例えば第1電極の周辺部室に接続される分岐配管よりも配管長さが短い,中央部室に接続される分岐配管の固定絞り弁の開度を絞ることで,各分岐配管の管内圧力を均一にすることができるので,第1電極の中央部室及び周辺部室から均一に処理ガスを供給させることができる。   Furthermore, since the flow rate adjusting means for each branch pipe includes an on-off valve and a fixed throttle valve, the conductance can be adjusted by adjusting the opening of the fixed throttle valve in accordance with the length of each branch pipe. Thus, for example, by reducing the opening of the fixed throttle valve of the branch pipe connected to the central chamber, which is shorter than the branch pipe connected to the peripheral chamber of the first electrode, Therefore, the processing gas can be supplied uniformly from the central chamber and the peripheral chamber of the first electrode.

しかも,第1電極の中央部室に接続される分岐配管の流量調整手段は,バイパス配管を備えるので,開閉弁を制御して固定絞り弁を通らずにバイパス配管を通って中央部室に供給されるように分岐配管の処理ガスの流れを切り換えることができる。これにより,例えば中央部室のみから処理ガスを供給する際にも,十分なコンダクタンスを確保することができる。このように本発明によれば,処理ガス供給手段の下流側の配管は大気圧以下に保持しつつ,FPD用基板の処理に応じて最適な処理ガスを供給することができる。   Moreover, since the flow rate adjusting means of the branch pipe connected to the central chamber of the first electrode is provided with a bypass pipe, the on-off valve is controlled and supplied to the central chamber through the bypass pipe without passing through the fixed throttle valve. Thus, the flow of the processing gas in the branch pipe can be switched. Thereby, sufficient conductance can be ensured even when the processing gas is supplied only from the central chamber, for example. As described above, according to the present invention, it is possible to supply the optimum processing gas according to the processing of the FPD substrate while keeping the piping on the downstream side of the processing gas supply means at atmospheric pressure or lower.

また,この場合,上記周辺部室に接続される分岐配管の流量調整手段には,前記開閉弁と前記固定絞り弁との間に不活性ガス供給配管を接続し,この不活性ガス供給配管には開閉弁を設けるようにしてもよい。これによれば,第1電極の中央部室からは処理ガスのみを供給し,周辺部室からは不活性ガスのみを供給することができるので,FPD用基板の処理の均一性をより向上させることができる。   Further, in this case, an inert gas supply pipe is connected between the on-off valve and the fixed throttle valve in the flow rate adjusting means of the branch pipe connected to the peripheral chamber. An on-off valve may be provided. According to this, since only the processing gas can be supplied from the central chamber of the first electrode and only the inert gas can be supplied from the peripheral chamber, the processing uniformity of the FPD substrate can be further improved. it can.

また,上記各流量調整手段はそれぞれ,前記開閉弁と前記固定絞り弁に並列して複数のバイパス配管を設けるとともに,前記各バイパス配管にそれぞれ開閉弁と固定絞り弁を設け,前記各流量調整手段の固定絞り弁はそれぞれ,異なるコンダクタンス比になるように開度を調整するようにしてもよい。これによれば,各流量調整手段の開閉弁を制御することにより,所望の配管に処理ガスを通すことにより処理ガスが通る配管の組合せで,各分岐配管から第1電極の中央部室,周辺部室に所望の流量の処理ガスを供給できる。これによっても,処理ガス供給手段の下流側の配管は大気圧以下に保持しつつ,FPD用基板の処理に応じてFPD用基板の中央部領域と周辺部領域に供給される処理ガス流量の均一性をコントロールできる。   Each of the flow rate adjusting means is provided with a plurality of bypass pipes in parallel with the on-off valve and the fixed throttle valve, and each of the bypass pipes is provided with an on-off valve and a fixed throttle valve. Each of the fixed throttle valves may be adjusted in opening so as to have different conductance ratios. According to this, by controlling the on-off valve of each flow rate adjusting means, the central chamber and the peripheral chamber of the first electrode are connected from each branch pipe by a combination of pipes through which the processing gas passes by passing the processing gas through a desired pipe. A processing gas having a desired flow rate can be supplied. Even in this manner, while the piping on the downstream side of the processing gas supply means is kept below atmospheric pressure, the flow rate of the processing gas supplied to the central region and the peripheral region of the FPD substrate is uniform according to the processing of the FPD substrate. You can control sex.

また,上記各分岐配管から前記中央部室と前記周辺部室に導入するガス導入孔の前記中空部に開口する吐出口には,前記中空部に吐出されるガスの流れを水平方向に変える整流部材を設けるようにしてもよい。これによれば,中空部内をより広範囲に均一に拡散させることができる。これにより,各ガス噴出孔からより均一に処理ガスを噴出させることができる。   Further, a rectifying member that changes the flow of gas discharged into the hollow portion in a horizontal direction is provided at a discharge port that opens into the hollow portion of the gas introduction hole introduced from each branch pipe into the central chamber and the peripheral chamber. You may make it provide. According to this, the inside of the hollow portion can be diffused uniformly over a wider range. Thereby, process gas can be more uniformly ejected from each gas ejection hole.

本発明によれば,処理ガス供給手段の下流側の配管内を大気圧以下に保持しつつ,FPD基板の処理に応じて最適な処理ガスの供給を行うことができる。   According to the present invention, it is possible to supply the optimum processing gas according to the processing of the FPD substrate while maintaining the inside of the piping on the downstream side of the processing gas supply means at the atmospheric pressure or lower.

以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

(プラズマ処理装置の構成例)
先ず,本発明の実施形態にかかるプラズマ処理装置について図面を参照しながら説明する。図1は,マルチチャンバータイプのプラズマ処理装置の外観斜視図である。同図に示すプラズマ処理装置100は,フラットパネルディスプレイ用基板(FPD用基板)Sに対してプラズマ処理を施すための複数(例えば3つ)の処理室200を備える。
(Configuration example of plasma processing equipment)
First, a plasma processing apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an external perspective view of a multi-chamber type plasma processing apparatus. The plasma processing apparatus 100 shown in the figure includes a plurality of (for example, three) processing chambers 200 for performing plasma processing on a flat panel display substrate (FPD substrate) S.

処理室200内には,例えばFPD用基板Sを載置する載置台が設けられており,この載置台の上方に処理ガス(例えばプロセスガス)を導入するためのシャワーヘッドを兼ねる上部電極が設けられている。各処理室200では同一の処理(例えばエッチング処理等)を行っても良いし,互いに異なった処理(例えばエッチング処理とアッシング処理等)を行うようにしても良い。なお,処理室200内の具体的構成例については後述する。   In the processing chamber 200, for example, a mounting table for mounting the FPD substrate S is provided, and an upper electrode serving also as a shower head for introducing a processing gas (for example, process gas) is provided above the mounting table. It has been. Each processing chamber 200 may perform the same processing (for example, etching processing) or different processing (for example, etching processing and ashing processing). A specific configuration example in the processing chamber 200 will be described later.

各処理室200はそれぞれ,断面多角形状(例えば断面矩形状)の搬送室110の側面にゲートバルブ102を介して連結されている。搬送室110にはさらに,ロードロック室120がゲートバルブ104を介して連結されている。ロードロック室120には,基板搬出入機構130がゲートバルブ106を介して隣設されている。   Each processing chamber 200 is connected via a gate valve 102 to a side surface of a transfer chamber 110 having a polygonal cross section (for example, a rectangular cross section). A load lock chamber 120 is further connected to the transfer chamber 110 via a gate valve 104. A substrate carry-in / out mechanism 130 is provided adjacent to the load lock chamber 120 via a gate valve 106.

基板搬出入機構130にそれぞれ2つのインデクサ140が隣設されている。インデクサ140には,FPD用基板Sを収納するカセット142が載置される。カセット142は複数枚(例えば25枚)のFPD用基板Sが収納可能に構成されている。   Two indexers 140 are provided adjacent to the substrate carry-in / out mechanism 130, respectively. A cassette 142 for storing the FPD substrate S is placed on the indexer 140. The cassette 142 is configured to accommodate a plurality of (for example, 25) FPD substrates S.

このようなプラズマ処理装置によってFPD用基板Sに対してプラズマ処理を行う際には,先ず基板搬出入機構130によりカセット142内のFPD用基板Sをロードロック室120内へ搬入する。このとき,ロードロック室120内に処理済みのFPD用基板Sがあれば,その処理済みのFPD用基板Sをロードロック室120内から搬出し,未処理のFPD用基板Sと置換える。ロードロック室120内へFPD用基板Sが搬入されると,ゲートバルブ106を閉じる。   When plasma processing is performed on the FPD substrate S using such a plasma processing apparatus, the substrate loading / unloading mechanism 130 first loads the FPD substrate S in the cassette 142 into the load lock chamber 120. At this time, if there is a processed FPD substrate S in the load lock chamber 120, the processed FPD substrate S is unloaded from the load lock chamber 120 and replaced with an unprocessed FPD substrate S. When the FPD substrate S is carried into the load lock chamber 120, the gate valve 106 is closed.

次いで,ロードロック室120内を所定の真空度まで減圧した後,搬送室110とロードロック室120間のゲートバルブ104を開く。そして,ロードロック室120内のFPD用基板Sを搬送室110内の搬送機構(図示せず)により搬送室110内へ搬入した後,ゲートバルブ104を閉じる。   Next, after reducing the pressure in the load lock chamber 120 to a predetermined degree of vacuum, the gate valve 104 between the transfer chamber 110 and the load lock chamber 120 is opened. Then, after the FPD substrate S in the load lock chamber 120 is carried into the transfer chamber 110 by a transfer mechanism (not shown) in the transfer chamber 110, the gate valve 104 is closed.

搬送室110内ではさらに減圧してロードロック室120内よりも高い真空度まで減圧した後,ゲートバルブ102を開く。そして,処理室200内の載置台を兼ねる下部電極に未処理のFPD用基板Sを搬入する。このとき,処理済みのFPD用基板Sがあれば,その処理済みのFPD用基板Sを搬出し,未処理のFPD用基板Sと置換える。   The pressure in the transfer chamber 110 is further reduced to a vacuum level higher than that in the load lock chamber 120, and then the gate valve 102 is opened. Then, an unprocessed FPD substrate S is carried into the lower electrode that also serves as a mounting table in the processing chamber 200. At this time, if there is a processed FPD substrate S, the processed FPD substrate S is unloaded and replaced with an unprocessed FPD substrate S.

処理室200内では,下部電極と上部電極間にプラズマを発生させ,処理ガスを上部電極を介して処理室内に導入することによって,FPD用基板Sに対して所定のプラズマ処理を行う。   In the processing chamber 200, plasma is generated between the lower electrode and the upper electrode, and a processing gas is introduced into the processing chamber via the upper electrode, whereby a predetermined plasma processing is performed on the FPD substrate S.

(処理室の構成例)
次に,処理室200の具体的構成例について図面を参照しながら説明する。ここでは,本発明のプラズマ処理装置を,FPD用基板として例えば液晶ディスプレイ用のガラス基板(以下,単に「基板」とも称する)をエッチングする装置に適用した場合の処理室の構成例について説明する。図2は,処理室200の概略構成を示す断面図である。
(Configuration example of processing chamber)
Next, a specific configuration example of the processing chamber 200 will be described with reference to the drawings. Here, a configuration example of a processing chamber when the plasma processing apparatus of the present invention is applied to an apparatus for etching a glass substrate for liquid crystal display (hereinafter also simply referred to as “substrate”) as an FPD substrate will be described. FIG. 2 is a cross-sectional view illustrating a schematic configuration of the processing chamber 200.

図2に示す処理室200は,例えば表面が陽極酸化処理(アルマイト処理)されたアルミニウムからなる略角筒形状の処理容器202を備える。処理容器202は上端近傍で上下に二分割されて処理容器202の上部が開閉可能になっており,内部のメンテナンスを行い易いようにしてある。なお,処理容器202は接地されている。   The processing chamber 200 shown in FIG. 2 includes a processing container 202 having a substantially rectangular tube shape made of aluminum whose surface is anodized (anodized), for example. The processing vessel 202 is divided into two parts in the vicinity of the upper end so that the upper part of the processing vessel 202 can be opened and closed so that the internal maintenance can be easily performed. Note that the processing container 202 is grounded.

処理容器202内にはその底部に,第2電極の1例としての下部電極212を有する載置台210が配設されている。この載置台210の上方には隙間を介してガス導入部を兼ねる第1電極の1例としての上部電極300が対向配置されている。上部電極300は整合器206を介して高周波電源208に接続されている。この高周波電源208から例えば13.56MHzの高周波電力が上部電極300に印加される。   A mounting table 210 having a lower electrode 212 as an example of a second electrode is disposed in the processing container 202 at the bottom. Above the mounting table 210, an upper electrode 300 as an example of a first electrode that also serves as a gas introduction part is disposed so as to face each other through a gap. The upper electrode 300 is connected to a high frequency power source 208 via a matching unit 206. For example, high frequency power of 13.56 MHz is applied to the upper electrode 300 from the high frequency power source 208.

処理容器202の外側には,基板Sに対して成膜やエッチングなどの所定の処理を施すための処理ガスを供給する処理ガス供給装置400が配設されている。この処理ガス供給装置400は処理ガス供給手段を構成するガスボックス410からの処理ガスを処理室200内に供給する。ガスボックス410は処理ガス供給源を備え,処理ガス供給源の配管には開閉弁,マスフローコントローラが設けられている。処理ガス供給源からの処理ガスがマスフローコントローラにより流量が調整され,ガスボックス410から供給される。なお,ガスボックス410は複数の処理ガス供給源を備えるようにしてもよい。この場合には各処理ガス供給源の配管にそれぞれ開閉弁,マスフローコントローラを設け,これらの配管の下流側を合流させて混合した処理ガスをガスボックス410から供給するようにしてもよい。なお,ガスボックス410の具体的構成例は後述する。   A processing gas supply device 400 that supplies a processing gas for performing predetermined processing such as film formation and etching on the substrate S is disposed outside the processing container 202. The processing gas supply device 400 supplies the processing gas from the gas box 410 constituting the processing gas supply means into the processing chamber 200. The gas box 410 includes a processing gas supply source, and an open / close valve and a mass flow controller are provided in the piping of the processing gas supply source. The processing gas from the processing gas supply source is supplied from the gas box 410 after the flow rate is adjusted by the mass flow controller. The gas box 410 may include a plurality of processing gas supply sources. In this case, an on-off valve and a mass flow controller may be provided in the piping of each processing gas supply source, and the processing gas mixed by mixing the downstream sides of these piping may be supplied from the gas box 410. A specific configuration example of the gas box 410 will be described later.

処理容器202の側壁には,排気路240が接続され,この排気路240には真空排気手段242が接続されている。また,処理容器202の側壁には,上記搬送室110との間で基板Sの搬出入を行うための搬出入口250が設けられており,この搬出入口250は上記ゲートバルブ102により開閉されるようになっている。   An exhaust passage 240 is connected to the side wall of the processing vessel 202, and a vacuum exhaust means 242 is connected to the exhaust passage 240. Further, a loading / unloading port 250 for loading / unloading the substrate S to / from the transfer chamber 110 is provided on the side wall of the processing container 202, and the loading / unloading port 250 is opened and closed by the gate valve 102. It has become.

このような処理室200では,処理ガス供給装置400から処理室200内へ処理ガスを供給するとともに,上部電極300に高周波電力を印加することにより,下部電極212と上部電極300間で処理ガスのプラズマを発生させ,載置台210上に載置された基板Sに対してエッチング,アッシング,成膜等のプラズマ処理を行うことができる。   In such a processing chamber 200, the processing gas is supplied from the processing gas supply device 400 into the processing chamber 200, and high-frequency power is applied to the upper electrode 300, so that the processing gas flows between the lower electrode 212 and the upper electrode 300. Plasma is generated, and plasma processing such as etching, ashing, and film formation can be performed on the substrate S placed on the mounting table 210.

上記下部電極212は,絶縁材214を介して支持部216に支持されている。支持部216の下面中央部には,処理容器202の底壁に形成された開口部204を貫通して下方に延出する保護管218が設けられている。   The lower electrode 212 is supported by the support portion 216 via an insulating material 214. A protective tube 218 that extends downward through the opening 204 formed in the bottom wall of the processing vessel 202 is provided at the center of the lower surface of the support portion 216.

保護管218の下面は,この保護管218よりも大径の導電性の支持板220により支持されている。支持板220は保護管218の管内を塞ぐように保護管218に取付けられている。支持板220の周辺には導電性のベローズ体222の下端が固定されている。ベローズ体222の上端は処理容器202の開口部204の開口縁に固定されている。   The lower surface of the protective tube 218 is supported by a conductive support plate 220 having a larger diameter than the protective tube 218. The support plate 220 is attached to the protective tube 218 so as to close the inside of the protective tube 218. A lower end of a conductive bellows body 222 is fixed around the support plate 220. The upper end of the bellows body 222 is fixed to the opening edge of the opening 204 of the processing container 202.

ベローズ体222は保護管218が配置されている内部空間と大気側空間とを気密に区画する。また,支持板220には図示しない昇降機構が設けられている。この昇降機構により支持板220を昇降させることによって,載置台210を昇降させることができる。下部電極212は導電路213を介して支持板220に接続されている。これにより,下部電極212は導電路213,支持板220,ベローズ体222を介して処理容器202に電気的に接続され,接地される。   The bellows body 222 airtightly partitions the internal space where the protective tube 218 is disposed and the atmosphere side space. The support plate 220 is provided with a lifting mechanism (not shown). The mounting table 210 can be raised and lowered by raising and lowering the support plate 220 by this raising and lowering mechanism. The lower electrode 212 is connected to the support plate 220 through the conductive path 213. As a result, the lower electrode 212 is electrically connected to the processing container 202 through the conductive path 213, the support plate 220, and the bellows body 222, and is grounded.

なお,載置台210の下部電極212と処理容器202とをインピーダンス調整部を介して電気的に接続するようにしてもよい。具体的には例えばインピーダンス調整部を下部電極212と支持板220との間に導線で接続する。これにより,インピーダンス調整部の一端は下部電極に接続されるとともに,他端は支持板220及びベローズ体222を介して処理容器202の底部に電気的に接続されることになる。このインピーダンス調整部によりインピーダンス値を調整することによって,高周波電源が接続される上部電極300と処理容器202の側壁との間でプラズマが発生することを抑えることができる。   Note that the lower electrode 212 of the mounting table 210 and the processing container 202 may be electrically connected via an impedance adjustment unit. Specifically, for example, the impedance adjusting unit is connected between the lower electrode 212 and the support plate 220 with a conductive wire. As a result, one end of the impedance adjusting unit is connected to the lower electrode, and the other end is electrically connected to the bottom of the processing vessel 202 via the support plate 220 and the bellows body 222. By adjusting the impedance value by this impedance adjusting unit, it is possible to suppress the generation of plasma between the upper electrode 300 to which the high frequency power source is connected and the side wall of the processing vessel 202.

一方,上部電極300は,処理容器202の上部内側面に絶縁性部材からなる枠体302を介して装着されるとともに,処理容器202の上壁に例えば複数のボルト230を介して吊持されている。具体的には,処理容器202の上壁に形成した孔に絶縁体232を取り付け,その絶縁体232内にボルト230を挿入して上部電極300を固定する。また,表面が絶縁加工されたボルトを使用してもよい。   On the other hand, the upper electrode 300 is mounted on the upper inner surface of the processing container 202 via a frame 302 made of an insulating member, and is suspended on the upper wall of the processing container 202 via, for example, a plurality of bolts 230. Yes. Specifically, an insulator 232 is attached to a hole formed in the upper wall of the processing container 202, and a bolt 230 is inserted into the insulator 232 to fix the upper electrode 300. Further, a bolt whose surface is insulated may be used.

また,上部電極300は,載置台210に載置されたFPD用基板Sの表面上に向けて所定のガスを噴出するガス導入部としての機能も兼ね備え,いわゆるシャワーヘッドを構成する。上部電極300には,図2に示すように矩形の中空部からなるガス拡散用のバッファ室330が形成される。上部電極300の下面(下部電極と対向する面)全面には多数のガス噴出孔312が均等に分散配置され,このガス噴出孔312から処理室200内全体へ処理ガスを下降流で供給する。   Further, the upper electrode 300 also has a function as a gas introduction part for ejecting a predetermined gas toward the surface of the FPD substrate S mounted on the mounting table 210, and constitutes a so-called shower head. As shown in FIG. 2, the upper electrode 300 is formed with a gas diffusion buffer chamber 330 having a rectangular hollow portion. A number of gas ejection holes 312 are uniformly distributed over the entire lower surface of the upper electrode 300 (the surface facing the lower electrode), and the processing gas is supplied from the gas ejection holes 312 to the entire processing chamber 200 in a downward flow.

具体的には上部電極300は,上記ガス噴出孔312が形成される矩形状の電極板310と,この電極板310とほぼ同じ形状に形成され,電極板310の上面側を着脱自在に支持する電極支持体320とを備える。電極板310と電極支持体320は例えば表面が陽極酸化処理されたアルミニウムで構成される。なお,ガス噴出孔312の数や配置は図2に示すものに限られるものではない。   Specifically, the upper electrode 300 is formed in a rectangular electrode plate 310 in which the gas ejection holes 312 are formed, and substantially the same shape as the electrode plate 310, and detachably supports the upper surface side of the electrode plate 310. An electrode support 320. The electrode plate 310 and the electrode support 320 are made of aluminum having an anodized surface, for example. The number and arrangement of the gas ejection holes 312 are not limited to those shown in FIG.

電極支持体320には上記バッファ室330を構成する矩形の空間部が形成されている。この空間部は電極支持体320の縁部(底面)に開口するように形成されており,電極支持体320の底面に電極板310を取り付けることにより,上記空間部が閉塞されるようになっている。   The electrode support 320 is formed with a rectangular space that constitutes the buffer chamber 330. This space portion is formed so as to open at the edge (bottom surface) of the electrode support 320. By attaching the electrode plate 310 to the bottom surface of the electrode support 320, the space portion is closed. Yes.

また,電極支持体320のバッファ室330が形成される空間内では,その空間を形成する電極支持体320の上壁内面に複数の吊持部材360を介して吊持されている。吊持部材360は例えば表面が陽極酸化処理されたアルミニウム又SUS(Stainless Used Steel)で構成する。吊持部材360は,電極支持体320の上壁にボルトなどの締結部材364で固定する。   In the space where the buffer chamber 330 of the electrode support 320 is formed, the electrode support 320 is suspended on the inner surface of the upper wall of the electrode support 320 via the plurality of suspension members 360. The suspension member 360 is made of, for example, aluminum whose surface is anodized or SUS (Stainless Used Steel). The suspension member 360 is fixed to the upper wall of the electrode support 320 with a fastening member 364 such as a bolt.

また,上記締結部材364で吊持部材360を電極板310に固定するようにしてもよく,吊持部材360にフランジ部を設け,そのフランジ部と電極板とを締結部材364よりも小さいボルトなどの締結部材で別途固定するようにしてもよい。   Further, the suspension member 360 may be fixed to the electrode plate 310 by the fastening member 364. A flange portion is provided on the suspension member 360, and the flange portion and the electrode plate are connected to a bolt smaller than the fastening member 364. You may make it fix separately with this fastening member.

このように,電極板310を電極支持体320の縁部(底面)に取り付けるのみならず,電極支持体320のバッファ室330内においても吊持部材360によって吊持することによって,大型の電極板310でも,自重による撓みや変形が生じないように電極支持体320に取り付けることができる。   In this way, not only the electrode plate 310 is attached to the edge (bottom surface) of the electrode support 320, but also is suspended in the buffer chamber 330 of the electrode support 320 by the suspension member 360, so that a large electrode plate is obtained. 310 can be attached to the electrode support 320 so as not to be bent or deformed by its own weight.

電極支持体320のバッファ室330は,ループ状(枠状)の区画壁350によって複数の室(例えば中央部の第1室332とその周辺部の第2室334)に区画されている。また,電極支持体320の上壁には複数のガス導入孔326が設けられている。これらガス導入孔326にはそれぞれ処理ガス供給装置400の分岐配管が接続しており,処理ガス供給装置400からの処理ガスが各室332,334ごとに流量制御されて導入されるようになっている。   The buffer chamber 330 of the electrode support 320 is partitioned into a plurality of chambers (for example, a first chamber 332 at the center and a second chamber 334 at the periphery thereof) by a loop-shaped (frame-shaped) partition wall 350. A plurality of gas introduction holes 326 are provided on the upper wall of the electrode support 320. Branch pipes of the processing gas supply device 400 are connected to the gas introduction holes 326, respectively, so that the processing gas from the processing gas supply device 400 is introduced for each of the chambers 332 and 334 with the flow rate controlled. Yes.

例えば図2に示すようにガスボックス410からの処理ガスは,ガスボックス410から2つに分岐した一方の分岐配管404を通って流量調整手段420を介して第1室332へ導入される。他方の分岐配管406を通る処理ガスは,流量調整手段430を介して第2室334へ導入される。各室332,334に供給される処理ガスはそれぞれ,流量調整手段420,430によって流量制御される。   For example, as shown in FIG. 2, the processing gas from the gas box 410 is introduced into the first chamber 332 via the flow rate adjusting means 420 through one branch pipe 404 branched into two from the gas box 410. The processing gas passing through the other branch pipe 406 is introduced into the second chamber 334 via the flow rate adjusting means 430. The processing gas supplied to the chambers 332 and 334 is controlled in flow rate by the flow rate adjusting means 420 and 430, respectively.

このように,各室332,334から基板Sに向けて導入される処理ガスの流量を個別に制御することにより,基板Sが大面積化しても基板S全領域でのガス流量を均等化することができ,ひいてはプラズマ処理を均一化することができる。   In this way, by individually controlling the flow rate of the processing gas introduced from the chambers 332 and 334 toward the substrate S, the gas flow rate in the entire region of the substrate S is equalized even if the substrate S has a large area. As a result, the plasma processing can be made uniform.

(処理ガス供給装置の配管構成例)
ここで,このような処理ガス供給装置400の配管構成例を図面を参照しながら説明する。図3は,電極板310を外した際の電極支持体320を下から見た図である。図4は,処理ガス供給装置400の外観を示す概略図である。図5は,処理ガス供給装置400の配管構成をブロック図で示したものである。なお,図3,図5では,処理ガス供給装置400の配管構成を観念的に線図で表している。
(Pipe configuration example of processing gas supply device)
Here, an example of the piping configuration of such a processing gas supply apparatus 400 will be described with reference to the drawings. FIG. 3 is a view of the electrode support 320 viewed from below when the electrode plate 310 is removed. FIG. 4 is a schematic view showing the appearance of the processing gas supply apparatus 400. FIG. 5 is a block diagram showing the piping configuration of the processing gas supply apparatus 400. 3 and 5, the piping configuration of the processing gas supply device 400 is conceptually represented by a diagram.

ここでは,電極支持体320に5つのガス導入孔326を形成した場合について説明する。具体的には電極支持体320の中央に1つのガス導入孔326が,四つ角寄りにそれぞれ1つずつガス導入孔326が配置されている。これら5つのガス導入孔326はそれぞれ縦方向,横方向に対称に配置されている。   Here, a case where five gas introduction holes 326 are formed in the electrode support 320 will be described. Specifically, one gas introduction hole 326 is disposed at the center of the electrode support 320 and one gas introduction hole 326 is disposed near each of the four corners. These five gas introduction holes 326 are arranged symmetrically in the vertical and horizontal directions, respectively.

図3に示す区画壁350は,バッファ室330と相似形の枠状に形成した場合の具体例である。この区画壁350の上面及び下面には,区画壁350の枠部に沿って例えば図示しないOリングなどのシール部材が設けられている。このような区画壁350によれば,バッファ室330は中央部の第1室332と第1室332の外側を囲む周辺部の第2室334とに区画される。   The partition wall 350 shown in FIG. 3 is a specific example when it is formed in a frame shape similar to the buffer chamber 330. A sealing member such as an O-ring (not shown) is provided on the upper and lower surfaces of the partition wall 350 along the frame portion of the partition wall 350. With such a partition wall 350, the buffer chamber 330 is partitioned into a first chamber 332 in the center and a second chamber 334 in the periphery surrounding the outside of the first chamber 332.

このような区画壁350は,電極支持体320の上壁内面と電極板310との間に挟み込んで保持されるので,電極支持体320から電極板310を取り外せば容易に異なるループ形状の区画壁350と交換できる。図3に示す区画壁350は,第1室332の面積がバッファ室330全体の面積の略25%になるようなループ形状に形成したものである。このような区画壁350によって区画される場合には,第1室332は中央のガス導入孔326から処理ガスが導入され,第2室334は四つ角寄りの4つのガス導入孔326からそれぞれ処理ガスが導入される。   Such a partition wall 350 is sandwiched and held between the inner surface of the upper wall of the electrode support 320 and the electrode plate 310. Therefore, if the electrode plate 310 is removed from the electrode support 320, the partition walls having different loop shapes can be easily obtained. 350 can be exchanged. The partition wall 350 shown in FIG. 3 is formed in a loop shape such that the area of the first chamber 332 is approximately 25% of the entire area of the buffer chamber 330. In the case of being partitioned by such a partition wall 350, the processing gas is introduced into the first chamber 332 from the central gas introduction hole 326, and the processing gas is introduced into the second chamber 334 from the four gas introduction holes 326 close to the four corners. Is introduced.

このように配置されるガス導入孔326へ処理ガスを導入する場合,処理ガス供給装置400は図3,図4に示すように構成される。すなわち,図3に示す処理ガス供給配管402は第1室332のガス導入孔326へ処理ガスを導入する分岐配管404と,第2室334のガス導入孔326へ処理ガスを導入する分岐配管406の2つに分岐される。各分岐配管404,406には流量調整手段420,430が設けられる。   When the processing gas is introduced into the gas introduction hole 326 arranged in this way, the processing gas supply device 400 is configured as shown in FIGS. That is, the processing gas supply pipe 402 shown in FIG. 3 includes a branch pipe 404 that introduces the processing gas into the gas introduction hole 326 of the first chamber 332 and a branch pipe 406 that introduces the processing gas into the gas introduction hole 326 of the second chamber 334. It is branched into two. The branch pipes 404 and 406 are provided with flow rate adjusting means 420 and 430, respectively.

上記分岐配管404は流量調整手段420を介して中央のガス導入孔326に接続する。また,上記分岐配管406は流量調整手段430の下流側で4つに分岐し,これら各分岐配管406a〜406dがそれぞれ四つ角寄りの4つガス導入孔326に接続する。具体的には図4に示すように,分岐配管406は開閉弁432,流量調整器434の下流側でさらに2つに分岐し,一方の配管を分岐配管406a,406bに分岐し,他方の配管を分岐配管406c,406dに分岐している。このような配管構成に限定されるものではなく,分岐配管406は開閉弁432,流量調整器434の下流側で放射状に4つに分岐するようにしてもよい。   The branch pipe 404 is connected to the central gas introduction hole 326 via the flow rate adjusting means 420. Further, the branch pipe 406 branches into four on the downstream side of the flow rate adjusting means 430, and each of the branch pipes 406a to 406d is connected to four gas introduction holes 326 that are closer to four corners. Specifically, as shown in FIG. 4, the branch pipe 406 is further branched into two on the downstream side of the on-off valve 432 and the flow rate regulator 434, one of the pipes is branched into branch pipes 406a and 406b, and the other pipe. Is branched into branch pipes 406c and 406d. It is not limited to such a pipe configuration, and the branch pipe 406 may be branched radially into four on the downstream side of the on-off valve 432 and the flow rate regulator 434.

上記流量調整手段420,430はそれぞれ,例えば上流側に設けられる開閉弁422,432と下流側に設けられる流量調整器424,434により構成される。これらの流量調整手段420,430により,第1室332,第2室334から処理室200内へ導入される処理ガスの流量を別個に制御することができる。   The flow rate adjusting means 420 and 430 are configured by, for example, on-off valves 422 and 432 provided on the upstream side and flow rate regulators 424 and 434 provided on the downstream side, respectively. The flow rate adjusting means 420 and 430 can separately control the flow rate of the processing gas introduced from the first chamber 332 and the second chamber 334 into the processing chamber 200.

ガスボックス410は,例えば図5に示すように構成される。ここでは,4種のガス(第1ガス,第2ガス,第3ガス,不活性ガス)をガス供給配管510A〜510Dを介して供給可能に構成した場合を例に挙げている。これらのガスのうち,第1ガス,第2ガス,第3ガスは,例えばエッチングガスとしてのフロロカーボン系のフッ素化合物,CF,C,C,CなどのCガスである。また,これらのガスに例えばCF系の反応生成物のデポをコントロールするガスとしての例えばOガスを含めてもよい。さらに,不活性ガスは,例えばキャリアガスとしての希ガス(例えばArガス)であってもよく,例えばパージガスとしても用いられるNガスなどであってもよい。なお,ガス供給源の数は,図5に示す例に限られるものではなく,例えば1つでも,2つでもよく,また4つ以上設けてもよい。 The gas box 410 is configured as shown in FIG. 5, for example. Here, a case where four types of gases (first gas, second gas, third gas, inert gas) can be supplied via the gas supply pipes 510A to 510D is described as an example. Among these gases, the first gas, the second gas, and the third gas are, for example, fluorocarbon fluorine compounds as etching gas, C 4 such as CF 4 , C 4 F 6 , C 4 F 8 , and C 5 F 8. X F Y gas. Further, these gases may include, for example, O 2 gas as a gas for controlling the deposition of a CF-based reaction product. Further, the inert gas may be, for example, a rare gas (for example, Ar gas) as a carrier gas, and may be N 2 gas that is also used as a purge gas, for example. Note that the number of gas supply sources is not limited to the example shown in FIG. 5, and may be one, two, or four or more.

このようにエッチングガスとして使用される第1ガス,第2ガス,第3ガスのガス供給配管510A〜510Cについては,同様に構成される。すなわち,各ガス供給配管510A〜510Cはそれぞれ第1ガス,第2ガス,第3ガスについてのガス供給源520A〜520Cを備え,各ガス供給源520A〜520Cはそれぞれガス供給配管510A〜510Cを介して処理ガス供給配管402に合流するように接続している。   As described above, the gas supply pipes 510A to 510C of the first gas, the second gas, and the third gas used as the etching gas are similarly configured. That is, each of the gas supply pipes 510A to 510C includes gas supply sources 520A to 520C for the first gas, the second gas, and the third gas, respectively, and each of the gas supply sources 520A to 520C passes through the gas supply pipes 510A to 510C, respectively. Are connected to the processing gas supply pipe 402.

各ガス供給配管510A〜510Cのガス供給配管510A〜510Cにはガス供給源520A〜520Cからのガスの流量を調整するための流量制御器例えばマスフローコントローラ(MFC)540A〜540Cが設けられている。ここでのマスフローコントローラ(MFC)540A〜540Cはそれぞれ容量が異なるものを使用してもよい。   The gas supply pipes 510A to 510C of the gas supply pipes 510A to 510C are provided with flow controllers, for example, mass flow controllers (MFC) 540A to 540C, for adjusting the flow rate of the gas from the gas supply sources 520A to 520C. The mass flow controllers (MFCs) 540A to 540C here may have different capacities.

各マスフローコントローラ(MFC)540A〜540Cの上流側及び下流側にはそれぞれ第1遮断弁(上流側遮断弁)530A〜530C,第2遮断弁(下流側側遮断弁)550A〜550Cが設けられている。第1遮断弁530A〜530C,第2遮断弁550A〜550Cの双方を閉じることで,各マスフローコントローラ(MFC)540A〜540Cにおけるガスの流れを遮断することができる。これにより,例えば各マスフローコントローラ(MFC)540A〜540Cを実際に通るガスの流量を0に調整することができる。   First cutoff valves (upstream cutoff valves) 530A to 530C and second cutoff valves (downstream cutoff valves) 550A to 550C are provided on the upstream side and downstream side of the mass flow controllers (MFCs) 540A to 540C, respectively. Yes. By closing both the first shut-off valves 530A to 530C and the second shut-off valves 550A to 550C, the gas flow in each mass flow controller (MFC) 540A to 540C can be shut off. Thereby, for example, the flow rate of the gas that actually passes through each of the mass flow controllers (MFCs) 540A to 540C can be adjusted to zero.

なお,図5に示すようにガス供給源520A〜520Cと第1遮断弁(上流側遮断弁)530A〜530Cとの間には,ハンドバルブ522A〜522Cを設けている。なお,ハンドバルブ522A〜522Cと第1遮断弁(上流側遮断弁)530A〜530Cとの間には,図示はしないが,さらに減圧弁(レギュレータ),圧力計(PT)を設けるようにしてもよい。   5, hand valves 522A to 522C are provided between the gas supply sources 520A to 520C and the first shut-off valves (upstream shut-off valves) 530A to 530C. Although not shown, a pressure reducing valve (regulator) and a pressure gauge (PT) may be provided between the hand valves 522A to 522C and the first shutoff valves (upstream shutoff valves) 530A to 530C. Good.

一方,不活性ガス(例えばNガス)のガス供給配管510Dは,不活性ガスのガス供給源520Dを備え,このガス供給源520Dからの不活性ガスを他の各ガス供給配管510A〜510Cのマスフローコントローラ(MFC)540A〜540C,第2遮断弁550A〜550Cを介して処理室200内に供給できるようになっている。これにより,Nガスについてはマスフローコントローラ(MFC)540A〜540Cを利用できるため,個別にマスフローコントローラ(MFC)を設ける必要がなくなる。さらに,これらの各ガス供給配管510A〜510Cを介さずに処理ガス供給配管402を介して処理室200に供給することもできるようになっている。 On the other hand, an inert gas (for example, N 2 gas) gas supply pipe 510D includes an inert gas supply source 520D, and the inert gas from the gas supply source 520D is supplied to each of the other gas supply pipes 510A to 510C. The gas can be supplied into the processing chamber 200 via mass flow controllers (MFC) 540A to 540C and second cutoff valves 550A to 550C. Accordingly, the mass flow controllers (MFC) 540A to 540C can be used for the N 2 gas, so that it is not necessary to provide a mass flow controller (MFC) separately. Further, the gas can be supplied to the processing chamber 200 via the processing gas supply pipe 402 without passing through the gas supply pipes 510A to 510C.

具体的には,不活性ガスのガス供給源520Dは,ガス供給配管510Dにより第2遮断弁550Dを介して処理ガス供給配管402に接続しているとともに,遮断弁560A〜560Cをそれぞれ介して各ガス供給配管510A〜510Cの第1遮断弁530A〜530Cとマスフローコントローラ(MFC)540A〜540Cとの間に接続している。   Specifically, the gas supply source 520D of the inert gas is connected to the processing gas supply pipe 402 via the second cutoff valve 550D by the gas supply pipe 510D, and each via the cutoff valves 560A to 560C. The gas supply pipes 510A to 510C are connected between the first cutoff valves 530A to 530C and the mass flow controllers (MFC) 540A to 540C.

また,ガス供給配管510Dには,他のガス供給配管510A〜510Cと同様に,ハンドバルブ522D,第1遮断弁(上流側遮断弁)530Dが接続している。なお,不活性ガスの流量をマスフローコントローラ(MFC)540A〜540Cで制御する場合には,上記遮断弁560A〜560Cをマスフローコントローラ(MFC)の上流側に設けられる第1遮断弁(上流側遮断弁)として制御するようにしてもよい。   Similarly to the other gas supply pipes 510A to 510C, a hand valve 522D and a first shut-off valve (upstream shut-off valve) 530D are connected to the gas supply pipe 510D. When the flow rate of the inert gas is controlled by the mass flow controllers (MFC) 540A to 540C, the cutoff valves 560A to 560C are first cutoff valves (upstream cutoff valves) provided on the upstream side of the mass flow controller (MFC). ) May be controlled.

このような構成の処理ガス供給装置400では,ガスボックス410内の各弁及びMFCなどを制御することにより,所定のガス流量で混合された処理ガスが処理ガス供給配管402を介して処理室200に供給される。このとき,流量調整手段420,430によって,第1室332,第2室334から処理室200内へ導入される処理ガスの流量を別個に制御することができる。   In the processing gas supply apparatus 400 having such a configuration, the processing gas mixed at a predetermined gas flow rate is controlled via the processing gas supply pipe 402 by controlling each valve in the gas box 410 and the MFC. To be supplied. At this time, the flow rate adjusting means 420 and 430 can separately control the flow rate of the processing gas introduced from the first chamber 332 and the second chamber 334 into the processing chamber 200.

例えば上部電極300からFPD基板Sに向けて均一にガスを供給するには,中央のガス導入孔326に接続する分岐配管404と,四つ角寄りの4つガス導入孔326に接続する分岐配管406との管内圧力を均一にする必要がある。ところが,FPD用基板Sにプラズマ処理を行うための上部電極300は大型のため,中央部の第1室332に接続される分岐配管404の長さは,周辺部の第2室334に接続される分岐配管406よりも短くなるのでコンダクタンス(流れ易さ)も大きくなる。このため,流量調整器424,434を調整して,分岐配管404に流れる処理ガスの流量を分岐配管406に流れる処理ガスの流量よりも少なくして各分岐配管404,406の管内圧力が均一になるようにしなければならない。   For example, in order to supply gas uniformly from the upper electrode 300 toward the FPD substrate S, a branch pipe 404 connected to the central gas introduction hole 326 and a branch pipe 406 connected to four gas introduction holes 326 near the four corners are provided. It is necessary to make the pressure in the pipe uniform. However, since the upper electrode 300 for performing plasma processing on the FPD substrate S is large, the length of the branch pipe 404 connected to the first chamber 332 in the center is connected to the second chamber 334 in the periphery. Therefore, the conductance (ease of flow) is also increased. For this reason, the flow rate regulators 424 and 434 are adjusted so that the flow rate of the processing gas flowing through the branch pipe 404 is less than the flow rate of the processing gas flowing through the branch pipe 406 so that the internal pressures of the branch pipes 404 and 406 are uniform. Must be.

なお,上部電極300の区画壁350については,図3に示すものに限られるものではない。例えば図6に示すような区画壁350を設けた上部電極300に処理ガス供給装置400を適用してもよい。図6に示す区画壁350は,図3に示す区画壁350よりも第1室332の面積が広くなるようなループ形状にしたものである。図6に示す区画壁350によれば,第1室332の面積がバッファ室330全体の面積の略50%になる。   Note that the partition wall 350 of the upper electrode 300 is not limited to that shown in FIG. For example, the processing gas supply apparatus 400 may be applied to the upper electrode 300 provided with the partition wall 350 as shown in FIG. The partition wall 350 shown in FIG. 6 has a loop shape so that the area of the first chamber 332 is larger than that of the partition wall 350 shown in FIG. According to the partition wall 350 shown in FIG. 6, the area of the first chamber 332 is approximately 50% of the entire area of the buffer chamber 330.

また,図6に示す区画壁350のように,区画される各室332,334の領域内に含まれるガス導入孔326の数が図3に示す場合と同じになるようなループ形状にすることにより,処理ガス供給装置400の配管構成を変えることなく,バッファ室330の区画面積だけを変えることができる。   Further, like the partition wall 350 shown in FIG. 6, the loop shape is set such that the number of gas introduction holes 326 included in the regions of the compartments 332 and 334 divided is the same as that shown in FIG. Thus, only the partition area of the buffer chamber 330 can be changed without changing the piping configuration of the processing gas supply apparatus 400.

ところで,上述した流量調整器424,434は,例えばマスフローコントローラで構成することも可能である。ところが,流量調整器424,434をマスフローコントローラで構成すると,ガスボックス410内にもマスフローコントローラ540A〜540Cが設けられているので,ガスボックス410の下流側(マスフローコントローラ540A〜540Cよりも下流側)は大気圧を超えてしまう。このため,もしガスボックス410の下流側の配管が損傷するとその配管内から大気中にガスが漏れる虞があるので,これを防ぐため例えば各配管を二重構造にするなど配管構造を工夫しなければならなくなる。   By the way, the flow rate regulators 424 and 434 described above can be configured by, for example, a mass flow controller. However, if the flow rate regulators 424 and 434 are configured by a mass flow controller, the mass flow controllers 540A to 540C are also provided in the gas box 410, so the downstream side of the gas box 410 (downstream side of the mass flow controllers 540A to 540C). Will exceed atmospheric pressure. For this reason, if the piping on the downstream side of the gas box 410 is damaged, there is a risk of gas leaking from the piping into the atmosphere. To prevent this, the piping structure must be devised, for example, by making each piping a double structure. I will have to.

そこで,本実施形態では,流量調整器424,434として例えばニードルバルブなどの固定絞り弁で構成することで,ガスボックス410の下流側は大気圧以下になるようにし,配管が損傷してもガスが大気中に漏れないようにしている。そして,流量調整器424,434を固定絞り弁で構成する際に,上記のように分岐配管404に流れる処理ガスの流量を分岐配管406に流れる処理ガスの流量よりも少なくなるように固定絞り弁の開度を絞った状態で固定する。例えば固定絞り弁の開度が閉塞のときを0とするとともに,全開のときを10とすると,分岐配管404と分岐配管406とのコンダクタンス比が3:10になるように各流量調整器424,434を構成する固定絞り弁の開度を調整する。   Therefore, in the present embodiment, the flow rate regulators 424 and 434 are constituted by fixed throttle valves such as needle valves, for example, so that the downstream side of the gas box 410 is less than the atmospheric pressure, and even if the piping is damaged, the gas Is not leaking into the atmosphere. When the flow rate regulators 424 and 434 are composed of fixed throttle valves, the fixed throttle valve is set so that the flow rate of the processing gas flowing through the branch pipe 404 is smaller than the flow rate of the processing gas flowing through the branch pipe 406 as described above. Fix with the opening of the throttle closed. For example, when the opening of the fixed throttle valve is 0 and the fully open is 10, the flow rate regulators 424 and 424 are controlled so that the conductance ratio between the branch pipe 404 and the branch pipe 406 is 3:10. The opening degree of the fixed throttle valve constituting 434 is adjusted.

ところが,このように分岐配管404の流量調整器424を構成する固定絞り弁の開度を絞って固定すると,例えば上部電極300の中央領域のみから大流量の処理ガスを供給してFPD基板Sの処理を行いたい場合に,十分なコンダクタンスを確保できなくなるなど,FPD基板Sの処理に応じて最適な処理ガスの供給を行うことができなくなるという問題がある。このため,例えば流量調整器424を通らないバイパス配管を流量調整器424に並列し設け,処理ガスの流れをバイパス配管に切換可能とすることにより,バイパス配管を介して大流量の処理ガスを供給できるようにすることが好ましい。   However, if the opening of the fixed throttle valve constituting the flow rate regulator 424 of the branch pipe 404 is reduced and fixed in this way, for example, a large flow rate of processing gas is supplied only from the central region of the upper electrode 300 and the FPD substrate S When processing is desired, there is a problem that it is impossible to supply an optimal processing gas according to the processing of the FPD substrate S, such as a sufficient conductance cannot be ensured. For this reason, for example, a bypass pipe that does not pass through the flow regulator 424 is provided in parallel with the flow regulator 424 so that the flow of the processing gas can be switched to the bypass pipe, thereby supplying a large flow of processing gas through the bypass pipe. It is preferable to be able to do this.

このような配管構成の具体例を図面を参照しながら詳細に説明する。図7は,バイパス配管を備えた配管構成の具体例を示す図である。ここでは,バイパス配管404Aを分岐配管404の流量調整器424に並列して設けた場合である。バイパス配管404Aには,開閉弁422Aが設けられ,分岐配管404を通る処理ガスを流量調整器424を介して流す場合とバイパス配管404Aを介して流す場合に切換えることができるようになっている。   A specific example of such a pipe configuration will be described in detail with reference to the drawings. FIG. 7 is a diagram illustrating a specific example of a pipe configuration including a bypass pipe. Here, the bypass pipe 404A is provided in parallel with the flow rate regulator 424 of the branch pipe 404. The bypass pipe 404A is provided with an on-off valve 422A, which can be switched between a case where the processing gas passing through the branch pipe 404 flows through the flow rate regulator 424 and a case where the processing gas flows through the bypass pipe 404A.

この場合,例えば固定絞り弁の開度が閉塞のときを0とするとともに,全開のときを10とすると,分岐配管404と分岐配管406とのコンダクタンス比が3:10になるように各流量調整器424,434を構成する固定絞り弁の開度を調整して固定しておく。なお,固定絞り弁の開度は上記の場合に限られるものではない。予め分岐配管404と分岐配管406の長さ等に応じて分岐配管404と分岐配管406の管内圧力が均一になるようなコンダクタンス比を求め,そのコンダクタンス比になるように固定絞り弁の開度を調整することが好ましい。   In this case, for example, when the opening of the fixed throttle valve is 0 and when it is fully open, the flow rate is adjusted so that the conductance ratio between the branch pipe 404 and the branch pipe 406 is 3:10. The opening degree of the fixed throttle valve constituting the devices 424 and 434 is adjusted and fixed. Note that the opening of the fixed throttle valve is not limited to the above case. A conductance ratio is obtained in advance so that the pressures in the branch pipe 404 and the branch pipe 406 are uniform according to the lengths of the branch pipe 404 and the branch pipe 406, and the opening of the fixed throttle valve is adjusted so that the conductance ratio is obtained. It is preferable to adjust.

このような配管構成を有する処理ガス供給装置400によれば,例えば上部電極300の中央領域とその周辺領域から均一に処理ガスを供給したい場合には,開閉弁432を開くとともに開閉弁422を開いて開閉弁422Aを閉じることにより,流量調整器434を介して分岐配管406に処理ガスが流れるとともに,流量調整器424を介して分岐配管404に処理ガスが流れるようにすればよい。   According to the processing gas supply device 400 having such a piping configuration, for example, when it is desired to supply processing gas uniformly from the central region of the upper electrode 300 and its peripheral region, the on-off valve 432 and the on-off valve 422 are opened. By closing the on-off valve 422A, the processing gas may flow into the branch pipe 406 via the flow rate regulator 434, and the processing gas may flow into the branch pipe 404 via the flow rate regulator 424.

これに対して,上部電極300の中央領域のみから大流量の処理ガスを供給したい場合は,開閉弁432を閉じるとともに開閉弁422を閉じて開閉弁422Aを開くことにより,分岐配管406には処理ガスを流さずに,バイパス配管404Aを介して分岐配管404から処理ガスが流れるようにすればよい。   On the other hand, when it is desired to supply a large amount of processing gas only from the central region of the upper electrode 300, the branch pipe 406 is treated by closing the on-off valve 432, closing the on-off valve 422, and opening the on-off valve 422A. What is necessary is just to make it process gas flow from the branch piping 404 via the bypass piping 404A, without flowing gas.

これによれば,分岐配管404の流量調整器424を構成する固定絞り弁の開度を絞って固定した場合でも,バイパス配管404Aを介して上部電極300の中央領域のみから大流量の処理ガスを供給できるようにすることができる。   According to this, even when the opening of the fixed throttle valve constituting the flow rate regulator 424 of the branch pipe 404 is throttled and fixed, a large flow rate of processing gas is supplied from only the central region of the upper electrode 300 via the bypass pipe 404A. Can be made available.

なお,図7に示す配管構成における分岐配管406において,例えば図8に示すように開閉弁432と流量調整器434との間に不活性ガス(例えばArガス,Heガスなど)を供給する不活性ガス供給配管408をさらに接続してもよい。この場合,不活性ガス供給配管408には,開閉弁409を設け,上部電極300の周辺領域から不活性ガスのみが供給されるように切換えられるようにする。   In the branch pipe 406 in the pipe configuration shown in FIG. 7, for example, as shown in FIG. 8, an inert gas (for example, Ar gas, He gas) is supplied between the on-off valve 432 and the flow rate regulator 434. A gas supply pipe 408 may be further connected. In this case, the inert gas supply pipe 408 is provided with an opening / closing valve 409 so that only the inert gas is supplied from the peripheral region of the upper electrode 300.

すなわち,開閉弁432を閉じるとともに開閉弁409を開くことにより,上部電極300の周辺領域から不活性ガスのみを供給することができる。これにより,上部電極300の中央領域から処理ガスが供給され,周辺領域から不活性ガスが供給されることにより,FPD基板の処理の均一性を向上させることができる。   That is, only the inert gas can be supplied from the peripheral region of the upper electrode 300 by closing the on-off valve 432 and opening the on-off valve 409. Accordingly, the processing gas is supplied from the central region of the upper electrode 300 and the inert gas is supplied from the peripheral region, so that the uniformity of processing of the FPD substrate can be improved.

このような不活性ガスは,例えば図5に示すガスボックス410内の不活性ガスのガス供給配管510Dから図7に示す不活性ガス供給配管408に直接供給されるように構成してもよく,また図5に示すガス供給配管510A〜510Dとは別系統でガス供給流路を設け,直接不活性ガス供給配管408に供給されるようにしてもよい。   Such an inert gas may be configured to be directly supplied from, for example, the inert gas supply pipe 510D in the gas box 410 shown in FIG. 5 to the inert gas supply pipe 408 shown in FIG. Further, a gas supply flow path may be provided in a separate system from the gas supply pipes 510 </ b> A to 510 </ b> D shown in FIG. 5 and supplied directly to the inert gas supply pipe 408.

また,図7,図8では,分岐配管404のみにバイパス配管404Aを設けた場合について説明したが,必ずしもこれに限定されるものではなく,分岐配管404のみならず,分岐配管406にもバイパス配管を設けるようにしてもよい。   7 and 8, the case where the bypass pipe 404A is provided only in the branch pipe 404 has been described. However, the present invention is not limited to this, and the bypass pipe is not limited to the branch pipe 404 but also in the branch pipe 406. May be provided.

この場合,例えば図9に示すように,分岐配管404には,複数(例えば2つ)のバイパス配管404A,404Bをそれぞれ流量調整器424に並列して設け,これらバイパス配管404A,404Bにそれぞれ開閉弁422A,422B,流量調整器424A,424Bを設けるようにしてもよい。また,分岐配管406には,複数(例えば2つ)のバイパス配管406A,406Bをそれぞれ流量調整器434に並列して設け,これらバイパス配管406A,406Bにそれぞれ開閉弁432A,432B,流量調整器434A,434Bを設けるようにしてもよい。   In this case, for example, as shown in FIG. 9, the branch pipe 404 is provided with a plurality of (for example, two) bypass pipes 404A and 404B in parallel with the flow rate regulator 424, and the bypass pipes 404A and 404B are opened and closed, respectively. Valves 422A and 422B and flow rate regulators 424A and 424B may be provided. The branch pipe 406 is provided with a plurality of (for example, two) bypass pipes 406A and 406B in parallel with the flow rate regulator 434. The bypass pipes 406A and 406B are respectively provided with on-off valves 432A and 432B and a flow rate regulator 434A. , 434B may be provided.

そして,流量調整器424,424A,424Bの固定絞り弁の開度をそれぞれ異なる開度に固定してコンダクタンス比を調整することによって,各開閉弁422,422A,422Bを制御して流れる配管の組合せで複数種類の流量を分岐配管404に流すことができる。   Then, by adjusting the conductance ratio by fixing the opening of the fixed throttle valves of the flow regulators 424, 424A, 424B to different opening degrees, a combination of pipes that flow by controlling the on-off valves 422, 422A, 422B. A plurality of types of flow rates can be passed through the branch pipe 404.

これと同様に,流量調整器434,434A,434Bの固定絞り弁の開度についても,それぞれ異なる開度に固定してコンダクタンス比を調整することによって,各開閉弁432,432A,432Bを制御して流れる配管の組合せで複数種類の流量を分岐配管406に流すことができる。   In the same manner, the opening / closing valves 432, 432A, 432B are controlled by adjusting the conductance ratio while fixing the opening of the fixed throttle valves of the flow regulators 434, 434A, 434B to different opening degrees. A plurality of types of flow rates can be caused to flow through the branch pipe 406 by a combination of pipes that flow through.

具体的には固定絞り弁の開度が閉塞のときを0とするとともに,全開のときを10とすると,流量調整器424,424A,424Bの固定絞り弁の開度を例えば10:5:2.5にする。また,流量調整器434,434A,434Bの固定絞り弁の開度も例えば10:5:2.5にする。これにより,分岐配管404と分岐配管406を流れる処理ガスのコンダクタンス比の組合せをより多くすることができる。   Specifically, when the opening degree of the fixed throttle valve is 0 and the full opening degree is 10, the opening degree of the fixed throttle valve of the flow regulators 424, 424A, 424B is, for example, 10: 5: 2. .5. Further, the opening degree of the fixed throttle valve of the flow rate regulators 434, 434A, 434B is also set to 10: 5: 2.5, for example. Thereby, the combination of the conductance ratios of the process gas flowing through the branch pipe 404 and the branch pipe 406 can be increased.

例えば分岐配管404において処理ガスが流量調整器424Aのみを通るように開閉弁422,422Bを閉じて開閉弁422Aを開くように制御するとともに,分岐配管406において処理ガスが流量調整器434のみを通るように開閉弁432A,432Bを閉じて開閉弁432を開くように制御すれば,分岐配管404と分岐配管406のコンダクタンス比を5:10にすることができる。この場合,分岐配管404において処理ガスが流量調整器424A,424Bのみを通るように開閉弁422を閉じて開閉弁422A,422Bを開くように制御することで,分岐配管404と分岐配管406のコンダクタンス比を7.5:10にすることもできる。   For example, the on-off valves 422 and 422B are closed and the on-off valve 422A is opened so that the processing gas passes only through the flow regulator 424A in the branch pipe 404, and the processing gas passes only through the flow regulator 434 in the branch pipe 406. If the on-off valves 432A and 432B are closed and the on-off valve 432 is opened as described above, the conductance ratio between the branch pipe 404 and the branch pipe 406 can be 5:10. In this case, the conductance of the branch pipe 404 and the branch pipe 406 is controlled by closing the on-off valve 422 and opening the on-off valves 422A, 422B so that the processing gas passes only through the flow rate regulators 424A, 424B in the branch pipe 404. The ratio can also be 7.5: 10.

このように,各開閉弁を制御して所望の配管に処理ガスを通すことにより処理ガスが通る配管の組合せで,各分岐配管から中央部の第1室332,周辺部の第2室334に所望の流量の処理ガスを供給できる。これによって,基板Sの処理に応じて基板Sの中央部領域と周辺部領域に供給される処理ガス流量の均一性をコントロールできる。   In this way, each on-off valve is controlled so that the processing gas passes through the desired piping, so that the processing gas passes through the combination of the piping through which the branch gas passes from the branch pipe to the first chamber 332 in the center and the second chamber 334 in the periphery. A processing gas having a desired flow rate can be supplied. Thereby, the uniformity of the flow rate of the processing gas supplied to the central region and the peripheral region of the substrate S can be controlled according to the processing of the substrate S.

また,上部電極300の各ガス導入孔326には,バッファ室330に開口する吐出口327に,吐出されるガスの流れを水平方向に変える整流部材を設けるようにしてもよい。例えば図10A,図10Bに示すように円板状の整流部材328を,吐出口327の周囲から複数(例えば4つ)の吊持部材329で吊持する。また,図11A,図11Bに示すように中央から水平方向に延びる複数の孔が形成された円板状の整流部材328を各ガス導入孔326の吐出口327に取り付けるようにしてもよい。なお,図10A,図11Aに示す電極板310ではガス噴出孔312を省略している。   Further, each gas introduction hole 326 of the upper electrode 300 may be provided with a rectifying member that changes the flow of the discharged gas in the horizontal direction at the discharge port 327 that opens in the buffer chamber 330. For example, as shown in FIGS. 10A and 10B, the disk-shaped rectifying member 328 is suspended from a plurality of (for example, four) suspension members 329 around the discharge port 327. Further, as shown in FIGS. 11A and 11B, a disc-shaped rectifying member 328 having a plurality of holes extending in the horizontal direction from the center may be attached to the discharge port 327 of each gas introduction hole 326. In addition, in the electrode plate 310 shown to FIG. 10A and FIG. 11A, the gas ejection hole 312 is abbreviate | omitted.

こうすることによって,各ガス導入孔326から導入される処理ガスは,整流部材328の作用によって水平方向に向けて供給されるので,バッファ室330内をより広範囲に均一に拡散させることができる。これにより,電極板310のガス噴出孔312からより均一に処理ガスを噴出させることができる。   By doing so, the processing gas introduced from each gas introduction hole 326 is supplied in the horizontal direction by the action of the rectifying member 328, so that the inside of the buffer chamber 330 can be diffused uniformly over a wider range. As a result, the processing gas can be ejected more uniformly from the gas ejection holes 312 of the electrode plate 310.

特に,本実施形態の整流部材328は,各ガス導入孔326の吐出口327ごとに設けることができるほどコンパクトな構成なので,バッファ室330内を区画壁350で複数の室332,334に区画する場合でも邪魔になることなく設けることができる。このため,区画壁350の形状(例えば図3,図6など)にかかわらず,各ガス導入孔326の吐出口327に整流部材328を設けることができる。しかも,本実施形態のように区画壁350で区画されたバッファ室330の各室332,334内のそれぞれにおいて,各ガス導入孔326から導入される処理ガスをより広範囲に拡散させることができる。このような整流部材328の形状や大きさは,上述したものに限られるものではない。例えば整流部材328の形状や大きさは,各ガス導入孔326の配置やガス噴出孔312の配置,区画壁350の形状などに応じて決定するようにしてもよい。   In particular, since the rectifying member 328 of this embodiment is so compact that it can be provided for each discharge port 327 of each gas introduction hole 326, the buffer chamber 330 is partitioned into a plurality of chambers 332 and 334 by a partition wall 350. Even in the case, it can be provided without getting in the way. Therefore, regardless of the shape of the partition wall 350 (for example, FIGS. 3 and 6), the rectifying member 328 can be provided at the discharge port 327 of each gas introduction hole 326. In addition, in each of the chambers 332 and 334 of the buffer chamber 330 partitioned by the partition wall 350 as in this embodiment, the processing gas introduced from each gas introduction hole 326 can be diffused in a wider range. The shape and size of the rectifying member 328 are not limited to those described above. For example, the shape and size of the flow regulating member 328 may be determined according to the arrangement of the gas introduction holes 326, the arrangement of the gas ejection holes 312, the shape of the partition wall 350, and the like.

なお,本実施形態における区画壁350は,容易に交換可能に設けた場合について説明したが,これに限られるものではなく,区画壁350は電極支持体320の上壁に複数のボルトやねじで固定されていてもよい。   The partition wall 350 in the present embodiment has been described as being easily replaceable. However, the present invention is not limited to this, and the partition wall 350 is formed on the upper wall of the electrode support 320 with a plurality of bolts and screws. It may be fixed.

以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明は係る例に限定されないことは言うまでもない。当業者であれば,特許請求の範囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to the example which concerns. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

例えば本実施形態では,本発明を下部電極を接地し,上部電極のみに高周波電力を印加するタイプのプラズマ処理装置に適用した場合について説明したが,必ずしもこれに限定されるものではない。例えば上部電極と下部電極の両方に高周波電力を印加するタイプのプラズマ処理装置に適用してもよく,また下部電極のみに例えば高周波の異なる2種類の高周波電力を印加するタイプのプラズマ処理装置に適用してもよい。   For example, in the present embodiment, the case where the present invention is applied to a plasma processing apparatus in which the lower electrode is grounded and high-frequency power is applied only to the upper electrode has been described, but the present invention is not necessarily limited thereto. For example, the present invention may be applied to a plasma processing apparatus that applies high-frequency power to both the upper electrode and the lower electrode, or applied to a plasma processing apparatus that applies only two types of high-frequency power having different high frequencies to only the lower electrode. May be.

本発明は,FPD用基板に対して所定の処理を施すプラズマ処理装置及びそれに用いられる処理ガス供給装置に適用可能である。   The present invention is applicable to a plasma processing apparatus that performs a predetermined process on an FPD substrate and a processing gas supply apparatus used therefor.

本発明の実施形態にかかるプラズマ処理装置の外観斜視図である。1 is an external perspective view of a plasma processing apparatus according to an embodiment of the present invention. 同実施形態における処理室の断面図である。It is sectional drawing of the process chamber in the embodiment. 処理ガス供給装置の配管構成例を説明するための図である。It is a figure for demonstrating the piping structural example of a process gas supply apparatus. 図3に示す処理ガス供給装置の外観の概略を示す斜視図である。It is a perspective view which shows the outline of the external appearance of the process gas supply apparatus shown in FIG. 図3に示す配管構成を示すブロック図である。It is a block diagram which shows the piping structure shown in FIG. 他の区画壁を備える上部電極に適用した場合の処理ガス供給装置の配管構成例を説明するための図である。It is a figure for demonstrating the piping structural example of the process gas supply apparatus at the time of applying to an upper electrode provided with another division wall. 同実施形態においてバイパス配管を設けた流量調整手段の具体例を示すブロック図である。It is a block diagram which shows the specific example of the flow volume adjustment means which provided the bypass piping in the same embodiment. 同実施形態においてバイパス配管を設けた流量調整手段の他の具体例を示すブロック図である。It is a block diagram which shows the other specific example of the flow volume adjustment means which provided the bypass piping in the same embodiment. 同実施形態においてバイパス配管を設けた流量調整手段のさらに他の具体例を示すブロック図である。It is a block diagram which shows the other specific example of the flow volume adjustment means which provided the bypass piping in the same embodiment. 上部電極の各ガス導入孔に取付けられる整流部材の具体例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the specific example of the rectification | straightening member attached to each gas introduction hole of an upper electrode. 図10Aに示すA−A断面図である。It is AA sectional drawing shown to FIG. 10A. 上部電極の各ガス導入孔に取付けられる整流部材の他の具体例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the other specific example of the rectification | straightening member attached to each gas introduction hole of an upper electrode. 図11Aに示すB−B断面図である。It is BB sectional drawing shown to FIG. 11A.

符号の説明Explanation of symbols

100 プラズマ処理装置
102 ゲートバルブ
104 ゲートバルブ
106 ゲートバルブ
110 搬送室
120 ロードロック室
130 基板搬出入機構
140 インデクサ
142 カセット
200 処理室
202 処理容器
204 開口部
206 整合器
208 高周波電源
210 載置台
212 下部電極
213 導電路
214 絶縁材
216 支持部
218 保護管
220 支持板
222 ベローズ体
230 ボルト
232 絶縁体
240 排気路
242 真空排気手段
250 搬出入口
300 上部電極
302 枠体
310 電極板
312 ガス噴出孔
320 電極支持体
326 ガス導入孔
327 吐出口
328 整流部材
329 吊持部材
330 バッファ室
332 第1室(中央部室)
334 第2室(周辺部室)
350 区画壁
360 吊持部材
364 締結部材
400 処理ガス供給装置
402 処理ガス供給配管
404,406 分岐配管
404A,404B バイパス配管
406a〜406d 分岐配管
406A,406B バイパス配管
408 不活性ガス供給配管
409 開閉弁
410 ガスボックス
420,430 流量調整手段
422,422A,422B 開閉弁
424,424A,424B 流量調整器(固定絞り弁)
430 流量調整手段
432,432A,432B 開閉弁
434,434A,434B 流量調整器(固定絞り弁)
510A〜510D ガス供給配管
520A〜520D ガス供給源
522A〜522D ハンドバルブ
530A〜530D 第1遮断弁
540A〜540C マスフローコントローラ
550A〜550D 第2遮断弁
560A〜560C 遮断弁
S 基板(FPD用基板)
DESCRIPTION OF SYMBOLS 100 Plasma processing apparatus 102 Gate valve 104 Gate valve 106 Gate valve 110 Transfer chamber 120 Load lock chamber 130 Substrate carrying in / out mechanism 140 Indexer 142 Cassette 200 Processing chamber 202 Processing container 204 Opening 206 Matching device 208 High frequency power supply 210 Mounting base 212 Lower electrode 213 Conductive path 214 Insulating material 216 Support portion 218 Protective tube 220 Support plate 222 Bellows body 230 Bolt 232 Insulator 240 Exhaust path 242 Vacuum exhaust means 250 Carry-in / out port 300 Upper electrode 302 Frame body 310 Electrode plate 312 Gas ejection hole 320 Electrode support body 326 Gas introduction hole 327 Discharge port 328 Rectification member 329 Suspension member 330 Buffer chamber 332 First chamber (center chamber)
334 Second room (peripheral room)
350 Partition wall 360 Suspension member 364 Fastening member 400 Processing gas supply device 402 Processing gas supply piping 404, 406 Branch piping 404A, 404B Bypass piping 406a-406d Branch piping 406A, 406B Bypass piping 408 Inert gas supply piping 409 Open / close valve 410 Gas box 420, 430 Flow rate adjusting means 422, 422A, 422B On-off valve 424, 424A, 424B Flow rate regulator (fixed throttle valve)
430 Flow rate adjusting means 432, 432A, 432B On-off valve 434, 434A, 434B Flow rate regulator (fixed throttle valve)
510A to 510D Gas supply piping 520A to 520D Gas supply source 522A to 522D Hand valve 530A to 530D First shutoff valve 540A to 540C Mass flow controller 550A to 550D Second shutoff valve 560A to 560C Shutoff valve S Substrate (FPD substrate)

Claims (7)

処理室内に第1電極と第2電極を対向して配設し,前記第2電極に支持されたフラットパネルディスプレイ用基板上に処理ガスを導入しつつ前記電極の一方又は両方に高周波電力を供給してプラズマを生成することにより,前記フラットパネルディスプレイ用基板に所定のプラズマ処理を施すプラズマ処理装置であって,
前記第1電極へ処理ガスを供給する処理ガス供給装置を設け,
前記第1電極は,前記第2電極に対向し,前記処理ガスを前記処理室内へ向けて噴出するための複数のガス噴出孔が形成される電極板と,前記電極板を支持する支持体と,前記支持体において前記電極板との間に形成され,前記処理ガスが導入される中空部と,前記中空部を中央部室と周辺部室に区画するためのループ状の区画壁とを備え,
前記処理ガス供給装置は,処理ガス供給手段と,この処理ガス供給手段に設けられ処理ガスの流量設定を制御により可変可能な流量制御器と,前記流量制御器により流量が調整された処理ガスを2分岐する各分岐配管と,前記各分岐配管に設けられた開閉弁と開度を固定して前記各分岐配管のコンダクタンス比を調整する固定絞り弁と,前記各分岐配管からの処理ガスを前記中央部室と前記周辺部室とへそれぞれ導入する配管とを備え,
前記中央部室に接続される分岐配管には前記開閉弁と前記固定絞り弁並列してバイパス配管を設けるとともに,前記バイパス配管には前記開閉弁と異なる前記バイパス配管用の開閉弁を設けたことを特徴とするプラズマ処理装置。
A first electrode and a second electrode are disposed opposite to each other in a processing chamber, and high-frequency power is supplied to one or both of the electrodes while introducing a processing gas onto a flat panel display substrate supported by the second electrode. A plasma processing apparatus for performing a predetermined plasma process on the flat panel display substrate by generating plasma,
A processing gas supply device for supplying a processing gas to the first electrode;
The first electrode is opposed to the second electrode, has an electrode plate formed with a plurality of gas ejection holes for ejecting the processing gas into the processing chamber, and a support for supporting the electrode plate; A hollow portion formed between the electrode plate in the support and into which the processing gas is introduced; and a loop-shaped partition wall for partitioning the hollow portion into a central chamber and a peripheral chamber;
The processing gas supply device includes a processing gas supply means, a flow rate controller provided in the processing gas supply means and capable of changing a flow rate setting of the processing gas by control, and a processing gas whose flow rate is adjusted by the flow rate controller. Each branch pipe that branches into two branches, a fixed throttle valve that adjusts a conductance ratio of each branch pipe by fixing an opening and closing valve provided in each branch pipe, and a processing gas from each branch pipe A central chamber and piping to be introduced into each of the peripheral chambers,
Provided with a bypass pipe in parallel to the fixed throttle valve with the on-off valve in the branch pipe connected to said central portion room, providing the opening and closing valve for different said bypass pipe and the on-off valve in the bypass pipe A plasma processing apparatus.
前記周辺部室に接続される分岐配管の前記開閉弁と前記固定絞り弁との間に不活性ガス供給配管を接続し,この不活性ガス供給配管には前記開閉弁と異なる前記不活性ガス供給配管用の開閉弁を設けたことを特徴とする請求項1に記載のプラズマ処理装置。 Connect the inert gas supply pipe between the front SL-off valve of the branch pipe connected to the peripheral portion room said fixed throttle valve, the on-off valve differ the inert gas supplied to the inert gas supply pipe The plasma processing apparatus according to claim 1, further comprising an on- off valve for piping . 記開閉弁と前記固定絞り弁並列して複数のバイパス配管を設けるとともに,前記各バイパス配管にそれぞれ開閉弁と固定絞り弁を設け,前記固定絞り弁はそれぞれ,異なるコンダクタンス比になる開度であることを特徴とする請求項1又は2に記載のプラズマ処理装置。 Provided with a plurality of bypass pipes in parallel before SL-off valve and the fixed throttle valve, wherein each provided fixed throttle valve off valve in each bypass pipe, respectively before Symbol fixed throttle valve becomes different conductance ratio the plasma processing apparatus according to claim 1 or 2, characterized in that the opening. 前記各分岐配管から前記中央部室と前記周辺部室に導入するガス導入孔の前記中空部に開口する吐出口には,前記中空部に吐出されるガスの流れを水平方向に変える整流部材を設けたことを特徴とする請求項1〜3のいずれかに記載のプラズマ処理装置。 A rectifying member that changes the flow of gas discharged into the hollow portion in the horizontal direction is provided at a discharge port that opens into the hollow portion of the gas introduction hole that is introduced from each branch pipe into the central chamber and the peripheral chamber. The plasma processing apparatus according to any one of claims 1 to 3. 前記固定絞り弁は,ニードルバルブであることを特徴とする請求項1〜4のいずれかに記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the fixed throttle valve is a needle valve. 処理室内に第1電極と第2電極を対向して配設し,前記第2電極に支持されたフラットパネルディスプレイ用基板上に処理ガスを導入しつつ前記電極の一方又は両方に高周波電力を供給してプラズマを生成することにより,前記フラットパネルディスプレイ用基板に所定のプラズマ処理を施すプラズマ処理装置において,前記第1電極へ処理ガスを供給する処理ガス供給装置であって,
前記第1電極は,前記第2電極に対向し,前記処理ガスを前記処理室内へ向けて噴出するための複数のガス噴出孔が形成される電極板と,前記電極板を支持する支持体と,前記支持体において前記電極板との間に形成され,前記処理ガスが導入される中空部と,前記中空部を中央部室と周辺部室に区画するためのループ状の区画壁とを備え,
処理ガス供給手段と,この処理ガス供給手段に設けられ処理ガスの流量設定を制御により可変可能な流量制御器と,前記流量制御器により流量が調整された処理ガスを2分岐する各分岐配管と,前記各分岐配管に設けられた開閉弁と開度を固定して前記各分岐配管のコンダクタンス比を調整する固定絞り弁と,前記各分岐配管からの処理ガスを前記中央部室と前記周辺部室とへそれぞれ導入する配管とを備え,
前記中央部室に接続される分岐配管には前記開閉弁と前記固定絞り弁並列してバイパス配管を設けるとともに,前記バイパス配管には前記開閉弁と異なる前記バイパス配管用の開閉弁を設けたことを特徴とする処理ガス供給装置。
A first electrode and a second electrode are disposed opposite to each other in a processing chamber, and high-frequency power is supplied to one or both of the electrodes while introducing a processing gas onto a flat panel display substrate supported by the second electrode. In the plasma processing apparatus for performing a predetermined plasma processing on the flat panel display substrate by generating plasma, a processing gas supply apparatus for supplying a processing gas to the first electrode,
The first electrode is opposed to the second electrode, has an electrode plate formed with a plurality of gas ejection holes for ejecting the processing gas into the processing chamber, and a support for supporting the electrode plate; A hollow portion formed between the electrode plate in the support and into which the processing gas is introduced; and a loop-shaped partition wall for partitioning the hollow portion into a central chamber and a peripheral chamber;
A processing gas supply means, a flow rate controller provided in the processing gas supply means and capable of changing the flow rate setting of the processing gas by control, and branch pipes for branching the processing gas whose flow rate is adjusted by the flow rate controller into two branches; A fixed throttle valve for adjusting the conductance ratio of each branch pipe by fixing the opening and closing valve provided in each branch pipe, and the central chamber and the peripheral chamber for processing gas from each branch pipe And pipes to be introduced respectively,
Provided with a bypass pipe in parallel to the fixed throttle valve with the on-off valve in the branch pipe connected to said central portion room, providing the opening and closing valve for different said bypass pipe and the on-off valve in the bypass pipe A processing gas supply device characterized by the above.
前記各分岐配管から前記中央部室と前記周辺部室に導入するガス導入孔の前記中空部に開口する吐出口には,前記中空部に吐出されるガスの流れを水平方向に変える整流部材を設けたことを特徴とする請求項6に記載の処理ガス供給装置。
A rectifying member that changes the flow of gas discharged into the hollow portion in the horizontal direction is provided at a discharge port that opens into the hollow portion of the gas introduction hole that is introduced from each branch pipe into the central chamber and the peripheral chamber. The processing gas supply device according to claim 6.
JP2008134678A 2008-05-22 2008-05-22 Plasma processing apparatus and processing gas supply apparatus used therefor Active JP5378706B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008134678A JP5378706B2 (en) 2008-05-22 2008-05-22 Plasma processing apparatus and processing gas supply apparatus used therefor
TW98116909A TWI471452B (en) 2008-05-22 2009-05-21 A plasma processing apparatus, and a processing gas supply apparatus for use therewith
KR1020090044655A KR101089973B1 (en) 2008-05-22 2009-05-21 Plasma processing apparatus and process gas supplying apparatus
CN2009101430256A CN101587814B (en) 2008-05-22 2009-05-22 A plasma processing apparatus and a processed air supply apparatus used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008134678A JP5378706B2 (en) 2008-05-22 2008-05-22 Plasma processing apparatus and processing gas supply apparatus used therefor

Publications (2)

Publication Number Publication Date
JP2009283715A JP2009283715A (en) 2009-12-03
JP5378706B2 true JP5378706B2 (en) 2013-12-25

Family

ID=41371987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008134678A Active JP5378706B2 (en) 2008-05-22 2008-05-22 Plasma processing apparatus and processing gas supply apparatus used therefor

Country Status (4)

Country Link
JP (1) JP5378706B2 (en)
KR (1) KR101089973B1 (en)
CN (1) CN101587814B (en)
TW (1) TWI471452B (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5871453B2 (en) * 2010-05-20 2016-03-01 東京エレクトロン株式会社 Plasma processing apparatus, substrate holding mechanism, and substrate misalignment detection method
JP5685417B2 (en) * 2010-11-05 2015-03-18 株式会社アルバック Cleaning device and cleaning method
JP5528374B2 (en) * 2011-03-03 2014-06-25 東京エレクトロン株式会社 Gas decompression supply device, cylinder cabinet including the same, valve box, and substrate processing apparatus
TWI489054B (en) * 2011-06-21 2015-06-21 Au Optronics Corp Valve box module
CN102913747B (en) * 2011-08-03 2014-12-10 无锡华润上华科技有限公司 Gas cabinet control device
DE102011121755A1 (en) * 2011-12-21 2013-06-27 Wabco Gmbh Air suspension system of a motor vehicle and method for its control
CN102522303B (en) * 2011-12-23 2015-02-04 中微半导体设备(上海)有限公司 Multi-partition gas conveying apparatus
CN103244088B (en) * 2012-02-03 2016-12-07 陕西得波材料科技有限公司 Mass dryness fraction allotter and the distribution methods such as one
US9840778B2 (en) * 2012-06-01 2017-12-12 Taiwan Semiconductor Manufacturing Company, Ltd. Plasma chamber having an upper electrode having controllable valves and a method of using the same
KR101394669B1 (en) * 2012-12-21 2014-05-12 세메스 주식회사 Gas flux dispenser and etching apparatus for substrate comprising the same
CN103903946B (en) * 2012-12-26 2017-11-17 中微半导体设备(上海)有限公司 A kind of gas spray for plasma reactor
JP6027490B2 (en) 2013-05-13 2016-11-16 東京エレクトロン株式会社 Gas supply method and plasma processing apparatus
JP6154677B2 (en) 2013-06-28 2017-06-28 東京エレクトロン株式会社 Cleaning method and processing apparatus
JP6413293B2 (en) * 2014-03-27 2018-10-31 東京エレクトロン株式会社 Film forming method and storage medium
KR101594932B1 (en) * 2014-04-01 2016-02-18 피에스케이 주식회사 Apparatus and method for processing substrate
JP6346849B2 (en) * 2014-08-20 2018-06-20 東京エレクトロン株式会社 Gas supply system, plasma processing apparatus, and operation method of plasma processing apparatus
CN105551995A (en) * 2014-10-30 2016-05-04 北京北方微电子基地设备工艺研究中心有限责任公司 Inflation air channel of vacuum chambers and semiconductor processing equipment
JP6573559B2 (en) * 2016-03-03 2019-09-11 東京エレクトロン株式会社 Vaporizing raw material supply apparatus and substrate processing apparatus using the same
JP6667412B2 (en) * 2016-09-30 2020-03-18 東京エレクトロン株式会社 Substrate processing equipment
JP2019035607A (en) * 2017-08-10 2019-03-07 株式会社島津製作所 Analyzer
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
CN109119322B (en) * 2018-07-27 2020-10-02 上海硕余精密机械设备有限公司 Magnetic enhanced plasma source
KR102311213B1 (en) * 2019-04-19 2021-10-13 세메스 주식회사 Apparatus and method for treating a substrate
CN110906166A (en) * 2019-12-03 2020-03-24 上海航天精密机械研究所 Combined regulating valve for realizing accurate flow control

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10156169A (en) * 1996-12-04 1998-06-16 Sony Corp Gas supply system
KR100439949B1 (en) * 2001-11-08 2004-07-12 주식회사 아이피에스 Apparatus for depositing thin film on wafer
JP4298369B2 (en) * 2003-05-02 2009-07-15 キヤノン株式会社 Deposited film forming method
US7708859B2 (en) * 2004-04-30 2010-05-04 Lam Research Corporation Gas distribution system having fast gas switching capabilities
JP4358727B2 (en) * 2004-12-09 2009-11-04 東京エレクトロン株式会社 Gas supply apparatus, substrate processing apparatus, and supply gas setting method
JP4701776B2 (en) * 2005-03-25 2011-06-15 東京エレクトロン株式会社 Etching method and etching apparatus
JP2007234770A (en) * 2006-02-28 2007-09-13 Tokyo Electron Ltd Plasma etching method, and computer-readable recording medium
JP4916220B2 (en) * 2006-05-31 2012-04-11 東京エレクトロン株式会社 Plasma processing apparatus and electrodes used therefor
KR101204496B1 (en) * 2007-05-18 2012-11-26 가부시키가이샤 아루박 Plasma-processing device and method of manufacturing adhesion-preventing member

Also Published As

Publication number Publication date
KR101089973B1 (en) 2011-12-05
CN101587814A (en) 2009-11-25
TWI471452B (en) 2015-02-01
CN101587814B (en) 2012-05-09
TW201011121A (en) 2010-03-16
JP2009283715A (en) 2009-12-03
KR20090122144A (en) 2009-11-26

Similar Documents

Publication Publication Date Title
JP5378706B2 (en) Plasma processing apparatus and processing gas supply apparatus used therefor
JP4916220B2 (en) Plasma processing apparatus and electrodes used therefor
US20230268160A1 (en) Antenna unit for inductively coupled plasma, inductively coupled plasma processing apparatus and method therefor
KR102432446B1 (en) Mounting table and plasma processing apparatus
KR100915740B1 (en) Mechanism and method for supplying process gas, gas processing apparatus, and computer readable storage medium
JP7175114B2 (en) Mounting table and electrode member
US9460893B2 (en) Substrate processing apparatus
US8236380B2 (en) Gas supply system, substrate processing apparatus and gas supply method
JP5086192B2 (en) Plasma processing equipment
KR20180069774A (en) Inductively coupled plasma processing apparatus
US9207689B2 (en) Substrate temperature control method and plasma processing apparatus
JP2016225018A (en) Gas processing device and multi-division shower head used for the same
JP2012080035A (en) Substrate processing device and substrate manufacturing method
JP6063803B2 (en) Vacuum apparatus and valve control method
KR20180057537A (en) Substrate treatment apparatus
TWI751224B (en) Plasma processing device and nozzle
JP2022075394A (en) Substrate processing method and substrate processing apparatus
JP2008262968A (en) Plasma processing apparatus and plasma processing method
CN110846636A (en) Coating material for processing chamber
WO2024076665A1 (en) Methods for clean rate improvement in multi-rpsc pecvd systems
WO2013109427A1 (en) Multi-zone direct gas flow control of a substrate processing chamber
JP2009182300A (en) Vacuum processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130926

R150 Certificate of patent or registration of utility model

Ref document number: 5378706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250