JP2011240631A - Apparatus for measuring melt viscosity of molten resin using injection molding machine - Google Patents

Apparatus for measuring melt viscosity of molten resin using injection molding machine Download PDF

Info

Publication number
JP2011240631A
JP2011240631A JP2010115742A JP2010115742A JP2011240631A JP 2011240631 A JP2011240631 A JP 2011240631A JP 2010115742 A JP2010115742 A JP 2010115742A JP 2010115742 A JP2010115742 A JP 2010115742A JP 2011240631 A JP2011240631 A JP 2011240631A
Authority
JP
Japan
Prior art keywords
injection molding
molten resin
molding machine
resin
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010115742A
Other languages
Japanese (ja)
Inventor
Kazuaki Ochiai
和明 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Engineering Plastics Corp
Original Assignee
Mitsubishi Engineering Plastics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Engineering Plastics Corp filed Critical Mitsubishi Engineering Plastics Corp
Priority to JP2010115742A priority Critical patent/JP2011240631A/en
Publication of JP2011240631A publication Critical patent/JP2011240631A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for measuring the melt viscosity of a molten resin in an injection molding machine which actually performs injection molding.SOLUTION: A mesurement unit 110 fittable as a fixed mold is provided to a mold clamping mechanism in an injection molding machine. In the mesurement unit 110, the tip of a channel for a molten resin fed from the injection molding machine is provided with a capillary part 1102 having a pore 1103a for discharging the molten resin. Further, the mesurement unit 110 is provided with a temperature sensor and a pressure sensor measuring the temperature and pressure of the molten resin in the channel.

Description

本発明は溶融樹脂(溶融状態の樹脂)の溶融粘度を測定するための装置に関し、特には射出成形機を用いて溶融樹脂の溶融粘度を測定するための装置に関する。   The present invention relates to an apparatus for measuring the melt viscosity of a molten resin (resin in a molten state), and more particularly to an apparatus for measuring the melt viscosity of a molten resin using an injection molding machine.

従来、溶融樹脂の流動特性、代表的には溶融粘度を測定する装置として、キャピラリーレオメータが知られている(特許文献1)。キャピラリーレオメータは、細管状の空洞を先端に取り付けたシリンダーに溶融樹脂を充填し、ピストンで圧力をかけて溶融樹脂を押し出すことにより、溶融粘度と剪断応力の関係を特定する装置である。   Conventionally, a capillary rheometer has been known as an apparatus for measuring the flow characteristics of a molten resin, typically a melt viscosity (Patent Document 1). The capillary rheometer is a device that specifies the relationship between the melt viscosity and the shear stress by filling a cylinder having a thin tubular cavity attached to the tip thereof with a melt resin and applying pressure with a piston to extrude the melt resin.

具体的には、溶融粘度ηは、
η=(ΔPπR4)/(8QL)
により求められる。ここで、ΔPは空洞の入口と出口の圧力差(MPa)、Lは空洞の長さ(cm)、Rは空洞の半径(cm)、Qは空洞を流れる溶融樹脂の流量(cm3/s)である。なお、出口の圧力は0MPaと考え、ΔPには空洞の入口の圧力(シリンダー内の溶融樹脂の圧力)を用いることが多い。従って、キャピラリーレオメータでは、上式のパラメータのうちΔPとQを測定することで、ある剪断速度(4Q/πR)における溶融樹脂の溶融粘度を求めることができる。
Specifically, the melt viscosity η is
η = (ΔPπR 4 ) / (8QL)
It is calculated by. Where ΔP is the pressure difference (MPa) between the inlet and outlet of the cavity, L is the length of the cavity (cm), R is the radius of the cavity (cm), Q is the flow rate of the molten resin flowing through the cavity (cm 3 / s) ). The outlet pressure is assumed to be 0 MPa, and the pressure at the inlet of the cavity (the pressure of the molten resin in the cylinder) is often used for ΔP. Therefore, the capillary rheometer can determine the melt viscosity of the molten resin at a certain shear rate (4Q / πR 3 ) by measuring ΔP and Q among the parameters in the above equation.

特開平7−63663号公報JP-A-7-63663

佐々木 英幸、外1名、"高せん断レオメータを用いた溶融樹脂の粘度測定"、[online]、岩手県工業技術センター研究報告 第9号(2002)、[平成22年1月22日検索]、インターネット<URL:http://www.pref.iwate.jp/~kiri/infor/theme/2001/pdf/H13-48-capiro.pdf>Hideyuki Sasaki, 1 other, "Viscosity measurement of molten resin using high shear rheometer", [online], Iwate Industrial Technology Center Research Report No. 9 (2002), [Search January 22, 2010], Internet <URL: http: //www.pref.iwate.jp/~kiri/infor/theme/2001/pdf/H13-48-capiro.pdf>

溶融粘度は剪断速度に応じて変化するが、従来のキャピラリーレオメータで測定可能な剪断速度の範囲は101/s〜103/s程度である。一方、射出成形時の溶融樹脂の剪断速度は一般に103/s〜106/s程度である。従って、キャピラリーレオメータで測定した溶融粘度を用い、実機における射出成形条件を設定する場合には、キャピラリーレオメータで測定した、ある剪断速度範囲に対応する溶融粘度を外挿するなどして、射出成形時の剪断速度における溶融粘度を求めなくてはならない。そのため、手間がかかり、精度も低下する。 Although the melt viscosity changes according to the shear rate, the range of the shear rate that can be measured with a conventional capillary rheometer is about 10 1 / s to 10 3 / s. On the other hand, the shear rate of the molten resin at the time of injection molding is generally about 10 3 / s to 10 6 / s. Therefore, when setting the injection molding conditions in the actual machine using the melt viscosity measured with a capillary rheometer, extrapolate the melt viscosity corresponding to a certain shear rate range measured with a capillary rheometer. The melt viscosity at the shear rate must be determined. Therefore, it takes time and accuracy is also reduced.

また、溶融樹脂の状態は射出成形に用いる射出成形機の型式はもちろん、同一型式であっても厳密には一台ごとに異なるのに対し、キャピラリーレオメータで測定できる粘度は、射出成形機と異なる、かつ単一の環境での測定値である。   In addition, the state of the molten resin is not only the type of the injection molding machine used for injection molding, but is strictly different for each unit even if it is the same type, whereas the viscosity that can be measured with a capillary rheometer is different from that of the injection molding machine. And measurements in a single environment.

射出成形機のような高剪断速度範囲に対応したキャピラリーレオメータとして、射出成形機の型締め機構を除去し、シリンダーヘッドにキャピラリーと圧力センサを設けたものが知られている(非特許文献1)。しかし、非特許文献1記載の測定装置は、ある特定の射出成形機を改造したものであり、他の射出成形機での測定はできない。また、当該測定装置に用いられている射出成形機には成形用の金型を取り付けることはできず、もはや射出成形機本来の機能を持たない。   As a capillary rheometer corresponding to a high shear rate range such as an injection molding machine, a cylinder rheometer having a clamp mechanism and a pressure sensor provided on a cylinder head is known (Non-patent Document 1). . However, the measuring device described in Non-Patent Document 1 is a modification of a specific injection molding machine and cannot be measured with other injection molding machines. In addition, a molding die cannot be attached to the injection molding machine used in the measuring apparatus, and no longer has the original function of the injection molding machine.

このように、従来、実際に射出成形を行う射出成形機における溶融樹脂の溶融粘度を測定するための装置は存在していなかった。   Thus, conventionally, there has been no apparatus for measuring the melt viscosity of a molten resin in an injection molding machine that actually performs injection molding.

本発明はこのような従来技術の課題に鑑みなされたものであり、実際に射出成形を行う射出成形機における溶融樹脂の溶融粘度を測定することを可能にする装置を提供することを目的とする。   The present invention has been made in view of such a problem of the prior art, and an object of the present invention is to provide an apparatus that makes it possible to measure the melt viscosity of a molten resin in an injection molding machine that actually performs injection molding. .

上述の目的を達成するため、本発明に係る、射出成形機を用いて溶融樹脂の溶融粘度を測定するための装置は、
射出成形機の型締め機構に対して固定型として取り付けるための測定部を有し、
前記測定部は、
前記射出成形機が供給する溶融樹脂の流路と、
前記流路中の樹脂温度を測定するための温度センサと、
前記流路中の樹脂圧力を測定するための圧力センサと、
前記流路の先端に設けられ、前記流路中の溶融樹脂を外部に吐出させるための細孔を有するキャピラリー部と、を備えることを特徴とする。
In order to achieve the above object, an apparatus for measuring the melt viscosity of a molten resin using an injection molding machine according to the present invention,
It has a measuring part for attaching as a fixed mold to the mold clamping mechanism of the injection molding machine,
The measuring unit is
A flow path of a molten resin supplied by the injection molding machine;
A temperature sensor for measuring the resin temperature in the flow path;
A pressure sensor for measuring the resin pressure in the flow path;
And a capillary part provided at the tip of the flow path and having pores for discharging the molten resin in the flow path to the outside.

本発明に係る装置によれば、射出成形機の型締め機構に対して金型の固定型として取り付けるための測定部を有することにより、射出成形機を改造することなく、実際に射出成形を行う射出成形機における溶融樹脂の溶融粘度を測定することを可能にする。   According to the apparatus of the present invention, the injection molding machine is actually subjected to injection molding without modifying the injection molding machine by having the measuring unit for mounting as a fixed mold of the mold to the mold clamping mechanism of the injection molding machine. It makes it possible to measure the melt viscosity of a molten resin in an injection molding machine.

本発明の実施形態に係る、射出成形機を用いて溶融樹脂の溶融粘度を測定するための装置を、測定対象の射出成形機に取り付けた状態の一例を模式的に示す斜視図。The perspective view which shows typically an example of the state which attached to the injection molding machine of a measuring object the apparatus for measuring the melt viscosity of molten resin using the injection molding machine based on embodiment of this invention. 本発明の実施形態に係る装置の、測定時の状態を模式的に示す水平断面図。The horizontal sectional view which shows typically the state at the time of the measurement of the apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る装置を射出成形機と共に用いて溶融粘度を測定するシステムの機能構成例を示すブロック図。The block diagram which shows the function structural example of the system which measures melt viscosity using the apparatus which concerns on embodiment of this invention with an injection molding machine.

以下、図面を参照して本発明の例示的な実施形態について詳細に説明する。
図1は、本発明の実施形態に係る、射出成形機を用いて溶融樹脂の溶融粘度を測定するための装置100(以下、単に装置100という)を、測定対象の射出成形機に取り付けた状態の一例を模式的に示す斜視図である。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a state in which an apparatus 100 (hereinafter simply referred to as apparatus 100) for measuring the melt viscosity of a molten resin using an injection molding machine according to an embodiment of the present invention is attached to an injection molding machine to be measured. It is a perspective view which shows an example typically.

図示するように、本実施形態に係る装置100は、射出成形機に対して通常の金型と同様に(金型として)取り付け可能な構成を有している。図1に示す構成において、装置100は、金型の固定型(キャビティ)に対応する測定部110と、可動型に対応する樹脂受け部120とから構成される。   As shown in the figure, the apparatus 100 according to this embodiment has a configuration that can be attached to an injection molding machine as a normal mold (as a mold). In the configuration shown in FIG. 1, the apparatus 100 includes a measuring unit 110 corresponding to a fixed mold (cavity) of a mold and a resin receiving unit 120 corresponding to a movable mold.

測定部110は、射出成形機の型締め機構における固定型取り付け部11に対して固定側取付板111を介して取り付けられる。具体的には、固定側取付板111が射出成形機の固定プラテン(固定ダイプレート)11にネジ止めされ、固定プラテン11に測定部110がネジ止めされる。   The measuring unit 110 is attached to the fixed mold mounting unit 11 in the mold clamping mechanism of the injection molding machine via a fixed side mounting plate 111. Specifically, the fixed-side mounting plate 111 is screwed to the fixed platen (fixed die plate) 11 of the injection molding machine, and the measurement unit 110 is screwed to the fixed platen 11.

樹脂受け部120もまた、射出成形機の型締め機構における可動プラテン(可動ダイプレート)12に対して可動側取付板121を介して取り付けられる。具体的には、可動側取付板121が可動型取り付け部12にネジ止めされ、可動型取り付け部12に樹脂受け部120がネジ止めされる。なお、樹脂受け部120は、コア受け板部120a及びスペーサーブロック部120bとから構成され、図示しないネジによって固定されている。   The resin receiving portion 120 is also attached to the movable platen (movable die plate) 12 in the mold clamping mechanism of the injection molding machine via the movable side mounting plate 121. Specifically, the movable attachment plate 121 is screwed to the movable attachment portion 12, and the resin receiving portion 120 is screwed to the movable attachment portion 12. The resin receiving portion 120 includes a core receiving plate portion 120a and a spacer block portion 120b, and is fixed by screws (not shown).

固定プラテン11と可動プラテン12とは4本のタイバー13(便宜上図1には1本のみ示している)によって連結されており、図示しないピストンなどにより、可動プラテン12がタイバー13に沿って紙面左右方向に移動する。また、測定部110と樹脂受け部120との位置合わせを行うために、ガイドピン1101が測定部110に、ガイドピン1101が嵌り込むガイドピンブッシュ1201がコア受け板部120aにそれぞれ設けられている。   The fixed platen 11 and the movable platen 12 are connected by four tie bars 13 (only one is shown in FIG. 1 for convenience), and the movable platen 12 is moved along the tie bar 13 by a piston (not shown) on the left and right sides of the drawing. Move in the direction. Further, in order to align the measuring unit 110 and the resin receiving unit 120, the guide pin 1101 is provided in the measuring unit 110, and the guide pin bush 1201 in which the guide pin 1101 is fitted is provided in the core receiving plate unit 120a. .

このように、本実施形態に係る装置100は、一般的なプレート式金型と基本的な構成を共通にすることが当業者には理解されよう。一方、本実施形態においては、測定部110において、溶融樹脂の流路末端にキャピラリー部1102が設けられている。   As described above, it will be understood by those skilled in the art that the apparatus 100 according to the present embodiment shares a basic configuration with a general plate mold. On the other hand, in the present embodiment, the capillary 1101 is provided at the end of the flow path of the molten resin in the measurement unit 110.

また、コア受け板部120aには、型締め時(すなわち、測定時)において、測定部110から突き出ているキャピラリー部1102がコア受け板部120aに当たらないように切り欠き部1202が設けられている。切り欠き部1202は、コア受け板部120aの厚み方向に貫通するように設けられている。スペーサーブロック部120bは通常突き出しピンなどを設けるための空間を中央部に有しており、本実施形態では、この空間に、ボウル状の溶融樹脂の受け皿1203を設けている。従って、キャピラリー部1102の先端1109から突出した溶融樹脂は溶融樹脂の受け皿1203に到達し、冷却固化する。   The core receiving plate portion 120a is provided with a notch portion 1202 so that the capillary portion 1102 protruding from the measuring portion 110 does not hit the core receiving plate portion 120a during mold clamping (that is, during measurement). Yes. The cutout portion 1202 is provided so as to penetrate in the thickness direction of the core receiving plate portion 120a. The spacer block portion 120b usually has a space for providing a protruding pin or the like in the central portion. In this embodiment, a bowl-shaped molten resin tray 1203 is provided in this space. Accordingly, the molten resin protruding from the tip 1109 of the capillary part 1102 reaches the molten resin tray 1203 and is cooled and solidified.

次に、本実施形態の特徴である測定部110の構成の詳細について、図2を参照して説明する。図2は、本実施形態に係る装置100の、測定時の状態を模式的に示す水平断面図であり、図1と共通する構成には同じ参照数字を付してある。また、図2は、装置100の、キャピラリー部1102の中心軸を通る水平断面を、鉛直上方から見た状態を示している。   Next, details of the configuration of the measurement unit 110, which is a feature of the present embodiment, will be described with reference to FIG. FIG. 2 is a horizontal sectional view schematically showing a state of the apparatus 100 according to the present embodiment at the time of measurement, and the same reference numerals are given to the components common to FIG. FIG. 2 shows a state in which the horizontal cross section passing through the central axis of the capillary section 1102 of the device 100 is viewed from above.

キャピラリー部1102は、測定部110に取り付けられるベース部1102bと、ベース部1102bの先端に取り付けられるオリフィス固定具1102aとから構成される。オリフィス固定具1102aとベース部1102bとは例えばオリフィス固定具1102aの基端部周囲とベース部1102bの先端部内周に設けられたネジ山とネジ溝により分離可能に取り付けられている。オリフィス固定具1102aは中空円筒形状を有し、内部にオリフィス1103が交換可能に取り付けられている。オリフィス1103は、例えばその根元部分に鍔状部が設けられ、オリフィス固定具1102aによってベース部1102bに押し付けて固定されている。また、オリフィス1103にはオリフィス1103を貫通する細孔1103aが設けられている。細孔1103aはオリフィス1103における溶融樹脂の流路を形成する。
従って、本実施形態の装置100において、長さや径の異なるオリフィス1103を用いた測定を行う場合、型締め機構を開き、キャピラリー部1102のオリフィス固定具1102aのみを取り外し、オリフィス1103を交換してオリフィス固定具1102aを再度取り付ければよい。装置100を型締め機構に装着した状態で容易にオリフィス1103が交換可能であるため、使い勝手がよい。
The capillary part 1102 includes a base part 1102b attached to the measurement part 110 and an orifice fixture 1102a attached to the tip of the base part 1102b. The orifice fixture 1102a and the base portion 1102b are attached to be separable by, for example, a screw thread and a screw groove provided around the base end portion of the orifice fixture 1102a and the inner periphery of the tip portion of the base portion 1102b. The orifice fixture 1102a has a hollow cylindrical shape, and an orifice 1103 is exchangeably attached therein. The orifice 1103 is provided with, for example, a hook-like portion at the base portion thereof, and is fixed by being pressed against the base portion 1102b by the orifice fixture 1102a. Further, the orifice 1103 is provided with a pore 1103 a penetrating the orifice 1103. The pores 1103 a form a molten resin flow path in the orifice 1103.
Therefore, in the apparatus 100 of the present embodiment, when measurement is performed using the orifices 1103 having different lengths and diameters, the mold clamping mechanism is opened, only the orifice fixture 1102a of the capillary section 1102 is removed, the orifice 1103 is replaced, and the orifices are replaced. The fixture 1102a may be attached again. Since the orifice 1103 can be easily replaced with the apparatus 100 mounted on the mold clamping mechanism, it is easy to use.

中空円筒形状を有するキャピラリー部1102のベース部1102bは、基端(射出成形機側端部)に設けられた鍔部1107により、固定部110に固定されている。ベース部1102bはオリフィス固定具1102aと同様、溶融樹脂の流路1106が設けられている。また、ベース部1102bには、流路1106内の樹脂圧力を測定するための、例えばダイヤフラム式である圧力センサ1108と、流路1106における溶融樹脂の温度を測定するための温度センサとしての熱電対1105がそれぞれ設けられている。圧力センサ1108及び熱電対1105の信号は、キャピラリー部1102の周囲の空間から孔1110を通じ、図示しない配線によって、後述する温度制御装置320や、溶融粘度の測定装置などの外部機器に出力される。   A base portion 1102b of the capillary portion 1102 having a hollow cylindrical shape is fixed to the fixing portion 110 by a flange portion 1107 provided at a base end (an end portion on the injection molding machine side). Similarly to the orifice fixture 1102a, the base portion 1102b is provided with a flow path 1106 of a molten resin. The base 1102b includes a pressure sensor 1108, for example, a diaphragm type, for measuring the resin pressure in the flow path 1106, and a thermocouple as a temperature sensor for measuring the temperature of the molten resin in the flow path 1106. 1105 are provided. Signals from the pressure sensor 1108 and the thermocouple 1105 are output from a space around the capillary section 1102 through a hole 1110 to an external device such as a temperature control device 320 or a melt viscosity measurement device, which will be described later, by wiring not shown.

また、キャピラリー部1102の外周にはバンドヒーター1104が、キャピラリー部1102の長さ方向に沿って3箇所設けられており、熱電対1105の出力値に応じて、必要に応じて加熱される。バンドヒーター1104に対する外部の電源等からの電力供給(温度制御)もまた、孔1110を通じて接続される温度制御装置320(図示せず)の制御に従って行われる。   In addition, three band heaters 1104 are provided on the outer periphery of the capillary part 1102 along the length direction of the capillary part 1102, and are heated as necessary according to the output value of the thermocouple 1105. Power supply (temperature control) from an external power source or the like to the band heater 1104 is also performed according to control of a temperature control device 320 (not shown) connected through the hole 1110.

固定側取付板111は、図示しない射出成形機のノズル14から供給される溶融樹脂が、キャピラリー部1102のベース部1102bに設けられた樹脂流路に対して正しく流入するように、測定部110が射出成形機に対して正しい位置で取り付けられるように設けられている。   The fixed side mounting plate 111 is provided with a measuring unit 110 so that molten resin supplied from a nozzle 14 of an injection molding machine (not shown) correctly flows into a resin flow path provided in the base part 1102b of the capillary part 1102. It is provided so that it can be attached to the injection molding machine at the correct position.

図3は、本発明の実施形態に係る装置を射出成形機と共に用いて、溶融樹脂の溶融粘度を測定するシステムの機能構成例を示すブロック図である。
溶融粘度は、装置100から得られる温度並びに圧力の値と、射出成形機200から得られる樹脂流量とを用いて算出することが可能である。そのため、図3に示すシステムでは、これらのパラメータから溶融粘度を算出する算出部300と、バンドヒーター1104の温度制御を行う温度制御装置320とを有している。
FIG. 3 is a block diagram showing a functional configuration example of a system for measuring the melt viscosity of a molten resin using the apparatus according to the embodiment of the present invention together with an injection molding machine.
The melt viscosity can be calculated using the temperature and pressure values obtained from the apparatus 100 and the resin flow rate obtained from the injection molding machine 200. Therefore, the system shown in FIG. 3 includes a calculation unit 300 that calculates the melt viscosity from these parameters, and a temperature control device 320 that controls the temperature of the band heater 1104.

上述のように、溶融粘度を測定(算出)する場合、射出成形機200の運転条件を所望の条件に設定し、通常の射出成形動作と同様に、型締めを行い、射出成形機200から溶融樹脂を装置100に対して供給する。なお、バンドヒーター1104の温度は、熱電対1105からの信号を温度制御装置320に供給し、熱電対1105からの信号が所定温度を表す値となるように温度制御装置320がバンドヒーター1104への電力供給を制御することで実現できる。
そして、キャピラリー部1102から樹脂を押し出す際の、キャピラリー部1102のベース部1102bにおける樹脂流路で測定した樹脂温度、圧力を、装置100の熱電対1105及び圧力センサ1108から取得する。
As described above, when the melt viscosity is measured (calculated), the operation condition of the injection molding machine 200 is set to a desired condition, and the mold is clamped and melted from the injection molding machine 200 as in the normal injection molding operation. Resin is supplied to the apparatus 100. The temperature of the band heater 1104 is supplied from the thermocouple 1105 to the temperature control device 320, and the temperature control device 320 supplies the signal to the band heater 1104 so that the signal from the thermocouple 1105 becomes a value representing a predetermined temperature. This can be realized by controlling the power supply.
Then, the resin temperature and pressure measured in the resin flow path in the base portion 1102 b of the capillary portion 1102 when the resin is extruded from the capillary portion 1102 are acquired from the thermocouple 1105 and the pressure sensor 1108 of the apparatus 100.

一方、射出成形機200からは、溶融樹脂の流量を取得する。溶融樹脂の流量は、射出成形機200から直接取得しても良いし、射出成形機200から射出速度(押出速度)を取得し、既知であるスクリュー径半径r(cm)と射出速度v(cm/s)とから、
Q=πr2
として流量Qを求めてもよい。
On the other hand, the flow rate of the molten resin is acquired from the injection molding machine 200. The flow rate of the molten resin may be obtained directly from the injection molding machine 200, or the injection speed (extrusion speed) is obtained from the injection molding machine 200, and the known screw diameter radius r (cm) and injection speed v (cm / s)
Q = πr 2 v
The flow rate Q may be obtained as

上述のように、溶融粘度η(見かけ粘度)は、
η=(ΔPπR4)/(8QL)
により求められる。
具体的には、ΔPに圧力センサ1108から取得した圧力(MPa。なお、出口圧力は0MPaとする)を、Lに既知である細孔1103aの流路長さ(cm)、Rに既知である細孔1103aの流路半径(cm)、Qに射出成形機200から取得した溶融樹脂の流量(cm3/s)を代入することにより、溶融粘度ηを求めることができる。
As mentioned above, the melt viscosity η (apparent viscosity) is
η = (ΔPπR 4 ) / (8QL)
It is calculated by.
Specifically, the pressure (MPa, the outlet pressure is assumed to be 0 MPa) acquired from the pressure sensor 1108 at ΔP, the flow path length (cm) of the pore 1103a known at L, and known at R. The melt viscosity η can be obtained by substituting the flow rate (cm 3 / s) of the molten resin obtained from the injection molding machine 200 for the channel radius (cm) and Q of the pores 1103a.

求めた溶融粘度ηは、表示装置、印刷装置、記憶装置、通信装置の少なくとも1つである出力部310を通じて各種出力媒体に対して出力される。   The obtained melt viscosity η is output to various output media through the output unit 310 that is at least one of a display device, a printing device, a storage device, and a communication device.

このように、本実施形態に係る装置100は、一般的なプレート式金型と基本的な構成を共通にする。従って、射出成形機に対して何ら改造などを行うことなく、金型と同様に取り付けることができる。また、実際の測定も、射出成形と同様に型締めを行い、溶融樹脂を金型(装置100)に供給することにより実施可能である。   Thus, the apparatus 100 according to the present embodiment shares a basic configuration with a general plate mold. Therefore, the injection molding machine can be attached in the same manner as the mold without any modification. Actual measurement can also be performed by clamping the mold in the same manner as injection molding and supplying the molten resin to the mold (apparatus 100).

(他の実施形態)
上述の実施形態においては、通常の射出成形動作を行って、溶融粘度の算出に用いる溶融樹脂の圧力及び温度を測定するために、装置100が固定型である測定部110と可動型である樹脂受け部120から構成される形態について説明した。
(Other embodiments)
In the above-described embodiment, in order to measure the pressure and temperature of the molten resin used for calculation of the melt viscosity by performing a normal injection molding operation, the apparatus 100 is a measurement unit 110 that is a fixed mold and a resin that is a movable mold. The form comprised from the receiving part 120 was demonstrated.

しかしながら、溶融粘度の算出に用いる溶融樹脂の圧力及び温度は、必ずしも型締め動作を行わなくても測定可能であることは容易に理解されよう。実際、上述の構成において、樹脂受け部120は単にキャピラリー部1102の先端1109(細孔1103a)から吐出した溶融樹脂を、溶融樹脂の受け皿1203で受け止める機能を有するのみである。   However, it will be easily understood that the pressure and temperature of the molten resin used for calculating the melt viscosity can be measured without necessarily performing the clamping operation. In fact, in the above-described configuration, the resin receiving portion 120 only has a function of receiving the molten resin discharged from the tip 1109 (pore 1103a) of the capillary portion 1102 with the molten resin receiving tray 1203.

従って、型締めを行わなくても溶融樹脂を金型へ供給可能な射出成形機とともに装置100を用いる場合、可動型である樹脂受け部120は必須でなく、固定型である測定部110を単独で用いてもよい。この場合も、従来は不可能であった、実機での溶融粘度の測定を可能とする効果は達成できる。   Therefore, when the apparatus 100 is used together with an injection molding machine capable of supplying molten resin to the mold without clamping, the movable resin-receiving part 120 is not essential, and the stationary measuring part 110 is used alone. May be used. Also in this case, the effect of enabling measurement of the melt viscosity with an actual machine, which has been impossible in the past, can be achieved.

Claims (4)

射出成形機を用いて溶融樹脂の溶融粘度を測定するための装置であって、
前記射出成形機の型締め機構に対して固定型として取り付けるための測定部を有し、
前記測定部は、
前記射出成形機が供給する溶融樹脂の流路と、
前記流路中の樹脂温度を測定するための温度センサと、
前記流路中の樹脂圧力を測定するための圧力センサと、
前記流路の先端に設けられたキャピラリー部とを備え、
前記キャピラリー部は、前記流路中の溶融樹脂を外部に吐出させるための細孔を有することを特徴とする装置。
An apparatus for measuring the melt viscosity of a molten resin using an injection molding machine,
A measuring unit for mounting as a fixed mold on the mold clamping mechanism of the injection molding machine;
The measuring unit is
A flow path of a molten resin supplied by the injection molding machine;
A temperature sensor for measuring the resin temperature in the flow path;
A pressure sensor for measuring the resin pressure in the flow path;
A capillary portion provided at the tip of the flow path,
The capillary section has pores for discharging the molten resin in the flow path to the outside.
さらに、前記型締め機構に対して可動型として取り付けるための樹脂受け部を有し、
前記樹脂受け部は、前記型締め機構により型締めされ、前記測定部と係合した状態で前記細孔から吐出する溶融樹脂を受ける樹脂受け手段を有することを特徴とする請求項1記載の装置。
Furthermore, it has a resin receiving part for attaching as a movable mold to the mold clamping mechanism,
2. The apparatus according to claim 1, wherein the resin receiving portion has a resin receiving means for receiving a molten resin discharged from the pores while being clamped by the clamping mechanism and engaged with the measuring portion. .
前記キャピラリー部は、前記測定部に固定されるベース部と、前記細孔が設けられたオリフィスと、前記ベース部と着脱可能に取り付けられるオリフィス固定具とを有し、前記オリフィスは、前記オリフィス固定具に対して交換可能に取り付けられることを特徴とする請求項1又は請求項2記載の装置。   The capillary part includes a base part fixed to the measurement part, an orifice provided with the pores, and an orifice fixture detachably attached to the base part, and the orifice is fixed to the orifice 3. The device according to claim 1, wherein the device is replaceably attached to the device. 前記温度センサから得られる温度と、前記圧力センサから得られる圧力と、前記射出成形機の動作条件から求まる溶融樹脂の流量と、前記細孔の流路半径及び流路長さを用いて、前記溶融樹脂の溶融粘度を算出する手段をさらに有することを特徴とする請求項1乃至請求項3のいずれか1項に記載の装置。   Using the temperature obtained from the temperature sensor, the pressure obtained from the pressure sensor, the flow rate of the molten resin determined from the operating conditions of the injection molding machine, the flow path radius and flow path length of the pores, The apparatus according to any one of claims 1 to 3, further comprising means for calculating a melt viscosity of the molten resin.
JP2010115742A 2010-05-19 2010-05-19 Apparatus for measuring melt viscosity of molten resin using injection molding machine Pending JP2011240631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010115742A JP2011240631A (en) 2010-05-19 2010-05-19 Apparatus for measuring melt viscosity of molten resin using injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010115742A JP2011240631A (en) 2010-05-19 2010-05-19 Apparatus for measuring melt viscosity of molten resin using injection molding machine

Publications (1)

Publication Number Publication Date
JP2011240631A true JP2011240631A (en) 2011-12-01

Family

ID=45407766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010115742A Pending JP2011240631A (en) 2010-05-19 2010-05-19 Apparatus for measuring melt viscosity of molten resin using injection molding machine

Country Status (1)

Country Link
JP (1) JP2011240631A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014013956A1 (en) 2013-09-26 2015-03-26 Fanuc Corporation Injection molding machine with viscosity measurement and method for measuring viscosity with an injection molding machine
US9097565B2 (en) 2012-03-30 2015-08-04 Beaumont Technologies, Inc. Method and apparatus for material flow characterization
WO2019243185A1 (en) * 2018-06-21 2019-12-26 Klöckner Desma Elastomertechnik GmbH Method for the online sensing of the rheology of thermoplastic and/or elastomer material for the production of injection-moulded parts
JP2021120637A (en) * 2020-01-30 2021-08-19 広島県 Arithmetic unit, arithmetic processing program, and arithmetic method
CN113613858A (en) * 2019-03-26 2021-11-05 日精Asb机械株式会社 Injection mold, resin container production apparatus, and plug unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370343U (en) * 1989-11-15 1991-07-15
JPH06166068A (en) * 1992-11-27 1994-06-14 Olympus Optical Co Ltd Device for evaluating cylinder of molding machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370343U (en) * 1989-11-15 1991-07-15
JPH06166068A (en) * 1992-11-27 1994-06-14 Olympus Optical Co Ltd Device for evaluating cylinder of molding machine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9097565B2 (en) 2012-03-30 2015-08-04 Beaumont Technologies, Inc. Method and apparatus for material flow characterization
DE102014013956A1 (en) 2013-09-26 2015-03-26 Fanuc Corporation Injection molding machine with viscosity measurement and method for measuring viscosity with an injection molding machine
WO2019243185A1 (en) * 2018-06-21 2019-12-26 Klöckner Desma Elastomertechnik GmbH Method for the online sensing of the rheology of thermoplastic and/or elastomer material for the production of injection-moulded parts
CN112469547A (en) * 2018-06-21 2021-03-09 克鲁克纳德士马弹性技术有限公司 Method for on-line sensing of rheology of thermoplastic and/or elastomeric materials for manufacturing injection molded parts
JP2021528286A (en) * 2018-06-21 2021-10-21 クレックナー デスマ エラストマーテヒニク ゲーエムベーハーKloeckner Desma Elastomertechnik GmbH Online detection method of rheology of thermoplastic and / or elastomeric materials for the manufacture of injection molded parts
CN112469547B (en) * 2018-06-21 2023-03-14 克鲁克纳德士马弹性技术有限公司 Method for on-line sensing of rheology of thermoplastic and/or elastomeric materials for manufacturing injection molded parts
CN113613858A (en) * 2019-03-26 2021-11-05 日精Asb机械株式会社 Injection mold, resin container production apparatus, and plug unit
CN113613858B (en) * 2019-03-26 2023-12-01 日精Asb机械株式会社 Injection mold, production equipment for resin container and plug unit
JP2021120637A (en) * 2020-01-30 2021-08-19 広島県 Arithmetic unit, arithmetic processing program, and arithmetic method
JP7297215B2 (en) 2020-01-30 2023-06-26 広島県 Arithmetic Device, Arithmetic Processing Program, and Arithmetic Method

Similar Documents

Publication Publication Date Title
JP2011240631A (en) Apparatus for measuring melt viscosity of molten resin using injection molding machine
JP2009500197A (en) Method for monitoring and / or controlling filling of melt into a cavity
KR20090097154A (en) Hot-runner nozzle with temperature sensor
JP5018481B2 (en) Injection molding equipment
WO2020055668A1 (en) Methods for controlling injection molding processes based on actual plastic melt pressure or cavity pressure
US20150084221A1 (en) Injection molding machine with viscosity measuring function and method for measuring viscosity using injection molding machine
KR101336156B1 (en) An apparatus for viscosity measurement with a mold module and a method therefor
CN210174144U (en) Device for online rheological measurement and online injection molding
EP1732742A1 (en) Injection device
JP6305963B2 (en) Injection molding machine support system and injection molding machine support method
JP7278922B2 (en) Extruder and strand manufacturing method
WO2013132983A1 (en) Die casting apparatus
JP3732821B2 (en) Measuring method of resin viscosity in injection molding machine
WO2014050768A1 (en) Hot runner forming device and hot runner nozzle
JP2017505730A (en) Method for controlling the filling of at least one cavity
US20240075671A1 (en) Extrusion Device and Extrusion Molding Die Used by Same, Monitoring Device and Program, Strand Manufacturing Method, and Strand Diameter Adjustment Method
WO2013187239A1 (en) Gas filter, mold device, mold interior information measurement sensor, method for removing gas in mold, and method for manufacturing injection-molded product
JP2019171629A (en) Mold system
KR20100063727A (en) Melt extruder and process for producing thermoplastic resin film
JP5722289B2 (en) Injection molding machine capable of selectively mounting heating cylinders
JP4972798B2 (en) Optical part molding die and optical part manufacturing method
JP2020100140A (en) Resin molding mold and resin molding method
JP7328431B1 (en) Pressure measuring device and injection molding machine
JP2004188825A (en) Injection mold
JP2008037068A (en) Injection molding method for resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140613