JP2011243624A - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP2011243624A
JP2011243624A JP2010112023A JP2010112023A JP2011243624A JP 2011243624 A JP2011243624 A JP 2011243624A JP 2010112023 A JP2010112023 A JP 2010112023A JP 2010112023 A JP2010112023 A JP 2010112023A JP 2011243624 A JP2011243624 A JP 2011243624A
Authority
JP
Japan
Prior art keywords
resin
semiconductor element
semiconductor device
circuit board
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010112023A
Other languages
Japanese (ja)
Other versions
JP2011243624A5 (en
JP5877291B2 (en
Inventor
Kazumichi Shimizu
一路 清水
Masahiro Ono
正浩 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010112023A priority Critical patent/JP5877291B2/en
Publication of JP2011243624A publication Critical patent/JP2011243624A/en
Publication of JP2011243624A5 publication Critical patent/JP2011243624A5/ja
Application granted granted Critical
Publication of JP5877291B2 publication Critical patent/JP5877291B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Wire Bonding (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flip chip-mounted semiconductor device, which is reduced in the warp quantity and in which a semiconductor element is protected properly.SOLUTION: A semiconductor device manufacturing method includes: flip-chip connecting a semiconductor element 2 and a resin circuit board 4 through a bump electrode 3 formed on the semiconductor element 2; sealing a gap between the semiconductor element 2 and the resin circuit board 4 with a first resin 5; covering a face of the resin circuit board 4 with the semiconductor element 2 mounted thereon with a second resin 6 different from the first resin 5 in its entirety; providing a concavity 7 in part of the second resin 6 covering the semiconductor element 2; and putting, in the concavity 7, a third resin other than the first and second resins 5 and 6 or metal 8.

Description

本発明は、半導体チップが樹脂回路基板にフリップチップにて実装された半導体装置に係り、特に反りを低減する半導体装置およびその製造方法に関するものである。   The present invention relates to a semiconductor device in which a semiconductor chip is mounted on a resin circuit board by a flip chip, and more particularly to a semiconductor device that reduces warpage and a manufacturing method thereof.

電子回路基板はあらゆる製品に使用されるようになり、また、携帯機器の増加から半導体装置に対して小型化,軽量化が求められている。そのため現状では、BGA(Ball Grid Array)やCSP(Chip Size Package)において、樹脂製の回路基板が用いられている。   Electronic circuit boards have come to be used in various products, and due to the increase in portable devices, miniaturization and weight reduction of semiconductor devices are required. Therefore, at present, resin circuit boards are used in BGA (Ball Grid Array) and CSP (Chip Size Package).

従来、半導体素子をフリップチップにより実装した後に、半導体素子を保護する目的ために、半導体素子を覆うようにして回路基板の上面を封止する場合がある。この封止を行うためには、金型を用いて射出成形する方法、あるいはディスペンサを用いて樹脂を塗布する方法が用いられている。   Conventionally, after a semiconductor element is mounted by flip chip, the upper surface of a circuit board is sometimes sealed so as to cover the semiconductor element in order to protect the semiconductor element. In order to perform this sealing, a method of injection molding using a mold or a method of applying a resin using a dispenser is used.

しかしながら、上記のように半導体素子を覆うように封止すると、封止された半導体装置は、常温で凹型に反り、高温時に凸型に反りを発生する。このような大きな反りを持つ半導体装置は、その半導体装置の厚みが厚くなることと同様になり、しかも半導体装置を別の基板に実装する際の接合不良につながる。   However, when the semiconductor element is sealed as described above, the sealed semiconductor device warps in a concave shape at room temperature and warps in a convex shape at high temperature. A semiconductor device having such a large warp is the same as an increase in the thickness of the semiconductor device, and leads to poor bonding when the semiconductor device is mounted on another substrate.

そこで、本件本出願人は、特願2009−017413として、半導体装置において、フリップチップ接続された半導体素子を覆う樹脂に凹部を設けて、反り量をコントロールする技術に関する発明を出願した。この発明の構成について図7の半導体装置の断面図を参照して説明する。   Therefore, the present applicant has filed an invention relating to a technique for controlling the amount of warpage in a semiconductor device by providing a recess in a resin covering a flip-chip connected semiconductor element in Japanese Patent Application No. 2009-017413. A structure of the present invention will be described with reference to a cross-sectional view of the semiconductor device in FIG.

図7において、1は半導体装置、2は半導体素子、3は突起電極、4は樹脂回路基板、5は第1の樹脂、6は第2の樹脂、7は凹部を示す。   In FIG. 7, 1 is a semiconductor device, 2 is a semiconductor element, 3 is a protruding electrode, 4 is a resin circuit board, 5 is a first resin, 6 is a second resin, and 7 is a recess.

図7に示す半導体装置1において、樹脂回路基板4における半導体素子2が実装されている第1の面を、半導体素子2と樹脂回路基板4間に設けられる第1の樹脂5とは異なる第2の樹脂6により、半導体素子2と樹脂回路基板4とを含めて覆い、半導体素子2の裏面(図における上面)上の第2の樹脂6により覆われている部分に凹部7を設けている。   In the semiconductor device 1 shown in FIG. 7, the first surface of the resin circuit board 4 on which the semiconductor element 2 is mounted is different from the first resin 5 provided between the semiconductor element 2 and the resin circuit board 4. The resin 6 covers the semiconductor element 2 and the resin circuit board 4, and a recess 7 is provided in a portion covered with the second resin 6 on the back surface (upper surface in the drawing) of the semiconductor element 2.

前記構成によって、半導体素子2を保護しつつ、第2の樹脂6の熱収縮,熱膨張によって半導体装置16の反りを低減し、凹部7の設置数,高,幅によって反り量をコントロールするようにしている。   With the above configuration, the warp of the semiconductor device 16 is reduced by the thermal contraction and thermal expansion of the second resin 6 while protecting the semiconductor element 2, and the warp amount is controlled by the number, height, and width of the recesses 7. ing.

また、前記反りに対応する他の技術として、半導体素子を覆う樹脂をさらに別の樹脂で覆うようにした構成の発明が提案されている(例えば、特許文献1参照)。この構成について図8を参照して説明する。   As another technique corresponding to the warp, an invention has been proposed in which a resin covering a semiconductor element is further covered with another resin (see, for example, Patent Document 1). This configuration will be described with reference to FIG.

図8(a)は半導体装置の断面図、図8(b)は図8(a)の半導体装置の底面図であって、1は半導体装置、2は半導体素子、3は突起電極、4は樹脂回路基板、18は第1の樹脂、19は第2の樹脂、20は第3の樹脂を示す。   8A is a cross-sectional view of the semiconductor device, FIG. 8B is a bottom view of the semiconductor device of FIG. 8A, 1 is the semiconductor device, 2 is the semiconductor element, 3 is the protruding electrode, 4 is A resin circuit board, 18 is a first resin, 19 is a second resin, and 20 is a third resin.

図8に示す半導体装置1において、半導体素子2はフリップチップ方法にて樹脂回路基板4に接合される。半導体素子2と樹脂回路基板4間には第1の樹脂18が設けられ、その後、第1の樹脂18とは異なる第2の樹脂19により半導体素子2を覆い、第1の樹脂18と第2の樹脂19とは異なる第3の樹脂20により第2の樹脂19を覆う。さらに第3の樹脂20は半導体素子2の辺の中央付近よりも角部に向けて長く配置される構成になっている。   In the semiconductor device 1 shown in FIG. 8, the semiconductor element 2 is bonded to the resin circuit board 4 by a flip chip method. A first resin 18 is provided between the semiconductor element 2 and the resin circuit board 4, and then the semiconductor element 2 is covered with a second resin 19 different from the first resin 18, and the first resin 18 and the second resin 18 The second resin 19 is covered with a third resin 20 different from the resin 19. Further, the third resin 20 is arranged longer toward the corner than the vicinity of the center of the side of the semiconductor element 2.

特開2008−270454号公報JP 2008-270454 A

しかしながら、本件出願人による特願2009−017413の発明では、半導体素子2を覆う第2の樹脂6に凹部7を設けると、半導体装置1の反り量は低減するものの、半導体素子2を保護する目的の第2の樹脂6が少なくなることにより、半導体装置1自体の強度が低下する。また、凹部7の溝の幅,深さによっては、半導体装置1の曲げに対して応力が凹部7の溝に集中し、半導体装置1の強度不足あるいはフリップチップ接合部の接合不良が発生するという課題を有する。   However, in the invention of Japanese Patent Application No. 2009-017413 by the present applicant, if the recess 7 is provided in the second resin 6 covering the semiconductor element 2, the amount of warpage of the semiconductor device 1 is reduced, but the semiconductor element 2 is protected. As the second resin 6 decreases, the strength of the semiconductor device 1 itself decreases. Further, depending on the width and depth of the groove of the recess 7, stress concentrates on the groove of the recess 7 with respect to the bending of the semiconductor device 1, and the semiconductor device 1 has insufficient strength or a defective bonding of the flip chip joint. Has a problem.

また、特許文献1に記載の発明では、半導体素子2を覆う第2の樹脂6とは異なる第3の樹脂8を、半導体素子2を覆う第2の樹脂6を覆うように設ける。このため樹脂をディスペンスにより塗布すると、塗布される樹脂量,樹脂の濡れ性を精密にコントロールすることが困難である。このため、塗布された第3の樹脂8の高さや幅の形状が不安定になり、結果として、半導体装置1の反り量にばらつきが発生するという課題を有していた。   In the invention described in Patent Document 1, a third resin 8 different from the second resin 6 covering the semiconductor element 2 is provided so as to cover the second resin 6 covering the semiconductor element 2. For this reason, when the resin is applied by dispensing, it is difficult to precisely control the amount of resin applied and the wettability of the resin. For this reason, the shape of the height and width of the applied third resin 8 becomes unstable, and as a result, the amount of warpage of the semiconductor device 1 varies.

本発明は、前記従来の課題を解決するものであり、半導体装置の強度低下を防ぐことにより保護を図ることができ、しかも反りをコントロールしながら反りの低減化を図ることができる半導体装置およびその製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and can provide protection by preventing a reduction in the strength of the semiconductor device, and can reduce warpage while controlling warpage, and its semiconductor device An object is to provide a manufacturing method.

上記課題を解決するため、本発明に係る半導体装置は、突起電極が形成された半導体素子と、前記半導体素子が前記突起電極を介して実装された回路基板と、前記半導体素子と前記回路基板間の隙間を封止する第1の樹脂と、前記半導体素子の実装面と対向する上面を覆い、かつ前記半導体素子の上部に凹部が形成される第2の樹脂とを備え、第3の樹脂または金属が前記凹部に設けられることを特徴とする。   In order to solve the above problems, a semiconductor device according to the present invention includes a semiconductor element on which a protruding electrode is formed, a circuit board on which the semiconductor element is mounted via the protruding electrode, and between the semiconductor element and the circuit board. A first resin that seals the gap between the semiconductor element and a second resin that covers an upper surface that faces the mounting surface of the semiconductor element and that has a recess formed in the upper part of the semiconductor element. A metal is provided in the recess.

また、前記凹部の高さが、前記第2の樹脂で覆われる部分より低く、かつ前記半導体素子の裏面より高いことを特徴とする。   Further, the height of the concave portion is lower than the portion covered with the second resin and higher than the back surface of the semiconductor element.

また、前記凹部が少なくとも1本の直線状の溝によって形成され、前記直線状の溝の幅が前記半導体素子の短辺の幅より小さいことを特徴とする。   The concave portion is formed by at least one linear groove, and the width of the linear groove is smaller than the width of the short side of the semiconductor element.

また、複数本の前記溝が、前記半導体素子の中心上で交差することを特徴とする。   The plurality of grooves intersect with each other on the center of the semiconductor element.

また、前記第2の樹脂の熱膨張係数が、前記回路基板の熱膨張係数よりも大きく、かつ前記第1の樹脂の熱膨張係数より小さく、前記第3の樹脂または金属の熱膨張係数が前記第2の樹脂の熱膨張係数よりも小さいことを特徴とする。   The thermal expansion coefficient of the second resin is larger than the thermal expansion coefficient of the circuit board and smaller than the thermal expansion coefficient of the first resin, and the thermal expansion coefficient of the third resin or metal is It is smaller than the thermal expansion coefficient of the second resin.

また、前記第2の樹脂のガラス転移温度が前記回路基板のガラス転移温度よりも低く、前記第3の樹脂または金属のガラス転移温度が前記第2の樹脂のガラス転移温度よりも低いことを特徴とする。   The glass transition temperature of the second resin is lower than the glass transition temperature of the circuit board, and the glass transition temperature of the third resin or metal is lower than the glass transition temperature of the second resin. And

さらに、本発明に係る半導体装置の製造方法は、基板の一主面に第1の樹脂を塗布する工程と、前記第1の樹脂を介して前記回路基板の一主面上に複数の半導体素子を実装する工程と、実装した前記複数の半導体素子を前記第2の樹脂で封止する工程と、前記第2の樹脂における前記半導体素子の上部に凹部を形成する工程と、前記凹部に第3の樹脂または金属を塗布する工程と、前記半導体素子が少なくとも1個含まれるように前記基板を分割して、それぞれを半導体装置とする工程とを有することを特徴とする。   Furthermore, the method for manufacturing a semiconductor device according to the present invention includes a step of applying a first resin to one principal surface of a substrate, and a plurality of semiconductor elements on the one principal surface of the circuit substrate via the first resin. A step of sealing the plurality of mounted semiconductor elements with the second resin, a step of forming a recess in the upper portion of the semiconductor element in the second resin, and a third step in the recess. A step of applying the resin or metal, and a step of dividing the substrate so that at least one of the semiconductor elements is included, thereby forming each of the semiconductor devices.

本発明によれば、半導体装置の強度低下を防ぎながら半導体素子を保護しつつ、半導体装置の反り量を安定してコントロールすることができ、半導体装置を別の基板に実装する際の接合不良を低減することができる。   According to the present invention, it is possible to stably control the amount of warpage of a semiconductor device while protecting the semiconductor element while preventing the strength reduction of the semiconductor device, and to prevent a bonding failure when the semiconductor device is mounted on another substrate. Can be reduced.

図1(a)は本発明の実施の形態1における半導体装置の斜視図、図1(b)は図1(a)におけるA−A’断面図、図1(c)は実施の形態1の変形例の図1(a)におけるA−A’断面図1A is a perspective view of the semiconductor device according to the first embodiment of the present invention, FIG. 1B is a cross-sectional view taken along the line AA ′ in FIG. 1A, and FIG. AA ′ cross-sectional view in FIG. 本発明の実施の形態1における半導体装置の各部の高さを説明するための断面図Sectional drawing for demonstrating the height of each part of the semiconductor device in Embodiment 1 of this invention 図3(a)は本発明の実施の形態2における半導体装置の斜視図、図3(b)は図3(a)におけるA−A’断面図3A is a perspective view of the semiconductor device according to the second embodiment of the present invention, and FIG. 3B is a cross-sectional view taken along the line A-A ′ in FIG. 図4(a)は本発明の実施の形態3における半導体装置の斜視図、図4(b)は図4(a)におけるA−A’断面図4A is a perspective view of the semiconductor device according to the third embodiment of the present invention, and FIG. 4B is a cross-sectional view taken along the line A-A ′ in FIG. 本発明の実施の形態における製造工程に係るフローチャートThe flowchart which concerns on the manufacturing process in embodiment of this invention 本発明の実施の形態における各製造工程の半導体装置の状態を示す斜視図The perspective view which shows the state of the semiconductor device of each manufacturing process in embodiment of this invention 従来の半導体装置の一例の断面図Sectional view of an example of a conventional semiconductor device 図8(a)は従来の半導体装置の断面図、図8(b)は図8(a)の半導体装置の平面図8A is a cross-sectional view of a conventional semiconductor device, and FIG. 8B is a plan view of the semiconductor device of FIG.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施の形態1における半導体装置の構成図であって、図1(a)は本発明の実施の形態1における半導体装置の構成を示す斜視図である。図1(b)と図1(c)は図1(a)のA−A’線断面図であって、図1(b)にはA−A’線上における半導体素子裏面が露出しない状態において他の樹脂で覆う場合の構成例を示す。図1(c)にはA−A’線上における半導体素子裏面が露出する状態において他の樹脂で覆う場合の構成例を示す。   FIG. 1 is a configuration diagram of the semiconductor device according to the first embodiment of the present invention, and FIG. 1A is a perspective view showing the configuration of the semiconductor device according to the first embodiment of the present invention. FIGS. 1B and 1C are cross-sectional views taken along line AA ′ of FIG. 1A. FIG. 1B shows a state in which the back surface of the semiconductor element on the line AA ′ is not exposed. The structural example in the case of covering with other resin is shown. FIG. 1C shows a configuration example in the case where the back surface of the semiconductor element on the A-A ′ line is exposed with another resin.

図1において、1は半導体装置、2は半導体素子、3は突起電極、4は樹脂回路基板、5は第1の樹脂、6は第2の樹脂、7は凹部、8は第3の樹脂(または金属)を示す。   In FIG. 1, 1 is a semiconductor device, 2 is a semiconductor element, 3 is a protruding electrode, 4 is a resin circuit board, 5 is a first resin, 6 is a second resin, 7 is a recess, and 8 is a third resin ( Or metal).

図1に示す半導体装置1において、半導体素子2は、その電極上に突起電極3を形成し、樹脂回路基板4の基板電極にフリップチップにて接合されている。半導体素子2と樹脂回路基板4間には第1の樹脂5を設け、この第1の樹脂5によって半導体素子2と樹脂回路基板4との接合を維持している。   In the semiconductor device 1 shown in FIG. 1, the semiconductor element 2 has a protruding electrode 3 formed on the electrode, and is bonded to the substrate electrode of the resin circuit substrate 4 by flip chip. A first resin 5 is provided between the semiconductor element 2 and the resin circuit board 4, and the bonding between the semiconductor element 2 and the resin circuit board 4 is maintained by the first resin 5.

第1樹脂5は、本例では熱硬化性エポキシ樹脂であり、その使用形態としてはフィルム状でも液状の樹脂でもよい。ただし、第1樹脂5がフィルム状の樹脂の場合には、フリップチップ実装する前に樹脂回路基板4に貼り付けられ、熱圧着することにより半導体素子2と樹脂回路基板4間に充填されるようにする。第1樹脂5が液状の場合には、フリップチップ実装する前に樹脂回路基板4に塗布して熱圧着しても、また、フリップチップ実装した後に半導体素子2の側面から流し込み熱硬化させてもよい。第1の樹脂5は、熱圧着により熱硬化して収縮することによって、半導体素子2と樹脂回路基板4との接合を維持させる。   The first resin 5 is a thermosetting epoxy resin in this example, and may be used in the form of a film or a liquid. However, when the first resin 5 is a film-like resin, the first resin 5 is affixed to the resin circuit board 4 before flip chip mounting, and is filled between the semiconductor element 2 and the resin circuit board 4 by thermocompression bonding. To. When the first resin 5 is in a liquid state, it may be applied to the resin circuit board 4 and thermocompression bonded before flip chip mounting, or may be poured from the side surface of the semiconductor element 2 and thermally cured after flip chip mounting. Good. The first resin 5 maintains the bonding between the semiconductor element 2 and the resin circuit board 4 by thermosetting and shrinking by thermocompression bonding.

さらに、半導体素子2を覆うように、樹脂回路基板4における半導体素子2が搭載される面を熱硬化性エポキシ樹脂からなる第2の樹脂6で封止し、半導体素子2の裏面(図では上面部)上の第2の樹脂6に凹部7を形成する。第2の樹脂6は、金型を用いて射出成形することにより成形する一般的なトランスファーモールド手法を用いて形成することが可能であって、熱硬化する。   Further, the surface of the resin circuit board 4 on which the semiconductor element 2 is mounted is sealed with a second resin 6 made of a thermosetting epoxy resin so as to cover the semiconductor element 2, and the back surface of the semiconductor element 2 (upper surface in the figure). The concave portion 7 is formed in the second resin 6 on the upper portion. The second resin 6 can be formed using a general transfer molding method in which the second resin 6 is molded by injection molding using a mold, and is cured by heat.

凹部7は、図1(b)に示すように、半導体素子2の裏面を露出させないように形成しても、図1(c)に示すように、半導体素子2の裏面を露出させるように形成してもよい。   As shown in FIG. 1B, the recess 7 is formed so as to expose the back surface of the semiconductor element 2 as shown in FIG. 1C, even if it is formed so as not to expose the back surface of the semiconductor element 2. May be.

凹部7は、樹脂回路基板4を分割する際に用いられるダイシング装置を用いて形成することができるため、ダイシングの刃の幅と、ダイシング回数や切り込み深さとにより、凹部7の数,高さ,幅を容易にコントロールして形成することが可能である。   Since the recesses 7 can be formed by using a dicing apparatus used when the resin circuit board 4 is divided, the number, the height, and the number of the recesses 7 depends on the width of the dicing blade, the number of dicings, and the cutting depth. The width can be easily controlled and formed.

具体的には、10ミリメートル角の半導体素子2を、15ミリメートル角の樹脂回路基板4の中心に実装し、第2の樹脂6をトランスファーモールドして、凹部7を、半導体素子2の中心で交わるように、ダイシング装置を用いて8ミリメートルの幅、かつ500マイクロメートルの高さで形成した。   Specifically, the 10 mm square semiconductor element 2 is mounted on the center of the 15 mm square resin circuit board 4, the second resin 6 is transfer molded, and the recess 7 intersects with the center of the semiconductor element 2. As described above, a dicing apparatus was used to form a width of 8 millimeters and a height of 500 micrometers.

そして本実施の形態では、凹部7に熱硬化性エポキシ樹脂である第3の樹脂8を用いてディスペンスし、第2の樹脂6を43パーセント、当該第3の樹脂8に置き換えた。第3の樹脂8の熱膨張係数を13ppmとして、第2の樹脂6の熱膨張係数25ppmよりも小さいものとした。なお、第3の樹脂8の弾性率は18GPa、第2の樹脂6の弾性率は8GPaとした。第3の樹脂8の熱膨張係数を第2の樹脂6の熱膨張係数よりも小さくするために、第3の樹脂8の弾性率が第2の樹脂6の弾性率よりも大きくなっているが、弾性率の増加ができるだけ少なくなる樹脂を選択した。熱硬化性エポキシ樹脂である第2の樹脂6と第3の樹脂8には、主剤に加えて硬化剤と無機充填剤が含まれる。硬化剤については、フェノール系の硬化剤を一例として用いた。   In this embodiment, the concave portion 7 is dispensed with the third resin 8 which is a thermosetting epoxy resin, and the second resin 6 is replaced with the third resin 8 by 43 percent. The thermal expansion coefficient of the third resin 8 was 13 ppm, and the thermal expansion coefficient of the second resin 6 was smaller than 25 ppm. The elastic modulus of the third resin 8 was 18 GPa, and the elastic modulus of the second resin 6 was 8 GPa. In order to make the thermal expansion coefficient of the third resin 8 smaller than the thermal expansion coefficient of the second resin 6, the elastic modulus of the third resin 8 is larger than the elastic modulus of the second resin 6. A resin was selected that would minimize the increase in elastic modulus. The second resin 6 and the third resin 8 that are thermosetting epoxy resins contain a curing agent and an inorganic filler in addition to the main agent. For the curing agent, a phenolic curing agent was used as an example.

この結果、30℃から240℃までの加熱環境下において、半導体装置1の反り量が低減することを観察した。   As a result, it was observed that the amount of warpage of the semiconductor device 1 was reduced in a heating environment from 30 ° C. to 240 ° C.

ここで、加熱環境下では、凹部7および第3の樹脂8を形成しない半導体装置の場合には、第2の樹脂6の熱膨張によって凸型に反りを発生する。しかし、本実施の形態では、凹部7および第3の樹脂8を形成し、第3の樹脂8の熱膨張係数を第2の樹脂6の熱膨張係数より小さい樹脂を用いたことにより、加熱環境下の凹部7の第2の樹脂6と第3の樹脂8との界面において、第2の樹脂6には収縮する方向に力が作用する。よって、その結果、加熱環境下の半導体装置1の凸型の反りは低減した。   Here, in a heating environment, in the case of a semiconductor device in which the concave portion 7 and the third resin 8 are not formed, the convex shape warps due to the thermal expansion of the second resin 6. However, in the present embodiment, the recess 7 and the third resin 8 are formed, and the thermal expansion coefficient of the third resin 8 is smaller than that of the second resin 6, so that the heating environment At the interface between the second resin 6 and the third resin 8 in the lower recess 7, a force acts on the second resin 6 in a contracting direction. Therefore, as a result, the convex warpage of the semiconductor device 1 under the heating environment is reduced.

また、室温においては、凹部7および第3の樹脂8を形成しない半導体装置の場合には、第2の樹脂6の熱収縮によって凹型に反りを発生する。しかし、本実施の形態では、第3の樹脂8の熱膨張係数が第2の樹脂6の熱膨張係数よりも小さいために、第3の樹脂8の硬化温度から冷却される過程において、第2の樹脂6の収縮の方が第3の樹脂8よりも大きく、凹部7の第2の樹脂6と第3の樹脂8の界面において、第2の樹脂6は膨張する方向に力が作用する。よって、その結果、室温での半導体装置1における凹型の反りは低減した。   Further, at room temperature, in the case of a semiconductor device in which the concave portion 7 and the third resin 8 are not formed, the concave shape warps due to the thermal contraction of the second resin 6. However, in the present embodiment, since the thermal expansion coefficient of the third resin 8 is smaller than the thermal expansion coefficient of the second resin 6, in the process of cooling from the curing temperature of the third resin 8, The contraction of the resin 6 is larger than that of the third resin 8, and a force acts in the direction in which the second resin 6 expands at the interface between the second resin 6 and the third resin 8 in the recess 7. As a result, the concave warpage of the semiconductor device 1 at room temperature is reduced.

半導体素子2の大きさ,厚み、あるいは樹脂回路基板4の大きさ,厚みが変化すれば、半導体装置1の反り量は異なる。本実施の形態では、第2の樹脂6を第3の樹脂(または金属)8に置き換える割合を、凹部7の数,高さ,幅によって自由に変化させることが可能であり、このため半導体装置1の反り量の低減化が可能である。   If the size and thickness of the semiconductor element 2 or the size and thickness of the resin circuit board 4 are changed, the warpage amount of the semiconductor device 1 is different. In the present embodiment, the ratio of replacing the second resin 6 with the third resin (or metal) 8 can be freely changed depending on the number, height, and width of the recesses 7, and thus the semiconductor device. The amount of warpage 1 can be reduced.

なお、第3の樹脂(または金属)8として、樹脂を使用する場合には熱硬化性エポキシ樹脂が望ましく、金属を使用する場合にはステンレス(SUS)が望ましい。   As the third resin (or metal) 8, a thermosetting epoxy resin is desirable when using a resin, and stainless steel (SUS) is desirable when using a metal.

通常、半導体素子2を、第1樹脂5を用いて樹脂回路基板4にフリップチップ実装し、第2の樹脂6を設けない場合、半導体素子2と樹脂回路基板4と第1の樹脂5との各熱膨張係数の差より、半導体装置1は、常温では凸型に、また高温時には凹型に反りを発生する。   Usually, when the semiconductor element 2 is flip-chip mounted on the resin circuit board 4 using the first resin 5 and the second resin 6 is not provided, the semiconductor element 2, the resin circuit board 4, and the first resin 5 Due to the difference in coefficient of thermal expansion, the semiconductor device 1 warps in a convex shape at room temperature and in a concave shape at high temperature.

一方、半導体素子2を保護するために第2の樹脂6を設けることにより、半導体装置は、第2の樹脂6が常温では収縮して凹型に、また高温では膨張して凸型に反りを発生するようになる。   On the other hand, by providing the second resin 6 to protect the semiconductor element 2, the semiconductor device causes the second resin 6 to shrink into a concave shape at room temperature and expand at a high temperature to generate a convex warp. Will come to do.

ここで、例えば第3の樹脂(または金属)8の熱膨張係数を第2の樹脂6の熱膨張係数より小さくすると、樹脂回路基板4上では半導体素子2を覆う部分の熱膨張係数が見かけ上、小さくなる。このため常温における収縮および高温における膨張が抑えられ、反り量が常温時、高温時ともに低減する。   Here, for example, if the thermal expansion coefficient of the third resin (or metal) 8 is made smaller than the thermal expansion coefficient of the second resin 6, the thermal expansion coefficient of the portion covering the semiconductor element 2 on the resin circuit board 4 is apparent. , Get smaller. For this reason, shrinkage at normal temperature and expansion at high temperature are suppressed, and the amount of warpage is reduced both at normal temperature and at high temperature.

凹部7および第3の樹脂(または金属)8を設けない場合、反り量を低減するためには第2の樹脂6に求められる熱膨張係数は1〜10ppm程度になり、第2の樹脂6の粘度が高くなる。このため、金型を用いて射出成形する一般的なトランスファーモールド手法を用いて第2の樹脂6を形成することが困難になる。   When the concave portion 7 and the third resin (or metal) 8 are not provided, the thermal expansion coefficient required for the second resin 6 is about 1 to 10 ppm in order to reduce the amount of warpage. Viscosity increases. For this reason, it becomes difficult to form the second resin 6 using a general transfer mold method in which injection molding is performed using a mold.

また、凹部7に第3の樹脂(または金属)8を設けない場合、凹部7において半導体装置1の曲げに対し応力を集中させることになる。このため本実施の形態のように、半導体装置1の凹部7に第3の樹脂(または金属)8を設けることにより応力集中を回避することができ、半導体装置1の強度が向上する。   Further, when the third resin (or metal) 8 is not provided in the recess 7, stress is concentrated on the bending of the semiconductor device 1 in the recess 7. Therefore, stress concentration can be avoided by providing the third resin (or metal) 8 in the recess 7 of the semiconductor device 1 as in the present embodiment, and the strength of the semiconductor device 1 is improved.

さらに、半導体素子2は駆動時に発熱するため、凹部7に第3の樹脂(または金属)8を設けることにより、半導体装置1の上面における選択された部位から放熱する作用を期待することができる。なお、凹部7に配置する第3の樹脂(または金属)8を、樹脂にすることにより、これを凹部7の形状に沿って容易に設けることが可能になる。   Furthermore, since the semiconductor element 2 generates heat during driving, it is possible to expect an effect of radiating heat from a selected portion on the upper surface of the semiconductor device 1 by providing the third resin (or metal) 8 in the recess 7. In addition, when the third resin (or metal) 8 disposed in the recess 7 is made of resin, it can be easily provided along the shape of the recess 7.

また、第2の樹脂6に凹部7を形成して第3の樹脂(または金属)8を設けるために、半導体装置1の厚みを厚くする必要がなく、半導体装置1の低背化が可能である。   In addition, since the concave portion 7 is formed in the second resin 6 and the third resin (or metal) 8 is provided, it is not necessary to increase the thickness of the semiconductor device 1, and the semiconductor device 1 can be reduced in height. is there.

本実施の形態1において、図2に示すように、凹部7の高さT1は、0mm以上かつ半導体素子2の裏面から第2の樹脂6の高さT2よりも低く形成し、半導体素子2の裏面を露出しない凹部7を形成する。半導体素子2の裏面を露出させないことにより、凹部7を形成して該凹部7に第3の樹脂(または金属)8を配置するまでの工程間において、半導体素子2を保護することが可能である。無論、既述したように、半導体装置1の放熱作用の効果も期待できる。   In the first embodiment, as shown in FIG. 2, the height T 1 of the recess 7 is 0 mm or more and lower than the height T 2 of the second resin 6 from the back surface of the semiconductor element 2. A recess 7 that does not expose the back surface is formed. By not exposing the back surface of the semiconductor element 2, it is possible to protect the semiconductor element 2 during the process from the formation of the recess 7 to the placement of the third resin (or metal) 8 in the recess 7. . Of course, as described above, the effect of the heat dissipation action of the semiconductor device 1 can also be expected.

図3は本発明の実施の形態2における半導体装置の構成図であって、図3(a)は本発明の実施の形態2における半導体装置の構成を示す斜視図であり、図3(b)は図3(a)のA−A’線断面図である。なお、以下の説明において、図1の実施の形態1にて説明した構成要素と同じ構成要素については同じ符号を用い、詳しい説明を省略する。   FIG. 3 is a configuration diagram of the semiconductor device according to the second embodiment of the present invention, and FIG. 3A is a perspective view showing the configuration of the semiconductor device according to the second embodiment of the present invention, and FIG. FIG. 4 is a cross-sectional view taken along line AA ′ of FIG. In the following description, the same components as those described in Embodiment 1 in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

半導体素子2の裏面の上に設けられている第2樹脂6の凹部7の形成としては各種の構造が考えられる。実施の形態2では、半導体素子2の裏面の上に設けられている第2樹脂6の凹部7は、一方向にのみ延在する1本の直線状をなす溝からなるものであって、実施の形態1と同様に、凹部7に第3の樹脂(または金属)8が設けられている。   Various structures are conceivable for forming the recesses 7 of the second resin 6 provided on the back surface of the semiconductor element 2. In the second embodiment, the concave portion 7 of the second resin 6 provided on the back surface of the semiconductor element 2 is composed of a single linear groove extending only in one direction. Similar to the first embodiment, a third resin (or metal) 8 is provided in the recess 7.

このように、半導体装置1の樹脂回路基板4の配線パターンや残銅率による反りの方向、当該半導体装置1が実装される他の基板の反り量を考慮して、半導体装置1の反りの方向性と反り量とをコントロールするために、凹部7を少なくても1本の直線的な溝として形成し、凹部7に第3の樹脂(または金属)8を配置する。   Thus, in consideration of the direction of warping due to the wiring pattern of the resin circuit board 4 of the semiconductor device 1 and the remaining copper ratio and the amount of warping of the other substrate on which the semiconductor device 1 is mounted, the direction of warping of the semiconductor device 1. In order to control the property and the amount of warpage, the recess 7 is formed as at least one linear groove, and a third resin (or metal) 8 is disposed in the recess 7.

方向性のある反り低減をする場合、反りを低減したい方向と平行する方向に凹部7の溝を形成し、第3の樹脂(または金属)8を設けるようにする。   When reducing warping with directionality, the groove of the recess 7 is formed in a direction parallel to the direction in which the warping is desired to be reduced, and the third resin (or metal) 8 is provided.

また、凹部7の溝の幅は、大きくても半導体素子2の短辺の長さ以下とする。反りを低減するためには、凹部7の有無にかかわらず、半導体素子2の裏面上に第2の樹脂6が配置されていることが必要である。   In addition, the width of the groove of the concave portion 7 is not more than the length of the short side of the semiconductor element 2 at most. In order to reduce the warpage, it is necessary that the second resin 6 be disposed on the back surface of the semiconductor element 2 regardless of the presence or absence of the recess 7.

無論、凹部7溝の幅を制御することにより、2本以上、例えば4本,8本でもよく、その場合、各凹部7の溝内に第3の樹脂(または金属)8を配置する。凹部7の溝の本数を増やすことによって、半導体装置1内の小さい領域ごとに反り量を低減することができ、半導体装置1全体の反り量を低減することが可能になる。   Of course, by controlling the width of the recess 7 groove, two or more, for example, 4 or 8, may be used. In this case, the third resin (or metal) 8 is disposed in the groove of each recess 7. By increasing the number of grooves in the recess 7, the warpage amount can be reduced for each small region in the semiconductor device 1, and the warpage amount of the entire semiconductor device 1 can be reduced.

前記実施の形態1では、図1に示すように、半導体装置1に設けられる凹部7の溝を2本以上(図1では2本を示す)とし、各溝が半導体素子2の中心を通り、半導体素子2の各辺に対して鉛直方向、かつ互いに直交する方向に延在するようにしている。   In the first embodiment, as shown in FIG. 1, the groove of the recess 7 provided in the semiconductor device 1 is two or more (two are shown in FIG. 1), and each groove passes through the center of the semiconductor element 2. Each side of the semiconductor element 2 extends in a vertical direction and in a direction orthogonal to each other.

図4は本発明の実施の形態3における半導体装置の構成図であって、図4(a)は本発明の実施の形態3における半導体装置の構成を示す斜視図であり、図4(b)は図4(a)のA−A’線断面図である。   FIG. 4 is a configuration diagram of the semiconductor device according to the third embodiment of the present invention, and FIG. 4A is a perspective view showing the configuration of the semiconductor device according to the third embodiment of the present invention, and FIG. FIG. 5 is a cross-sectional view taken along line AA ′ of FIG.

実施の形態3では、図4に示すように、半導体装置1に設けられる凹部7の溝を2本以上(図4では2本を示す)とし、各溝が半導体素子2の中心、および半導体素子2の略各角部を通り、かつ互いに直交する方向に延在するようにしている。   In the third embodiment, as shown in FIG. 4, the recess 7 provided in the semiconductor device 1 has two or more grooves (two are shown in FIG. 4), each groove being the center of the semiconductor element 2 and the semiconductor element. 2 extends substantially in the direction perpendicular to each other.

通常、半導体装置1の反りは、凹部7を形成せずに第2の樹脂6のみの場合、半導体素子2の中心が最も高い凸型、あるいは半導体素子2の中心が最も低い凹型の形状に発生する。   In general, the warp of the semiconductor device 1 occurs in a convex shape having the highest center of the semiconductor element 2 or a concave shape having the lowest center of the semiconductor element 2 when only the second resin 6 is formed without forming the concave portion 7. To do.

そのために、上記した実施の形態のように複数本の凹部7の溝を形成し、該凹部7内に第3の樹脂(または金属)8を設ける構成の場合、複数本の溝は、半導体素子2の中心を通って互いに直交する構造にすることが望ましい。既述したように、凹部7の溝幅を制御することにより、複数本の凹部7の溝を形成してもよく、その場合、各凹部7の溝に第3の樹脂(または金属)8を設けるようにする。凹部7の溝の本数を増やすことにより、半導体装置1内の小さい領域ごとに反り量を低減することができ、半導体装置1全体の反り量を低減することが可能になる。   Therefore, in the case of the structure in which the grooves of the plurality of recesses 7 are formed and the third resin (or metal) 8 is provided in the recesses 7 as in the above-described embodiment, the plurality of grooves It is desirable to make the structure perpendicular to each other through the center of the two. As described above, by controlling the groove width of the recess 7, a plurality of grooves of the recess 7 may be formed. In that case, the third resin (or metal) 8 is put in the groove of each recess 7. Make it. By increasing the number of grooves in the recess 7, the warpage amount can be reduced for each small region in the semiconductor device 1, and the warpage amount of the entire semiconductor device 1 can be reduced.

なお、本実施の形態において、第2の樹脂6の熱膨張係数は、樹脂回路基板4の熱膨張係数よりも大きく、かつ第1の樹脂5の熱膨張係数より小さいものとし、さらに第3の樹脂(または金属)8が樹脂の場合、第3の樹脂8の熱膨張係数が第2の樹脂6の熱膨張係数よりも小さいものとする。通常、第1の樹脂5は熱硬化性のエポキシ樹脂と、熱膨張係数を下げるために30〜60重量%の無機質充填材料を含み、30〜50ppmの熱膨張係数を有している。   In the present embodiment, the thermal expansion coefficient of the second resin 6 is larger than the thermal expansion coefficient of the resin circuit board 4 and smaller than the thermal expansion coefficient of the first resin 5. When the resin (or metal) 8 is a resin, it is assumed that the thermal expansion coefficient of the third resin 8 is smaller than the thermal expansion coefficient of the second resin 6. In general, the first resin 5 includes a thermosetting epoxy resin and 30 to 60% by weight of an inorganic filler in order to lower the thermal expansion coefficient, and has a thermal expansion coefficient of 30 to 50 ppm.

また、樹脂回路基板4は、通常、ガラス繊維などが編みこまれていることから、9〜20ppmの熱膨張係数を有している。第2の樹脂6は、反りを低減効果を発揮させるために、樹脂回路基板4の熱膨張係数より大きくする必要がある。   The resin circuit board 4 has a thermal expansion coefficient of 9 to 20 ppm because glass fibers are usually woven. The second resin 6 needs to be larger than the thermal expansion coefficient of the resin circuit board 4 in order to exhibit the effect of reducing warpage.

さらに、凹部7を設けずに第2の樹脂のみで半導体素子2を覆う場合よりも反りを低減するためには、第3の樹脂(または金属)8は第2の樹脂6よりも熱膨張係数を小さくする必要がある。   Furthermore, the third resin (or metal) 8 has a thermal expansion coefficient higher than that of the second resin 6 in order to reduce the warpage as compared with the case where the semiconductor element 2 is covered only with the second resin without providing the recess 7. Need to be small.

半導体素子2と樹脂回路基板4との接合は、第1の樹脂5で維持されていることから、第2の樹脂6の熱膨張係数は、第1の樹脂5の熱膨張係数よりも小さい必要がある。第1の樹脂5より熱膨張係数が大きい第2の樹脂6を用いると、第1の樹脂5の熱膨張に加えて、さらに第2の樹脂6の熱膨張により、接合部に存在する突起電極3に加わる応力は大きくなり、温度サイクルなどの負荷が半導体装置1に加わった場合、接合を維持することができなくなる。   Since the bonding between the semiconductor element 2 and the resin circuit board 4 is maintained by the first resin 5, the thermal expansion coefficient of the second resin 6 needs to be smaller than the thermal expansion coefficient of the first resin 5. There is. When the second resin 6 having a thermal expansion coefficient larger than that of the first resin 5 is used, in addition to the thermal expansion of the first resin 5, the protruding electrode existing at the joint portion is further expanded by the thermal expansion of the second resin 6. The stress applied to 3 increases, and when a load such as a temperature cycle is applied to the semiconductor device 1, the bonding cannot be maintained.

このため、樹脂回路基板4と第1の樹脂5との組み合わせにもよるが、第2の樹脂6の熱膨張係数は20〜45ppm、第3の樹脂(または金属)8は1〜40ppm程度であり、熱膨張係数は第3の樹脂(または金属)<第2の樹脂<第1の樹脂とすることが望ましい。第3の樹脂(または金属)8は、必ずしも樹脂回路基板4の熱膨張係数より大きい必要はない。   Therefore, although depending on the combination of the resin circuit board 4 and the first resin 5, the thermal expansion coefficient of the second resin 6 is 20 to 45 ppm, and the third resin (or metal) 8 is about 1 to 40 ppm. The coefficient of thermal expansion is desirably the third resin (or metal) <the second resin <the first resin. The third resin (or metal) 8 is not necessarily larger than the thermal expansion coefficient of the resin circuit board 4.

また、金型を用いて射出成形する一般的なトランスファーモールド法では、金型が高価であるために、半導体装置1の半導体素子2のサイズや厚み、あるいは樹脂回路基板4の配線パターンや厚みなどを変更した場合に、同様の反り低減効果を得るために第2の樹脂6の厚みを変更することはコストがかかる。   Further, in a general transfer mold method in which injection molding is performed using a mold, the mold is expensive, and therefore the size and thickness of the semiconductor element 2 of the semiconductor device 1 or the wiring pattern and thickness of the resin circuit board 4 are used. If the thickness of the second resin 6 is changed in order to obtain the same warp reduction effect, it is costly.

また、ディスペンス法などにより第2の樹脂6を設ける方法は、第2の樹脂6の厚みのばらつきが大きく、その結果、半導体装置1の反り量がばらつくことになる。そこで、第2の樹脂6の熱膨張係数を樹脂回路基板4の熱膨張係数以上、かつ第1の樹脂5の熱膨張係数以下にし、さらに凹部7を設けることによって定量的に反りをコントロールすることが必要になる。   In addition, in the method of providing the second resin 6 by the dispensing method or the like, the thickness of the second resin 6 varies greatly, and as a result, the warpage amount of the semiconductor device 1 varies. Therefore, the warpage is quantitatively controlled by setting the thermal expansion coefficient of the second resin 6 to be equal to or higher than the thermal expansion coefficient of the resin circuit board 4 and lower than the thermal expansion coefficient of the first resin 5 and further providing the recess 7. Is required.

凹部7の寸法は、具体的な一例として、10ミリメートル角の半導体素子2を実装している場合、凹部7を2本の直線状の溝とすると、8ミリメートル程度の幅、50マイクロメートル程度の高さで形成すればよい。その後、第3の樹脂(または金属)8が樹脂の場合、第3の樹脂8を設ける際に凹部7が所定の寸法に加工されているために、ディスペンスなどで第3の樹脂8を配置しても、反りのばらつきは大きくない。   As a specific example, when the semiconductor element 2 of 10 mm square is mounted, the dimension of the concave portion 7 is about 8 mm wide and about 50 micrometers when the concave portion 7 is two linear grooves. What is necessary is just to form by height. After that, when the third resin (or metal) 8 is a resin, the concave portion 7 is processed to a predetermined size when the third resin 8 is provided. Therefore, the third resin 8 is disposed by dispensing or the like. However, the variation in warpage is not large.

しかし、第3の樹脂(または金属)8が金属の場合には、所定の寸法に加工された凹部7に、所定の寸法に加工された金属8を配置することになるため、反りのばらつきは大きくならない。   However, when the third resin (or metal) 8 is a metal, the metal 8 processed to a predetermined dimension is disposed in the concave portion 7 processed to a predetermined dimension, so that variation in warpage is not caused. It doesn't grow up.

また、第2の樹脂6のガラス転移温度は、樹脂回路基板4のガラス転移温度より低いことが望ましい。さらに、第3の樹脂(または金属)8は、第2の樹脂6よりも低いガラス転移温度であることが望ましい。通常、樹脂回路基板4は150〜220℃のガラス転移温度である。また、第2の樹脂のガラス転移温度は120〜190℃であり、第3の樹脂は100〜170℃のガラス転移温度である。   The glass transition temperature of the second resin 6 is preferably lower than the glass transition temperature of the resin circuit board 4. Furthermore, it is desirable that the third resin (or metal) 8 has a glass transition temperature lower than that of the second resin 6. Usually, the resin circuit board 4 has a glass transition temperature of 150 to 220 ° C. The glass transition temperature of the second resin is 120 to 190 ° C, and the third resin has a glass transition temperature of 100 to 170 ° C.

樹脂は、ガラス転移温度以上の温度になると、その弾性率は急激に低くなる。弾性率が低くなれば、反りを発生するための応力は小さくなり、反りは低減される。このため第2の樹脂6の一部が、第3の樹脂8に置き換わることにより、特に、高温時の樹脂回路基板4上で半導体素子2を覆う部分の弾性率が見かけ上小さくなり、反りを発生する応力が抑えられ、反り量が低減される。第3の樹脂8のみの弾性率が低くなることにより、半導体装置1の反りを部分的に緩和する効果もある。   When the temperature of the resin becomes equal to or higher than the glass transition temperature, the elastic modulus of the resin rapidly decreases. When the elastic modulus is lowered, the stress for generating the warp is reduced and the warp is reduced. For this reason, when a part of the second resin 6 is replaced with the third resin 8, in particular, the elastic modulus of the portion covering the semiconductor element 2 on the resin circuit board 4 at the time of high temperature is apparently reduced, and the warp is reduced. The generated stress is suppressed and the amount of warpage is reduced. Since the elastic modulus of only the third resin 8 is lowered, there is also an effect of partially relaxing the warp of the semiconductor device 1.

無論、既述したように、金型を用いて射出成形することにより第2の樹脂6を成形する一般的なトランスファーモールド手法や、ディスペンスなどで第2の樹脂6を設ける方法と比べて、凹部7を設けて、所定の寸法に形成された凹部7に第3の樹脂(または金属)8を配置することが、定量的に反りをコントロールするために有効であることは言うまでもない。   Of course, as described above, the concave portion is smaller than the general transfer molding method of molding the second resin 6 by injection molding using a mold or the method of providing the second resin 6 by dispensing or the like. It is needless to say that it is effective to quantitatively control the warpage by providing the third resin (or metal) 8 in the concave portion 7 formed to have a predetermined size by providing 7.

次に、本発明における半導体装置の製造方法について説明する。本発明における半導体装置は、フリップチップ実装工程、封止樹脂形成工程、封止樹脂凹部形成工程、凹部樹脂塗布工程、半導体装置切断工程などを経て製造される。樹脂回路基板は、半導体装置が多数個取れるように形成されているものとする。   Next, a method for manufacturing a semiconductor device in the present invention will be described. The semiconductor device in the present invention is manufactured through a flip chip mounting process, a sealing resin forming process, a sealing resin recess forming process, a recess resin applying process, a semiconductor device cutting process, and the like. The resin circuit board is formed so that a large number of semiconductor devices can be taken.

図5は本発明の半導体装置の製造方法に係る実施の形態の製造工程のフローチャート、図6は本実施の形態における各製造工程の半導体装置の状態を示す斜視図である。   FIG. 5 is a flowchart of the manufacturing process according to the embodiment of the semiconductor device manufacturing method of the present invention, and FIG. 6 is a perspective view showing the state of the semiconductor device in each manufacturing process according to the present embodiment.

ステップ(S1)において、図6(a)に示すフリップチップ実装が行われ、実施の形態1にて説明したように、半導体素子2が樹脂回路基板4に接合される。接合のために半導体素子2と樹脂回路基板4間の隙間に熱硬化性エポキシ樹脂である第1の樹脂5が設けられて、フリップチップ実装された樹脂回路基板9となる。   In step (S1), the flip chip mounting shown in FIG. 6A is performed, and the semiconductor element 2 is bonded to the resin circuit board 4 as described in the first embodiment. A first resin 5, which is a thermosetting epoxy resin, is provided in the gap between the semiconductor element 2 and the resin circuit board 4 for bonding, thereby forming a resin circuit board 9 that is flip-chip mounted.

次に、ステップ(S2)において、図6(b)に示す封止樹脂形成が行われ、フリップチップ接合された樹脂回路基板9上に第2の樹脂6を形成する。本実施の形態では、金型を用いて射出成形する一般的なトランスファーモールド手法を用いて、第2の樹脂6を熱硬化により成形して、第2の樹脂6が形成された樹脂回路基板10となる。   Next, in step (S2), the sealing resin shown in FIG. 6B is formed, and the second resin 6 is formed on the resin circuit board 9 that is flip-chip bonded. In the present embodiment, the resin circuit board 10 on which the second resin 6 is formed by molding the second resin 6 by thermosetting using a general transfer mold method in which injection molding is performed using a mold. It becomes.

その後、ステップ(S3)において、図6(c)に示す封止樹脂凹部形成が行われ、第2の樹脂6が形成された樹脂回路基板10に凹部7を形成する。本実施の形態では、第2の樹脂6が形成された樹脂回路基板10に、回転ブレード11を移動させることによって凹部7を形成して樹脂回路基板12を得る。例えば、凹部7を形成するために、回転ブレード11を複数回往復移動する。   Thereafter, in step (S3), the concave portion 7 is formed in the resin circuit board 10 on which the sealing resin concave portion shown in FIG. 6C is formed and the second resin 6 is formed. In the present embodiment, the concave portion 7 is formed by moving the rotary blade 11 on the resin circuit board 10 on which the second resin 6 is formed, and the resin circuit board 12 is obtained. For example, the rotary blade 11 is reciprocated a plurality of times to form the recess 7.

次に、ステップ(S4)において、図6(d)に示す凹部樹脂塗布が行われ、本実施の形態では、ディスペンサ13によって凹部7に第3の樹脂8を供給する。あらかじめ凹部7が形成されているために、その凹部7に容易に第3の樹脂8を流し込むことが可能である。その後、第3の樹脂8が熱硬化して、第3の樹脂8が設けられた樹脂回路基板14となる。   Next, in step (S4), the concave resin application shown in FIG. 6D is performed, and in the present embodiment, the third resin 8 is supplied to the concave portion 7 by the dispenser 13. Since the recess 7 is formed in advance, the third resin 8 can be easily poured into the recess 7. Thereafter, the third resin 8 is thermally cured to form a resin circuit board 14 provided with the third resin 8.

ステップ(S5)において、図6(e)に示す半導体装置切断が行われ、樹脂回路基板14を分割する。本実施の形態では、回転ブレード15により樹脂回路基板14を分割し、図6(f)に示す個々の半導体装置1が製造される。   In step (S5), the semiconductor device shown in FIG. 6E is cut, and the resin circuit board 14 is divided. In the present embodiment, the resin circuit board 14 is divided by the rotating blade 15, and the individual semiconductor devices 1 shown in FIG. 6F are manufactured.

本発明は、樹脂回路基板に半導体素子がフリップチップ実装される小型軽量の半導体装置およびその製造方法に適用できる。   The present invention can be applied to a small and lightweight semiconductor device in which a semiconductor element is flip-chip mounted on a resin circuit board and a manufacturing method thereof.

1 半導体装置
2 半導体素子
3 突起電極
4 樹脂回路基板
5 第1の樹脂
6 第2の樹脂
7 凹部
8 第3の樹脂または金属
9 フリップチップ実装された樹脂回路基板
10 第2の樹脂により封止樹脂が形成された樹脂回路基板
11,15 回転ブレード
12 封止樹脂に凹部を形成した樹脂回路基板
13 ディスペンサ
14 第3の樹脂により封止樹脂が形成された樹脂回路基板
DESCRIPTION OF SYMBOLS 1 Semiconductor device 2 Semiconductor element 3 Protruding electrode 4 Resin circuit board 5 1st resin 6 2nd resin 7 Recessed part 8 3rd resin or metal 9 Resin circuit board 10 flip-chip mounted The sealing resin by 2nd resin Resin circuit boards 11, 15 formed with a rotating blade 12 Resin circuit board 13 with a recess formed in the sealing resin 13 Dispenser 14 Resin circuit board with a sealing resin formed of a third resin

Claims (7)

突起電極が形成された半導体素子と、前記半導体素子が前記突起電極を介して実装された回路基板と、前記半導体素子と前記回路基板間の隙間を封止する第1の樹脂と、前記半導体素子の実装面と対向する上面を覆い、かつ前記半導体素子の上部に凹部が形成される第2の樹脂とを備え、第3の樹脂または金属が前記凹部に設けられることを特徴とする半導体装置。   A semiconductor element on which a protruding electrode is formed; a circuit board on which the semiconductor element is mounted via the protruding electrode; a first resin that seals a gap between the semiconductor element and the circuit board; and the semiconductor element A semiconductor device comprising: a second resin that covers an upper surface facing the mounting surface of the semiconductor element and has a second resin in which a recess is formed on the semiconductor element, and a third resin or metal is provided in the recess. 前記凹部の高さが、前記第2の樹脂で覆われる部分より低く、かつ前記半導体素子の裏面より高いことを特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein a height of the concave portion is lower than a portion covered with the second resin and higher than a back surface of the semiconductor element. 前記凹部が少なくとも1本の直線状の溝によって形成され、前記直線状の溝の幅が前記半導体素子の短辺の幅より小さいことを特徴とする請求項1または2に記載の半導体装置。   3. The semiconductor device according to claim 1, wherein the recess is formed by at least one linear groove, and the width of the linear groove is smaller than the width of the short side of the semiconductor element. 複数本の前記溝が、前記半導体素子の中心上で交差することを特徴とする請求項1〜3のいずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the plurality of grooves intersect on the center of the semiconductor element. 前記第2の樹脂の熱膨張係数が、前記回路基板の熱膨張係数よりも大きく、かつ前記第1の樹脂の熱膨張係数より小さく、前記第3の樹脂または金属の熱膨張係数が前記第2の樹脂の熱膨張係数よりも小さいことを特徴とする請求項1〜請求項4のいずれか1項に記載の半導体装置。   The thermal expansion coefficient of the second resin is larger than the thermal expansion coefficient of the circuit board and smaller than the thermal expansion coefficient of the first resin, and the thermal expansion coefficient of the third resin or metal is the second thermal expansion coefficient. The semiconductor device according to claim 1, wherein the coefficient of thermal expansion is smaller than that of the resin. 前記第2の樹脂のガラス転移温度が前記回路基板のガラス転移温度よりも低く、前記第3の樹脂または金属のガラス転移温度が前記第2の樹脂のガラス転移温度よりも低いことを特徴とする請求項1〜5のいずれか1項に記載の半導体装置。   The glass transition temperature of the second resin is lower than the glass transition temperature of the circuit board, and the glass transition temperature of the third resin or metal is lower than the glass transition temperature of the second resin. The semiconductor device according to claim 1. 基板の一主面に第1の樹脂を塗布する工程と、前記第1の樹脂を介して前記回路基板の一主面上に複数の半導体素子を実装する工程と、実装した前記複数の半導体素子を前記第2の樹脂で封止する工程と、前記第2の樹脂における前記半導体素子の上部に凹部を形成する工程と、前記凹部に第3の樹脂または金属を塗布する工程と、前記半導体素子が少なくとも1個含まれるように前記基板を分割して、それぞれを半導体装置とする工程とを有することを特徴とする半導体装置の製造方法。   Applying a first resin to one principal surface of the substrate; mounting a plurality of semiconductor elements on one principal surface of the circuit board via the first resin; and mounting the plurality of semiconductor elements Sealing with the second resin, forming a recess in the upper portion of the semiconductor element in the second resin, applying a third resin or metal to the recess, and the semiconductor element Dividing the substrate so that at least one is included, and forming each of the substrates into a semiconductor device.
JP2010112023A 2010-05-14 2010-05-14 Semiconductor device and manufacturing method thereof Expired - Fee Related JP5877291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010112023A JP5877291B2 (en) 2010-05-14 2010-05-14 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010112023A JP5877291B2 (en) 2010-05-14 2010-05-14 Semiconductor device and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2011243624A true JP2011243624A (en) 2011-12-01
JP2011243624A5 JP2011243624A5 (en) 2013-05-02
JP5877291B2 JP5877291B2 (en) 2016-03-08

Family

ID=45410029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010112023A Expired - Fee Related JP5877291B2 (en) 2010-05-14 2010-05-14 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5877291B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165111A1 (en) * 2011-05-31 2012-12-06 株式会社村田製作所 Method for producing multi-layer substrate and multi-layer substrate
JP2013038410A (en) * 2011-07-13 2013-02-21 Ajinomoto Co Inc Semiconductor package
JP2017168485A (en) * 2016-03-14 2017-09-21 日本電気株式会社 Semiconductor device and method of manufacturing the same
KR20170107318A (en) * 2016-03-15 2017-09-25 삼성전기주식회사 Electronic component package and manufacturing method for the same
JP2018067655A (en) * 2016-10-20 2018-04-26 富士電機株式会社 Semiconductor device and semiconductor device manufacturing method
JP2018181961A (en) * 2017-04-06 2018-11-15 株式会社デンソー Electronic device
JP2018207212A (en) * 2017-05-31 2018-12-27 京セラ株式会社 Crystal device
US10367102B2 (en) 2017-03-09 2019-07-30 Canon Kabushiki Kaisha Electronic component and equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291434A (en) * 1992-04-13 1993-11-05 Mitsubishi Electric Corp Semiconductor device sealed with resin and its manufacture
JPH11274375A (en) * 1998-03-26 1999-10-08 Mitsubishi Electric Corp Semiconductor device and its manufacture
JP2001127212A (en) * 1999-10-26 2001-05-11 Hitachi Ltd Semiconductor device and manufacturing method of semiconductor device
JP2004186651A (en) * 2002-12-06 2004-07-02 Nec Corp Semiconductor device and its manufacture
JP2007066960A (en) * 2005-08-29 2007-03-15 Seiko Instruments Inc Semiconductor package, circuit board, and process for manufacturing semiconductor package

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291434A (en) * 1992-04-13 1993-11-05 Mitsubishi Electric Corp Semiconductor device sealed with resin and its manufacture
JPH11274375A (en) * 1998-03-26 1999-10-08 Mitsubishi Electric Corp Semiconductor device and its manufacture
JP2001127212A (en) * 1999-10-26 2001-05-11 Hitachi Ltd Semiconductor device and manufacturing method of semiconductor device
JP2004186651A (en) * 2002-12-06 2004-07-02 Nec Corp Semiconductor device and its manufacture
JP2007066960A (en) * 2005-08-29 2007-03-15 Seiko Instruments Inc Semiconductor package, circuit board, and process for manufacturing semiconductor package

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165111A1 (en) * 2011-05-31 2012-12-06 株式会社村田製作所 Method for producing multi-layer substrate and multi-layer substrate
JP2013038410A (en) * 2011-07-13 2013-02-21 Ajinomoto Co Inc Semiconductor package
JP2017168485A (en) * 2016-03-14 2017-09-21 日本電気株式会社 Semiconductor device and method of manufacturing the same
KR20170107318A (en) * 2016-03-15 2017-09-25 삼성전기주식회사 Electronic component package and manufacturing method for the same
US10388614B2 (en) 2016-03-15 2019-08-20 Samsung Electronics Co., Ltd. Fan-out semiconductor package and method of manufacturing same
KR102015335B1 (en) * 2016-03-15 2019-08-28 삼성전자주식회사 Electronic component package and manufacturing method for the same
JP2018067655A (en) * 2016-10-20 2018-04-26 富士電機株式会社 Semiconductor device and semiconductor device manufacturing method
US10903130B2 (en) 2016-10-20 2021-01-26 Fuji Electric Co., Ltd. Semiconductor apparatus and manufacturing method of semiconductor apparatus
US10367102B2 (en) 2017-03-09 2019-07-30 Canon Kabushiki Kaisha Electronic component and equipment
JP2018181961A (en) * 2017-04-06 2018-11-15 株式会社デンソー Electronic device
JP2018207212A (en) * 2017-05-31 2018-12-27 京セラ株式会社 Crystal device

Also Published As

Publication number Publication date
JP5877291B2 (en) 2016-03-08

Similar Documents

Publication Publication Date Title
JP5877291B2 (en) Semiconductor device and manufacturing method thereof
KR101919248B1 (en) Semiconductor device package with warpage control structure
US8207607B2 (en) Semiconductor device with resin mold
JP5213736B2 (en) Semiconductor device
US8247900B2 (en) Flip chip package having enhanced thermal and mechanical performance
US9373559B2 (en) Low-stress dual underfill packaging
WO2008050635A1 (en) Semiconductor element mounting structure and semiconductor element mounting method
JP5980566B2 (en) Semiconductor device and manufacturing method thereof
JP6726309B2 (en) Highly reliable electronic package structure, circuit board and device
JP5556808B2 (en) Electronic device, substrate, and method of manufacturing electronic device
JP5728641B2 (en) Semiconductor device
JP2008153601A (en) Mounting structure and semiconductor device
KR102494332B1 (en) Electronic Component Package
JP5078631B2 (en) Semiconductor device
KR101905526B1 (en) Lead frame strip which can be filled with resin and method for manufacturing the same lead frame strip and semiconductor package substrate
JP2011061055A (en) Method of manufacturing semiconductor device
KR20100020771A (en) Method for fabricating semiconductor package
JP2009021366A (en) Semiconductor device
JP5741458B2 (en) Mounting method of semiconductor package
JP2012080024A (en) Semiconductor device, method of manufacturing semiconductor device, and package
JP2009260302A (en) Semiconductor package
JP2010114243A (en) Semiconductor device
JPWO2018193614A1 (en) Semiconductor device
JP2007194543A (en) Semiconductor device, and method of manufacturing same
JP2006049769A (en) Semiconductor device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130318

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140929

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150525

R151 Written notification of patent or utility model registration

Ref document number: 5877291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees