JP2011243656A - 固体撮像装置およびその製造方法 - Google Patents

固体撮像装置およびその製造方法 Download PDF

Info

Publication number
JP2011243656A
JP2011243656A JP2010112472A JP2010112472A JP2011243656A JP 2011243656 A JP2011243656 A JP 2011243656A JP 2010112472 A JP2010112472 A JP 2010112472A JP 2010112472 A JP2010112472 A JP 2010112472A JP 2011243656 A JP2011243656 A JP 2011243656A
Authority
JP
Japan
Prior art keywords
trench
layer
solid
impurity diffusion
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010112472A
Other languages
English (en)
Inventor
Shinji Uya
眞司 宇家
Osamu Fujii
修 藤井
Atsushi Murakoshi
篤 村越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010112472A priority Critical patent/JP2011243656A/ja
Publication of JP2011243656A publication Critical patent/JP2011243656A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

【課題】高速動作に有利な固体撮像装置およびその製造方法を提供する。
【解決手段】固体撮像装置は、多層配線層73と、前記多層配線層上に設けられ、貫通トレンチを有する半導体層64と、前記貫通トレンチ内部に埋め込まれた第1導電層69と、前記第1導電層の周囲に形成された第1絶縁膜32と、前記第1絶縁膜の周囲に形成された第1導電型の第1不純物拡散層36とを備える。
【選択図】図3

Description

本発明の実施形態は、固体撮像装置およびその製造方法に関する。
シリコン(Si)層を挟んで上下に配線層を有する装置の例として、例えば、裏面照射型の固体撮像装置がある。この固体撮像装置では、画素数の増加とハイビジョン動画への対応、高フレームレートの連写機能の実現などに伴い、データレートの高速化要求が非常に高く、上下の配線層を電気的に接続する部位には、低抵抗と低容量の両方が求められている。
また、電力供給を目的とする端子からの配線抵抗の増加は、素子に実際に掛かる電圧の降下を招き、無駄な電力消費をするだけでなく、回路の動作余裕を低くする結果となる為、低抵抗にする事が必須である。
例えば、シリコン層を挟んで上下に配線層を有する装置において、シリコン層を貫通するトレンチ構造で上下を電気的に接続する構成を有するものがある。この場合、トレンチを形成した後に、ポリシリコン等の導体をトレンチ内部に埋め込み、上下双方でそれぞれの配線層と導体との接続を形成する。このような導体埋め込み型のトレンチ構造は、側壁部に周囲のシリコン層との静電容量を持っている。
しかしながら、上下層間の接続抵抗を低減するために、トレンチの数を増やそうとすると、側壁の静電容量が増加するため、信号波形を鈍らせる結果となる。一方、トレンチの口径を大きくすると、非常に厚い膜厚の導体層の形成が必要となり、工程の負荷が増大して、生産効率が大幅に低下するという傾向がある。
このように、上記のような固体撮像装置およびその製造方法では、高速動作に対して不利であるという背景がある。
特開2003−31785号公報 特開2007−13089号公報
高速動作に有利な固体撮像装置およびその製造方法を提供する。
実施形態によれば、固体撮像装置は、多層配線層と、前記多層配線層上に設けられ、貫通トレンチを有する半導体層と、前記貫通トレンチ内部に埋め込まれた第1導電層と、前記第1導電層の周囲に形成された第1絶縁膜と、前記第1絶縁膜の周囲に形成された第1導電型の第1不純物拡散層とを備える。
実施形態によれば、固体撮像装置の製造方法は、少なくとも、基材,絶縁層,第1導電型の第1不純物拡散層,および半導体層が順次設けられる基板において、前記絶縁層をストッパ層として前記半導体層をエッチングして第1トレンチを形成する工程と、前記第1トレンチ内に沿って第1絶縁膜を形成する工程と、前記半導体層内の前記第1絶縁膜の周囲に第1導電型の第2不純物拡散層を形成する工程と、前記第1トレンチの内部に導電体を埋め込んで、第1導電層を形成する工程と、前記第1不純物拡散層が形成される前記半導体層と反対側の表面に、第1導電型の第3不純物拡散層を形成する工程と、表面側の前記半導体層上に、前記第1導電層に電気的に接続するように多層配線層を形成する工程と、前記絶縁層をストッパ層として、前記基材を除去する工程と、裏面側の前記半導体層を除去し、露出した前記導電層上に電極パッドを形成する工程とを備える。
第1の実施形態に係る固体撮像装置の全体構成例を示すブロック図。 図1中の受光領域の構成例を示す等価回路図。 図1中のIII−III線に沿った構成例を示す断面図。 第1の実施形態に係る固体撮像装置の電極パッド領域の平面形状を示す平面図。 第1の実施形態に係る固体撮像装置の一製造工程を示す断面図。 第1の実施形態に係る固体撮像装置の一製造工程を示す断面図。 第1の実施形態に係る固体撮像装置の一製造工程を示す断面図。 第1の実施形態に係る固体撮像装置の一製造工程を示す断面図。 第1の実施形態に係る固体撮像装置の一製造工程を示す断面図。 第1の実施形態に係る固体撮像装置の一製造工程を示す断面図。 第1の実施形態に係る固体撮像装置の一製造工程を示す断面図。 第2の実施形態に係る固体撮像装置の電極パッド領域の平面形状を示す平面図。 変形例1に係る固体撮像装置の電極パッド領域の平面形状を示す平面図。 変形例2に係る固体撮像装置の電極パッド領域の平面形状を示す平面図。 第3の実施形態に係る固体撮像装置を示す断面図。 第3の実施形態に係る固体撮像装置の一製造工程を示す断面図。 第3の実施形態に係る固体撮像装置の一製造工程を示す断面図。
以下、実施形態について図面を参照して説明する。以下の実施形態では、受光面が、信号走査回路部が形成される半導体基板表面上と反対側の半導体基板上の裏面側に設けられる裏面照射型(BSI:Back side illumination)の固体撮像装置を一例に挙げる。しかしながら、裏面照射型の固体撮像装置に限定されることなく、シリコン等の半導体層を挟んで上下に配線層を有する構成において、半導体層を貫通するトレンチ構造で上下の配線層を電気的に接続する構成を有する、固体撮像装置、半導体記憶装置、その他半導体装置等においても同様に適用でき、同様の作用効果を得ることが可能である。尚、この説明においては、全図にわたり共通の部分には共通の参照符号を付す。
[第1の実施形態]
まず、図1乃至図11を用いて、第1の実施形態に係る固体撮像装置およびその製造方法を説明する。
<1.構成例>
1−1.全体構成例
まず、図1を用い、本例に係る固体撮像装置の全体構成例について説明する。図示するように、本例に係る固体撮像装置1においては、光を受光して電気信号に変換する受光領域6が設けられている。上方から見て、受光領域6の外縁の形状は矩形であり、受光領域6には、多数の単位画素(PIXEL)がマトリクス状に配列される。また、受光領域6の周囲には、受光領域6を駆動すると共に受光領域6から出力された電気信号を処理する周辺回路領域7が設けられる。周辺回路領域7の外縁の形状も矩形である。固体撮像装置1には、一又は複数の電極パッド領域8、及び、一又は複数のマーク材領域9が設けられる。電極パッド領域8については後述する。マーク材領域9の構成は、電極パッド8と同様である。
1−2.受光領域の回路構成例
次に、図2を用いて、図1中の受光領域6の回路構成例について説明する。
図示するように、受光領域6は、垂直シフトレジスタ13からの読み出し信号線と垂直信号線VSLとの交差位置にマトリクス状に配置された複数の単位画素を備えるものである。
単位画素(PIXEL)は、フォトダイオードPD、増幅トランジスタTb、読み出しトランジスタTd、リセットトランジスタTc、アドレストランジスタTaを備えている。
上記画素1の構成において、フォトダイオードPDは光電変換部を構成する。増幅トランジスタTb、読み出しトランジスタTd、リセットトランジスタTc、およびアドレストランジスタTaは、信号走査回路部を構成する。
フォトダイオードPDのカソードには、基準電位Vssが与えられる。
増幅トランジスタTbは、浮遊拡散層(フローティングディフュージョン:検出部)FDからの信号を増幅して出力するように構成されている。増幅トランジスタTbのゲートは浮遊拡散層FDに接続され、ソースは垂直信号線VSLに接続され、ドレインはアドレストランジスタTaのソースに接続されている。垂直信号線VSLにより送信される単位画素の出力信号は、CDS雑音除去回路28により雑音が除去された後、出力端子29から出力される。
読み出しトランジスタTdは、フォトダイオードPDでの信号電荷の蓄積を制御するように構成されている。読み出しトランジスタTdのゲートは読み出し信号線TRFに接続され、ソースはフォトダイオードPDのアノードに接続され、ドレインは浮遊拡散層FDに接続されている。
リセットトランジスタTcは、増幅トランジスタTbのゲート電位をリセットするように構成されている。リセットトランジスタTcのゲートはリセット信号線RSTに接続され、ソースは浮遊拡散層FDに接続され、ドレインはドレイン電源に接続される電源端子25に接続されている。
アドレストランジスタTaのゲートは、アドレス信号線ADRに接続されている。
負荷トランジスタTLのゲートは選択信号線SFに接続され、ドレインは増幅トランジスタTbのソースに接続され、ソースは制御信号線DCに接続されている。
1−3.断面構成例
次に、図3を用い、第1の実施形態に係る固体撮像装置の断面構成例について説明する。ここでは、図1中のIII−III線に沿った断面構成を一例に挙げる。
図示するように、受光領域6,周辺回路領域7,および電極パッド領域8が設けられる。
受光領域6には、複数の上記単位画素が配置される。単位画素は、光電変換部51と信号走査回路部52とにより構成される。
光電変換部51は、半導体層(epi-Si)64、各単位画素の境界部分を囲むように設けられ素子分離領域を区画するp型不純物層56、裏面側の半導体層64上に順次設けられる反射防止膜55、色フィルタCF、およびマイクロレンズMLを備える。
信号走査回路部52は、表面側(信号走査回路面側)の半導体層(epi-Si)64上に設けられるフォトダイオード(図示せず)、層間絶縁膜60中に形成される上記増幅トランジスタ23等および、多層配線層50を備える。
周辺回路領域7には、本例では、M1Pad、M3Pad、素子分離絶縁膜STIが配置される。その他周辺領域14は、例えば、図2において示した上記垂直シフトレジスタ等が配置される。M1Pad、M3Padは、層間絶縁膜60中に設けられる。素子分離絶縁膜STIは、半導体層64中に埋め込み形成され、図示せぬ構成回路と受光領域6とを区画する。
電極パッド領域8について
電極パッド領域8には、電極領域8−1に配置される複数のトレンチ配線81、および分離領域8−2に配置され電極領域8−1の周囲を取り囲んで配置されるトレンチ分離帯82、が設けられる。
トレンチ配線81は、半導体層(epi-Si)64を貫通して配置され、一端が表面側のコンタクトプラグ72を介して配線層73に電気的に接続され、他端が裏面側の電極パッド57に電気的に接続される。
トレンチ配線81は、絶縁膜32,P+型不純物拡散層36,導体層(N+層)69,P+型不純物拡散53,70を備える。
絶縁膜32は、半導体層64を貫通するトレンチ内の側壁に沿って設けられる。絶縁膜32は、例えば、膜厚が数nm程度のシリコン窒化(SiN)膜等により形成される。
P+型不純物拡散層(第1不純物拡散層)36は、半導体層64内に絶縁膜32に沿ってピラー状に設けられる。P+型不純物拡散層36は、P型の不純物として、例えば、ホウ素(B)の不純物濃度として1×1020cm−3程度、半導体層64との実効的な不純物濃度として1×1012cm−3程度、導入される。
導体層(N+層)69は、トレンチ内部に埋め込み形成される。導体層(N+層)69は、N型の不純物として、例えば、リン(P)等が導入されたリンドープドポリシリコン(P-doped Poly)等により形成される。
P+型不純物拡散(第2不純物拡散層)53は、半導体層64の裏面側に、P+型不純物拡散層36と接続して設けられる。P+型不純物拡散層53は、P型の不純物として、例えば、ホウ素(B)等を、上記拡散層36と同程度導入されて形成される。このP+型不純物拡散53により、隣接するトレンチ配線81間およびトレンチ分離帯82間の裏面側のP+型不純物拡散層36が相互に電気的に接続される。ここで、半導体層64の裏面側とは電極パッド57が形成される側のことを指し、半導体層64の表面側とは裏面側と反対の多層配線層73が形成される側を指す。
P+型不純物拡散層(第3不純物拡散層)70は、表面側の半導体層64の表面領域にP+型不純物拡散層36と接続して設けられる。P+型不純物拡散層70は、P型の不純物として、例えば、ホウ素(B)等を、上記拡散層36,53と同程度導入されて形成される。このP+型不純物拡散層70により、隣接するトレンチ配線81間の表面側のP+型不純物拡散層36が電気的に接続され、コンタクトプラグ72、多層配線層73を介してP+型不純物拡散層36と導電層69とが電気的に接続される。
上記のように、P+型不純物拡散53により、隣接するトレンチ配線81間の裏面側のP+型不純物拡散層36が相互に電気的に接続され、電極パッド57を介してP+型不純物拡散層36と導電層(N+)69とが電気的に接続される。P+型不純物拡散層70により、隣接するトレンチ配線81間の表面側のP+型不純物拡散層36が電気的に接続され、コンタクトプラグ72、配線層73を介してP+型不純物拡散層36と導電層(N+)69とが電気的に接続される。このように、トレンチ側壁に沿って形成されたP+型不純物拡散層36とトレンチ内部の導体層69とが電気的に接続される結果、トレンチ側壁は絶縁膜32により絶縁であるが、その内外が電気的に接続され同電位となるため、トレンチ側壁の静電容量を実効的にゼロとすることができる。また、P+型不純物拡散53を形成することによる電極パッド57との接触面積、P+型不純物拡散層70を形成することによるコンタクトプラグ72、配線層73との接触面積が増加しトレンチ配線81の抵抗値を低くすることが出来る。P+不純物拡散層36と導電層69との抵抗値の差分は本例のような、例えば1GHz以下程度の駆動周波数では問題とはならない。
トレンチ分離帯82は、上記電極パッド領域8−1の周囲を取り囲んで配置され、P+型不純物拡散層70、電極パッド57、配線層73を除き、トレンチマーク44が設けられる他は、トレンチ配線81と同様の内部に導体層69が埋め込まれ、導体層69の周囲に絶縁膜32、絶縁膜の周囲にP+型不純物拡散層36が形成されている構造となる。
ここで、トレンチマーク44とは、トレンチ分離帯82の裏面側に絶縁膜32が形成されている領域のことを指す。半導体層64の裏面側には、例えば、シリコン酸化膜からなる絶縁層62が形成されており、トレンチマーク44が形成されている領域の絶縁層62の膜厚は他の領域よりも薄くなっている。そのため、裏面側から絶縁層62を通して絶縁膜32の位置を確認することができる。このトレンチマーク44は、固体撮像装置の製造プロセスにおけるリソグラフィ工程および検査工程等の位置合わせに使用するアライメントマークとして機能させることができる。
1−4.電極パッド領域の平面構成例
次に、図4を用い、第1の実施形態に係る電極パッド領域8の平面構成例について説明する。
図示するように、電極領域8−1には、円状の平面形状を有する複数のトレンチ配線81がマトリックス状に配置される。トレンチ配線81の直径Rは、本例の場合、例えば、1.0μm程度が望ましい。この複数のトレンチ配線81上に裏面側では電極パッド57が配置されるが、ここではその図示を省略している。
このように、多数の円状のトレンチ配線81を束ねることにより電極領域8−1を形成することにより、上下に接続する配線層73,電極パッド57を含めたトレンチ構造81の全体の電気的な抵抗値を十分低い値にすることができる。その結果、高速化に対して有利であり、例えば、超高速なデジタルインターフェース等を有する装置全般の適用に対してメリットがある。さらに、複数のトレンチ配線81が円状の平面形状を有することにより、後述する製造工程において、導電層(N+)69をトレンチ内に埋め込む際の埋め込み不良を低減できる点で有利である。
分離領域8−2には、トレンチ配線81の周囲を囲むように、上記トレンチ配線81と同様の断面構成を有するトレンチ分離帯82が配置される。このため、電極領域8−1とその周囲に形成される周辺領域7等に配置される素子との電気的分離を確実にすることができる点で有利である。
さらに、後述する図13に示すように、上記トレンチ分離帯82の外側に、トレンチ配線81の周囲を囲むように同様のトレンチ分離帯を、更に複数配置することも可能である。このように、トレンチ分離帯を2重以上にすることで、トレンチ分離帯の静電容量が複数、直列に接続された状態となり、トレンチ分離帯の側壁の合成静電容量を更に低減することができる。
<2.製造方法>
次に、図5乃至図11を用い、第1の実施形態に係る固体撮像装置の製造方法について説明する。ここでは、図3に示した断面構成を例に挙げる。
まず、図5に示すように、本例では、少なくとも順次、シリコン基材61,BOX酸化膜62,P+型不純物拡散層53,および半導体層64が設けられるSOI(silicon on insulator)基板60を用いる。しかしながら、これに限られず、半導体層64中のBOX酸化膜62上に、例えば、イオン導入法により、ボロン(B)等のP型の不純物を導入し、P+不純物拡散層63を形成しても良い。
基材61は、単結晶のシリコンからなり、導電型がP型である。BOX酸化膜62は、シリコン酸化物からなり、膜厚は例えば140nm程度である。半導体層64は、単結晶のシリコンからなり、膜厚は例えば3.7μm程度である。半導体層64は、完成後の固体撮像装置1において、フォトダイオードやトレンチ配線81等が形成される部分である。
尚、以後の製造工程の説明では、基材61側をハンドリング面とし、半導体層64側を処理面とするため、基材61側(裏面側)を下方とし、半導体層64側を上方(表面側)として説明する。
続いて、SOI基板60に対して熱酸化処理を施し、半導体層64上に厚さが例えば5nm程度のシリコン酸化膜65を形成する。続いて、シリコン酸化膜65上に、例えば、CVD(chemical vapor deposition:化学気相成長)法により、厚さが例えば100nm程度のシリコン窒化膜66を形成する。
続いて、シリコン窒化膜66上に、フォトレジスト67を塗布し、露光及び現像することにより、電極領域8−1および分離領域8−2に、開口部30−1,30−2をそれぞれ形成する。この際、開口部30−1においては直径が例えば0.8μm程度の円状の平面形状,開口部30−2においては電極領域8−1を取り囲むような平面形状となるように、上記フォトレジスト67に露光および現像を行う。
続いて、図6に示すように、フォトレジスト67をマスクとし、BOX酸化膜62をストッパとしてドライエッチングを行い、シリコン窒化膜66、シリコン酸化膜65、半導体層64、およびP+型不純物拡散層63を選択的に除去する。これにより、半導体層64を貫通する貫通トレンチ31−1、31−2(以下、総称して「貫通トレンチ31等」ともいう)を形成する。貫通トレンチ31等は半導体層64を貫通し、BOX酸化膜62に到達しているが、BOX酸化膜62は貫通していない形状となる。この形状により、貫通トレンチ31が形成された領域のBOX酸化膜62の膜厚は他の領域よりも薄くなり、トレンチマーク44となる形状を形成する。その後、酸素プラズマによるドライ処理及び硫酸化水溶液によるウェット処理を行い、フォトレジスト67を除去する。
次に、図7に示すように、上記形成した構成に対して、CDE(Chemical Dry Etching)を行う。これにより、貫通トレンチ31等の側面が片側例えば10nm程度エッチバックされる。この際、シリコン窒化膜66はエッチングされず、シリコン酸化膜65もシリコン窒化膜66によって保護されているためエッチングされず、貫通トレンチ31等の側面に露出している半導体層64だけが後退する。この結果、貫通トレンチ31等の上端部において、シリコン酸化膜65及びシリコン窒化膜66が相対的に貫通トレンチ31等の中央部に向けて張り出し、庇(ひさし)のような形状45を形成する。
次に、図8に示すように、貫通トレンチ31等の側壁上に沿って、例えば、CVD法等を用いて、厚さが例えば5nm程度のシリコン窒化(SiN)膜32を形成する。
続いて、半導体層64中においてシリコン窒化膜32に沿って、例えば、イオン注入法により、ホウ素(B)等のP型の不純物を導入し、P+型不純物拡散層36を形成する。この際、SOI基板を回転させながら、不純物を注入する。不純物の注入方向は下方に対して例えば、5度程度傾斜した方向とする。すなわち、チルト角を5度とする。また、加速電圧は例えば15keV程度とし、注入量は例えば5×1015cm−2程度とする。これにより、貫通トレンチ31の内壁に沿った半導体層64中に、ピラー状のP+型不純物拡散層36を形成する。この際、半導体層64の上層部分はシリコン窒化膜66によって保護されているため、貫通トレンチ31等の肩口に高濃度のホウ素がイオン注入されることはない。その理由は、シリコン窒化膜66の膜厚は100nm程度であるのに対して、ホウ素を15keVの加速電圧で注入したときのシリコン窒化膜中の飛程距離のピークは38.2nmであり、17.7nmの拡がり幅(ΔRp)の2倍の拡がりを考慮しても、最大飛程距離は73.6nmであり、シリコン窒化膜66を貫通しないからである。このため、ホウ素が貫通トレンチ31等の肩口に集中的に注入されることがなく、従って、ホウ素がその後の酸化処理において放出されることがなく、酸化炉を汚染することがない点で有利である。続いて、シリコン窒化膜66およびシリコン酸化膜65を除去する。
続いて、図9に示すように、例えば、LP−CVD(low pressure chemical vapor deposition:低圧化学気相成長)法等により、上記形成した構成上にリンドープドポリシリコン(P-doped Poly)層69を堆積させる。この際、リンドープドポリシリコン層69の堆積量は、貫通トレンチ31−1,31−2の内部を確実に埋め込めるような量とする。例えば、貫通トレンチ31−1,31−2の開口幅を1.0μm程度とした場合、リンドープドポリシリコン層69の堆積量は0.4μm程度であることが望ましい。
続いて、図10に示すように、CMP(chemical mechanical polishing:化学的機械研磨)を行い、貫通トレンチ31等の外部のリンドープドポリシリコン層69を除去する。これにより、貫通トレンチ31−1,31−2の内部にリンドープドシリコンを埋設し、導電層(N+)69を形成する。尚、この際、シリコン窒化膜66をストッパ層として用い、その後、熱燐酸処理を施し、シリコン窒化膜66を除去しても良い。
続いて、図11に示すように、電極領域8−1における半導体層64の表面領域に、例えば、イオン注入法により、ホウ素(B)等のP型の不純物を選択的に導入し、P+型不純物拡散層70を形成する。
続いて、図示は省略するが、半導体層64上にシリコン窒化膜71、コンタクトプラグ72、多層配線層73、層間絶縁膜75等を形成する。その後、BOX絶縁膜62をストッパ層として、シリコン基材61を薄膜化して除去する。
続いて、表面側に支持基板を接着し、形成した上記構成全体を反転させて、受光領域6および周辺領域7に、光電変換部や信号走査駆動回路部および必要な周辺回路などを形成する。
続いて、電極領域8−2のみにおいて、BOX絶縁膜62を除去して、露出させた導電層69上に配線としての電極パッド57を形成し、複数の電極トレンチを形成する。この際、貫通トレンチ31−1,32−2のトレンチマーク44を、リソグラフィ工程等の位置合わせに使用することができる。また、トレンチマーク44は光電変換部51に形成されるフォトダイオード上の色フィルタCF、およびマイクロレンズMLのアライメントに用いることもできる。
以上のような製造方法により、図3に示した固体撮像装置を製造することができる。
<3.作用効果>
上記のように、第1の実施形態に係る固体撮像装置およびその製造方法によれば、少なくとも下記(1)乃至(3)の効果が得られる。
(1)高速動作に対して有利である。
上記のように、第1の実施形態に係る固体撮像装置は、半導体層(epi-Si)64を貫通して配置され、一端が表面側のコンタクトプラグ72を介して配線層73に電気的に接続され、他端が裏面側の電極パッド57に電気的に接続される複数のトレンチ配線81を具備する。
トレンチ配線81は、半導体層64を貫通するトレンチの側壁に沿って設けられる絶縁膜32,半導体層64内に絶縁膜32に沿ってピラー状に設けられるP+型不純物拡散層36,貫通トレンチ内部に埋め込み形成される導体層(N+層)69,裏面側の半導体層64の表面領域にP+型不純物拡散層36と接続して設けられ隣接するトレンチ配線81間およびトレンチ分離帯82間の裏面側のP+型不純物拡散層36を相互に電気的に接続するP+型不純物拡散53,および表面側の半導体層64の表面領域にP+型不純物拡散層36と接続して設けられ隣接するトレンチ配線81間の表面側のP+型不純物拡散層36が電気的に接続され、コンタクトプラグ72、配線層73を介してP+型不純物拡散層36と導電層69とを電気的に接続させるP+型不純物拡散層70を備える。
上記構成によれば、P+型不純物拡散53により、隣接するトレンチ配線81間の裏面側のP+型不純物拡散層36が相互に電気的に接続され、電極パッド57を介してP+型不純物拡散層36と導電層(N+)69とが電気的に接続される。P+型不純物拡散層70により、隣接するトレンチ配線81間の表面側のP+型不純物拡散層36が電気的に接続され、コンタクトプラグ72、配線層73を介してP+型不純物拡散層36と導電層(N+)69とが電気的に接続される。
このように、トレンチ側壁に沿って形成されたP+型不純物拡散層36とトレンチ内部の導体層69とが電気的に接続される結果、トレンチ側壁は絶縁膜32により絶縁であるが、その内外が電気的に接続され同電位となるため、トレンチ側壁の静電容量を実効的にゼロとすることができ、静電容量を低減することができる。また、多数のトレンチ配線81を束ねることにより電極配線を構成することによって、上下を電気的に接続する構造全体の電気的な抵抗値を十分低い値にすることができる。このように、本例に係る構成によれば、高速動作に対して有利である。例えば、1GHz程度の駆動周波数の超高速なデジタルインターフェース等を有する裏面照射型の固体撮像装置,半導体記憶装置,半導体装置等の適用に対して有効である。
ここで、貫通トレンチ側壁のピラー状のP+不純物拡散層36を、本例のようにイオン注入法などで形成する際には、拡散層36の厚さが薄くなりコンタクトの形成が容易ではない。しかしながら、本例では、上記のように、半導体層64の表面側および裏面側のそれぞれに、P+型不純物拡散53,70を備える。このように、表面側および裏面側のそれぞれの表面部に十分な濃度のP+型不純物拡散53,70があれば、P+不純物拡散層36とのコンタクトが確実かつ容易である。また、製造工程を増大させることなく、隣接するトレンチ配線81およびトレンチ分離帯82のP+不純物拡散層36を電気的に接続することができ、電気的な抵抗値が低下することができる。
(2)電気的分離を確実にすることができる。
本例に係る固体撮像装置は、分離領域8−2に、トレンチ配線81の周囲を囲むように、上記トレンチ配線81と同様の断面構成を有するトレンチ分離帯82を更に具備する。このため、電極領域8−1とその周囲に形成される周辺領域7等に配置される素子との電気的分離を確実にすることができる点で有利である。
後述する変形例1に示すように、トレンチ配線81の周囲を囲むように同様のトレンチ分離帯を、更に複数配置することも可能である。このように、トレンチ分離帯を2重以上にすることで、トレンチ分離帯の静電容量が複数、直列に接続された状態となり、トレンチ分離帯の側壁の合成静電容量を低減することができる点で、更に有利である。
(3)貫通トレンチ31−1,31−2の形状を安定でき、面内のバラツキを低減することができる。
貫通トレンチ31−1,31−2の内壁に沿って設けられる絶縁層32は、本例では、シリコン窒化(SiN)膜により形成される。シリコン窒化(SiN)膜は、例えば、シリコン酸化(SiO)膜等の絶縁膜に比べ強度が高い。そのため、強度を向上させ、例えば、BOX絶縁膜62薄膜除去後であっても、貫通トレンチ(DT)31−1,31−2の形状を安定でき、面内のバラツキを低減することができる。
[第2の実施形態(トレンチ電極の平面形状が長方形型の一例)]
次に、図12を用い、第2の実施形態に係る固体撮像装置およびその製造方法について説明する。この実施形態は、トレンチ電極81の平面形状が長方形型の一例に関する。この説明において、上記第1の実施形態と重複する部分の詳細な説明を省略する。
<構成例>
図12に示すように、第2の実施形態に係る固体撮像装置は、トレンチ電極81の平面形状が長方形型である点で、上記第1の実施形態と相違する。
本例に係るトレンチ電極81の長さLは例えば5.0μm〜6.0μm程度、幅Rは例えば1.0μm程度、隣接する間隔NRは例えば1.5μm程度、であることが望ましい。
本例に係る固体撮像装置の製造方法に関しては、図5に示したフォトレジスト67に露光及び現像する際に、電極領域8−1に形成する開口部(30−1)を長方形型に形成すれば良い。この際、開口部(30−1)においては幅が例えば0.8μm程度のとなるように、上記フォトレジスト67に露光および現像を行うことが望ましい。なお、後述する変形例2のように、本実施形態の固体撮像装置は、図14に示すように、長方形のトレンチ電極81をマトリックス状に複数配置しても構わない。
その他の構成および製造方法に関しては、上記第1の実施形態と実質的に同様であるため、その他の詳細な説明については省略する。
<作用効果>
上記のように、この実施形態に係る固体撮像装置によれば、少なくとも上記(1)乃至(3)と同様の効果が得られる。さらに、本例によれば、(4)の効果が得られる。
(4)単位断面積当りの導電層69の断面積割合を増加させ、抵抗値を低減できる。
上記のように、本例に係る固体撮像装置は、平面形状が長方形型であるトレンチ電極81を備える。
上記構成のように、トレンチ電極81の平面構造を長方形型とするで、例えば、円形や正方形型でトレンチ構造を並べた場合よりも、単位断面積当りの導電層(N+)69の断面積割合を増加でき、抵抗値を低減することができる点で、さらに有利である。
[変形例1(トレンチ分離帯が複数配置される一例)]
次に、図13を用い、変形例1に係る固体撮像装置およびその製造方法について説明する。この変形例1は、トレンチ分離帯が複数配置される一例に関する。この説明において、上記第1の実施形態と重複する部分の詳細な説明を省略する。
図示するように、本例では、お堀のようにトレンチ配線81の電極領域8−1の周囲を囲むように同様のトレンチ分離帯82−1,82−2が2層配置される。
このように、トレンチ分離帯を2重以上にすることで、トレンチ分離帯82−1,82−2の静電容量が複数、直列に接続された状態となり、トレンチ分離帯の側壁の合成静電容量を低減することができる点で、更に有利である。
本例に係る固体撮像装置の製造方法に関しては、図5に示したフォトレジスト67に露光及び現像する際に、分離領域8−2に形成する同様の開口部(30−2)を、更に外側にも形成し、2重にすれば良い。その他の構成および製造方法に関しては、上記第1の実施形態と実質的に同様であるため、その他の詳細な説明については省略する。
[変形例2(長方形型のトレンチ配線がマトリクス状に配置される一例)]
次に、図14を用い、変形例2に係る固体撮像装置およびその製造方法について説明する。この変形例2は、長方形型のトレンチ配線がマトリクス状に配置される一例に関する。この説明において、上記第1の実施形態と重複する部分の詳細な説明を省略する。
図示するように、本例では、電極領域8−1に、第2の実施形態よりも小さい長方形型のトレンチ配線81がマトリク状に配置される。
このように、第2の実施形態よりも小さい長方形型のトレンチ配線81をマトリク状に配置することで、電極領域8−1の電気抵抗をより低減できる点で、更に有利である。
本例に係る固体撮像装置の製造方法に関しては、図5に示したフォトレジスト67に露光及び現像する際に、電極領域8−1に形成する開口部(30−1)が、長方形であってマトリクス状に配置されるようにすれば良い。その他の構成および製造方法に関しては、上記第1の実施形態と実質的に同様であるため、その他の詳細な説明については省略する。
[第3の実施形態(電極領域の第1拡散層がウェル状に形成される一例)]
次に、図15乃至図17を用い、第3の実施形態に係る固体撮像装置およびその製造方法について説明する。この実施形態は、電極領域8−1の第1拡散層36が、ピラー状でなく、ウェル状に形成される一例に関する。この説明において、上記第1の実施形態と重複する部分の詳細な説明を省略する。
<構成例>
図15に示すように、本例に係る固体撮像装置は、分離領域8−2に設けられる拡散層36−1はピラー状に形成されるのに対し、電極領域8−1であって隣接するトレンチ電極81と共有する部分の拡散層36−2は、隣接するものと接続されてウェル状形成される点で、上記第1の実施形態と相違する。
拡散層36−2は、例えば、ボロン(B)等のP型の不純物が、1×1016cm−3程度〜1×1017cm−3程度の濃度により、ウェル状に拡散されることにより形成される。このように、本例に係る拡散層36−1、36−2の不純物濃度は、上記ピラー状の拡散層36の不純物濃度よりも低く形成することができる。
<製造方法>
次に、図16乃至図17を用い、第3の実施形態に係る固体撮像装置の製造方法について説明する。ここで、上記第1の実施形態と重複する部分の説明を省略する。
図16に示すように、上記第1の実施形態と同様の製造方法を用い、シリコン層64内に形成したトレンチ内沿って、SiN層32を形成する。
続いて、上記と同様の製造工程を用い、貫通トレンチの内部にリンドープドポリシリコン(P-doped Poly)層等を埋め込み形成し、導電層(N+)69を形成する。
続いて、形成した構成上にフォトレジスト90を塗布し、このフォトレジストに露光および現像を行い、図示するような開口90−1,90−2を形成する。開口90−1は、電極領域8−1に設けられ、貫通トレンチの共有部分の全体が露出するように形成される。開口90−2は、分離領域8−2に設けられ、貫通トレンチの周辺部分のみが露出するように形成される。
続いて、図17に示すように、上記フォトレジスト90をマスクとして、例えば、イオン導入法により、ボロン(B)等のP型の不純物の導入および熱拡散を複数回行い、P不純物拡散層36−1,36−2を形成する。このイオン導入工程の際において、加速電圧や反応条件を複数回にわたって選択し、所望の深さおよび濃度(例えば、ボロン(B)等のP型の不純物が、1×1016cm−3程度〜1×1017cm−3程度の濃度)にP不純物拡散層36−1,36−2を形成する。
上記のように、本例では、貫通トレンチ内に導電層(N+)69が埋め込まれた状態で、フォトレジスト90を塗布するため、フォトレジスト90が貫通トレンチ内に入り込んでしまうことを防止できる。
以後、上記第1の実施形態と実質的に同様の製造方法により、図15に示す固体撮像装置を製造することができる。
以上、第1乃至第3の実施形態および変形例を用いて本発明の説明を行ったが、この発明は上記各実施形態および各変形例に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、上記各実施形態および各変形例には種々の段階の発明が含まれており、開示される複数の構成要件の適宜な組み合わせにより種々の発明が抽出され得る。例えば各実施形態および各変形例に示される全構成要件からいくつかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題の少なくとも1つが解決でき、発明の効果の欄で述べられている効果の少なくとも1つが得られる場合には、この構成要件が削除された構成が発明として抽出され得る。
1…固体撮像装置、6…受光領域、7…周辺回路領域、8…電極パッド領域、81…トレンチ配線、82…トレンチ分離帯、31…貫通トレンチ、64…半導体層、32…絶縁膜、69…導電層(N+層)、36…P+型不純物拡散層(装置において第1不純物拡散層)、53…P+型不純物拡散層(装置において第2不純物拡散層)、70…P+型不純物拡散層(装置において第3不純物拡散層)。

Claims (12)

  1. 多層配線層と、
    前記多層配線層上に設けられ、貫通トレンチを有する半導体層と、
    前記貫通トレンチ内部に埋め込まれた第1導電層と、
    前記第1導電層の周囲に形成された第1絶縁膜と、
    前記第1絶縁膜の周囲に形成された第1導電型の第1不純物拡散層とを備えることを特徴とする固体撮像装置。
  2. 前記貫通トレンチは前記半導体層にマトリックス状に複数配置され、隣り合った前記貫通トレンチの前記第1不純物拡散層を接続するように前記半導体層の裏面側に設けられる第1導電型の第2不純物拡散層を更に備えること
    を特徴とする請求項1に記載の固体撮像装置。
  3. 前記貫通トレンチは前記半導体層にマトリックス状に複数配置され、隣り合った前記貫通トレンチの前記第1不純物拡散層を接続するように前記半導体層の表面側に設けられる第1導電型の第3不純物拡散層を更に備えること
    を特徴とする請求項2に記載の固体撮像装置。
  4. 前記貫通トレンチの周囲を囲むように配置されたトレンチ分離帯を更に備え、
    前記トレンチ分離帯は内部に埋め込まれ、前記第1導電層と同じ材料を含む第2導電層と、
    前記第2導電層の周囲に形成され、前記第1絶縁膜と同じ材料を含む第2絶縁膜と、
    前記第2絶縁膜の周囲にピラー状に形成された第1導電型の第4不純物拡散層とを有すること
    を特徴とする請求項1乃至3のいずれか1項に記載の固体撮像装置。
  5. 前記トレンチ分離帯を取り囲むように別のトレンチ分離帯が更に形成されていること
    を特徴とする請求項4に記載の固体撮像装置。
  6. 前記半導体層の裏面側に形成される第3絶縁膜を更に備え、
    前記トレンチ分離帯が形成される領域の前記第3絶縁膜の膜厚は、他の領域の前記第3絶縁膜厚よりも薄いこと
    を特徴とする請求項4に記載の固体撮像装置。
  7. 前記第1絶縁膜は、SiN膜を含んで形成され、
    前記第1導電層は、リンドープドポリシリコン層を含んで形成され、
    前記トレンチ分離帯は、裏面側にアライメントマークを有すること
    を特徴とする請求項4に記載の固体撮像装置。
  8. 前記貫通トレンチの平面形状は、円または長方形であること
    を特徴とする請求項1乃至7のいずれか1項に記載の固体撮像装置。
  9. 前記第1不純物拡散層は、前記第1絶縁膜上に沿ってピラー状に形成されること
    を特徴とする請求項1乃至7のいずれか1項に記載の固体撮像装置。
  10. 前記第1不純物拡散層は、前記貫通トレンチが形成される電極領域であって隣接する前記貫通トレンチと共有する部分が隣接するものと接続されてウェル状に形成されること
    を特徴とする請求項1乃至7のいずれか1項に記載の固体撮像装置。
  11. 少なくとも、基材,絶縁層,第1導電型の第1不純物拡散層,および半導体層が順次設けられる基板において、前記絶縁層をストッパ層として前記半導体層をエッチングして第1トレンチを形成する工程と、
    前記第1トレンチ内に沿って第1絶縁膜を形成する工程と、
    前記半導体層内の前記第1絶縁膜の周囲に第1導電型の第2不純物拡散層を形成する工程と、
    前記第1トレンチの内部に導電体を埋め込んで、第1導電層を形成する工程と、
    前記第1不純物拡散層が形成される前記半導体層と反対側の表面に、第1導電型の第3不純物拡散層を形成する工程と、
    表面側の前記半導体層上に、前記第1導電層に電気的に接続するように多層配線層を形成する工程と、
    前記絶縁層をストッパ層として、前記基材を除去する工程と、
    裏面側の前記半導体層を除去し、露出した前記導電層上に電極パッドを形成する工程と
    を備えることを特徴とする固体撮像装置の製造方法。
  12. 前記第1トレンチを形成すると同時に前記第1トレンチを取り囲むように第2トレンチを形成し、
    前記第1絶縁膜を形成すると同時に前記第2トレンチ内に沿って第2絶縁膜を形成する工程と、
    前記第2不純物拡散層を形成する工程と同時に前記第2絶縁膜の周囲に第1導電型の第4不純物拡散層を形成する工程と、
    前記第1トレンチの内部に導電体を埋め込むと同時に前記第2トレンチの内部に導電体を埋め込んで、第2導電層を形成する工程とを更に備えること
    を特徴とする請求項11に記載の固体撮像装置の製造方法。
JP2010112472A 2010-05-14 2010-05-14 固体撮像装置およびその製造方法 Withdrawn JP2011243656A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010112472A JP2011243656A (ja) 2010-05-14 2010-05-14 固体撮像装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010112472A JP2011243656A (ja) 2010-05-14 2010-05-14 固体撮像装置およびその製造方法

Publications (1)

Publication Number Publication Date
JP2011243656A true JP2011243656A (ja) 2011-12-01

Family

ID=45410048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010112472A Withdrawn JP2011243656A (ja) 2010-05-14 2010-05-14 固体撮像装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP2011243656A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9324744B2 (en) 2012-02-29 2016-04-26 Canon Kabushiki Kaisha Solid-state image sensor having a trench and method of manufacturing the same
CN105702693A (zh) * 2014-12-12 2016-06-22 瑞萨电子株式会社 摄像装置及摄像装置的制造方法
JP2018022924A (ja) * 2017-10-25 2018-02-08 キヤノン株式会社 固体撮像装置およびその製造方法
JP2022520481A (ja) * 2019-02-18 2022-03-30 長江存儲科技有限責任公司 新規なシリコン貫通コンタクト構造およびそれを形成する方法
WO2024057814A1 (ja) * 2022-09-12 2024-03-21 ソニーセミコンダクタソリューションズ株式会社 光検出装置および電子機器

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9324744B2 (en) 2012-02-29 2016-04-26 Canon Kabushiki Kaisha Solid-state image sensor having a trench and method of manufacturing the same
CN105702693A (zh) * 2014-12-12 2016-06-22 瑞萨电子株式会社 摄像装置及摄像装置的制造方法
JP2016115757A (ja) * 2014-12-12 2016-06-23 ルネサスエレクトロニクス株式会社 撮像装置およびその製造方法
JP2018022924A (ja) * 2017-10-25 2018-02-08 キヤノン株式会社 固体撮像装置およびその製造方法
JP2022520481A (ja) * 2019-02-18 2022-03-30 長江存儲科技有限責任公司 新規なシリコン貫通コンタクト構造およびそれを形成する方法
US11710679B2 (en) 2019-02-18 2023-07-25 Yangtze Memory Technologies Co., Ltd. Through silicon contact structure and method of forming the same
US11721609B2 (en) 2019-02-18 2023-08-08 Yangtze Memory Technologies Co., Ltd. Through silicon contact structure and method of forming the same
WO2024057814A1 (ja) * 2022-09-12 2024-03-21 ソニーセミコンダクタソリューションズ株式会社 光検出装置および電子機器

Similar Documents

Publication Publication Date Title
US8552516B2 (en) Solid state image capture device and method for manufacturing same
EP2437300B1 (en) Solid-state image pickup device
US7595213B2 (en) Semiconductor devices, CMOS image sensors, and methods of manufacturing same
US9799690B2 (en) Solid-state image pickup device
US9508871B2 (en) Solid-state image sensing device with electrode implanted into deep trench
WO2008133787A1 (en) Image sensor with improved quantum efficiency of red pixels and corresponding fabrication method
JP2017183661A (ja) 光電変換装置およびカメラ
KR20100100624A (ko) 고체 촬상 소자, 그 제조 방법 및 그것을 사용한 전자 기기
EP2884537B1 (en) Semiconductor device and semiconductor device manufacturing method
US8124438B2 (en) Method of fabricating CMOS image sensor
JP2007288136A (ja) 固体撮像装置およびその製造方法
JP2011243656A (ja) 固体撮像装置およびその製造方法
US20160156817A1 (en) Manufacturing method of imaging apparatus, imaging apparatus, and imaging system
JP2009147056A (ja) 半導体装置及びその製造方法
JP6877872B2 (ja) 光電変換装置およびその製造方法
US9029182B2 (en) Method of manufacturing solid-state image sensor
US20100164046A1 (en) Image sensor and method for manufacturing the same
JP2016115815A (ja) 撮像装置および撮像システム
KR102009931B1 (ko) 씨모스 이미지센서 및 그 제조 방법
JP2009065167A (ja) イメージセンサ及びその製造方法
US20240006448A1 (en) Imaging device, method of manufacturing imaging device, and electronic device
JP2012253224A (ja) 固体撮像装置およびその製造方法
JP2009065158A (ja) イメージセンサ及びその製造方法
JP2010050275A (ja) 固体撮像素子及びその製造方法
US8946796B2 (en) Image sensor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130806