JP2011241606A - Caisson sinking method - Google Patents

Caisson sinking method Download PDF

Info

Publication number
JP2011241606A
JP2011241606A JP2010114888A JP2010114888A JP2011241606A JP 2011241606 A JP2011241606 A JP 2011241606A JP 2010114888 A JP2010114888 A JP 2010114888A JP 2010114888 A JP2010114888 A JP 2010114888A JP 2011241606 A JP2011241606 A JP 2011241606A
Authority
JP
Japan
Prior art keywords
caisson
concrete
protective layer
leading blade
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010114888A
Other languages
Japanese (ja)
Inventor
Keiichi Kato
圭一 加藤
Hiroshi Saito
浩 斉藤
Toshiyuki Hoshino
利幸 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010114888A priority Critical patent/JP2011241606A/en
Publication of JP2011241606A publication Critical patent/JP2011241606A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming a skeleton structure caisson, which can sink by own weight depending on excavation of ground under the inside of the caisson, on a ground and making the same to stably sink by the excavation, upon structuring an underground structure.SOLUTION: In a caisson sinking method, a suitable spacing is provided between a ground wall surface formed by the outermost peripheral part of a leading blade in a lower part of a caisson and an outer peripheral surface of the caisson (a caisson forming form, a caisson wall concrete surface, or a protective layer surface formed on the caisson wall concrete surface), and an aggregate layer is formed in the spacing to decrease friction when the caisson is sinking. Accordingly, the caisson sinks stably by its own weight.

Description

本発明は、地上で構築される地下室、地下貯水槽などの地下構造物用ケーソン(周壁)を、地下構造物用ケーソン(周壁)で囲まれた地面を掘削して地下に自重で沈設させる際の地下構造物用自重沈下ケーソンの工法に関する。 The present invention relates to a case where a caisson (surrounding wall) for an underground structure such as a basement or an underground water tank constructed on the ground is excavated on the ground surrounded by the caisson (surrounding wall) for an underground structure and is submerged under its own weight. This is related to the construction method of self-sink caisson for underground structures.

従来より地下室,地下貯水槽などからなる地下構造物を地下に構築する施工に、いわゆる潜函工法といわれる工法がある。潜函工法は、地上で構築した地下構造物用ケーソン(周壁)を地下に沈設する工法であり、水中に地下構造物を沈めて行なう工法と、地下構造物用ケーソン(周壁)で囲まれた内側の地面を掘削しながら地下構造物用ケーソン(周壁)をその自重によって徐々に地下までに沈下させて行なう方法とがある。後者の方法においては、下部に先行刃が設けられたケーソン躯体構造(内側に底を有していない周枠形状)のオープン型によって行なわれる。 Conventionally, there is a so-called submersible construction method for constructing an underground structure consisting of a basement, an underground water tank, etc. in the basement. The submersible construction method is a method in which the caisson (surrounding wall) for underground structures built on the ground is submerged in the underground. The construction method involves submerging the underground structure in water and the inside surrounded by the caisson for the underground structure (surrounding wall). There is a method in which the caisson (surrounding wall) for underground structures is gradually submerged to the underground by its own weight while excavating the ground. The latter method is performed by an open type of caisson housing structure (peripheral frame shape having no bottom on the inside) in which a leading blade is provided at the lower part.

多くのオープン型のケーソンは、地下構造物用ケーソン(周壁)が設けられその後、ケーソンを地下に沈設させる、いわゆる潜函工法が行なわれる。このため、地下構造物の基盤は、地下構造物用ケーソン(周壁)を地下に沈設させた後に、施工される。オープン型のケーソンを潜函工法によって地下に沈設させる施工では、こういったケーソンの製作が地上で行なわれるため、地下で地下構造物そのものを構築する場合と比較して、土壌壁面の崩壊が無く、作業の負担が大幅に軽減され、期間が短縮され、コストが抑えられるなど、様々な利点がある。 Many open-type caissons are provided with a caisson (surrounding wall) for an underground structure, and then a so-called submersible construction method in which the caisson is sunk underground. For this reason, the basement of an underground structure is constructed after the caisson (surrounding wall) for underground structures is sunk in the basement. In the construction where an open caisson is submerged by the submerged method, the caisson is produced on the ground. There are various advantages such as the burden of work is greatly reduced, the period is shortened, and the cost is reduced.

例えば特許文献1では「この発明にかかる地下構造物の構築方法は、地盤面でコンクリート型枠にコンクリートを打設してコンクリート周壁を構築したあと、コンクリート周壁からコンクリート型枠を撤去した状態で、コンクリート周壁の内側空間における地盤の掘削を行ってコンクリート周壁を沈下させる。コンクリート型枠が存在しない状態のコンクリート周壁を沈下させるので、コンクリート周壁の取り扱いが容易である。」と書かれている。
特開2001−323435
For example, in Patent Document 1, “The construction method of an underground structure according to the present invention is to place concrete on a concrete formwork on the ground surface to construct a concrete peripheral wall, and then remove the concrete formwork from the concrete peripheral wall. The excavation of the ground in the inner space of the concrete peripheral wall causes the concrete peripheral wall to sink, and the concrete peripheral wall without the concrete formwork sinks, so that the concrete peripheral wall is easy to handle. "
JP 2001-323435 A

しかしながら特許文献1の方法ではケーソンを自重で安定的に沈下するためには不都合があった。くさび状の刃先で地盤を削り地盤の壁面を形成していくわけであるがケーソンの外周部との摩擦が一定ではなく不等沈下等を起こすことがあった。本発明はこういった不等沈下を防ぐため摩擦が一定ではないという問題を解消しケーソンの沈下を安定させることにある。 However, the method of Patent Document 1 has a disadvantage in order to stably sink the caisson with its own weight. The ground is ground with a wedge-shaped cutting edge, and the wall surface of the ground is formed. However, the friction with the outer peripheral portion of the caisson is not constant and may cause uneven settlement. The present invention is to solve the problem that friction is not constant in order to prevent such unequal settlement and to stabilize caisson settlement.

本発明者らは上記の課題を解決するため鋭意研究を行い次のような手法をとった。すなわち地上に地下室のコンクリートミルクを充填しコンクリート壁を構成するための外周壁躯体構成し自重沈下するケーソンにおいてケーソンはコンクリートミルクを充填するための外側型枠と内側型枠から構成されこのケーソン下端部分全周囲にわたって下側が尖っている逆三角形形状の先行刃を設けておき、先行刃最外側を通る鉛直線である先行刃で形成した掘削面とケーソンの外枠パネルと内枠パネル間にコンクリートを形成した後ケーソンの外枠パネルの外側あるいは外枠パネルをはずした状態でコンクリート外側面あるいはコンクリート外側表面に例えば防水といった表面保護するための保護層を形成した保護層表面のとの間の間隔が20mmから200mmとなるように設定しこの空間にケーソン沈下時の摩擦を減らす骨材の層を形成しておけばよい。骨材の層は掘削面とケーソンの間の沈下時に抵抗になることを防ぐためであり、このときの間隔の値が20mmから200mmの範囲であればよく20mm以下では摩擦低減の効果が小さくまた200mm以上であると摩擦低減の効果が大きくなりすぎてしまう。 In order to solve the above-mentioned problems, the present inventors have conducted intensive research and adopted the following method. That is, the caisson is composed of an outer mold and an inner mold to fill the concrete milk in the caisson that is composed of the outer peripheral wall frame for filling the concrete milk in the basement and forming the concrete wall on the ground. A leading edge with an inverted triangle shape with a sharp point on the lower side is provided over the entire circumference, and concrete is placed between the excavation surface formed by the leading edge, which is a vertical line passing through the outermost edge of the leading edge, and the outer frame panel and inner frame panel of the caisson. After forming, the distance between the outer surface of the outer frame panel of the caisson or the surface of the protective layer in which the outer surface of the outer frame panel is removed and a protective layer for protecting the surface such as waterproofing is formed on the concrete outer surface or the concrete outer surface. It is set to be 20mm to 200mm, and this space reduces the friction when caisson sinks. It is sufficient to form a. The aggregate layer is to prevent resistance when sinking between the excavation surface and the caisson, and the distance value at this time should be in the range of 20 mm to 200 mm. If it is 200 mm or more, the effect of reducing friction becomes too large.

この骨材層は流動性がありケーソンの外枠パネルの外側あるいは外枠パネルをはずした状態でのコンクリート外側面あるいは前記コンクリート外側表面に保護層を形成した保護層を有するケーソン外周面と先行刃による掘削面の隙間および隙間上部に配置しケーソンの外枠パネルの外側あるいはケーソンの外枠パネルと内枠パネル間にコンクリートを形成した後該ケーソンの外枠パネルをはずした状態でコンクリート外側面あるいは該コンクリート外側表面に保護層を形成した保護層表面のとの間の間隔に流れ込むようにしておけばよい。すなわち先行刃で形成した掘削面とケーソンの外枠パネルの外側あるいはコンクリート面外側あるいはコンクリート外側表面に保護層を形成した保護層表面のとの間の隙間に自重沈下に応じて骨材が流れ込むようにすればよい。 This aggregate layer is fluid and has a caisson outer peripheral surface having a protective layer in which a protective layer is formed on the outer surface of the outer wall panel of the caisson or the outer surface of the concrete with the outer frame panel removed or on the outer surface of the concrete. The concrete outer surface or the outer frame panel of the caisson is removed after the concrete is formed between the outer frame panel of the caisson and the outer frame panel of the caisson and the inner frame panel. What is necessary is just to make it flow into the space | interval between the protective layer surface which formed the protective layer in the concrete outer surface. That is, aggregate flows into the gap between the excavation surface formed by the leading blade and the outer surface of the outer frame panel of the caisson, the outer surface of the concrete surface or the surface of the protective layer formed with the protective layer on the surface of the concrete according to its own weight subsidence. You can do it.

骨材層の骨材の径は20mm以下であればよくさらに好ましくは5mm以下であればよい。保護層の厚みは0.1mm〜100mmであればよく、保護層はたとえが吹き付け防水層の場合は0.1mm〜0.5mmが好適であり、貼り付け防水層は0.4mm〜7mmが好適である。また発泡スチロールの場合は20mm〜100mmが好適である。 The diameter of the aggregate of the aggregate layer may be 20 mm or less, more preferably 5 mm or less. The thickness of the protective layer may be 0.1 mm to 100 mm, and the protective layer is preferably 0.1 mm to 0.5 mm in the case of a sprayed waterproof layer, and the attached waterproof layer is preferably 0.4 mm to 7 mm. It is. Moreover, in the case of a polystyrene foam, 20 mm-100 mm are suitable.

本発明によれば外周壁躯体構成し該外周壁躯体の内側空間を掘削することによって自重沈下させる場合にケーソンの外周部と先行刃の最外周部が形成する地盤の壁面との間に20mmから200mmとなるように設定しこの部分に骨材層を形成し沈下時に骨材がこの間に供給されることによりケーソン沈下の摩擦が低減され安定したケーソンの沈下が可能となる。 According to the present invention, when the outer wall is constructed and the weight is subsided by excavating the inner space of the outer wall, the distance between the outer wall of the caisson and the wall of the ground formed by the outermost wall of the leading blade is 20 mm. The thickness is set to 200 mm, an aggregate layer is formed in this portion, and the aggregate is supplied during subsidence, whereby the friction of caisson settlement is reduced and stable caisson subsidence is possible.

以下に本発明を実施するための最良の形態例について図に基づいて詳細に説明していく。 The best mode for carrying out the present invention will be described below in detail with reference to the drawings.

図1は本発明の1実施形態を示しており先行刃とケーソン壁および沈下させる地盤との関係を示している断面図である。1は先行刃、2はケーソンコンクリート壁、3はケーソンコンクリート内側表面、4はケーソンコンクリート外側表面、5は防水等の保護層である。6は先行刃付ケーソンがケーソン内側下面を掘削することにより沈下する地盤で10はその掘削面を示している。7は骨材(砂等)でありこの骨材の存在がケーソン外周面(保護層表面)と掘削面の摩擦を減じることとなり掘削により安定的に先行刃付ケーソンの沈下が可能となる。ここで骨材の径は20mm以下であればよく5mm以下であれば最適である。 FIG. 1 shows an embodiment of the present invention, and is a cross-sectional view showing the relationship between a leading blade, a caisson wall, and the ground to sink. 1 is a leading blade, 2 is a caisson concrete wall, 3 is a caisson concrete inner surface, 4 is a caisson concrete outer surface, and 5 is a protective layer such as waterproofing. Reference numeral 6 denotes a ground which sinks when a caisson with a leading blade excavates the lower inner surface of the caisson, and 10 denotes the excavation surface. 7 is an aggregate (sand, etc.). The presence of this aggregate reduces the friction between the caisson outer peripheral surface (protective layer surface) and the excavation surface, and the caisson with the leading blade can be stably settled by excavation. Here, the diameter of the aggregate may be 20 mm or less, and is optimal if it is 5 mm or less.

8は先行刃最外周部を通る鉛直線であり先行刃が沈下することにより掘削面10が形成されていく。ここではケーソンの最外周は保護層であるのでこの保護層の外周部と掘削面の幅すなわち9の骨材層の幅は安定的に先行刃付ケーソンが沈下するためには20mmから200mmであればよい。ここで保護層はいろいろあるが例えば吹き付け防水層の場合は0.1mm〜0.5mm、貼り付け防水層は0.4mm〜7mm、発泡スチロールの場合は20mm〜100mmが適当である。 Reference numeral 8 denotes a vertical line passing through the outermost peripheral portion of the leading blade, and the excavation surface 10 is formed when the leading blade sinks. Here, since the outermost periphery of the caisson is a protective layer, the width of the outer peripheral portion of the protective layer and the excavation surface, that is, the width of the aggregate layer 9 should be 20 mm to 200 mm in order for the caisson with the leading blade to sink stably. That's fine. Here, there are various protective layers. For example, 0.1 mm to 0.5 mm is suitable for the sprayed waterproof layer, 0.4 mm to 7 mm is suitable for the attached waterproof layer, and 20 mm to 100 mm is suitable for the polystyrene foam.

図2は本発明の他の実施形態を示しており先行刃とケーソン壁および沈下させる地盤との関係を示している断面図である。1は先行刃、2はケーソンコンクリート壁、3はケーソンケーソンコンクリート内側表面、4はケーソンコンクリート外側表面、12は外側型枠パネルをコンクリートケーソン形成した後もそのまま取り外さずに残したものである。6は先行刃付ケーソンがケーソン内側下面を掘削することにより沈下する地盤で10はその掘削面を示している。7は骨材(砂等)でありこの骨材の存在がケーソン外周面(保護層表面)と掘削面の摩擦を減じることとなり掘削により安定的に先行刃付ケーソンの沈下が可能となる。ここで骨材の径は20mm以下であればよく5mm以下であれば最適である。 FIG. 2 shows another embodiment of the present invention, and is a cross-sectional view showing the relationship between the leading blade, the caisson wall, and the ground to sink. 1 is a leading blade, 2 is a caisson concrete wall, 3 is a caisson caisson concrete inner surface, 4 is a caisson concrete outer surface, and 12 is left without being removed even after the outer formwork panel is formed into a concrete caisson. Reference numeral 6 denotes a ground which sinks when a caisson with a leading blade excavates the lower inner surface of the caisson, and 10 denotes the excavation surface. 7 is an aggregate (sand, etc.). The presence of this aggregate reduces the friction between the caisson outer peripheral surface (protective layer surface) and the excavation surface, and the caisson with the leading blade can be stably settled by excavation. Here, the diameter of the aggregate may be 20 mm or less, and is optimal if it is 5 mm or less.

8は先行刃最外周部を通る鉛直線であり先行刃が沈下することにより掘削面10が形成されていく。ここではケーソンの最外周は12の外側型枠パネルの外側であるのでこの外側型枠パネルの外周部と掘削面の幅すなわち9の骨材層の幅は安定的に先行刃付ケーソンが沈下するためには20mmから200mmであればよい。 Reference numeral 8 denotes a vertical line passing through the outermost peripheral portion of the leading blade, and the excavation surface 10 is formed when the leading blade sinks. Here, since the outermost periphery of the caisson is the outside of the 12 outer formwork panels, the width of the outer periphery of the outer formwork panel and the excavation surface, that is, the width of the aggregate layer 9 stably sinks the caisson with the leading blade. For this purpose, it is sufficient to be 20 mm to 200 mm.

図3は本発明の他の実施形態を示しており先行刃とケーソン壁および沈下させる地盤との関係を示している断面図である。1は先行刃、2はケーソンコンクリート壁、3はケーソンケーソンコンクリート内側表面、4はケーソンコンクリート外側表面である。6は先行刃付ケーソンがケーソン内側下面を掘削することにより沈下する地盤で10はその掘削面を示している。7は骨材(砂等)でありこの骨材の存在がケーソン外周面(保護層表面)と掘削面の摩擦を減じることとなり掘削により安定的に先行刃付ケーソンの沈下が可能となる。ここで骨材の径は20mm以下であればよく5mm以下であれば最適である。 FIG. 3 shows another embodiment of the present invention, and is a cross-sectional view showing the relationship between the leading blade, the caisson wall, and the ground to sink. 1 is a leading edge, 2 is a caisson concrete wall, 3 is a caisson caisson concrete inner surface, and 4 is a caisson concrete outer surface. Reference numeral 6 denotes a ground which sinks when a caisson with a leading blade excavates the lower inner surface of the caisson, and 10 denotes the excavation surface. 7 is an aggregate (sand, etc.). The presence of this aggregate reduces the friction between the caisson outer peripheral surface (protective layer surface) and the excavation surface, and the caisson with the leading blade can be stably settled by excavation. Here, the diameter of the aggregate may be 20 mm or less, and is optimal if it is 5 mm or less.

8は先行刃最外周部を通る鉛直線であり先行刃が沈下することにより掘削面10が形成されていく。ここではケーソンの最外周は4のケーソンコンクリート外側表面であるのでこのケーソンコンクリート外側表面と掘削面の幅すなわち9の骨材層の幅は安定的に先行刃付ケーソンが沈下するためには20mmから200mmであればよい。 Reference numeral 8 denotes a vertical line passing through the outermost peripheral portion of the leading blade, and the excavation surface 10 is formed when the leading blade sinks. Here, since the outermost periphery of the caisson is the outer surface of the caisson concrete of 4, the width of the outer surface of the caisson concrete and the width of the excavation surface, that is, the width of the aggregate layer of 9 starts from 20 mm in order for the caisson with the leading blade to sink stably. What is necessary is just 200 mm.

前述の先行刃は礫層に対応した先行刃の形状であったが、ヘドロ等の場合の例を示す。すなわち先行刃の尖った下端から立ち上がっている部分の上端が先行刃の最外周部になる場合である。図4はその場合の先行刃とケーソン壁および沈下させる地盤との関係を示している断面図である。1は先行刃、2はケーソンコンクリート壁、3はケーソンコンクリート内側表面、4はケーソンコンクリート外側表面、5は防水等の保護層である。6は先行刃付ケーソンがケーソン内側下面を掘削することにより沈下する地盤で10はその掘削面を示している。7は骨材(砂等)でありこの骨材の存在がケーソン外周面(保護層表面)と掘削面の摩擦を減じることとなり掘削により安定的に先行刃付ケーソンの沈下が可能となる。ここで骨材の径は20mm以下であればよく5mm以下であれば最適である。 The preceding blade has the shape of the leading blade corresponding to the gravel layer, but an example in the case of sludge or the like is shown. That is, this is a case where the upper end of the portion rising from the sharp lower end of the leading blade is the outermost peripheral portion of the leading blade. FIG. 4 is a cross-sectional view showing the relationship between the leading blade, the caisson wall, and the ground to sink in that case. 1 is a leading blade, 2 is a caisson concrete wall, 3 is a caisson concrete inner surface, 4 is a caisson concrete outer surface, and 5 is a protective layer such as waterproofing. Reference numeral 6 denotes a ground which sinks when a caisson with a leading blade excavates the lower inner surface of the caisson, and 10 denotes the excavation surface. 7 is an aggregate (sand, etc.). The presence of this aggregate reduces the friction between the caisson outer peripheral surface (protective layer surface) and the excavation surface, and the caisson with the leading blade can be stably settled by excavation. Here, the diameter of the aggregate may be 20 mm or less, and is optimal if it is 5 mm or less.

8は先行刃最外周部を通る鉛直線であり先行刃が沈下することにより掘削面10が形成されていく。ここではケーソンの最外周は保護層であるのでこの保護層の外周部と掘削面の幅すなわち9の骨材層の幅は安定的に先行刃付ケーソンが沈下するためには20mmから200mmであればよい。ここで保護層はいろいろあるが例えば吹き付け防水層の場合は0.1mm〜0.5mm、貼り付け防水層は0.4mm〜7mm、発泡スチロールの場合は20mm〜100mmが適当である。 Reference numeral 8 denotes a vertical line passing through the outermost peripheral portion of the leading blade, and the excavation surface 10 is formed when the leading blade sinks. Here, since the outermost periphery of the caisson is a protective layer, the width of the outer peripheral portion of the protective layer and the excavation surface, that is, the width of the aggregate layer 9 should be 20 mm to 200 mm in order for the caisson with the leading blade to sink stably. That's fine. Here, there are various protective layers. For example, 0.1 mm to 0.5 mm is suitable for the sprayed waterproof layer, 0.4 mm to 7 mm is suitable for the attached waterproof layer, and 20 mm to 100 mm is suitable for the polystyrene foam.

なおここでは(ヘドロ等の場合)ケーソンの最外周が保護層表面の場合の例を示したが、これに限られるものではなく礫層の先行刃形状の時と同様である。すなわちケーソンの最外周は外側型枠パネルの外側である場合あるいはケーソンの最外周はケーソンコンクリート外側表面である場合であるので、掘削面と外側型枠パネルの外側あるいはケーソンコンクリート外側表面の幅すなわち骨材層の幅は安定的に先行刃付ケーソンが沈下するためには20mmから200mmであればよい。 In addition, although the example in which the outermost periphery of the caisson is the protective layer surface is shown here (in the case of sludge, etc.), it is not limited to this, and it is the same as the case of the leading edge shape of the gravel layer. That is, when the outermost periphery of the caisson is outside the outer formwork panel or when the outermost periphery of the caisson is the outer surface of the caisson concrete, the width of the excavation surface and the outer formwork panel or the outer surface of the caisson concrete, that is, the bone The width of the material layer may be 20 mm to 200 mm in order for the leading edge caisson to sink stably.

図5は図1の場合のメカニズムを示したものであり、掘削によりケーソンがスムーズに自重沈下するためにケーソン外周部に骨材(砂等)を盛り上げると摩擦が減り目的が達成されるがその様子を図5に示した。図5では沈下していく時の様子を示しており11の位置にあった先行刃は1の位置まで沈下する。ここで6は地盤、2はケーソン壁、5はケーソン外周部保護層、10は先行刃最外周部による掘削面であり7は骨材層である。この7の骨材層の存在により摩擦が低減しスムーズにケーソンが自重沈下する。8は先行刃最外周部を通る鉛直線である。11の位置にあった先行刃は1の位置まで沈下する動きを13で表しており沈下によって先行刃外周部が作る掘削面とケーソン外周部保護層の間に14で示すように新たな骨材が流れ込み沈下しても摩擦が特に大きくなることは無くスムーズに先行刃付ケーソンが自重沈下していく。図2から図4の場合のメカニズムも同様である。 FIG. 5 shows the mechanism in the case of FIG. 1. Since the caisson smoothly sinks due to excavation, if the aggregate (sand, etc.) is raised on the outer periphery of the caisson, the friction is reduced and the purpose is achieved. The state is shown in FIG. FIG. 5 shows the state of the sinking, and the leading blade at the position 11 sinks to the position 1. Here, 6 is the ground, 2 is the caisson wall, 5 is the caisson outer periphery protective layer, 10 is the excavation surface by the outermost periphery of the leading blade, and 7 is the aggregate layer. Friction is reduced by the presence of the seven aggregate layers, and the caisson sinks smoothly. Reference numeral 8 denotes a vertical line passing through the outermost periphery of the leading blade. The leading blade that was at position 11 represents the movement of sinking to the position of 1 as indicated by 13, and a new aggregate as indicated by 14 between the excavation surface formed by the leading edge outer periphery and the caisson outer periphery protective layer by the sinking. Even if it flows in and sinks, the friction is not particularly increased, and the caisson with the leading blade smoothly sinks by its own weight. The mechanism in the case of FIGS. 2 to 4 is the same.

ケーソン最外周部が保護層の場合の行刃とケーソン壁および沈下させる地盤との関係Relationship between row blade and caisson wall and ground to sink when caisson outermost part is protective layer ケーソン最外周部が外側型枠パネルの外側の場合の行刃とケーソン壁および沈下させる地盤との関係Relationship between row blade, caisson wall and ground to sink when caisson outermost part is outside outer formwork panel ケーソン最外周部がケーソンコンクリート外側表面の場合の行刃とケーソン壁および沈下させる地盤との関係Relations between row blades, caisson walls and subsidence ground when caisson outermost part is caisson concrete outer surface ヘドロ等の先行刃形状でケーソン最外周部が保護層の場合の行刃とケーソン壁および沈下させる地盤との関係Relationship between row blade, caisson wall and ground to sink when leading edge shape such as sludge and caisson outermost part is protective layer スムーズな沈下を可能にするメカニズムMechanism that enables smooth settlement

1 先行刃
2 ケーソンコンクリート壁
3 ケーソンコンクリート内側表面
4 ケーソンコンクリート外側表面
5 保護層
6 地盤
7 骨材(砂等)
8 先行刃最外周部を通る鉛直線
9 骨材層の幅(20mm〜200mm)
10 掘削面
11 先行刃の一定沈下の前の位置
12 外側型枠パネル
13 ケーソンと先行刃の動き
14 骨材の動き
1 Leading blade
2 Caisson concrete wall
3 Caisson concrete inner surface 4 Caisson concrete outer surface
5 Protective layer
6 ground
7 Aggregate (sand, etc.)
8 Vertical line passing through the outermost periphery of the leading blade
9 Width of aggregate layer (20mm ~ 200mm)
10 Excavation surface 11 Position before constant settlement of leading blade 12 Outer formwork panel 13 Movement of caisson and leading blade
14 Aggregate movement

Claims (4)

地上に地下室の外周壁躯体構成し該外周壁躯体の内側空間を掘削することによって自重沈下させるケーソンにおいて該ケーソンの下端部分全周囲にわたって逆三角形形状の先行刃を設け、該先行刃最外側を通る鉛直線である先行刃で形成した掘削面と該ケーソンの外枠パネルと内枠パネル間にコンクリートを形成した後該ケーソンの外枠パネルの外側あるいは外枠パネルをはずした状態でのコンクリート外側面あるいは該コンクリート外側表面に保護層を形成した保護層を有するケーソン外周面との間の間隔が20mmから200mmとなるように設定し、前記間隔の隙間にケーソン沈下時の摩擦を減らす骨材層を形成したことを特徴とするケーソン自重沈下式工法 In the caisson that forms the outer wall of the basement on the ground and sinks its own weight by excavating the inner space of the outer wall, an inverted triangular leading blade is provided around the entire lower end portion of the caisson, and passes through the outermost edge of the leading blade. Excavation surface formed by a leading edge that is a vertical line and the outer surface of the caisson outer frame panel after the concrete is formed between the outer frame panel and the inner frame panel of the caisson or the outer surface of the concrete with the outer frame panel removed Alternatively, an interval between the outer peripheral surface of the caisson having a protective layer formed on the outer surface of the concrete and a caisson outer peripheral surface is set to be 20 mm to 200 mm, and an aggregate layer that reduces friction during caisson subsidence is formed in the gap. Caisson self-weight subsidence method characterized by formation 前記骨材層は前記ケーソンの外枠パネルの外側あるいは外枠パネルをはずした状態でのコンクリート外側面あるいは前記コンクリート外側表面に保護層を形成した保護層を有するケーソン外周面と先行刃による掘削面の隙間および隙間上部に配置し、前記先行刃で形成した掘削面と前記ケーソンの外枠パネルの外側あるいは前記コンクリート面外側あるいは該コンクリート外側表面に保護層を形成した保護層表面のとの間の隙間に自重沈下に応じて骨材が流れ込むようにしたことを特徴とする第1項記載のケーソン自重沈下式工法 The aggregate layer is an outer surface of the outer frame panel of the caisson or a concrete outer surface with the outer frame panel removed, or a caisson outer peripheral surface having a protective layer formed with a protective layer on the concrete outer surface and a drilling surface by a leading blade Between the excavation surface formed by the leading blade and the outer surface of the outer frame panel of the caisson, the outer surface of the concrete surface or the surface of the protective layer on which the protective layer is formed. The caisson self-weight subsidence construction method according to claim 1, wherein aggregate flows into the gap according to the self-weight subsidence. 前記骨材層の骨材の径は20mm以下であることを特徴とする特許請求範囲第1項乃至2項記載のケーソン自重沈下式工法 3. The caisson self-weight subsidence method according to claim 1, wherein the aggregate layer has an aggregate diameter of 20 mm or less. 前記保護層の厚みは0.1mm〜100mmであることを特徴とする特許請求範囲第1項乃至2項記載のケーソン自重沈下式工法





3. The caisson self-weight subsidence method according to claim 1, wherein the protective layer has a thickness of 0.1 mm to 100 mm.





JP2010114888A 2010-05-19 2010-05-19 Caisson sinking method Pending JP2011241606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010114888A JP2011241606A (en) 2010-05-19 2010-05-19 Caisson sinking method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010114888A JP2011241606A (en) 2010-05-19 2010-05-19 Caisson sinking method

Publications (1)

Publication Number Publication Date
JP2011241606A true JP2011241606A (en) 2011-12-01

Family

ID=45408545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010114888A Pending JP2011241606A (en) 2010-05-19 2010-05-19 Caisson sinking method

Country Status (1)

Country Link
JP (1) JP2011241606A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6423045B1 (en) * 2017-06-05 2018-11-14 Jfe建材株式会社 Caisson blade
CN109898556A (en) * 2019-03-27 2019-06-18 济南市市政工程设计研究院(集团)有限责任公司 A kind of underground pipe gallery structure and sunk type construction method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6423045B1 (en) * 2017-06-05 2018-11-14 Jfe建材株式会社 Caisson blade
CN109898556A (en) * 2019-03-27 2019-06-18 济南市市政工程设计研究院(集团)有限责任公司 A kind of underground pipe gallery structure and sunk type construction method

Similar Documents

Publication Publication Date Title
JP5787172B2 (en) Lifting method of breakwater
KR20110072755A (en) Underwater base for seawater bridge column
JP2010196271A (en) Method for reinforcing existing revetment
JP6806465B2 (en) Construction method of foundation structure
JP5681827B2 (en) Vertical shaft construction method
JP2007262815A (en) Floating inhibiting structure for floating of underground structure due to liquefaction
JP2011241606A (en) Caisson sinking method
JP4982631B2 (en) Liquefaction countermeasure method under breakwater by underground wall construction
JP2009114722A (en) Repairing and reinforcing structure for aguatic construction
JP5041960B2 (en) Method for processing surplus concrete and surplus concrete processing tool
JP2006341172A (en) Waste disposal facility
KR20120011120A (en) installation of the waterproof cloths for work of the pier under water
CN215211057U (en) H-shaped steel structure for lap joint of underground continuous walls with different thicknesses
JP2011241605A (en) Self-weight-settling caisson construction method and underground structure constructed by the same
KR20200014531A (en) Fixed anchor construction method of marine structure
JP2011241608A (en) Construction method of basement in existing house
JP4311676B2 (en) Construction method using casing
JP3196470U (en) Seismic isolation structure
JP2013087554A (en) Liquefaction measure structure and liquefaction measure construction method
JP5670595B2 (en) Vertical shaft construction method
KR101245334B1 (en) caisson foundation concrete curing method using temperature maintaining sea water membrane
JP2007218072A (en) Manhole
JP2000178966A (en) Structure of diaphragm wall
JP2008184889A (en) Caisson construction method combined with guide hole method for constructing underground structure
JP5468052B2 (en) Gravity structure deepening method and gravity structure