WO2013187239A1 - Gas filter, mold device, mold interior information measurement sensor, method for removing gas in mold, and method for manufacturing injection-molded product - Google Patents

Gas filter, mold device, mold interior information measurement sensor, method for removing gas in mold, and method for manufacturing injection-molded product Download PDF

Info

Publication number
WO2013187239A1
WO2013187239A1 PCT/JP2013/064997 JP2013064997W WO2013187239A1 WO 2013187239 A1 WO2013187239 A1 WO 2013187239A1 JP 2013064997 W JP2013064997 W JP 2013064997W WO 2013187239 A1 WO2013187239 A1 WO 2013187239A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
mold
gas filter
cavity
vent pipe
Prior art date
Application number
PCT/JP2013/064997
Other languages
French (fr)
Japanese (ja)
Inventor
岩本 典裕
俊 加藤
Original Assignee
株式会社ダイレクト21
株式会社ケーヒン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイレクト21, 株式会社ケーヒン filed Critical 株式会社ダイレクト21
Publication of WO2013187239A1 publication Critical patent/WO2013187239A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • B22C9/067Venting means for moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/14Machines with evacuated die cavity
    • B22D17/145Venting means therefor

Definitions

  • the present invention relates to a gas filter that discharges gas from a die cavity of a die casting apparatus, gravity casting machine, low pressure casting machine, injection molding machine, etc., a mold apparatus using the gas filter, and a pressure of a molten metal in the mold Mold internal information measuring sensor suitable for judging the quality of casting / resin molded product by detecting the gas, method of venting gas from the mold cavity, and injection molding using the gas filter
  • the present invention relates to an injection molded product manufacturing method for manufacturing a product.
  • the quality of die-cast products is affected by the injection speed and injection pressure when filling a metal mold with molten metal.
  • the molten metal is supplied to the plunger sleeve, and the plunger is driven at a low injection speed to avoid entrainment of air in the molten metal, and the plunger sleeve and product liner are full.
  • the plunger moves to a position where the tip of the molten metal reaches the mold gate, the plunger is switched to a high injection speed and driven to rapidly fill the molten metal into the mold cavity.
  • the pressure of the plunger is increased to pressurize the molten metal.
  • a mold used for a die casting apparatus is composed of a movable mold 1a and a fixed mold 1b.
  • the cavity 2 formed by the two molds 1a and 1b is provided with a casting port 3a, a runner 3b, and a gate 3c following the injection cylinder, and further a gas vent passage 4 through which the gas in the cavity 2 is vented, a sump 5 is provided.
  • FIG. 23 is a cross-sectional view showing a state in which metal is filled in the cavity 2 of the mold in the die casting apparatus.
  • a predetermined amount of molten metal ML is supplied using a ladle through a pouring port 6 a of the plunger sleeve 6.
  • This figure shows a state where the plunger 7 is driven at a low speed and injected from a state where a predetermined amount of the molten metal ML is supplied into the plunger sleeve 6.
  • the gas G is present together with the molten metal ML in front of the plunger tip 7 a, and the gas G is also present in the runner 3 b that guides the molten metal ML in the plunger sleeve 6 to the cavity 2.
  • a position FP shown in FIG. 23 is a point at which the plunger 7 is switched from low speed movement to high speed movement.
  • the plunger tip 7a reaches this position FP, the molten metal ML is filled in the plunger sleeve 6 and the runner 3b.
  • This is the position where the tip of the molten metal ML reaches the gate 3c, that is, the filling start position where the filling of the molten metal ML into the cavity 2 is started.
  • the pressure of the molten metal in the mold, the temperature of the molten metal at the time of injection, the pressure of the gas in the cavity 2 compressed by filling the molten metal, etc. are measured. It is important for product quality control. If it is possible to determine whether or not the die-cast product has sufficient strength for each casting shot using these pieces of information, it is possible to prevent the defective product from flowing to the subsequent process, resulting in a yield. Can be improved.
  • a gas vent passage 4 is opened in the cavity 2 in advance, and by filling the cavity 2 with molten metal, the gas in the cavity 2 is extruded into the gas vent passage 4 and is released from the gas vent passage 4 to the atmosphere. ing.
  • the molten metal is transformed from a molten state to semi-molten with time, and further transformed into a solid.
  • filling the cavity 2 in the molten state by shortening the filling time leads to the production of good products. ing.
  • the molten molten metal injected into the cavity 2 enters the gas vent passage 4 and the gap between the molds, and generates burrs and flashes. Since such burrs and flashes hinder the production of cast products, the gaps between the molds and the gas vent passage 4 are made as narrow as possible.
  • the gas existing in the cavity should be exhausted in a short time as the molten metal is filled. If the gap is narrow, there is a possibility that the gas cannot be exhausted. The gas that could not be exhausted is caught in the product and becomes a trap, causing a product defect.
  • the thickness of the opening portion of the gas vent passage 4 is such that the molten metal at the end is cooled by the mold and solidified to seal the molten metal extruded later.
  • it is a narrowed portion of about 0.1 mm.
  • a seal portion (minimum clearance within a range in which the pressure pin can slide) is provided at the tip of the pressure pin, and the mold outside is provided behind the tip portion. It is described that a gas passage that communicates with the mold cavity is provided, the pressurizing pin is disposed at a final filling position in the mold cavity, and the inside of the mold cavity is directly pressurized and degassed in the cavity. Yes.
  • the present invention has been made paying attention to the above-mentioned problems, and is a gas filter capable of surely venting gas from inside a mold cavity, a mold apparatus using the same, and a mold internal information measuring sensor.
  • An object of the present invention is to provide a method for venting gas from a mold and a method for producing an injection molded product.
  • a mold internal information measurement sensor that can measure at least gas pressure reliably and accurately as information necessary to judge the quality of injection molded products filled in the mold cavity. The purpose is to do.
  • a gas filter according to the present invention is a gas filter that vents gas from a cavity of a mold, and is a slit-like space formed of metal and penetrating in an axial direction.
  • a bar-shaped member having a portion is provided.
  • the gas filter is made of metal and has a rod-shaped member having a slit-like space portion penetrating in the axial direction, so that heat transfer is high and the molten metal has a high cooling capacity. Can be solidified at the slit-shaped space, allowing only gas to pass through. In addition, since it is strong against thermal shock and has high strength, there is no risk of breakage. Therefore, the gas can be reliably vented from the cavity.
  • the slit-shaped space portion is one or a plurality of space portions cut out from the outer peripheral surface of the rod-shaped member toward the center portion.
  • the gas in the mold cavity can be surely vented through one or more spaces cut out from the outer peripheral surface of the rod-shaped member toward the center.
  • the slit-shaped space has a cross-sectional shape including a curved shape.
  • the cut distance can be increased, the volume of the slit space can be increased, and a large amount of gas in the cavity can be discharged reliably. Moreover, the strength of the rod-like member can be ensured.
  • the rod-shaped member is a plurality of tubes having a multiple tube structure, and the slit-like space portion is formed between the plurality of tubes.
  • the gas filter can solidify the molten metal and allow only the gas to pass through. Also, since the strength is high, the gas filter can surely perform degassing from the cavity of the mold.
  • an interval holding portion having a certain height from the outer peripheral surface is formed on the outer peripheral surface of each of the plurality of tubes.
  • the distance between the tubes can be made constant and the thickness of the slit-like space portion can be made constant.
  • an interval holding part having a certain height from the inner peripheral surface is formed on the inner peripheral surface of each of the plurality of tubes.
  • the distance between the tubes can be made constant and the thickness of the slit-like space portion can be made constant.
  • a plurality of the interval holding portions are formed along the axial direction.
  • gas can be easily passed in the axial direction.
  • a positioning member is inserted into a pipe having the smallest diameter among the plurality of pipes, and an overhang portion is provided on an outer peripheral surface on one end side of the positioning member. Is characterized in that a communication passage communicating with the slit-like space is formed.
  • the plurality of tubes can be positioned by the protruding portion of the positioning member, and a gas filter can be easily and accurately produced. Further, gas can be passed through the slit-shaped space portion and the communication path in the axial direction of the gas filter.
  • the mold apparatus according to the present invention is characterized in that the gas filter is disposed in a gas vent pipe communicating with a cavity of the mold.
  • the gas filter formed of metal since the gas filter formed of metal has high cooling capacity and strength, the gas filter is disposed in the gas vent pipe to reliably vent the gas from the mold cavity. be able to.
  • the switching valve connected to the degassing pipe, and a position of the degassing pipe between the position where the gas filter is disposed and the position where the switching valve is connected are provided by the switching valve.
  • the gas pressure in the gas vent pipe can be measured as the gas pressure in the cavity in a state where the gas vent pipe is shut off from the atmosphere by the switching valve, and the gas filter is used for purposes other than gas venting. Can also be used.
  • the gas filter includes a control means for determining clogging of the gas filter based on a decreasing gradient of the gas pressure measured by the gas pressure sensor.
  • clogging of the gas filter can be automatically determined.
  • an air source connected to the switching valve is provided, and the air source is compressed to the gas filter via the gas vent pipe when connected to the gas vent pipe by switching the switch valve. It is characterized by supplying air.
  • compressed air can be supplied to the gas filter, and the gas filter can be cooled and cleaned.
  • the vacuum tank includes a vacuum tank connected to the switching valve, and the vacuum tank is connected to the gas vent pipe by switching the switch valve via the gas vent pipe and the gas filter. The gas in the cavity is sucked in vacuum.
  • gas can be surely extracted from the cavity by vacuum suction using a vacuum tank.
  • a mold internal information measuring sensor includes a rod-shaped casing that can be mounted in a mounting hole that is drilled in a mold and opens in a cavity of the mold, and the above-described rod-shaped casing disposed at a tip of the rod-shaped casing.
  • the gas filter since the gas filter has high cooling capacity and strength, the gas in the cavity is introduced into the introduction chamber through the gas filter, and the pressure of the gas in the introduction chamber is detected, so that the inside of the cavity is surely and accurately.
  • the gas pressure can be measured.
  • the degassing method in the mold according to the present invention is a degassing method in the mold when the molten metal is filled in the cavity of the mold to produce an injection molded product, and communicates with the cavity.
  • the gas filter is arranged in a gas vent passage formed in the mold, and the gas in the cavity is vented through the gas filter.
  • degassing in the cavity of the mold can be reliably performed by degassing the cavity through the gas filter.
  • the method for producing an injection-molded product according to the present invention is an injection-molded product using the mold in which the gas filter is disposed in a gas vent pipe formed in the mold so as to communicate with a cavity of the mold.
  • the gas vent pipe is opened to the atmosphere or evacuated in the step of injecting molten metal into the cavity, and the gas in the cavity is released through the gas filter. It is characterized by that.
  • the gas filter since the gas filter has a high cooling capacity and strength, the gas can be surely vented from the cavity of the mold.
  • the compressed air is supplied to the gas filter when a release agent is applied to the cavity surface of the mold, when the mold is clamped, and when the mold is opened.
  • the gas filter can be cooled and cleaned, and it is possible to prevent clogging due to the release agent and water droplets adhering to the gas filter.
  • the gas pressure in the gas vent pipe is measured after the supply of the compressed air is completed.
  • the gas filter is made of metal and has a rod-shaped member having a slit-like space portion penetrating in the axial direction, so that heat transfer is high and the molten metal has a high cooling capacity.
  • the hot metal is solidified in the slit-shaped space, and only gas can be passed.
  • the gas can be reliably vented from the cavity of the mold.
  • FIG. 4 is a cross-sectional view taken along line B-B ′ of the tube shown in FIG. 3. It is a front view of the pipe
  • FIG. 6 is a sectional view taken along line C-C ′ of the tube shown in FIG. 5. It is a front view of a positioning member.
  • FIG. 8 is a cross-sectional view taken along line D-D ′ of the positioning member shown in FIG. 7. It is typical sectional drawing which shows the usage example of a gas filter.
  • FIG. 1 is a front view of a gas filter 50 according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of the gas filter 50 taken along the line A-A ′.
  • the gas filter 50 is disposed in a passage leading to the cavity of the mold and is used for discharging the gas in the cavity.
  • the gas filter 50 has a multiple tube structure in which a plurality of tubes 51 and 52 and positioning members 55 having different diameters are concentrically arranged.
  • the tubes 51 and 52 and the positioning member 55 are made of metal.
  • the term “metal” refers to a substance that is understood in a broad sense, transfers heat well, has high strength, and is solid at room temperature.
  • FIG. 3 is a front view of the pipe 51 having the largest diameter
  • FIG. 4 is a cross-sectional view of the pipe 51 shown in FIG. 3 taken along the line B-B ′.
  • 5 is a front view of a small-diameter pipe 52 inserted through the pipe 51
  • FIG. 8 is a cross-sectional view of the positioning member 55 taken along the line D-D 'shown in FIG.
  • interval holding portions 53 having a certain height from the outer peripheral surface are arranged on the outer peripheral surfaces of the tubes 51 and 52 at equal intervals along the axial direction, and the tube 52 is inserted through the tube 51.
  • the interval holding part 53 of the tube 52 is in contact with the inner peripheral surface of the tube 51. Therefore, in a state where the tube 52 is inserted through the tube 51, a thin slit-like space portion 54 penetrating in the axial direction is formed between the tubes 51 and 52 as shown in FIG.
  • the positioning member 55 is made of beryllium steel in order to improve the cooling effect. As shown in FIGS. 1, 2, 7, and 8, the positioning member 55 has a cylindrical portion 55a. Similarly to the pipes 51 and 52, four interval holding portions 53 having a certain height from the outer peripheral surface are arranged at equal intervals along the axial direction on the outer peripheral surface of the cylindrical portion 55a. Is inserted into the tube 52, the interval holding portion 53 of the cylindrical portion 55 a comes into contact with the inner peripheral surface of the tube 52. On the outer peripheral surface on one end side of the cylindrical portion 55a, a projecting portion 55b is provided along the outer periphery. The overhanging portion 55b is provided with a slit-shaped communication path 55c cut out inward from the outer peripheral surface. In a state where the pipes 51 and 52 and the positioning member 53 are assembled to the gas filter 50, the communication passage 55 c and the slit-like space portion 54 communicate with each other and gas can be passed in the axial direction of the gas filter 50.
  • the pipes 51 and 52 When assembling the gas filter 50, when the pipes 51 and 52 are inserted through the positioning member 55, the pipes 51 and 52 can be positioned by the overhanging portion 55b, so that the gas filter 50 can be easily manufactured with high accuracy. Can do.
  • tubes 51 and 52 and the communicating path 55c of the positioning member 55 can also be formed by an etching, and can also be formed by wire cut electric discharge machining.
  • FIG. 9 is a schematic cross-sectional view showing a usage example of the gas filter 50.
  • the gas filter 50 shown in the figure has a cross section taken along the line A-A 'shown in FIG.
  • the gas filter 50 is disposed in a passage leading to the cavity of the mold.
  • the gas filter 50 is inserted into an outer cylinder holder having a diameter larger than that of the gas filter 50.
  • the inner diameter of the front end portion of the outer cylinder casing is larger than that of other portions, and the gas filter 50 is mounted and fixed to the enlarged diameter portion.
  • a small-diameter columnar member for performing load detection or temperature detection for example, is inserted into the central space of the gas filter 50.
  • An air passage is formed between the outer casing and the columnar member.
  • an outer cylinder holder is provided at the outermost periphery, a cylindrical member is provided at the center, and gas filters 50 are concentrically arranged between them to form a gas filter unit.
  • This gas filter unit is arranged at the end on the cavity side in the passage leading to the cavity of the mold.
  • the protruding portion 55b side of the gas filter 50 is disposed on the opposite side to the cavity side.
  • the interval holding portion 53 provided in the pipes 51 and 52 and the positioning member 55 has a height from the outer peripheral surface of the pipes 50a and 50b of 0.04 mm or more depending on the temperature, injection speed, pressure, etc. of the molten metal or the mold 12.
  • the thickness is preferably about 0.10 mm. With such a thickness, the thickness of the slit-shaped space portion 54 can also be set to about 0.04 mm to 0.10 mm, and when the molten metal enters the slit-shaped space portion 54 from the cavity, the molten metal tip is made of metal.
  • the pipes 50a and 50b formed in (1) are immediately cooled by the high heat transfer properties, and the molten metal solidifies before the molten metal flows out from the slit-shaped space 54 to the passage side. Thereby, the molten metal that has entered the slit-shaped space portion 54 does not flow out from the slit-shaped space portion 54 toward the passage, and the slit-shaped space portion 54 can pass only gas.
  • the communication passage 55c provided in the overhanging portion 55b of the positioning member 55 may be any one that allows gas to pass in the axial direction, and is not limited to a slit, and may be, for example, a through hole.
  • a space may be formed between the outside of the overhang portion 55b and the outer casing by reducing the amount of overhang of 55b.
  • the shape of the positioning member 55 is not limited to a cylindrical shape, and may be a columnar shape when a central space is not required.
  • the interval holding portion 53 is formed on the outer peripheral surface of each of the tubes 51 and 52 and the positioning member 55 has been described.
  • the number of the interval holding units 53 is not limited to four, and may be two, three, or five or more.
  • maintenance part 53 is not limited to the shape extended linearly in the axial direction of the gas filter 50, The distance of each pipe
  • maintenance part 53 may be helical shape. Further, the interval holding portion 53 may be provided only in the pipes 51 and 52, and the interval holding portion 53 may not be provided in the positioning member 55.
  • the gas filter 50 may be formed by using a multiple tube structure with a plurality of tubes having different diameters formed with the interval holding portion 53 without using the positioning member 55. (Modification of gas filter)
  • the configuration of the gas filter 50 described above is merely an example, and the gas filter may be a rod-shaped member that is formed of metal and has a slit-like space portion that penetrates in the axial direction.
  • FIG. 10 to 13 show modified examples of the gas filter.
  • FIG. 10 is a front view of a gas filter 50A according to a modification
  • FIG. 11 is a side view of the gas filter 50A.
  • the gas filter 50A has a cylindrical shape.
  • the gas filter 50A according to this modification is also made of metal.
  • 16 slits 56 that are notched linearly from the outer peripheral surface toward the center are formed at intervals of 22.5 °.
  • a plurality of linear slits 56 extend radially from the center to the circumferential side.
  • the slit 56 is composed of a long slit 56a and a short slit 56b having different lengths, and the long slit 56a and the short slit 56b are alternately formed.
  • FIG. 10 shows that shows that the gas filter 50A is viewed from the front.
  • each slit 56 has penetrated in the axial direction of the cylinder, and can let gas pass in the axial direction.
  • Each slit 56a, 56b has a thickness of about 0.4 mm to 1 mm as in the above-described embodiment.
  • the slit 56 constitutes a “slit-shaped space”.
  • Such a slit 56 can be formed by wire cutting, electric discharge machining, laser machining, or the like. Since the volume of the slit-shaped space portion can be made larger than that of the gas filter 50 by using the gas filter 50A as described above, heat transfer from the gas filter 50A to the molten metal that has entered the slit-shaped space portion is improved. And the cooling rate of the molten metal can be increased.
  • the number and length of the slits 56 described above are merely examples.
  • a plurality of slits having the same length may be provided, and the number of slits may be any number in consideration of air permeability and strength. Can do.
  • a space may be provided in the center of the gas filter 50A so that the gas filter 50A has a cylindrical shape.
  • FIG. 12 is a front view of a gas filter 50B according to another modification
  • FIG. 13 is a side view of the gas filter 50B.
  • the gas filter 50B according to this modification is also made of metal and has a cylindrical shape.
  • the shape and number of slits 57 provided in the gas filter 50B are different from the slits 56 provided in the gas filter 50A.
  • the front shape of the slit 57 in other words, the shape of the surface (cross section) cut in the direction perpendicular to the axial direction is linear at both ends, Has a semicircular shape.
  • the slits 57 are formed by cutting away from the outer peripheral surface toward the center at intervals of 45 degrees by wire cut electric discharge machining or the like.
  • the cut distance can be made longer than when the slit 57 is formed in a linear shape, so that the volume of the space formed by the slit 57 can be increased. Therefore, the amount of gas passing through the slit 57 can be increased, and a large amount of gas in the cavity 14 can be reliably discharged, heat transfer to the molten metal can be improved, and the molten metal can be immediately cooled. Further, the strength of the gas filter 50B can be ensured.
  • the other configuration of the gas filter 50B is the same as that of the gas filter 50A described above.
  • the cross-sectional shape of the slit 57 is not limited to the shape including the semicircular shape described above, and may be a shape including an arbitrary curved shape.
  • the shape of a slit is not limited to these modifications, It can be set as arbitrary shapes.
  • the shape seen from the front may have a spiral shape.
  • FIG. 14 is a schematic cross-sectional view of the die casting apparatus 10.
  • the die casting apparatus 10 has a mold 12 having a fixed mold 12a and a movable mold 12b.
  • a cavity 14 serving as a product mold is formed on the mating surface of the fixed mold 12a and the movable mold 12b.
  • a gate 16 for introducing the molten metal 28 extruded from the molten metal injection device 20 into the cavity 14 is connected and opened.
  • the molten metal injection device 20 is connected to the runner 17 of the mold 12 and includes a hollow sleeve 22 and a plunger 24 arranged in the sleeve 22.
  • a molten metal 28 is supplied into the sleeve 22 from a molten metal supply device (not shown), and the molten metal 28 is injected into the cavity 14 through the gate 16 by pushing out the plunger 24.
  • the plunger 24 is operated by an injection driving means (not shown).
  • the end of the movable mold 12b on the downstream side (upper position in FIG. 1) along the direction of hot water flow in the cavity 14 is aligned with the surface of the cavity 14, and the gas filter described above. 50 is arranged.
  • One end of a gas vent pipe 62 is connected to the end surface of the gas filter 50 opposite to the cavity 14 side, and the gas vent pipe 62 extends to the outside of the mold 12.
  • FIG. 15 is a schematic side view of a place where the gas filter 50 is installed.
  • the gas filter 50 is mounted in a holder 58 having a diameter larger than that of the gas filter 50, and the holder 58 is fixed to one end of the movable mold 12b on the cavity 14 side with a fastening screw.
  • One end face of the gas filter 50 is disposed on the same plane as the cavity 14 face, and the other end face is connected to the gas vent pipe 62 via the coupler 59.
  • the gas vent pipe 62 is formed of a vinyl tube. A space in the center of the gas filter 50 is closed by inserting a member (not shown).
  • the gas vent pipe 62 may be a copper pipe. In this case, the copper pipe may be brazed to the gas filter 50.
  • the gas vent pipe 62 extends to the outside of the mold 12.
  • the other end of the gas vent pipe 62 is connected to the switching valve 70.
  • a gas pressure sensor 72 that measures the gas pressure in the gas vent pipe 62 is provided in the middle of the gas vent pipe 62.
  • the switching valve 70 is connected to an air source 88 via an air adjustment unit 80. By switching the switching valve 70, the compressed air is supplied to the gas filter 50 by connecting the air source 88 and the gas vent pipe 62, or the gas vent pipe 62 is opened to the atmosphere and from the inside of the cavity 14 through the gas filter 50. The gas can be released or the gas vent pipe 62 can be shut off from the outside.
  • the switching valve 70 is a four-way four-port three-position solenoid valve in this embodiment.
  • the switching valve 70 includes a first solenoid 70a and a second solenoid 70b, and switches the position of the valve body by turning on (excitation) or turning off the first solenoid 70a and the second solenoid 70b.
  • the ON / OFF of the first solenoid 70a and the second solenoid 70b of the switching valve 70 is controlled by a control signal from the control device 40.
  • the switching valve 70 is closed and the gas vent pipe 62 is shut off from the outside.
  • the gas vent pipe 62 is opened to the atmosphere.
  • a vacuum tank 74 may be connected to the gas vent pipe 62 via the switching valve 70 to perform forced suction.
  • the air source 88 and the gas vent pipe 62 are connected, and the compressed air from the air source 88 is sent to the gas filter 50 through the gas vent pipe 62. 50 air blows are performed.
  • An air adjusting unit 80 provided between the air source 88 and the switching valve 70 includes an air filter 80a that removes water droplets and dust from the air, a regulator 80b that adjusts the pressure of the compressed air, and a mist in the compressed air. And a pressure gauge 80d. The air pressure from the air source 88 is adjusted and sent to the degassing pipe 62 side.
  • the control device 40 includes a CPU (not shown), a storage device such as a memory / hard disk, an input / output interface, a monitor device, and an internal clock, and the storage device is a program for performing various controls. And data are stored.
  • a CPU central processing unit
  • a storage device such as a memory / hard disk, an input / output interface, a monitor device, and an internal clock
  • the storage device is a program for performing various controls. And data are stored.
  • the control device 40 is electrically connected to each part such as the switching valve 70, the gas pressure sensor 72, the injection driving means of the molten metal injection device 20, and the CPU executes processing according to a program stored in the storage device.
  • each part such as the switching valve 70, the gas pressure sensor 72, the injection driving means of the molten metal injection device 20, and the CPU executes processing according to a program stored in the storage device.
  • a release agent is applied to the surface of the cavity 14 of the mold 12 by spraying (step S1). At this time, since the air blow of the gas filter 50 is performed, it is possible to prevent the release agent from adhering to the gas filter 50.
  • step S2 the movable mold 12b is moved to the fixed mold 12a side to perform mold clamping.
  • the gas pressure sensor 72 is used to measure the gas pressure drop gradient with the switching valve 70 closed, and the cooling liquid or spray liquid of the mold 12 enters the gas filter 50. Then, it is confirmed that the gas filter 50 is not clogged (step S3). Specifically, the second solenoid 70b is turned off and the switching valve 70 is closed. In this state, the gas pressure in the gas vent pipe 62 is measured by the gas pressure sensor 72 provided in the gas vent pipe 62, and the measurement result is transmitted to the control device 40. The control device 40 determines whether or not the gas filter 50 is clogged according to the decreasing gradient of the gas pressure measured by the gas pressure sensor 72.
  • the gas pressure decrease gradient is steeper than a preset gradient, and the gas pressure decreases rapidly, it is determined that the gas filter 50 is not clogged.
  • the gas pressure decrease gradient is gentler than the preset gradient and the pressure drop is slow, it is determined that the gas filter 50 is clogged.
  • the control device 40 When it is determined that the gas filter 50 is clogged, the control device 40 outputs an alarm and stops processing. On the other hand, when it is determined that the gas filter 50 is not clogged, the first solenoid 70a of the switching valve 70 is turned on to open the valve body that leads to the outside, and the gas vent pipe 62 is opened to the atmosphere. At this time, a vacuum tank 74 may be connected to the gas vent pipe 62 via the switching valve 70 to perform vacuum suction.
  • the molten metal is supplied from the molten metal injection device 20 into the sleeve 22 (step S4).
  • the plunger 24 is moved toward the mold 12 by the injection driving means, and the injection operation is started (step S5). As the plunger 24 moves, the molten metal is filled into the cavity 14.
  • the gas in the cavity 14 is passed through the communication path 55 c of the gas filter 50, the slit-shaped space 54, the gas vent pipe 62, and the switching valve 70. Released to the outside.
  • the molten metal enters the communication passage 55c and the slit-like space portion 54 of the gas filter 50.
  • the thickness of the slit-like space portion 54 is about 0.04 mm to 0.10 mm, and the gas filter 50 is made of metal. Therefore, the molten metal is immediately cooled in the slit-shaped space portion 54 and solidifies at the molten metal tip. For this reason, the molten metal does not flow into the degassing pipe 62 side, and only gas can be passed through the degassing pipe 62 side.
  • the gas filter 50 is made of metal, it has high strength and is more resistant to thermal shock than ceramics and is not likely to be damaged. Therefore, the gas is reliably vented through the gas filter 50 during injection. It is possible to manufacture a high-quality cast product without a nest inside.
  • the molten metal filled in the cavity 14 is cooled and solidified to form a cast product.
  • the mold is opened, and the cast product is taken out from the mold 12 (step S6).
  • the second solenoid 70b of the switching valve 70 is turned ON, compressed air is supplied from the air source 88 to the gas filter 50 via the switching valve 70, and the gas filter 50 is cooled and cleaned. Thereafter, the clogging of the gas filter 50 may be checked by measuring the gas pressure as in step S3. This completes the manufacturing process for one casting.
  • one degassing pipe 62 is provided in the mold 12 and one gas filter 50 is disposed in the degassing pipe 62 to degas the cavity 14.
  • a plurality of degassing pipes 62 may be provided in the mold 12, and the degassing filter 50 may be disposed in each degassing pipe 62 to degas the cavity 14.
  • the gas vent pipe 62 may be provided not only on the movable mold 12b but also on the fixed mold 12a.
  • FIG. 17 is a schematic cross-sectional view of a die casting apparatus 10A according to the second embodiment.
  • the die casting apparatus 10A according to the second embodiment measures a gas pressure, a molten metal pressure, a molten metal temperature, and the like inside the mold 12 with a mold internal information measurement sensor 100. The structure for doing is added.
  • a sensor mounting hole 64 that opens into the cavity 14 is formed through the mold 12.
  • the sensor mounting hole 64 is attached with a mold internal information measuring sensor 100 in which sensors for detecting each of gas pressure, molten metal pressure, and molten metal temperature are incorporated in one rod-shaped casing.
  • the sensor built into the mold internal information measuring sensor 100 may be a single sensor. Two types of sensors selected from a gas pressure sensor, a molten metal pressure sensor, and a molten metal temperature sensor are built into the rod, or three types of sensors are rodd. It is possible to appropriately take a form to be built in.
  • the peripheral region where the sensor mounting hole 64 of the cavity 14 opens is formed in a flat surface. Thereby, it can attach in the form with which the front end surface of the measurement rod 102 corresponds to the surface of the cavity 14.
  • FIG. 18 is a cross-sectional view of the mold internal information measuring sensor 100.
  • the gas filter 50 shown in the figure shows a cross section taken along line A-A 'shown in FIG.
  • the mold internal information measuring sensor 100 is inserted into the sensor mounting hole 64 and can be attached so that the tip end surface thereof coincides with the surface of the cavity 14, and a movable die provided at the base end of the measuring rod 102. And a sensor block 104 positioned outside the mold 12b.
  • a fixing unit 110 composed of a bite joint 106 and a set screw 108 is slidably attached to the outer peripheral portion of the measuring rod 102 so as to correspond to the length of the sensor mounting hole 64.
  • the position of the measuring rod 102 is adjusted according to the surface of the cavity 14, the set screw 108 is tightened in the sensor mounting hole 64, and the biting joint 106 is turned to bite into the outer peripheral surface of the measuring rod 102. 102 is fixed in place.
  • the measuring rod 102 has an outer cylinder casing 112 and a pressure transmission rod 114 arranged along the axial direction at the center thereof.
  • the pressure transmission rod 114 is a cylindrical body having an outer diameter smaller than the inner diameter of the outer cylinder casing 112, and an air passage 115 is formed between the outer cylinder casing 112 and the pressure transmission rod 114.
  • the inner diameter of the outer cylinder casing 112 is slightly increased, and the distal end of the pressure transmission rod 114 is also formed in a smaller-diameter cross section than the main body portion of the pressure transmission rod 114.
  • the above-described multi-tube structure gas filter 50 is mounted between the measurement rod 102 and the pressure transmission rod 114.
  • the gas filter 50 is mounted such that the protruding portion 55b side is disposed on the side opposite to the distal end side of the measuring rod 102.
  • the distal end surface of the measuring rod 102 is arranged on the outermost end surface of the outer cylinder casing 112, the central portion is the end surface of the pressure transmission rod 114, and the gas filter 50 is concentrically arranged between them.
  • a part of the surface of the cavity 14 can be configured by attaching to the surface. Since the gas filter 50 is provided with the slit-shaped space portion 54 and the communication passage 55 c that communicate with each other in the axial direction, the gas in the cavity 14 is separated from the molten metal by the gas filter 50 and can be introduced into the air passage 115. Yes.
  • the gas filter 50 having the above-described configuration for the mold internal information measuring sensor 100 it is more resistant to thermal shock than the case of using a porous filter such as ceramic, so that it is possible to prevent breakage while ensuring high air permeability. It is possible to introduce only the gas into the mold internal information measuring sensor 100 efficiently and reliably.
  • the base of the measuring rod 102 is attached to the sensor block 104.
  • the sensor block 104 has a rectangular block body 120 as shown in FIG.
  • the block main body 120 has a gas introduction chamber 122 formed in an opening on one surface, and a first sensor chamber 126 is formed on the opposite surface on the same axis with the partition wall 124 therebetween.
  • the partition wall 124 is formed with a through hole that communicates the gas introduction chamber 122 and the first sensor chamber 126.
  • the measuring rod 102 is attached to such a sensor block 104. That is, the base end portion of the outer cylinder casing 112 of the measuring rod 102 is attached to a casing attachment hole 122a formed in the inlet opening of the gas introduction chamber 122 of the block main body 120, and the outer periphery of the outer cylinder casing 112 and the block main body are mounted. The corner portion with 120 is joined by welding.
  • the base end of the pressure transmission rod 114 in the measuring rod 102 is longer than the outer cylinder casing 112, and this base end portion extends through the through hole of the partition wall 124 and extends to the first sensor chamber 126. .
  • the through hole supports the pressure transmission rod 114 with a bearing while sealing a gap with the pressure transmission rod 114 with an O-ring 130. Therefore, the pressure transmission rod 114 is supported at two points by the guide bush 118 provided at the inner periphery of the tip end portion of the outer cylinder casing 112 and the through hole provided in the partition wall 124 of the sensor block 104, and It can move in the axial direction inside.
  • the pressure transmission rod 114 receives pressure, the pressure transmission rod 114 is pressed in the axial direction and moved toward the opening side of the first sensor chamber 126 of the sensor block 104.
  • the pressure transmission block 134 and the load cell 136 are laminated on the end surface of the proximal end portion of the pressure transmission rod 114 so as to face each other.
  • the sensor block 104 has an opening of the first sensor chamber 126 facing the back surface of the load cell 136 so that the stacked pressure transmission block 134 and the load cell 136 are sandwiched between the pressure transmission rods 114.
  • a block lid 132 is attached.
  • the air passage 115 formed between the outer cylinder casing 112 of the measuring rod 102 and the pressure transmission rod 114 is communicated with the gas introduction chamber 122 inside the sensor block 104.
  • a second sensor chamber 138 communicating with the gas introduction chamber 122 is formed in the block outer peripheral surface.
  • a gas pressure sensor 140 is disposed in the opening of the second sensor chamber 138 so as to seal the opening.
  • the gas pressure sensor 140 for example, a piezoelectric load detection sensor using a ceramic piezoelectric element is used.
  • the second sensor chamber 138 is sealed with a sensor fixing bolt 144.
  • the gas in the cavity 14 introduced into the mold internal information measurement sensor 100 through the gas filter 50 on the distal end side of the measurement rod 102 passes from the gas introduction chamber 122 to the second sensor chamber 138 via the air passage 115.
  • the gas pressure sensor 140 measures the pressure.
  • a purge air introduction hole 146 is opened in the gas introduction chamber 122.
  • a compressed air supply pipe 148 is connected to the purge air introduction hole 146 so that compressed air can be supplied from the air source 88. Thereby, compressed air can be flowed to the gas filter 50 side via the gas introduction chamber 122, and the clogging of the gas filter 50 can be checked.
  • a pore 150 is formed in the axial core portion of the pressure transmission rod 114 described above.
  • the pore 150 is opened at the center of the tip of the pressure transmission rod 114, and this is used as a metal temperature detection end 151.
  • the metal temperature detection end 151 is made of an SKD material to prevent melting damage, and a detection portion of a thermocouple 152 is embedded.
  • a lead wire 158 of a thermocouple 152 is routed inside the pore 150, and the lead wire 158 is led out of the block through a cut groove 160 formed at the proximal end of the pressure transmission rod 114.
  • a terminal box 162 is attached to the sensor block 104, and various lead wires of the load cell 136, the gas pressure sensor 140, and the thermocouple 152 are led here. Then, each sensor is connected to a measuring instrument (not shown) via the terminal box 162, and the measuring instrument outputs predetermined measurement data, transmits it to the control device 40, and displays it on the display means as necessary. it can.
  • the mold internal information measurement sensor 100 is attached to the movable mold 12b, but may be attached to the fixed mold 12a.
  • step S0 the measuring rod 102 of the above-mentioned mold internal information measuring sensor 100 is inserted into the sensor mounting hole 64 of the movable mold 12b so that the tip surface of the measuring rod 102 is flush with the surface of the cavity 14. In the state, it is fixed by the fixing unit 110 of the sensor 100.
  • step S ⁇ b> 5 the metal pressure of the molten metal acts on the tip of the measuring rod 102 of the mold internal information measuring sensor 100 facing the cavity 14, and the pressure transmission rod 114 is pushed, and this force is applied by the load cell 136. Detected.
  • the gas inside the cavity 14 is introduced into the gas introduction chamber 122 through the gas filter 50 through the air passage 115 of the mold internal information measuring sensor 100, and the gas pressure is detected by the gas pressure sensor 140. Further, the molten metal temperature is detected by a metal temperature detection end 151 provided at the tip of the pressure transmission rod 114.
  • the metal gas filter 50 is more resistant to thermal shock than ceramics, so that it is not damaged and has a high cooling capacity. Therefore, only gas can be reliably introduced into the air passage 115, and the gas pressure in the cavity 14 can be measured reliably and accurately.
  • FIG. 20 is a schematic cross-sectional view of a die casting apparatus 10B according to the third embodiment.
  • the die casting apparatus 10B according to the third embodiment includes an exhaust side passage 18 that discharges gas in the cavity 14 from the exhaust side path 18 during injection, and the inside of the cavity 14
  • a shut valve 30 for closing the exhaust side passage 18 when the molten metal filling is completed, a mechanism for controlling the shut valve 30, and the like are provided.
  • an inlet sensor 26A for detecting that the molten metal has reached is disposed at the inlet of the cavity 14 in the gate 16 side passage.
  • an outlet sensor 26B that detects that the molten metal has reached is disposed at the outlet of the cavity 14 of the exhaust side passage 18.
  • the electrical conductivity of the molten metal 28 is used, and the molten metal 28 adheres to the front end surface of the molten metal detection sensor 26, so What is constituted may be used.
  • the difference between the time points when the molten metal is detected to reach the sensors 26A and 26B is the molten metal filling time from when the molten metal 28 flows into the cavity 14 until it is completely filled.
  • a shut valve 30 for opening and closing the exhaust side passage 18 is disposed downstream of the exhaust side passage 18.
  • the shut valve 30 shuts off the exhaust-side passage 18 as the molten metal filling time expires under the control of the control device 40 electrically connected to the shut valve 30.
  • the shut valve 30 is not limited to a drive type, but in this embodiment, the shut valve 30 is configured by an electromagnetically operated valve mechanism, and the passage is blocked by the valve body by energizing the operating coil.
  • the shut valve 30 has a spool 30b that is mounted so as to be reciprocally movable in the cylinder 30a, and drives the spool 30b to reciprocate by energizing and shutting off the electromagnetic coil 30c.
  • a poppet type valve element 30e is formed at the tip of the spool rod 30d. The poppet type valve element 30e faces the exhaust side passage 18 and is seated on a valve seat 30f formed on the wall surface of the exhaust side passage 18 to thereby form an exhaust side passage.
  • the shut valve 30 is normally configured as a normally open valve that opens the exhaust-side passage 18, and is driven by the control device 40 so that the molten metal 28 is closed when it reaches the outlet sensor 26B.
  • the shut valve 30 is provided with limit switches 34A and 34B for detecting a valve opening position for opening the exhaust side passage 18 to the atmosphere and a valve closing position for closing the passage 18 by the poppet type valve element 30e. .
  • the limit switches 34 ⁇ / b> A and 34 ⁇ / b> B detect the movement forward limit and the reverse limit of the spool 30 b and output detection signals to the control device 40.
  • the control device 40 stores the time difference at each time point when the detection signal is output from each of the inlet sensor 26A and the outlet sensor 26B as “molten metal filling time” in the memory.
  • a control signal for closing the shut valve 30 is transmitted to the shut valve 30, and then the spool 30 b of the shut valve 30 closes the exhaust side passage 18.
  • the time until the detection signal is received from the limit switch 34A after moving in the direction may be measured, and the time may be stored in the memory as the “operation delay time”.
  • the control device 40 measures the time from the time when the detection signal is received from the inlet sensor 26A, and when the “molten filling time” stored in the memory has elapsed, the shut valve 30 Is transmitted to the shut valve 30. Thereby, the spool rod 30d of the shut valve 30 is driven and the exhaust side passage 18 is closed.
  • the control device 40 starts from the “melt filling time” stored in the memory in advance from the time when the detection signal is received from the inlet sensor 26 ⁇ / b> A to the “operation delay time”.
  • the control signal may be transmitted when the time obtained by subtracting "" has elapsed.
  • the control device 40 measures the “melt filling time” and the “operation delay time” in the current injection operation, and the “melt filling time” and “operation delay time” stored in the memory at the measured times. Update.
  • the gas in the cavity 14 is vented using both the exhaust side passage 18 and the gas vent pipe 62 at the time of injection, and the shut valve 30 is closed when the molten metal is completely filled in the cavity 14. Therefore, the gas in the cavity 14 can be surely vented, and a high-quality cast product without a nest can be manufactured. Operations other than those described above are the same as in the second embodiment.
  • the gas pressure in the cavity 14 is measured using the mold internal information measuring sensor 100 at the time of injection, but the gas pressure in the cavity 14 is measured using the gas pressure sensor 72. May be.
  • the switching valve 70 is closed so that the gas in the gas vent pipe 62 does not leak to the outside, and the gas vent pipe 62 is removed from the atmosphere. It is necessary to measure in the blocked state.
  • a standard mode in which the gas pressure sensor 72 is used for degassing and a gas pressure measurement mode used in gas pressure measurement are selected on the graphic panel provided in the control device 40. For this purpose, a changeover switch may be provided.
  • control device 40 When the control device 40 detects that the gas pressure measurement mode has been selected by operating the changeover switch from the outside, the control device 40 transmits a control signal instructing switching to the closed state to the valve 70 at the start of injection. do it. And the control apparatus 40 should just receive the data of the gas pressure measured by the gas pressure sensor 72, and may display the peak pressure of the gas at the time of injection
  • gas filter 50 In the above-described embodiment, the example in which the gas in the cavity 14 of the die casting apparatus 10 is discharged using the gas filter 50 has been described.
  • the gas filters 50A and 50B may be used.
  • the apparatus which can use gas filter 50, 50A, 50B is not limited to the die-casting apparatus 10, For example, the gravity casting machine and low pressure casting machine which manufacture a casting, a resin molding, a plastic molding, etc.
  • the present invention can be applied to any apparatus equipped with a mold, such as an injection molding machine.

Abstract

[Problem] To provide a gas filter capable of reliably removing gas from a cavity in a mold, a mold device using this gas filter, a mold interior information measurement sensor, a method for removing gas in a mold, and a method for manufacturing an injection-molded product. [Solution] A gas filter (50) that removes gas from a cavity (14) in a mold (12), and is equipped with a rod-shaped member formed of metal and having slit-shaped space parts (54) penetrating in the axial direction thereof.

Description

ガスフィルター、金型装置、金型内部情報計測センサー、金型内のガス抜き方法及び射出成形品製造方法Gas filter, mold apparatus, mold internal information measuring sensor, degassing method in mold and injection molded product manufacturing method
 本発明は、ダイカスト装置、重力鋳造機、低圧鋳造機、射出成形機等の金型のキャビティ内からガスを排出するガスフィルター、当該ガスフィルターを用いた金型装置、金型内の溶湯の圧力を検知して鋳造・樹脂成形品の良否を判定するのに好適な金型内部情報計測センサー、金型のキャビティ内からガスを排出する金型内ガス抜き方法、当該ガスフィルターを用いて射出成形品を製造する射出成形品製造方法に関する。 The present invention relates to a gas filter that discharges gas from a die cavity of a die casting apparatus, gravity casting machine, low pressure casting machine, injection molding machine, etc., a mold apparatus using the gas filter, and a pressure of a molten metal in the mold Mold internal information measuring sensor suitable for judging the quality of casting / resin molded product by detecting the gas, method of venting gas from the mold cavity, and injection molding using the gas filter The present invention relates to an injection molded product manufacturing method for manufacturing a product.
 ダイカスト製品の品質は、金属溶湯を金型内に充填する際の射出速度や射出圧力に影響されることが知られている。ダイカスト装置における金型に金属溶湯を充填する射出工程では、プランジャスリーブに溶湯を供給し、溶湯の空気の巻き込み等を避けるためにプランジャを低い射出速度で駆動し、プランジャスリーブと製品ライナー部が満杯になるまで前進する。次いで、溶湯の先端が金型の湯口に達する位置までプランジャが移動したら、プランジャを高速の射出速度に切り換えて駆動し、溶湯を金型のキャビティに急速に充填する。次いで、金型のキャビティに溶湯が充填されたらプランジャの圧力を上昇させて、溶湯を加圧する。 It is known that the quality of die-cast products is affected by the injection speed and injection pressure when filling a metal mold with molten metal. In the injection process of filling the mold with metal melt in the die casting machine, the molten metal is supplied to the plunger sleeve, and the plunger is driven at a low injection speed to avoid entrainment of air in the molten metal, and the plunger sleeve and product liner are full. Move forward until Next, when the plunger moves to a position where the tip of the molten metal reaches the mold gate, the plunger is switched to a high injection speed and driven to rapidly fill the molten metal into the mold cavity. Next, when the molten metal is filled in the mold cavity, the pressure of the plunger is increased to pressurize the molten metal.
 一般に、ダイカスト装置に使用される金型は、図22に示すように可動金型1aと固定金型1bで構成されている。両金型1a、1bで形成されるキャビティ2には、射出シリンダに続く、鋳込口3a、湯道3b、湯口3cが設けられ、さらにキャビティ2内のガスを抜くガス抜き通路4、湯溜り5が設けられている。 Generally, as shown in FIG. 22, a mold used for a die casting apparatus is composed of a movable mold 1a and a fixed mold 1b. The cavity 2 formed by the two molds 1a and 1b is provided with a casting port 3a, a runner 3b, and a gate 3c following the injection cylinder, and further a gas vent passage 4 through which the gas in the cavity 2 is vented, a sump 5 is provided.
 図23は、ダイカスト装置において、金型のキャビティ2に金属を充填する状態を示す断面図である。同図において、プランジャスリーブ6の注湯口6aを通じて所定量の金属溶湯MLを、ラドルを使用して供給する。この図では、所定量の金属溶湯MLをプランジャスリーブ6内に供給した状態からプランジャ7を低速駆動させて射出している状態を示している。低速射出状態では、プランジャチップ7aの前方には金属溶湯MLとともにガスGが存在しており、プランジャスリーブ6内の金属溶湯MLをキャビティ2に導く湯道3bにもガスGが存在している。また、図23に示す位置FPは、プランジャ7を低速移動から高速移動に切り替えるポイントである。プランジャチップ7aがこの位置FPまで到達すると、プランジャスリーブ6内および湯道3bに金属溶湯MLが充填される。金属溶湯MLの先端部が、湯口3cに達する位置、すなわち、キャビティ2への金属溶湯MLの充填が開始される充填開始位置である。 FIG. 23 is a cross-sectional view showing a state in which metal is filled in the cavity 2 of the mold in the die casting apparatus. In the figure, a predetermined amount of molten metal ML is supplied using a ladle through a pouring port 6 a of the plunger sleeve 6. This figure shows a state where the plunger 7 is driven at a low speed and injected from a state where a predetermined amount of the molten metal ML is supplied into the plunger sleeve 6. In the low-speed injection state, the gas G is present together with the molten metal ML in front of the plunger tip 7 a, and the gas G is also present in the runner 3 b that guides the molten metal ML in the plunger sleeve 6 to the cavity 2. A position FP shown in FIG. 23 is a point at which the plunger 7 is switched from low speed movement to high speed movement. When the plunger tip 7a reaches this position FP, the molten metal ML is filled in the plunger sleeve 6 and the runner 3b. This is the position where the tip of the molten metal ML reaches the gate 3c, that is, the filling start position where the filling of the molten metal ML into the cavity 2 is started.
 金型のキャビティ2に溶湯を射出し、鋳物製品を鋳造する場合、射出時における金型内の溶湯の圧力、溶湯の温度、溶湯の充填によって圧縮されたキャビティ2内のガスの圧力等を測定することは、製品の品質管理上重要である。これらの情報を用いて、鋳造ショット毎に、ダイカスト製品が十分な強度を有するものであるか否かを判定することができれば、不良品を後段の工程に流すことが防止され、結果として歩留まりを向上させることができる。 When injecting molten metal into the mold cavity 2 and casting a cast product, the pressure of the molten metal in the mold, the temperature of the molten metal at the time of injection, the pressure of the gas in the cavity 2 compressed by filling the molten metal, etc. are measured. It is important for product quality control. If it is possible to determine whether or not the die-cast product has sufficient strength for each casting shot using these pieces of information, it is possible to prevent the defective product from flowing to the subsequent process, resulting in a yield. Can be improved.
 しかしながら、従来においては、金型内のこれらの情報を簡易かつ確実に計測する方法は存在しなかった。 However, conventionally, there has been no method for easily and reliably measuring these pieces of information in the mold.
 また、キャビティ2内のガスを外部に確実に放出することも、製品の品質管理上重要である。従来においては、予めキャビティ2にガス抜き通路4を開口させており、キャビティ2への溶湯の充填により、キャビティ2内のガスをガス抜き通路4に押出し、当該ガス抜き通路4から大気に開放させている。 Also, it is important for the quality control of the product to reliably release the gas in the cavity 2 to the outside. Conventionally, a gas vent passage 4 is opened in the cavity 2 in advance, and by filling the cavity 2 with molten metal, the gas in the cavity 2 is extruded into the gas vent passage 4 and is released from the gas vent passage 4 to the atmosphere. ing.
 溶湯は時間とともに溶融状態から半溶融に変態し、さらには固体へと変態するが、充填時間を短くして、溶湯を溶融状態でキャビティ2内に充填することが良品の製造につながると考えられている。しかしながら、キャビティ2内に射出された溶融状態の溶湯は、ガス抜き通路4や金型の隙間に入り込み、バリやフラッシュを発生させてしまう。このようなバリやフラッシュは鋳造品の生産に支障をきたすので、金型の隙間やガス抜き通路4をできるだけ狭くすることが行われている。 The molten metal is transformed from a molten state to semi-molten with time, and further transformed into a solid. However, it is thought that filling the cavity 2 in the molten state by shortening the filling time leads to the production of good products. ing. However, the molten molten metal injected into the cavity 2 enters the gas vent passage 4 and the gap between the molds, and generates burrs and flashes. Since such burrs and flashes hinder the production of cast products, the gaps between the molds and the gas vent passage 4 are made as narrow as possible.
 しかしながら、キャビティ内に存在するガスは、溶湯の充填に伴って短時間で排気されるべきところ、隙間が狭いと排気できなくなる可能性が生じる。排気できなかったガスは製品に巻き込まれ、巻き込み巣となって製品不良の原因となってしまう。 However, the gas existing in the cavity should be exhausted in a short time as the molten metal is filled. If the gap is narrow, there is a possibility that the gas cannot be exhausted. The gas that could not be exhausted is caught in the product and becomes a trap, causing a product defect.
 このようなことから、従来のダイカスト装置では、ガス抜き通路4の開口部分の厚さは、先端の溶湯が金型で冷されて凝固することで後から押し出されてくる溶湯をシールする湯先凝固を利用するために、0.1mm程度の狭窄部とされている。 For this reason, in the conventional die casting apparatus, the thickness of the opening portion of the gas vent passage 4 is such that the molten metal at the end is cooled by the mold and solidified to seal the molten metal extruded later. In order to use the coagulation, it is a narrowed portion of about 0.1 mm.
 キャビティ内のガス抜きの技術としては、例えば特許文献1に、加圧ピンの先端にシール部(加圧ピンが摺動できる範囲での最小隙間)を設け、該先端部より後方に金型外部と連通させるガス通路を設け、当該加圧ピンを金型キャビティ内の最終充填箇所に配設して、該金型キャビティ内を直接加圧するとともに該キャビティ内のガス抜きを行うことが記載されている。 As a technique for venting gas in the cavity, for example, in Patent Document 1, a seal portion (minimum clearance within a range in which the pressure pin can slide) is provided at the tip of the pressure pin, and the mold outside is provided behind the tip portion. It is described that a gas passage that communicates with the mold cavity is provided, the pressurizing pin is disposed at a final filling position in the mold cavity, and the inside of the mold cavity is directly pressurized and degassed in the cavity. Yes.
特開2003-39154号公報JP 2003-39154 A
 しかしながら、特許文献1に記載の技術では、加圧ピンにガス抜き機能を付加しているため、加圧ピンが配設されたキャビティ内の最終充填箇所のみでしかガス抜きを行うことができない。また、シール部で形成される隙間の大きさを一定に調整することが難しいため、溶湯が隙間を通過してしまう場合や、キャビティ内のガスを外部に十分に排出できない場合があり得る。 However, in the technique described in Patent Document 1, since a degassing function is added to the pressure pin, degassing can be performed only at the final filling location in the cavity where the pressure pin is disposed. Further, since it is difficult to adjust the size of the gap formed by the seal portion to be constant, there are cases where the molten metal passes through the gap or the gas in the cavity cannot be sufficiently discharged to the outside.
 本発明は、上記問題点に着目してなされたもので、金型のキャビティ内からガス抜きを確実に行うことを可能とするガスフィルター、これを用いた金型装置、金型内部情報計測センサー、金型内ガス抜き方法及び射出成形品製造方法を提供することを目的とする。 The present invention has been made paying attention to the above-mentioned problems, and is a gas filter capable of surely venting gas from inside a mold cavity, a mold apparatus using the same, and a mold internal information measuring sensor. An object of the present invention is to provide a method for venting gas from a mold and a method for producing an injection molded product.
 また、金型のキャビティ内に充填して形成された射出成形品の良否判定を行うのに必要な情報として、少なくともガス圧を確実かつ正確に計測できるようにした金型内部情報計測センサーを提供することを目的としている。 In addition, we provide a mold internal information measurement sensor that can measure at least gas pressure reliably and accurately as information necessary to judge the quality of injection molded products filled in the mold cavity. The purpose is to do.
 また、ガスフィルターの目詰まりを防止する鋳造品製造方法を提供することを目的とする。 It is another object of the present invention to provide a casting manufacturing method that prevents clogging of a gas filter.
 上述した課題の少なくとも1つを解決するために、本発明に係るガスフィルターは、金型のキャビティ内からガス抜きを行うガスフィルターであって、金属で形成され、軸方向に貫通するスリット状空間部を有する棒状部材を備えたことを特徴とする。 In order to solve at least one of the above-described problems, a gas filter according to the present invention is a gas filter that vents gas from a cavity of a mold, and is a slit-like space formed of metal and penetrating in an axial direction. A bar-shaped member having a portion is provided.
 本発明によれば、ガスフィルターは、金属で形成され、軸方向に貫通するスリット状空間部を有する棒状部材を備えていることにより、熱伝達性が高く、溶湯の冷却能力が高いため、溶湯をスリット状空間部で湯先凝固させ、ガスのみを通すことができる。また、熱衝撃に強く強度が高いため破損する恐れがない。したがって、キャビティ内からのガス抜きを確実に行うことができる。 According to the present invention, the gas filter is made of metal and has a rod-shaped member having a slit-like space portion penetrating in the axial direction, so that heat transfer is high and the molten metal has a high cooling capacity. Can be solidified at the slit-shaped space, allowing only gas to pass through. In addition, since it is strong against thermal shock and has high strength, there is no risk of breakage. Therefore, the gas can be reliably vented from the cavity.
 上記発明において、前記スリット状空間部は、前記棒状部材の外周面から中心部に向かって切り欠かれた1又は複数の空間部であることを特徴とする。 In the above invention, the slit-shaped space portion is one or a plurality of space portions cut out from the outer peripheral surface of the rod-shaped member toward the center portion.
 本発明によれば、棒状部材の外周面から中心部に向かって切り欠かれた1又は複数の空間部を通して、金型のキャビティ内のガス抜きを確実に行うことができる。 According to the present invention, the gas in the mold cavity can be surely vented through one or more spaces cut out from the outer peripheral surface of the rod-shaped member toward the center.
 上記発明において、前記スリット状空間部の横断面形状は曲線形状を含むことを特徴とする。 In the above invention, the slit-shaped space has a cross-sectional shape including a curved shape.
 本発明によれば、カット距離を長くすることができるため、スリット状空間部の容積を大きくすることができ、キャビティ内のガスを確実に多く排出することができる。また、棒状部材の強度を確保することができる。 According to the present invention, since the cut distance can be increased, the volume of the slit space can be increased, and a large amount of gas in the cavity can be discharged reliably. Moreover, the strength of the rod-like member can be ensured.
 上記発明において、前記棒状部材は、多重管構造を有する複数の管であり、前記複数の管同士の間に前記スリット状空間部が形成されていることを特徴とする。 In the above invention, the rod-shaped member is a plurality of tubes having a multiple tube structure, and the slit-like space portion is formed between the plurality of tubes.
 本発明によれば、ガスフィルターは、溶湯を湯先凝固させてガスのみを通すことができ、また、強度が高いため、金型のキャビティ内からのガス抜きを確実に行うことができる。 According to the present invention, the gas filter can solidify the molten metal and allow only the gas to pass through. Also, since the strength is high, the gas filter can surely perform degassing from the cavity of the mold.
 上記発明において、前記複数の管それぞれの外周面には、該外周面から一定の高さを有する間隔保持部が形成されていることを特徴とする。 In the above invention, an interval holding portion having a certain height from the outer peripheral surface is formed on the outer peripheral surface of each of the plurality of tubes.
 本発明によれば、管の外周面から一定の高さを有する間隔保持部を形成することで、管同士の距離を一定にし、スリット状空間部の厚さを一定にすることができる。 According to the present invention, by forming the interval holding portion having a certain height from the outer peripheral surface of the tube, the distance between the tubes can be made constant and the thickness of the slit-like space portion can be made constant.
 上記発明において、前記複数の管それぞれの内周面には、該内周面から一定の高さを有する間隔保持部が形成されていることを特徴とする。 In the above invention, an interval holding part having a certain height from the inner peripheral surface is formed on the inner peripheral surface of each of the plurality of tubes.
 本発明によれば、管の内周面から一定の高さを有する間隔保持部を形成することで、管同士の距離を一定にし、スリット状空間部の厚さを一定にすることができる。 According to the present invention, by forming the interval holding portion having a certain height from the inner peripheral surface of the tube, the distance between the tubes can be made constant and the thickness of the slit-like space portion can be made constant.
 上記発明において、前記間隔保持部は、軸方向に沿って複数形成されていることを特徴とする。 In the above invention, a plurality of the interval holding portions are formed along the axial direction.
 本発明によれば、軸方向にガスを通り易くすることができる。 According to the present invention, gas can be easily passed in the axial direction.
 上記発明において、前記複数の管のうち径の最も小さい管には、位置決め部材が挿通され、前記位置決め部材の一方の端部側の外周面には張出部が設けられ、前記張出部には、前記スリット状空間部に連通する連通路が形成されていることを特徴とする。 In the above invention, a positioning member is inserted into a pipe having the smallest diameter among the plurality of pipes, and an overhang portion is provided on an outer peripheral surface on one end side of the positioning member. Is characterized in that a communication passage communicating with the slit-like space is formed.
 本発明によれば、複数の管を位置決め部材に挿通することで、位置決め部材の張出部によって複数の管の位置決めをすることができ、ガスフィルターを簡易に精度高く作成することができる。また、スリット状空間部と連通路を通じて、ガスフィルターの軸方向にガスを通すことができる。 According to the present invention, by inserting a plurality of tubes into the positioning member, the plurality of tubes can be positioned by the protruding portion of the positioning member, and a gas filter can be easily and accurately produced. Further, gas can be passed through the slit-shaped space portion and the communication path in the axial direction of the gas filter.
 また、本発明に係る金型装置は、上記ガスフィルターを、金型のキャビティに通じるガス抜き配管に配設したことを特徴とする。 Further, the mold apparatus according to the present invention is characterized in that the gas filter is disposed in a gas vent pipe communicating with a cavity of the mold.
 本発明によれば、金属で形成されたガスフィルターは、冷却能力と強度が高いため、該ガスフィルターをガス抜き配管に配設することで、金型のキャビティ内からのガス抜きを確実に行うことができる。 According to the present invention, since the gas filter formed of metal has high cooling capacity and strength, the gas filter is disposed in the gas vent pipe to reliably vent the gas from the mold cavity. be able to.
 上記発明において、前記ガス抜き配管に接続された切替バルブと、前記ガス抜き配管の前記ガスフィルターが配設された位置と前記切替バルブが接続された位置との間に設けられ、前記切替バルブにより前記ガス抜き配管を大気から遮断した状態で前記ガス抜き配管内のガス圧を計測するガス圧センサーと、を備えたことを特徴とする。 In the above invention, the switching valve connected to the degassing pipe, and a position of the degassing pipe between the position where the gas filter is disposed and the position where the switching valve is connected are provided by the switching valve. A gas pressure sensor for measuring a gas pressure in the gas vent pipe in a state where the gas vent pipe is cut off from the atmosphere.
 本発明によれば、前記切替バルブにより前記ガス抜き配管を大気から遮断した状態で前記ガス抜き配管内のガス圧をキャビティ内のガス圧として計測することができ、ガスフィルターをガス抜き以外の用途にも利用することができる。 According to the present invention, the gas pressure in the gas vent pipe can be measured as the gas pressure in the cavity in a state where the gas vent pipe is shut off from the atmosphere by the switching valve, and the gas filter is used for purposes other than gas venting. Can also be used.
 上記発明において、前記ガス圧センサーにより計測されたガス圧の低下勾配に基づいて、前記ガスフィルターの目詰まりを判定する制御手段を備えたことを特徴とする。 In the above invention, the gas filter includes a control means for determining clogging of the gas filter based on a decreasing gradient of the gas pressure measured by the gas pressure sensor.
 本発明によれば、ガスフィルターの目詰まりを自動で判定することができる。 According to the present invention, clogging of the gas filter can be automatically determined.
 上記発明において、前記切替バルブに接続されたエア源を備え、前記エア源は、前記切替バルブの切替により前記ガス抜き配管と接続された際に、前記ガス抜き配管を介して前記ガスフィルターに圧縮空気を供給することを特徴とする。 In the above invention, an air source connected to the switching valve is provided, and the air source is compressed to the gas filter via the gas vent pipe when connected to the gas vent pipe by switching the switch valve. It is characterized by supplying air.
 本発明によれば、切替バルブの切り替えにより、ガスフィルターに圧縮空気を供給し、ガスフィルターの冷却とクリーニングを行うことができる。 According to the present invention, by switching the switching valve, compressed air can be supplied to the gas filter, and the gas filter can be cooled and cleaned.
 上記発明において、前記切替バルブに接続された真空タンクを備え、前記真空タンクは、前記切替バルブの切替により前記ガス抜き配管と接続された際に、前記ガス抜き配管及び前記ガスフィルターを介して前記キャビティ内のガスを真空吸引することを特徴とする。 In the above invention, the vacuum tank includes a vacuum tank connected to the switching valve, and the vacuum tank is connected to the gas vent pipe by switching the switch valve via the gas vent pipe and the gas filter. The gas in the cavity is sucked in vacuum.
 本発明によれば、真空タンクを用いた真空吸引により、キャビティ内から確実にガスを抜くことができる。 According to the present invention, gas can be surely extracted from the cavity by vacuum suction using a vacuum tank.
 また、本発明に係る金型内部情報計測センサーは、金型に穿設され前記金型のキャビティに開口する装着孔に装着可能なロッド形ケーシングと、前記ロッド形ケーシングの先端に配置された上記ガスフィルターと、前記ガスフィルターの後方に設けられ前記ガスフィルターを通じて前記キャビティ内のガスを導入する導入室と、前記導入室内のガスの圧力を検出するガス圧センサーと、を有することを特徴とする。 A mold internal information measuring sensor according to the present invention includes a rod-shaped casing that can be mounted in a mounting hole that is drilled in a mold and opens in a cavity of the mold, and the above-described rod-shaped casing disposed at a tip of the rod-shaped casing. A gas filter, an introduction chamber that is provided behind the gas filter and introduces the gas in the cavity through the gas filter, and a gas pressure sensor that detects the pressure of the gas in the introduction chamber. .
 本発明によれば、ガスフィルターは冷却能力と強度が高いため、該ガスフィルターを通じてキャビティ内のガスを導入室に導入し、導入室内のガスの圧力を検出することで、確実かつ正確にキャビティ内のガス圧を測定することができる。 According to the present invention, since the gas filter has high cooling capacity and strength, the gas in the cavity is introduced into the introduction chamber through the gas filter, and the pressure of the gas in the introduction chamber is detected, so that the inside of the cavity is surely and accurately. The gas pressure can be measured.
 また、本発明に係る金型内のガス抜き方法は、溶湯を金型のキャビティ内に充填して射出成形品を製造する際の金型内のガス抜き方法であって、前記キャビティに通じるように前記金型に穿設されたガス抜き通路に、上記ガスフィルターを配設し、前記ガスフィルターを介して前記キャビティ内のガス抜きを行うことを特徴とする。 Further, the degassing method in the mold according to the present invention is a degassing method in the mold when the molten metal is filled in the cavity of the mold to produce an injection molded product, and communicates with the cavity. The gas filter is arranged in a gas vent passage formed in the mold, and the gas in the cavity is vented through the gas filter.
 本発明によれば、前記ガスフィルターを介してキャビティ内のガス抜きを行うことで、金型のキャビティ内のガス抜きを確実に行うことができる。 According to the present invention, degassing in the cavity of the mold can be reliably performed by degassing the cavity through the gas filter.
 また、本発明に係る射出成形品製造方法は、金型のキャビティに通じるように前記金型に穿設されたガス抜き配管に上記ガスフィルターを配設した前記金型を用いて、射出成形品を製造する射出成形品製造方法であって、前記キャビティ内に溶湯を射出する工程で、前記ガス抜き配管の大気開放又は真空引きを行い、前記ガスフィルターを介して前記キャビティ内のガスを放出することを特徴とする。 The method for producing an injection-molded product according to the present invention is an injection-molded product using the mold in which the gas filter is disposed in a gas vent pipe formed in the mold so as to communicate with a cavity of the mold. In the method of manufacturing an injection molded product, the gas vent pipe is opened to the atmosphere or evacuated in the step of injecting molten metal into the cavity, and the gas in the cavity is released through the gas filter. It is characterized by that.
 本発明によれば、前記ガスフィルターは冷却能力と強度が高いため、金型のキャビティ内からのガス抜きを確実に行うことができる。 According to the present invention, since the gas filter has a high cooling capacity and strength, the gas can be surely vented from the cavity of the mold.
 上記発明において、前記金型のキャビティ面への離型剤の塗布時と、型締め時と、型開き時とに、前記ガスフィルターに圧縮空気を供給することを特徴とする。 In the above invention, the compressed air is supplied to the gas filter when a release agent is applied to the cavity surface of the mold, when the mold is clamped, and when the mold is opened.
 本発明によれば、ガスフィルターを冷却しクリーニングすることができ、ガスフィルターに離型剤や水滴が付着して目詰まりするのを防止することができる。 According to the present invention, the gas filter can be cooled and cleaned, and it is possible to prevent clogging due to the release agent and water droplets adhering to the gas filter.
 上記発明において、前記圧縮空気の供給が終了した後に、前記ガス抜き配管内のガス圧を計測することを特徴とする。 In the above invention, the gas pressure in the gas vent pipe is measured after the supply of the compressed air is completed.
 本発明によれば、圧縮空気の供給が終了した後に、ガスフィルターが目詰まりしているか否かをチェックすることができる。 According to the present invention, it is possible to check whether or not the gas filter is clogged after the supply of compressed air is completed.
 本発明によれば、ガスフィルターは、金属で形成され、軸方向に貫通するスリット状空間部を有する棒状部材を備えていることにより、熱伝達性が高く溶湯の冷却能力が高いため、溶湯をスリット状空間部で湯先凝固させ、ガスのみを通すことができる。また、熱衝撃に強く強度が高いため破損する恐れがない。したがって、金型のキャビティ内からのガス抜きを確実に行うことができる。 According to the present invention, the gas filter is made of metal and has a rod-shaped member having a slit-like space portion penetrating in the axial direction, so that heat transfer is high and the molten metal has a high cooling capacity. The hot metal is solidified in the slit-shaped space, and only gas can be passed. In addition, since it is strong against thermal shock and has high strength, there is no risk of breakage. Therefore, the gas can be reliably vented from the cavity of the mold.
ガスフィルターの正面図である。It is a front view of a gas filter. ガスフィルターのA-A’線断面図である。It is A-A 'line sectional drawing of a gas filter. 最も径の大きい管の正面図である。It is a front view of a pipe with the largest diameter. 図3に示す管のB-B’線断面図である。FIG. 4 is a cross-sectional view taken along line B-B ′ of the tube shown in FIG. 3. 最も径の管に挿通される管の正面図である。It is a front view of the pipe | tube penetrated by the pipe | tube of the diameter most. 図5に示す管のC-C’線断面図である。FIG. 6 is a sectional view taken along line C-C ′ of the tube shown in FIG. 5. 位置決め部材の正面図である。It is a front view of a positioning member. 図7に示す位置決め部材のD-D’線断面図である。FIG. 8 is a cross-sectional view taken along line D-D ′ of the positioning member shown in FIG. 7. ガスフィルターの使用例を示す模式的断面図である。It is typical sectional drawing which shows the usage example of a gas filter. 変形例に係るガスフィルターの正面図である。It is a front view of the gas filter which concerns on a modification. 変形例に係るガスフィルターの側面図であるIt is a side view of the gas filter which concerns on a modification. 他の変形例に係るガスフィルターの正面図である。It is a front view of the gas filter which concerns on another modification. 他の変形例に係るガスフィルターの側面図である。It is a side view of the gas filter which concerns on another modification. 第1の実施形態におけるダイカスト装置の模式的断面図である。It is a typical sectional view of the die-casting device in a 1st embodiment. ガスフィルターの設置箇所の模式的側面図である。It is a typical side view of the installation location of a gas filter. 第1の実施形態に係る鋳造品製造工程の説明図である。It is explanatory drawing of the cast manufacturing process which concerns on 1st Embodiment. 第2の実施形態におけるダイカスト装置の模式的断面図である。It is typical sectional drawing of the die-casting apparatus in 2nd Embodiment. 第2の実施形態における金型内部情報計測センサーの断面図である。It is sectional drawing of the metal mold | die internal information measurement sensor in 2nd Embodiment. 第2の実施形態における鋳造品製造工程の説明図である。It is explanatory drawing of the cast product manufacturing process in 2nd Embodiment. 第3の実施形態におけるダイカスト装置の模式的断面図である。It is typical sectional drawing of the die-casting apparatus in 3rd Embodiment. 第3の実施形態における鋳造品製造工程の説明図である。It is explanatory drawing of the cast product manufacturing process in 3rd Embodiment. 従来におけるダイカスト装置に使用される金型を示す図である。It is a figure which shows the metal mold | die used for the conventional die-casting apparatus. 従来におけるダイカスト装置において、金型のキャビティに金属を充填する状態を示す断面図である。In the conventional die casting apparatus, it is sectional drawing which shows the state which fills the metal of the cavity of a metal mold | die.
 以下、本発明の実施形態につき、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は本発明の実施形態に係るガスフィルター50の正面図であり、図2はガスフィルター50のA-A’線断面図である。ガスフィルター50は、金型のキャビティに通じる通路に配設され、当該キャビティ内のガスを排出するために用いられる。これらの図に示すように、ガスフィルター50は、径の異なる複数の管51、52及び位置決め部材55を、同心状に配設した多重管構造を有している。管51、52及び位置決め部材55は、金属で形成されている。ここで「金属」とは、広義に解し、熱をよく伝え、強度が高く、常温で固体の物質をいう。 FIG. 1 is a front view of a gas filter 50 according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the gas filter 50 taken along the line A-A ′. The gas filter 50 is disposed in a passage leading to the cavity of the mold and is used for discharging the gas in the cavity. As shown in these drawings, the gas filter 50 has a multiple tube structure in which a plurality of tubes 51 and 52 and positioning members 55 having different diameters are concentrically arranged. The tubes 51 and 52 and the positioning member 55 are made of metal. Here, the term “metal” refers to a substance that is understood in a broad sense, transfers heat well, has high strength, and is solid at room temperature.
 図3は最も径の大きい管51の正面図であり、図4は図3に示す管51のB-B’線断面図である。図5は管51に挿通される小さい径の管52の正面図であり、図6は図5に示す管52のC-C’線断面図である。図7は管52に挿通される位置決め部材55の正面図であり、図8は図7に示す位置決め部材55のD-D’線断面図である。 3 is a front view of the pipe 51 having the largest diameter, and FIG. 4 is a cross-sectional view of the pipe 51 shown in FIG. 3 taken along the line B-B ′. 5 is a front view of a small-diameter pipe 52 inserted through the pipe 51, and FIG. 6 is a cross-sectional view taken along the line C-C 'of the pipe 52 shown in FIG. 7 is a front view of the positioning member 55 inserted through the pipe 52, and FIG. 8 is a cross-sectional view of the positioning member 55 taken along the line D-D 'shown in FIG.
 管51、52それぞれの外周面には、当該外周面から一定の高さを有する4つの間隔保持部53が、軸方向に沿って等間隔に配置されており、管52を管51に挿通した場合、管52の間隔保持部53が管51の内周面に接触するようになっている。したがって、管52を管51に挿通した状態では、図1に示すように、管51、52の間に、軸方向に貫通した、厚さの薄いスリット状空間部54が形成される。 Four interval holding portions 53 having a certain height from the outer peripheral surface are arranged on the outer peripheral surfaces of the tubes 51 and 52 at equal intervals along the axial direction, and the tube 52 is inserted through the tube 51. In this case, the interval holding part 53 of the tube 52 is in contact with the inner peripheral surface of the tube 51. Therefore, in a state where the tube 52 is inserted through the tube 51, a thin slit-like space portion 54 penetrating in the axial direction is formed between the tubes 51 and 52 as shown in FIG.
 位置決め部材55は、冷却効果を向上させるために、ベリリウム鋼材で形成されている。位置決め部材55は、図1、2、7、8に示すように、円筒部55aを有している。円筒部55aの外周面にも、管51、52と同様に、当該外周面から一定の高さを有する4つの間隔保持部53が軸方向に沿って等間隔に配置されており、円筒部55aを管52に挿通した場合、円筒部55aの間隔保持部53が管52の内周面に接触するようになっている。円筒部55aの一方の端部側の外周面には、当該外周に沿って張出部55bが設けられている。張出部55bには、外周面から内側に向かって切り欠かれたスリット状の連通路55cが設けられている。管51,52、位置決め部材53をガスフィルター50に組み立てた状態では、連通路55cとスリット状空間部54とは連通し、ガスフィルター50の軸方向にガスを通すことができる。 The positioning member 55 is made of beryllium steel in order to improve the cooling effect. As shown in FIGS. 1, 2, 7, and 8, the positioning member 55 has a cylindrical portion 55a. Similarly to the pipes 51 and 52, four interval holding portions 53 having a certain height from the outer peripheral surface are arranged at equal intervals along the axial direction on the outer peripheral surface of the cylindrical portion 55a. Is inserted into the tube 52, the interval holding portion 53 of the cylindrical portion 55 a comes into contact with the inner peripheral surface of the tube 52. On the outer peripheral surface on one end side of the cylindrical portion 55a, a projecting portion 55b is provided along the outer periphery. The overhanging portion 55b is provided with a slit-shaped communication path 55c cut out inward from the outer peripheral surface. In a state where the pipes 51 and 52 and the positioning member 53 are assembled to the gas filter 50, the communication passage 55 c and the slit-like space portion 54 communicate with each other and gas can be passed in the axial direction of the gas filter 50.
 ガスフィルター50を組み立てる際に、位置決め部材55に管51、52を挿通した場合、張出部55bによって管51、52の位置決めをすることができるため、ガスフィルター50を精度高く容易に製造することができる。 When assembling the gas filter 50, when the pipes 51 and 52 are inserted through the positioning member 55, the pipes 51 and 52 can be positioned by the overhanging portion 55b, so that the gas filter 50 can be easily manufactured with high accuracy. Can do.
 なお、管51、52の間隔保持部53、及び位置決め部材55の連通路55cは、エッチングにより形成することもできるし、ワイヤーカット放電加工により形成することもできる。 In addition, the space | interval holding | maintenance part 53 of the pipe | tubes 51 and 52 and the communicating path 55c of the positioning member 55 can also be formed by an etching, and can also be formed by wire cut electric discharge machining.
 図9は、ガスフィルター50の使用例を示す模式的断面図である。同図に示すガスフィルター50は、図1に示すA-A’線断面が示されている。同図では、ガスフィルター50は、金型のキャビティに通じる通路に配置されている。ガスフィルター50は、当該ガスフィルター50よりも径の大きい外筒ホルダー内に挿入されている。外筒ケーシングの先端部分の内径は他の部分よりも拡径しており、当該拡径部分にガスフィルター50が装着され固定されている。また、ガスフィルター50の中心の空間部には、例えばロード検知や温度検知を行うための小径の円柱状部材が挿入されている。外筒ケーシングと円柱状部材の間には通気路が形成されている。 FIG. 9 is a schematic cross-sectional view showing a usage example of the gas filter 50. The gas filter 50 shown in the figure has a cross section taken along the line A-A 'shown in FIG. In the figure, the gas filter 50 is disposed in a passage leading to the cavity of the mold. The gas filter 50 is inserted into an outer cylinder holder having a diameter larger than that of the gas filter 50. The inner diameter of the front end portion of the outer cylinder casing is larger than that of other portions, and the gas filter 50 is mounted and fixed to the enlarged diameter portion. Further, a small-diameter columnar member for performing load detection or temperature detection, for example, is inserted into the central space of the gas filter 50. An air passage is formed between the outer casing and the columnar member.
 すなわち、最外周に外筒ホルダー、中心部に円柱状部材、それらの間にガスフィルター50が同心円状に配列され、ガスフィルターユニットを形成している。 That is, an outer cylinder holder is provided at the outermost periphery, a cylindrical member is provided at the center, and gas filters 50 are concentrically arranged between them to form a gas filter unit.
 このガスフィルターユニットは、金型のキャビティに通じる通路のうち、キャビティ側の端部に配置される。ガスフィルター50の張出部55b側は、キャビティ側とは反対側に配置される。 This gas filter unit is arranged at the end on the cavity side in the passage leading to the cavity of the mold. The protruding portion 55b side of the gas filter 50 is disposed on the opposite side to the cavity side.
 管51、52、位置決め部材55に設ける間隔保持部53は、溶湯や金型12の温度、射出速度、圧力等にもよるが、管50a、50bの外周面からの高さを0.04mm~0.10mm程度とするのが好ましい。このような厚さとすることにより、スリット状空間部54の厚さも0.04mm~0.10mm程度とすることができ、当該スリット状空間部54にキャビティから溶湯が入り込んだ場合、湯先は金属で形成された管50a、50bの高い熱伝達性により即座に冷却され、スリット状空間部54から溶湯が通路側に流れ出る前に湯先凝固が起きる。これにより、スリット状空間部54に入り込んだ溶湯がスリット状空間部54から通路側に流れ出ることはなく、スリット状空間部54はガスのみを通すことができる。 The interval holding portion 53 provided in the pipes 51 and 52 and the positioning member 55 has a height from the outer peripheral surface of the pipes 50a and 50b of 0.04 mm or more depending on the temperature, injection speed, pressure, etc. of the molten metal or the mold 12. The thickness is preferably about 0.10 mm. With such a thickness, the thickness of the slit-shaped space portion 54 can also be set to about 0.04 mm to 0.10 mm, and when the molten metal enters the slit-shaped space portion 54 from the cavity, the molten metal tip is made of metal. The pipes 50a and 50b formed in (1) are immediately cooled by the high heat transfer properties, and the molten metal solidifies before the molten metal flows out from the slit-shaped space 54 to the passage side. Thereby, the molten metal that has entered the slit-shaped space portion 54 does not flow out from the slit-shaped space portion 54 toward the passage, and the slit-shaped space portion 54 can pass only gas.
 なお、位置決め部材55の張出部55bに設ける連通路55cは、軸方向にガスを通過できるようにするものであればよく、スリットに限らず例えば貫通孔であってもよいし、張出部55bの張出し量を少なくすることで張出部55bの外側と外筒ケーシングとの間に空間を形成してもよい。また、位置決め部材55の形状は、円筒形状に限らず、中心部の空間が必要ない場合には円柱形状であってもよい。 Note that the communication passage 55c provided in the overhanging portion 55b of the positioning member 55 may be any one that allows gas to pass in the axial direction, and is not limited to a slit, and may be, for example, a through hole. A space may be formed between the outside of the overhang portion 55b and the outer casing by reducing the amount of overhang of 55b. Further, the shape of the positioning member 55 is not limited to a cylindrical shape, and may be a columnar shape when a central space is not required.
 また、本実施形態では、各管51、52、位置決め部材55の外周面に間隔保持部53が形成されている場合について説明したが、これに限らず、各管51、52、位置決め部材55の内周面に間隔保持部53を形成してもよい。また、間隔保持部53の数は4つに限らず、2つでも3つでも、或いは5つ以上であってもよい。また、間隔保持部53の形状は、ガスフィルター50の軸方向に直線状に延びる形状に限定されることはなく、各管51、52同士の距離、すなわちスリット状空間部54の厚さを一定に保ち、当該スリット状空間部54を介して軸方向にガスを通すことができる形状であれば、どのような形状であってもよい。例えば、間隔保持部53が螺旋形状であってもよい。また、管51、52のみに間隔保持部53を設け、位置決め部材55に間隔保持部53を設けなくてもよい。また、位置決め部材55を用いずに、間隔保持部53が形成された径の異なる複数の管を多重管構造とすることによってガスフィルター50を形成してもよい。
(ガスフィルターの変形例)
 上述したガスフィルター50の構成は一例に過ぎず、ガスフィルターは、金属で形成されており、軸方向に貫通するスリット状空間部を有する棒状の部材であればよい。
Further, in the present embodiment, the case where the interval holding portion 53 is formed on the outer peripheral surface of each of the tubes 51 and 52 and the positioning member 55 has been described. You may form the space | interval holding | maintenance part 53 in an internal peripheral surface. Further, the number of the interval holding units 53 is not limited to four, and may be two, three, or five or more. Moreover, the shape of the space | interval holding | maintenance part 53 is not limited to the shape extended linearly in the axial direction of the gas filter 50, The distance of each pipe | tubes 51 and 52, ie, the thickness of the slit-shaped space part 54, is constant. As long as the gas can be passed in the axial direction through the slit-shaped space 54, any shape may be used. For example, the space | interval holding | maintenance part 53 may be helical shape. Further, the interval holding portion 53 may be provided only in the pipes 51 and 52, and the interval holding portion 53 may not be provided in the positioning member 55. Alternatively, the gas filter 50 may be formed by using a multiple tube structure with a plurality of tubes having different diameters formed with the interval holding portion 53 without using the positioning member 55.
(Modification of gas filter)
The configuration of the gas filter 50 described above is merely an example, and the gas filter may be a rod-shaped member that is formed of metal and has a slit-like space portion that penetrates in the axial direction.
 図10~図13にガスフィルターの変形例を示す。図10は変形例に係るガスフィルター50Aの正面図であり、図11は当該ガスフィルター50Aの側面図である。 10 to 13 show modified examples of the gas filter. FIG. 10 is a front view of a gas filter 50A according to a modification, and FIG. 11 is a side view of the gas filter 50A.
 これらの図に示すように、ガスフィルター50Aは円柱形状を有している。また、この変形例に係るガスフィルター50Aも金属で形成されている。ガスフィルター50Aには、外周面から中心方向に直線状に切り欠かれたスリット56が、22.5°間隔で16本形成されている。図10に示すように、ガスフィルター50Aを正面から見ると、複数の直線状のスリット56が、中心付近から円周側に放射状に延びている。スリット56は、長さの異なる長スリット56aと短スリット56bで構成され、長スリット56aと短スリット56bが交互に形成されている。また、図11に示すように、各スリット56は、円柱の軸方向に貫通しており、軸方向にガスを通すことができる。各スリット56a、56bは、上述した実施形態と同様に0.4mm~1mm程度の厚さを有している。本変形例では、このスリット56が「スリット状空間部」を構成する。このようなスリット56は、ワイヤーカット、放電加工、レーザ加工等により形成することができる。上記のようなガスフィルター50Aとすることにより、ガスフィルター50よりもスリット状空間部の容積を大きくすることができるため、ガスフィルター50Aからスリット状空間部に入り込んだ溶湯への熱伝達性を高めることができ、溶湯の冷却速度を速くすることができる。 As shown in these drawings, the gas filter 50A has a cylindrical shape. The gas filter 50A according to this modification is also made of metal. In the gas filter 50A, 16 slits 56 that are notched linearly from the outer peripheral surface toward the center are formed at intervals of 22.5 °. As shown in FIG. 10, when the gas filter 50A is viewed from the front, a plurality of linear slits 56 extend radially from the center to the circumferential side. The slit 56 is composed of a long slit 56a and a short slit 56b having different lengths, and the long slit 56a and the short slit 56b are alternately formed. Moreover, as shown in FIG. 11, each slit 56 has penetrated in the axial direction of the cylinder, and can let gas pass in the axial direction. Each slit 56a, 56b has a thickness of about 0.4 mm to 1 mm as in the above-described embodiment. In this modification, the slit 56 constitutes a “slit-shaped space”. Such a slit 56 can be formed by wire cutting, electric discharge machining, laser machining, or the like. Since the volume of the slit-shaped space portion can be made larger than that of the gas filter 50 by using the gas filter 50A as described above, heat transfer from the gas filter 50A to the molten metal that has entered the slit-shaped space portion is improved. And the cooling rate of the molten metal can be increased.
 なお、上述したスリット56の数と長さは一例に過ぎず、例えば、同じ長さのスリットを複数設けてもよいし、スリットの数は通気性と強度を勘案して任意の数とすることができる。また、上述した実施形態と同様に、ガスフィルター50Aの中心部に空間を設けて、ガスフィルター50Aを円筒形状としてもよい。 The number and length of the slits 56 described above are merely examples. For example, a plurality of slits having the same length may be provided, and the number of slits may be any number in consideration of air permeability and strength. Can do. Similarly to the above-described embodiment, a space may be provided in the center of the gas filter 50A so that the gas filter 50A has a cylindrical shape.
 図12は他の変形例に係るガスフィルター50Bの正面図であり、図13は当該ガスフィルター50Bの側面図である。 FIG. 12 is a front view of a gas filter 50B according to another modification, and FIG. 13 is a side view of the gas filter 50B.
 本変形例に係るガスフィルター50Bも金属で形成され、円柱形状を有している。ガスフィルター50Bは、当該ガスフィルター50Bに設けられたスリット57の形状及び数が、ガスフィルター50Aに設けられたスリット56と異なっている。本変形例においては、図12に示すように、スリット57の正面形状、換言すれば、軸方向に垂直な方向で切断した面(横断面)の形状は、両端が直線形状であり、中央部が半円形状となっている。このスリット57は、45度間隔で外周面から中心方向にワイヤーカット放電加工等で切り欠くことにより形成されている。スリット57をこのような形状とすることで、直線形状とする場合よりもカット距離を長くとることができるため、スリット57で形成される空間の容積を大きくすることができる。したがって、スリット57内のガスの通過量を多くし、キャビティ14内のガスを確実に多く排出することができるとともに、溶湯への熱伝達性を高め、溶湯を即座に冷却することができる。また、ガスフィルター50Bの強度を確保することができる。ガスフィルター50Bのその他の構成は上述したガスフィルター50Aと同様である。なお、スリット57の横断面形状は上述した半円形状を含む形状に限らず、任意の曲線形状を含む形状としてもよい。 The gas filter 50B according to this modification is also made of metal and has a cylindrical shape. In the gas filter 50B, the shape and number of slits 57 provided in the gas filter 50B are different from the slits 56 provided in the gas filter 50A. In the present modification, as shown in FIG. 12, the front shape of the slit 57, in other words, the shape of the surface (cross section) cut in the direction perpendicular to the axial direction is linear at both ends, Has a semicircular shape. The slits 57 are formed by cutting away from the outer peripheral surface toward the center at intervals of 45 degrees by wire cut electric discharge machining or the like. By making the slit 57 in such a shape, the cut distance can be made longer than when the slit 57 is formed in a linear shape, so that the volume of the space formed by the slit 57 can be increased. Therefore, the amount of gas passing through the slit 57 can be increased, and a large amount of gas in the cavity 14 can be reliably discharged, heat transfer to the molten metal can be improved, and the molten metal can be immediately cooled. Further, the strength of the gas filter 50B can be ensured. The other configuration of the gas filter 50B is the same as that of the gas filter 50A described above. The cross-sectional shape of the slit 57 is not limited to the shape including the semicircular shape described above, and may be a shape including an arbitrary curved shape.
 なお、スリットの形状はこれらの変形例に限定されることはなく、任意の形状とすることができる。例えば正面から見た形状が渦巻き形状をしていてもよい。
(第1実施形態)
 次に、上述したガスフィルター50を、ダイカスト装置10の金型12に設けられたキャビティ14内のガス抜きに用いる場合の第1の実施形態について説明する。
In addition, the shape of a slit is not limited to these modifications, It can be set as arbitrary shapes. For example, the shape seen from the front may have a spiral shape.
(First embodiment)
Next, a first embodiment in which the above-described gas filter 50 is used for degassing the cavity 14 provided in the mold 12 of the die casting apparatus 10 will be described.
 図14は、ダイカスト装置10の模式的断面図である。同図に示すように、ダイカスト装置10は、固定金型12aと可動金型12bとを備えた金型12を有している。固定金型12aと可動金型12bの合せ面に、製品の鋳型となるキャビティ14が形成されている。このキャビティ14には、溶湯射出装置20から押し出された溶湯28をキャビティ14に導入するゲート16が接続開口されている。溶湯射出装置20は、金型12のランナー17に接続されており、中空のスリーブ22と、スリーブ22内に配置されたプランジャ24を備えている。スリーブ22内には図示しない溶湯供給装置から溶湯28が供給され、プランジャ24の押し出しにより溶湯28がゲート16を通じてキャビティ14に射出される。プランジャ24は図示しない射出駆動手段により作動される。また、キャビティ14内の湯流れ方向に沿った下流側(図1では上部位置)の可動金型12bのキャビティ14側端部には、キャビティ14の面に端面を一致させて、上述したガスフィルター50が配置されている。ガスフィルター50のキャビティ14側とは反対側の端面には、ガス抜き配管62の一端が接続され、ガス抜き配管62は金型12の外部まで延びている。 FIG. 14 is a schematic cross-sectional view of the die casting apparatus 10. As shown in the figure, the die casting apparatus 10 has a mold 12 having a fixed mold 12a and a movable mold 12b. A cavity 14 serving as a product mold is formed on the mating surface of the fixed mold 12a and the movable mold 12b. In the cavity 14, a gate 16 for introducing the molten metal 28 extruded from the molten metal injection device 20 into the cavity 14 is connected and opened. The molten metal injection device 20 is connected to the runner 17 of the mold 12 and includes a hollow sleeve 22 and a plunger 24 arranged in the sleeve 22. A molten metal 28 is supplied into the sleeve 22 from a molten metal supply device (not shown), and the molten metal 28 is injected into the cavity 14 through the gate 16 by pushing out the plunger 24. The plunger 24 is operated by an injection driving means (not shown). Further, the end of the movable mold 12b on the downstream side (upper position in FIG. 1) along the direction of hot water flow in the cavity 14 is aligned with the surface of the cavity 14, and the gas filter described above. 50 is arranged. One end of a gas vent pipe 62 is connected to the end surface of the gas filter 50 opposite to the cavity 14 side, and the gas vent pipe 62 extends to the outside of the mold 12.
 図15は、ガスフィルター50の設置箇所の模式的側面図である。ガスフィルター50は、当該ガスフィルター50よりも径の大きいホルダー58内に装着され、当該ホルダー58は可動金型12bのキャビティ14側の一端部に留めネジで固定されている。ガスフィルター50の一端面は、キャビティ14面と同一面に配置され、他端面はカプラ59を介してガス抜き配管62に接続されている。ガス抜き配管62は、ビニールのチューブで形成されている。ガスフィルター50の中心部の空間は、図示せぬ部材が挿入されて塞がれている。なお、ガス抜き配管62を銅パイプとしてもよく、この場合には当該銅パイプをガスフィルター50にロウ付けすればよい。 FIG. 15 is a schematic side view of a place where the gas filter 50 is installed. The gas filter 50 is mounted in a holder 58 having a diameter larger than that of the gas filter 50, and the holder 58 is fixed to one end of the movable mold 12b on the cavity 14 side with a fastening screw. One end face of the gas filter 50 is disposed on the same plane as the cavity 14 face, and the other end face is connected to the gas vent pipe 62 via the coupler 59. The gas vent pipe 62 is formed of a vinyl tube. A space in the center of the gas filter 50 is closed by inserting a member (not shown). The gas vent pipe 62 may be a copper pipe. In this case, the copper pipe may be brazed to the gas filter 50.
 図14に示すように、ガス抜き配管62は、金型12の外部まで延びている。ガス抜き配管62の他端は、切替バルブ70に接続されている。ガス抜き配管62の途中には、ガス抜き配管62内のガス圧を測定するガス圧センサー72が設けられている。 As shown in FIG. 14, the gas vent pipe 62 extends to the outside of the mold 12. The other end of the gas vent pipe 62 is connected to the switching valve 70. A gas pressure sensor 72 that measures the gas pressure in the gas vent pipe 62 is provided in the middle of the gas vent pipe 62.
 切替バルブ70はエア調整部80を介してエア源88に接続されている。切替バルブ70を切り替えることにより、エア源88とガス抜き配管62を接続して圧縮空気をガスフィルター50に供給したり、ガス抜き配管62を大気開放してガスフィルター50を介してキャビティ14内からガスを放出したり、ガス抜き配管62を外部から遮断したりすることができる。 The switching valve 70 is connected to an air source 88 via an air adjustment unit 80. By switching the switching valve 70, the compressed air is supplied to the gas filter 50 by connecting the air source 88 and the gas vent pipe 62, or the gas vent pipe 62 is opened to the atmosphere and from the inside of the cavity 14 through the gas filter 50. The gas can be released or the gas vent pipe 62 can be shut off from the outside.
 切替バルブ70は、本実施形態では4方向4ポート3位置電磁弁である。切替バルブ70は、第1ソレノイド70aと第2ソレノイド70bを備えており、第1ソレノイド70aと第2ソレノイド70bのON(励磁)・OFFで弁体の位置を切り替える。 The switching valve 70 is a four-way four-port three-position solenoid valve in this embodiment. The switching valve 70 includes a first solenoid 70a and a second solenoid 70b, and switches the position of the valve body by turning on (excitation) or turning off the first solenoid 70a and the second solenoid 70b.
 制御装置40からの制御信号により、切替バルブ70の第1ソレノイド70a、第2ソレノイド70bのON・OFFが制御される。第1ソレノイド70a、第2ソレノイド70bがOFFのときには、切替バルブ70は閉状態となり、ガス抜き配管62は外部から遮断される。第1ソレノイド70aのみをONすることにより、ガス抜き配管62が大気開放される。なお、このときに、切替バルブ70を介してガス抜き配管62に真空タンク74を接続し、強制吸引してもよい。また、第2ソレノイド70bのみをONすることにより、エア源88とガス抜き配管62とが接続され、エア源88からの圧縮空気がガス抜き配管62を通ってガスフィルター50に送られ、ガスフィルター50のエアブローが行われる。 The ON / OFF of the first solenoid 70a and the second solenoid 70b of the switching valve 70 is controlled by a control signal from the control device 40. When the first solenoid 70a and the second solenoid 70b are OFF, the switching valve 70 is closed and the gas vent pipe 62 is shut off from the outside. By turning on only the first solenoid 70a, the gas vent pipe 62 is opened to the atmosphere. At this time, a vacuum tank 74 may be connected to the gas vent pipe 62 via the switching valve 70 to perform forced suction. Further, by turning on only the second solenoid 70b, the air source 88 and the gas vent pipe 62 are connected, and the compressed air from the air source 88 is sent to the gas filter 50 through the gas vent pipe 62. 50 air blows are performed.
 エア源88と切替バルブ70との間に設けられているエア調整部80は、空気から水滴やごみを除去するエアフィルター80aと、圧縮空気の圧力を調整するレギュレータ80bと、圧縮空気にミスト状の潤滑油を混入させるバブリケータ80cと、圧力計80dと、を備えており、エア源88からの空気圧等を調整してガス抜き配管62側に送出する。 An air adjusting unit 80 provided between the air source 88 and the switching valve 70 includes an air filter 80a that removes water droplets and dust from the air, a regulator 80b that adjusts the pressure of the compressed air, and a mist in the compressed air. And a pressure gauge 80d. The air pressure from the air source 88 is adjusted and sent to the degassing pipe 62 side.
 制御装置40は、図示せぬ、CPUと、メモリ・ハードディスク等の記憶装置と、入出力インターフェースと、モニター装置と、内部時計と、を備えており、記憶装置には各種制御を行うためのプログラムやデータが記憶されている。 The control device 40 includes a CPU (not shown), a storage device such as a memory / hard disk, an input / output interface, a monitor device, and an internal clock, and the storage device is a program for performing various controls. And data are stored.
 制御装置40は、切替バルブ70、ガス圧センサー72、溶湯射出装置20の射出駆動手段等の各部に電気的に接続されており、CPUが記憶装置に記憶されているプログラムに従って処理を実行することにより、外部から指示データを受信したり、電気的に接続された各部から検知データ、測定データ等を受信し、これらのデータをメモリに記憶したりモニター装置に表示したり、各部に制御信号を送信して各部の動作を制御したりする。 The control device 40 is electrically connected to each part such as the switching valve 70, the gas pressure sensor 72, the injection driving means of the molten metal injection device 20, and the CPU executes processing according to a program stored in the storage device. By receiving instruction data from the outside, receiving detection data, measurement data, etc. from each electrically connected unit, storing these data in a memory, displaying them on a monitor device, and sending control signals to each unit To control the operation of each part.
 次に、上述したダイカスト装置10による鋳造品製造の動作例について、図16を参照して説明する。制御装置40の電源を投入すると、制御装置40から切替バルブ70に制御信号が送信され、切替バルブ70の第2ソレノイド70bがONとなる。第2ソレノイド70bがONの状態では、エア源88から切替バルブ70を介してガスフィルター50に圧縮空気が供給され、エアブローによりガスフィルター50の冷却及びクリーニングが行われる。 Next, an operation example of manufacturing a cast product by the above-described die casting apparatus 10 will be described with reference to FIG. When the power of the control device 40 is turned on, a control signal is transmitted from the control device 40 to the switching valve 70, and the second solenoid 70b of the switching valve 70 is turned on. When the second solenoid 70b is ON, compressed air is supplied from the air source 88 to the gas filter 50 via the switching valve 70, and the gas filter 50 is cooled and cleaned by air blowing.
 まず、溶湯が金型12に焼き付くのを防止し型離れをよくするために、金型12のキャビティ14の面に離型剤をスプレーで塗布する(ステップS1)。この時には、ガスフィルター50のエアブローが行われているため、ガスフィルター50に離型剤が付着するのを防止することができる。 First, in order to prevent the molten metal from sticking to the mold 12 and improve mold separation, a release agent is applied to the surface of the cavity 14 of the mold 12 by spraying (step S1). At this time, since the air blow of the gas filter 50 is performed, it is possible to prevent the release agent from adhering to the gas filter 50.
 次に、可動金型12bを固定金型12a側へ移動させて、型締めを行う(ステップS2)。 Next, the movable mold 12b is moved to the fixed mold 12a side to perform mold clamping (step S2).
 型締めが完了した後に、切替バルブ70を閉じた状態でガス圧センサー72を用いてガス圧の低下勾配を計測して、金型12の冷却液やスプレー液がガスフィルター50内に入ることにより、ガスフィルター50が目詰まりしていないことを確認する(ステップS3)。具体的には、第2ソレノイド70bをOFFにして切替バルブ70を閉状態にする。この状態で、ガス抜き配管62に設けたガス圧センサー72によってガス抜き配管62内のガス圧を計測し、計測結果を制御装置40に送信する。制御装置40は、ガス圧センサー72によって計測されたガス圧の低下勾配に応じて、ガスフィルター50が目詰まりをしているか否かを判断する。例えば、ガス圧の低下勾配が予め設定された勾配よりも急であり、急激にガス圧が低下する場合には、ガスフィルター50が目詰まりしていないと判断する。一方、ガス圧の低下勾配が予め設定された勾配よりも緩やかであり、圧力降下が遅い場合には、ガスフィルター50が目詰まりしていると判断する。 After the mold clamping is completed, the gas pressure sensor 72 is used to measure the gas pressure drop gradient with the switching valve 70 closed, and the cooling liquid or spray liquid of the mold 12 enters the gas filter 50. Then, it is confirmed that the gas filter 50 is not clogged (step S3). Specifically, the second solenoid 70b is turned off and the switching valve 70 is closed. In this state, the gas pressure in the gas vent pipe 62 is measured by the gas pressure sensor 72 provided in the gas vent pipe 62, and the measurement result is transmitted to the control device 40. The control device 40 determines whether or not the gas filter 50 is clogged according to the decreasing gradient of the gas pressure measured by the gas pressure sensor 72. For example, if the gas pressure decrease gradient is steeper than a preset gradient, and the gas pressure decreases rapidly, it is determined that the gas filter 50 is not clogged. On the other hand, if the gas pressure decrease gradient is gentler than the preset gradient and the pressure drop is slow, it is determined that the gas filter 50 is clogged.
 ガスフィルター50が目詰まりしていると判断した場合には、制御装置40はアラームを出力し処理を中止する。一方、ガスフィルター50が目詰まりしていないと判断した場合には、切替バルブ70の第1ソレノイド70aをONにして外部に通じる弁体を開き、ガス抜き配管62を大気開放する。この際、切替バルブ70を介してガス抜き配管62に真空タンク74を接続し、真空吸引を行ってもよい。 When it is determined that the gas filter 50 is clogged, the control device 40 outputs an alarm and stops processing. On the other hand, when it is determined that the gas filter 50 is not clogged, the first solenoid 70a of the switching valve 70 is turned on to open the valve body that leads to the outside, and the gas vent pipe 62 is opened to the atmosphere. At this time, a vacuum tank 74 may be connected to the gas vent pipe 62 via the switching valve 70 to perform vacuum suction.
 次に、溶湯射出装置20からスリーブ22内に溶湯を供給する(ステップS4)。次に、射出駆動手段により、プランジャ24を金型12に向かって移動させ、射出動作を開始する(ステップS5)。プランジャ24の移動に応じて、キャビティ14内に溶湯が充填されていく。 Next, the molten metal is supplied from the molten metal injection device 20 into the sleeve 22 (step S4). Next, the plunger 24 is moved toward the mold 12 by the injection driving means, and the injection operation is started (step S5). As the plunger 24 moves, the molten metal is filled into the cavity 14.
 このときにガス抜き配管62は大気開放又は真空吸引されているため、ガスフィルター50の連通路55c、スリット状空間部54、ガス抜き配管62、切替バルブ70を介して、キャビティ14内のガスが外部に放出される。この時に、ガスフィルター50の連通路55c及びスリット状空間部54には溶湯が入り込むが、スリット状空間部54の厚さは0.04mm~0.10mm程度であり、かつ、ガスフィルター50は金属で形成されているため、溶湯はスリット状空間部54内で即座に冷やされて湯先凝固する。このため、溶湯はガス抜き配管62側に流れ込むことはなく、ガスのみをガス抜き配管62側に通すことができる。 At this time, since the gas vent pipe 62 is opened to the atmosphere or vacuumed, the gas in the cavity 14 is passed through the communication path 55 c of the gas filter 50, the slit-shaped space 54, the gas vent pipe 62, and the switching valve 70. Released to the outside. At this time, the molten metal enters the communication passage 55c and the slit-like space portion 54 of the gas filter 50. The thickness of the slit-like space portion 54 is about 0.04 mm to 0.10 mm, and the gas filter 50 is made of metal. Therefore, the molten metal is immediately cooled in the slit-shaped space portion 54 and solidifies at the molten metal tip. For this reason, the molten metal does not flow into the degassing pipe 62 side, and only gas can be passed through the degassing pipe 62 side.
 また、ガスフィルター50は金属で形成されているため強度が高く、セラミック等よりも熱衝撃に強く破損する恐れがないため、射出時にガスフィルター50を介してキャビティ14内のガス抜きを確実に行うことができ、内部に巣のない高品質の鋳造品を製造することができる。 Further, since the gas filter 50 is made of metal, it has high strength and is more resistant to thermal shock than ceramics and is not likely to be damaged. Therefore, the gas is reliably vented through the gas filter 50 during injection. It is possible to manufacture a high-quality cast product without a nest inside.
 射出が完了してから所定時間保持することで、キャビティ14内に充填された溶湯が冷却され、凝固して鋳造品が成形される。次に、型開きを行い、鋳造品を金型12から取り出す(ステップS6)。型開きの際には、切替バルブ70の第2ソレノイド70bをONにして、エア源88から切替バルブ70を介してガスフィルター50に圧縮空気を供給し、ガスフィルター50を冷却及びクリーニングする。なお、この後、ステップS3と同様にガス圧を計測して、ガスフィルター50の目詰まりをチェックしてもよい。以上で1つの鋳造品の製造工程が終了する。 By holding for a predetermined time after the injection is completed, the molten metal filled in the cavity 14 is cooled and solidified to form a cast product. Next, the mold is opened, and the cast product is taken out from the mold 12 (step S6). When the mold is opened, the second solenoid 70b of the switching valve 70 is turned ON, compressed air is supplied from the air source 88 to the gas filter 50 via the switching valve 70, and the gas filter 50 is cooled and cleaned. Thereafter, the clogging of the gas filter 50 may be checked by measuring the gas pressure as in step S3. This completes the manufacturing process for one casting.
 なお、上述した実施形態では、金型12に1本のガス抜き配管62を設け、当該ガス抜き配管62に1つのガスフィルター50を配置してキャビティ14内のガス抜きを行ったが、これに限定されることはなく、金型12に複数のガス抜き配管62を設け、各ガス抜き配管62にガス抜きフィルター50を配置して、キャビティ14内のガス抜きを行ってもよい。また、ガス抜き配管62は、可動金型12bのみならず、固定金型12aに設けてもよい。
(第2実施形態)
 次に、本発明の第2実施形態について説明する。第1実施形態と同様の構成要素には同一の符号を付し、重複した説明を省略する。
In the above-described embodiment, one degassing pipe 62 is provided in the mold 12 and one gas filter 50 is disposed in the degassing pipe 62 to degas the cavity 14. There is no limitation, and a plurality of degassing pipes 62 may be provided in the mold 12, and the degassing filter 50 may be disposed in each degassing pipe 62 to degas the cavity 14. Further, the gas vent pipe 62 may be provided not only on the movable mold 12b but also on the fixed mold 12a.
(Second Embodiment)
Next, a second embodiment of the present invention will be described. The same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
 図17は、第2実施形態におけるダイカスト装置10Aの模式的断面図である。第2実施形態に係るダイカスト装置10Aは、第1実施形態に係るダイカスト装置10の構成に加えて、金型内部情報計測センサー100で金型12内部のガス圧、溶湯圧力、溶湯温度等を計測するための構成が付加されている。 FIG. 17 is a schematic cross-sectional view of a die casting apparatus 10A according to the second embodiment. In addition to the configuration of the die casting apparatus 10 according to the first embodiment, the die casting apparatus 10A according to the second embodiment measures a gas pressure, a molten metal pressure, a molten metal temperature, and the like inside the mold 12 with a mold internal information measurement sensor 100. The structure for doing is added.
 具体的には、金型12には、キャビティ14に開口するセンサー装着孔64が貫通形成されている。センサー装着孔64には、ガス圧、溶湯圧力、溶湯温度の各々を検出するセンサーを一つのロッド形ケーシングに内蔵した金型内部情報計測センサー100が取り付けられる。金型内部情報計測センサー100に内蔵するセンサーは単独センサーでもよく、ガス圧センサー、溶湯圧力センサー、溶湯温度センサーから選択された2種のセンサーをロッドに内蔵させたり、あるいは3種のセンサーをロッドに内蔵させる形態を適宜とることができる。 Specifically, a sensor mounting hole 64 that opens into the cavity 14 is formed through the mold 12. The sensor mounting hole 64 is attached with a mold internal information measuring sensor 100 in which sensors for detecting each of gas pressure, molten metal pressure, and molten metal temperature are incorporated in one rod-shaped casing. The sensor built into the mold internal information measuring sensor 100 may be a single sensor. Two types of sensors selected from a gas pressure sensor, a molten metal pressure sensor, and a molten metal temperature sensor are built into the rod, or three types of sensors are rodd. It is possible to appropriately take a form to be built in.
 キャビティ14のセンサー装着孔64が開口する周囲領域は平坦面に形成されている。これにより、計測ロッド102の先端面がキャビティ14の面に一致する形態で取り付けることができる。 The peripheral region where the sensor mounting hole 64 of the cavity 14 opens is formed in a flat surface. Thereby, it can attach in the form with which the front end surface of the measurement rod 102 corresponds to the surface of the cavity 14. FIG.
 図18は金型内部情報計測センサー100の断面図である。同図に示すガスフィルター50は、図1に示すA-A’線断面を示している。この金型内部情報計測センサー100は、センサー装着孔64に挿入し、先端面をキャビティ14の面に一致させるように取り付け可能な計測ロッド102と、当該計測ロッド102の基端に設けられ可動金型12bの外部に位置されるセンサーブロック104とを有している。 FIG. 18 is a cross-sectional view of the mold internal information measuring sensor 100. The gas filter 50 shown in the figure shows a cross section taken along line A-A 'shown in FIG. The mold internal information measuring sensor 100 is inserted into the sensor mounting hole 64 and can be attached so that the tip end surface thereof coincides with the surface of the cavity 14, and a movable die provided at the base end of the measuring rod 102. And a sensor block 104 positioned outside the mold 12b.
 センサー装着孔64の長さに対応できるように、計測ロッド102の途中の外周部分には、食込み継手106と止めネジ108からなる固定ユニット110が摺動可能に取り付けられている。キャビティ14の面に合わせて計測ロッド102の先端部位置を調整し、止めネジ108をセンサー装着孔64に締め付け、食込み継手106を回して計測ロッド102の外周面に食込ませることによって、計測ロッド102が定位置に固定される。 A fixing unit 110 composed of a bite joint 106 and a set screw 108 is slidably attached to the outer peripheral portion of the measuring rod 102 so as to correspond to the length of the sensor mounting hole 64. The position of the measuring rod 102 is adjusted according to the surface of the cavity 14, the set screw 108 is tightened in the sensor mounting hole 64, and the biting joint 106 is turned to bite into the outer peripheral surface of the measuring rod 102. 102 is fixed in place.
 計測ロッド102は、外筒ケーシング112と、その中心部に軸芯方向に沿って配置される圧力伝達ロッド114とを有している。前記圧力伝達ロッド114は、前記外筒ケーシング112の内径よりは小径の外径を持つ円柱体であり、外筒ケーシング112と圧力伝達ロッド114の間には通気路115が形成されている。計測ロッド102の先端部分にて、外筒ケーシング112の内径を少し拡径させるとともに、前記圧力伝達ロッド114の先端も圧力伝達ロッド114の本体部分より小径断面に形成している。計測ロッド102と圧力伝達ロッド114との間には、上述した多重管構造のガスフィルター50が装着されている。ガスフィルター50は張出部55b側が計測ロッド102の先端側とは反対側に配置されるように装着されている。計測ロッド102の先端面は、最外周に外筒ケーシング112の端面、中心部に圧力伝達ロッド114の端面、それらの間にガスフィルター50が同心円状に配列され、この先端面を可動金型12bに取り付けることによってキャビティ14面の一部を構成可能となっている。ガスフィルター50には軸方向に連通するスリット状空間部54と連通路55cが設けられているため、キャビティ14内のガスがガスフィルター50で溶湯と分離されて通気路115に導入可能となっている。 The measuring rod 102 has an outer cylinder casing 112 and a pressure transmission rod 114 arranged along the axial direction at the center thereof. The pressure transmission rod 114 is a cylindrical body having an outer diameter smaller than the inner diameter of the outer cylinder casing 112, and an air passage 115 is formed between the outer cylinder casing 112 and the pressure transmission rod 114. At the distal end portion of the measuring rod 102, the inner diameter of the outer cylinder casing 112 is slightly increased, and the distal end of the pressure transmission rod 114 is also formed in a smaller-diameter cross section than the main body portion of the pressure transmission rod 114. Between the measurement rod 102 and the pressure transmission rod 114, the above-described multi-tube structure gas filter 50 is mounted. The gas filter 50 is mounted such that the protruding portion 55b side is disposed on the side opposite to the distal end side of the measuring rod 102. The distal end surface of the measuring rod 102 is arranged on the outermost end surface of the outer cylinder casing 112, the central portion is the end surface of the pressure transmission rod 114, and the gas filter 50 is concentrically arranged between them. A part of the surface of the cavity 14 can be configured by attaching to the surface. Since the gas filter 50 is provided with the slit-shaped space portion 54 and the communication passage 55 c that communicate with each other in the axial direction, the gas in the cavity 14 is separated from the molten metal by the gas filter 50 and can be introduced into the air passage 115. Yes.
 上述した構成のガスフィルター50を金型内部情報計測センサー100に用いることにより、セラミック等の多孔質フィルターを用いる場合よりも熱衝撃に強いため、高い通気性を確保しつつ破損を防止することができ、ガスのみを効率よく確実に金型内部情報計測センサー100内に導入することができる。 By using the gas filter 50 having the above-described configuration for the mold internal information measuring sensor 100, it is more resistant to thermal shock than the case of using a porous filter such as ceramic, so that it is possible to prevent breakage while ensuring high air permeability. It is possible to introduce only the gas into the mold internal information measuring sensor 100 efficiently and reliably.
 計測ロッド102の基部はセンサーブロック104に取り付けられる。センサーブロック104は、図18に示すような矩形のブロック本体120を有している。このブロック本体120には、ガス導入室122が一面に開口形成され、隔壁124を挟んで反対面に第1センサー室126が同一軸芯上に並んで開口形成されている。前記隔壁124にはガス導入室122と第1センサー室126とを連通する貫通孔が形成されている。 The base of the measuring rod 102 is attached to the sensor block 104. The sensor block 104 has a rectangular block body 120 as shown in FIG. The block main body 120 has a gas introduction chamber 122 formed in an opening on one surface, and a first sensor chamber 126 is formed on the opposite surface on the same axis with the partition wall 124 therebetween. The partition wall 124 is formed with a through hole that communicates the gas introduction chamber 122 and the first sensor chamber 126.
 このようなセンサーブロック104に対して前記計測ロッド102が取り付けられる。すなわち、計測ロッド102の外筒ケーシング112の基端部がブロック本体120の前記ガス導入室122の入口開口に拡開形成されたケーシング取付孔122aに装着され、外筒ケーシング112の外周とブロック本体120とのコーナ部分が溶接により結合されている。 The measuring rod 102 is attached to such a sensor block 104. That is, the base end portion of the outer cylinder casing 112 of the measuring rod 102 is attached to a casing attachment hole 122a formed in the inlet opening of the gas introduction chamber 122 of the block main body 120, and the outer periphery of the outer cylinder casing 112 and the block main body are mounted. The corner portion with 120 is joined by welding.
 また、計測ロッド102における圧力伝達ロッド114の基端は外筒ケーシング112より長くなっており、この基端部は前記隔壁124の貫通孔を貫通し、第1センサー室126に延在している。前記貫通孔は、Oリング130にて圧力伝達ロッド114との隙間を封止しつつ、圧力伝達ロッド114を軸受支持する。したがって、圧力伝達ロッド114は、外筒ケーシング112の先端部内周に設けられたガイドブッシュ118と、センサーブロック104の隔壁124に設けられた貫通孔とにより2点支持されて、外筒ケーシング112の内部でその軸芯方向に移動可能となる。圧力伝達ロッド114の先端が圧力を受けることにより、当該圧力伝達ロッド114が軸方向に押圧され、センサーブロック104の第1センサー室126の開口側に向けて移動される。 Further, the base end of the pressure transmission rod 114 in the measuring rod 102 is longer than the outer cylinder casing 112, and this base end portion extends through the through hole of the partition wall 124 and extends to the first sensor chamber 126. . The through hole supports the pressure transmission rod 114 with a bearing while sealing a gap with the pressure transmission rod 114 with an O-ring 130. Therefore, the pressure transmission rod 114 is supported at two points by the guide bush 118 provided at the inner periphery of the tip end portion of the outer cylinder casing 112 and the through hole provided in the partition wall 124 of the sensor block 104, and It can move in the axial direction inside. When the tip of the pressure transmission rod 114 receives pressure, the pressure transmission rod 114 is pressed in the axial direction and moved toward the opening side of the first sensor chamber 126 of the sensor block 104.
 前記圧力伝達ロッド114の基端部端面には、圧力伝達ブロック134とロードセル136が積層されて対面配置されている。一方、センサーブロック104には、前記積層された圧力伝達ブロック134とロードセル136とを圧力伝達ロッド114の間で挟着するように、ロードセル136の背面に対向して、第1センサー室126の開口を覆うブロック蓋132が取り付けられている。これにより、圧力伝達ロッド114の先端で受けた力が、ブロック蓋132の内面部を支持面として、ロードセル136及び圧力センサー134に伝わり、その荷重を検出することができる。これにより、キャビティ14内に充填された溶湯のメタル圧を計測することができる。 The pressure transmission block 134 and the load cell 136 are laminated on the end surface of the proximal end portion of the pressure transmission rod 114 so as to face each other. On the other hand, the sensor block 104 has an opening of the first sensor chamber 126 facing the back surface of the load cell 136 so that the stacked pressure transmission block 134 and the load cell 136 are sandwiched between the pressure transmission rods 114. A block lid 132 is attached. As a result, the force received at the tip of the pressure transmission rod 114 is transmitted to the load cell 136 and the pressure sensor 134 using the inner surface of the block lid 132 as a support surface, and the load can be detected. Thereby, the metal pressure of the molten metal filled in the cavity 14 can be measured.
 一方、計測ロッド102の外筒ケーシング112と圧力伝達ロッド114との間に形成されている通気路115は、センサーブロック104の内部でガス導入室122に連通されている。センサーブロック104には、ガス導入室122に通じる第2センサー室138がブロック外周面に開口形成されている。この第2センサー室138の開口部には、ガス圧センサー140が開口部を密封するように配置されている。前記ガス圧センサー140は例えばセラミック圧電素子を用いた圧電型荷重検出センサーが使用される。第2センサー室138はセンサー固定ボルト144で封止される。これにより、計測ロッド102の先端側のガスフィルター50を通じて金型内部情報計測センサー100内に導入されたキャビティ14内のガスが、通気路115を経由してガス導入室122から第2センサー室138に導入され、ガス圧センサー140によってその圧力が計測される。 On the other hand, the air passage 115 formed between the outer cylinder casing 112 of the measuring rod 102 and the pressure transmission rod 114 is communicated with the gas introduction chamber 122 inside the sensor block 104. In the sensor block 104, a second sensor chamber 138 communicating with the gas introduction chamber 122 is formed in the block outer peripheral surface. A gas pressure sensor 140 is disposed in the opening of the second sensor chamber 138 so as to seal the opening. As the gas pressure sensor 140, for example, a piezoelectric load detection sensor using a ceramic piezoelectric element is used. The second sensor chamber 138 is sealed with a sensor fixing bolt 144. As a result, the gas in the cavity 14 introduced into the mold internal information measurement sensor 100 through the gas filter 50 on the distal end side of the measurement rod 102 passes from the gas introduction chamber 122 to the second sensor chamber 138 via the air passage 115. The gas pressure sensor 140 measures the pressure.
 前記ガス導入室122には、パージエア導入孔146が開口されている。このパージエア導入孔146には圧縮エア供給管148が接続され、エア源88から圧縮空気を供給できるようにしている。これにより、圧縮空気を、ガス導入室122を介して、ガスフィルター50側に流し、ガスフィルター50の目詰まりをチェックすることができる。 A purge air introduction hole 146 is opened in the gas introduction chamber 122. A compressed air supply pipe 148 is connected to the purge air introduction hole 146 so that compressed air can be supplied from the air source 88. Thereby, compressed air can be flowed to the gas filter 50 side via the gas introduction chamber 122, and the clogging of the gas filter 50 can be checked.
 また、前述した圧力伝達ロッド114の軸芯部には細孔150が穿設されている。この細孔150は圧力伝達ロッド114の先端中央に開口されており、ここをメタル温度検出端151としている。メタル温度検出端151には溶損防止のためにSKD材から構成し、熱電対152の検出部を埋め込んでいる。細孔150の内部には熱電対152のリード線158が引き回されており、このリード線158は、圧力伝達ロッド114の基端に形成した切り込み溝160を介してブロック外に導出される。 Further, a pore 150 is formed in the axial core portion of the pressure transmission rod 114 described above. The pore 150 is opened at the center of the tip of the pressure transmission rod 114, and this is used as a metal temperature detection end 151. The metal temperature detection end 151 is made of an SKD material to prevent melting damage, and a detection portion of a thermocouple 152 is embedded. A lead wire 158 of a thermocouple 152 is routed inside the pore 150, and the lead wire 158 is led out of the block through a cut groove 160 formed at the proximal end of the pressure transmission rod 114.
 本実施形態では、センサーブロック104に端子ボックス162を付帯させ、ここにロードセル136、ガス圧センサー140、熱電対152の各種リード線を導いている。そして、端子ボックス162を介して各センサー類は図示しない計測器に接続され、当該計測器は所定の計測データを出力して制御装置40に送信し、必要に応じて表示手段に表示させることができる。 In the present embodiment, a terminal box 162 is attached to the sensor block 104, and various lead wires of the load cell 136, the gas pressure sensor 140, and the thermocouple 152 are led here. Then, each sensor is connected to a measuring instrument (not shown) via the terminal box 162, and the measuring instrument outputs predetermined measurement data, transmits it to the control device 40, and displays it on the display means as necessary. it can.
 なお、本実施形態では、金型内部情報計測センサー100を可動金型12bに取り付けたが、固定金型12aに取り付けてもよい。 In this embodiment, the mold internal information measurement sensor 100 is attached to the movable mold 12b, but may be attached to the fixed mold 12a.
 次に、上述したダイカスト装置10Aによる鋳造品製造の動作例について、図19を参照して説明する。ここでは、第1実施形態で説明した動作と異なる動作のみ説明する。 Next, an example of operation of manufacturing a cast product by the above-described die casting apparatus 10A will be described with reference to FIG. Here, only operations different from those described in the first embodiment will be described.
 ステップS0において、上述した金型内部情報計測センサー100の計測ロッド102を、可動金型12bのセンサー装着孔64に差し込み、計測ロッド102の先端面がキャビティ14の面と同一面となるようにした状態で、センサー100の固定ユニット110により固定する。 In step S0, the measuring rod 102 of the above-mentioned mold internal information measuring sensor 100 is inserted into the sensor mounting hole 64 of the movable mold 12b so that the tip surface of the measuring rod 102 is flush with the surface of the cavity 14. In the state, it is fixed by the fixing unit 110 of the sensor 100.
 ステップS5における射出動作中には、キャビティ14に臨んだ金型内部情報計測センサー100の計測ロッド102の先端に溶湯のメタル圧が作用し、圧力伝達ロッド114が押され、この力がロードセル136により検出される。同時に、ガスフィルター50を通じてキャビティ14内部のガスが金型内部情報計測センサー100の通気路115を経てガス導入室122に導入され、そのガス圧がガス圧センサー140により検出される。また、圧力伝達ロッド114の先端部に設けられているメタル温度検出端151により溶湯温度が検出される。 During the injection operation in step S <b> 5, the metal pressure of the molten metal acts on the tip of the measuring rod 102 of the mold internal information measuring sensor 100 facing the cavity 14, and the pressure transmission rod 114 is pushed, and this force is applied by the load cell 136. Detected. At the same time, the gas inside the cavity 14 is introduced into the gas introduction chamber 122 through the gas filter 50 through the air passage 115 of the mold internal information measuring sensor 100, and the gas pressure is detected by the gas pressure sensor 140. Further, the molten metal temperature is detected by a metal temperature detection end 151 provided at the tip of the pressure transmission rod 114.
 このように金属製のガスフィルター50を金型内部情報計測センサー100に用いることで、セラミックを用いるよりも熱衝撃に強いため破損することがなく、また冷却能力が高い。したがって、ガスのみを確実に通気路115に導入することができ、キャビティ14内のガス圧を確実かつ正確に計測することができる。
(第3実施形態)
 次に、本発明の第3実施形態について説明する。第1実施形態及び第2実施形態と同様の構成要素には同一の符号を付し、重複した説明を省略する。
By using the metal gas filter 50 for the mold internal information measuring sensor 100 in this way, the metal gas filter 50 is more resistant to thermal shock than ceramics, so that it is not damaged and has a high cooling capacity. Therefore, only gas can be reliably introduced into the air passage 115, and the gas pressure in the cavity 14 can be measured reliably and accurately.
(Third embodiment)
Next, a third embodiment of the present invention will be described. The same components as those in the first embodiment and the second embodiment are denoted by the same reference numerals, and redundant description is omitted.
 図20は、第3実施形態におけるダイカスト装置10Bの模式的断面図である。第3実施形態に係るダイカスト装置10Bは、第2実施形態に係るダイカスト装置10Aの構成に加えて、射出中に排気側通路18からキャビティ14内のガスを排出する排気側通路18、キャビティ14内の溶湯の充填が完了した時に排気側通路18を閉鎖するシャットバルブ30、シャットバルブ30を制御する機構等が設けられている。 FIG. 20 is a schematic cross-sectional view of a die casting apparatus 10B according to the third embodiment. In addition to the configuration of the die casting apparatus 10A according to the second embodiment, the die casting apparatus 10B according to the third embodiment includes an exhaust side passage 18 that discharges gas in the cavity 14 from the exhaust side path 18 during injection, and the inside of the cavity 14 A shut valve 30 for closing the exhaust side passage 18 when the molten metal filling is completed, a mechanism for controlling the shut valve 30, and the like are provided.
 具体的には、ゲート16側通路のキャビティ14の入口部には、溶湯が達したことを検出する入口センサー26Aが配置されている。また、排気側通路18のキャビティ14の出口部には、溶湯が達したことを検出する出口センサー26Bが配置されている。これら溶湯検出センサー26(入口センサー26A、出口センサー26B)としては、例えば、溶湯28の電気導電性を利用し、溶湯28が溶湯検出センサー26の先端面に付着したことによって電気的な短絡状態となるように構成されたものを用いればよい。各センサー26A、26Bに溶湯が達したことが検出された時点間の差は、溶湯28がキャビティ14内に流入してから完全に充填されるまでの溶湯充填時間となる。 More specifically, an inlet sensor 26A for detecting that the molten metal has reached is disposed at the inlet of the cavity 14 in the gate 16 side passage. In addition, an outlet sensor 26B that detects that the molten metal has reached is disposed at the outlet of the cavity 14 of the exhaust side passage 18. As these molten metal detection sensors 26 (inlet sensor 26A, outlet sensor 26B), for example, the electrical conductivity of the molten metal 28 is used, and the molten metal 28 adheres to the front end surface of the molten metal detection sensor 26, so What is constituted may be used. The difference between the time points when the molten metal is detected to reach the sensors 26A and 26B is the molten metal filling time from when the molten metal 28 flows into the cavity 14 until it is completely filled.
 前記排気側通路18の下流側には、排気側通路18を開放・遮断するシャットバルブ30が配置されている。シャットバルブ30は、当該シャットバルブ30に電気的に接続された制御装置40からの制御により、溶湯充填時間の満了とともに排気側通路18を遮断する。 A shut valve 30 for opening and closing the exhaust side passage 18 is disposed downstream of the exhaust side passage 18. The shut valve 30 shuts off the exhaust-side passage 18 as the molten metal filling time expires under the control of the control device 40 electrically connected to the shut valve 30.
 シャットバルブ30は、駆動形式を問わないが、本実施形態では、電磁作動バルブ機構によって構成されており、作動コイルへの通電により弁体によって通路を遮断するようにしている。具体的には、シャットバルブ30は、シリンダ30a内を往復移動可能に装着されたスプール30bを有し、電磁コイル30cへの通電・遮断によりスプール30bを往復駆動させる。スプールロッド30dの先端部には、ポペット型弁体30eが形成され、これを排気側通路18に臨ませ、排気側通路18の壁面に形成された弁座30fに着座させることで、排気側通路18を遮断し、キャビティ14側と大気との間の通気をカットすることができるようにしている。弁座30fの中央部には大気側に通じる通路が形成されている。シャットバルブ30は通常は排気側通路18を開放している常開バルブとして構成されており、溶湯28が出口センサー26Bに到達した時点で閉状態となるように制御装置40により駆動される。 The shut valve 30 is not limited to a drive type, but in this embodiment, the shut valve 30 is configured by an electromagnetically operated valve mechanism, and the passage is blocked by the valve body by energizing the operating coil. Specifically, the shut valve 30 has a spool 30b that is mounted so as to be reciprocally movable in the cylinder 30a, and drives the spool 30b to reciprocate by energizing and shutting off the electromagnetic coil 30c. A poppet type valve element 30e is formed at the tip of the spool rod 30d. The poppet type valve element 30e faces the exhaust side passage 18 and is seated on a valve seat 30f formed on the wall surface of the exhaust side passage 18 to thereby form an exhaust side passage. 18 is cut off so that ventilation between the cavity 14 side and the atmosphere can be cut. A passage leading to the atmosphere side is formed in the central portion of the valve seat 30f. The shut valve 30 is normally configured as a normally open valve that opens the exhaust-side passage 18, and is driven by the control device 40 so that the molten metal 28 is closed when it reaches the outlet sensor 26B.
 また、シャットバルブ30にはポペット型弁体30eによる排気側通路18を大気開放する開弁位置と、当該通路18を閉鎖する閉弁位置と、を検出するリミットスイッチ34A、34Bが配置されている。リミットスイッチ34A、34Bは、スプール30bの移動前進限と後退限を検出し、その検出信号を制御装置40に出力する。 The shut valve 30 is provided with limit switches 34A and 34B for detecting a valve opening position for opening the exhaust side passage 18 to the atmosphere and a valve closing position for closing the passage 18 by the poppet type valve element 30e. . The limit switches 34 </ b> A and 34 </ b> B detect the movement forward limit and the reverse limit of the spool 30 b and output detection signals to the control device 40.
 次に、上述したダイカスト装置10Bによる鋳造品製造の動作例について、図21を参照して説明する。ここでは、第2実施形態で説明した動作と異なる動作のみ説明する。 Next, an example of operation of manufacturing a cast product by the above-described die casting apparatus 10B will be described with reference to FIG. Here, only operations different from those described in the second embodiment will be described.
 ステップS5の射出動作において、1回目の射出時には、制御装置40は、入口センサー26A及び出口センサー26B各々から検出信号が出力された各時点の時間差を「溶湯充填時間」としてメモリに記憶する。なお、シャットバルブ30の作動遅れを考慮するために、シャットバルブ30を閉状態とするための制御信号をシャットバルブ30に送信してから、シャットバルブ30のスプール30bが排気側通路18を閉鎖する方向に移動してリミットスイッチ34Aから検出信号を受信するまでの時間を計測し、当該時間を「動作遅れ時間」としてメモリに記憶しておいてもよい。 In the injection operation of step S5, at the time of the first injection, the control device 40 stores the time difference at each time point when the detection signal is output from each of the inlet sensor 26A and the outlet sensor 26B as “molten metal filling time” in the memory. In order to consider the delay in operation of the shut valve 30, a control signal for closing the shut valve 30 is transmitted to the shut valve 30, and then the spool 30 b of the shut valve 30 closes the exhaust side passage 18. The time until the detection signal is received from the limit switch 34A after moving in the direction may be measured, and the time may be stored in the memory as the “operation delay time”.
 2回目以降の射出時には、制御装置40は、入口センサー26Aから検出信号を受信した時点から時間を計時し、予めメモリに記憶しておいた「溶湯充填時間」が経過したときに、シャットバルブ30を閉状態とするための制御信号をシャットバルブ30に送信する。これにより、シャットバルブ30のスプールロッド30dが駆動され、排気側通路18を閉鎖する。なお、シャットバルブ30の作動遅れを考慮する場合には、制御装置40は、入口センサー26Aから検出信号を受信した時点から、予めメモリに記憶しておいた「溶湯充填時間」から「作動遅れ時間」を減算した時間が経過したときに、制御信号を送信すればよい。また、制御装置40は、今回の射出動作における「溶湯充填時間」及び「作動遅れ時間」を計測し、当該計測した時間で、メモリに記憶されている「溶湯充填時間」及び「作動遅れ時間」を更新する。 At the second and subsequent injections, the control device 40 measures the time from the time when the detection signal is received from the inlet sensor 26A, and when the “molten filling time” stored in the memory has elapsed, the shut valve 30 Is transmitted to the shut valve 30. Thereby, the spool rod 30d of the shut valve 30 is driven and the exhaust side passage 18 is closed. When considering the operation delay of the shut valve 30, the control device 40 starts from the “melt filling time” stored in the memory in advance from the time when the detection signal is received from the inlet sensor 26 </ b> A to the “operation delay time”. The control signal may be transmitted when the time obtained by subtracting "" has elapsed. Further, the control device 40 measures the “melt filling time” and the “operation delay time” in the current injection operation, and the “melt filling time” and “operation delay time” stored in the memory at the measured times. Update.
 第3実施形態では、射出時に排気側通路18とガス抜き配管62の両方を用いてキャビティ14内のガス抜きを行い、溶湯がキャビティ14内に完全に充填された時点でシャットバルブ30を閉状態にすることができるため、確実にキャビティ14内のガス抜きを行うことができ、内部に巣のない高い品質の鋳造品を製造することができる。上記以外の動作は第2実施形態と同様である。 In the third embodiment, the gas in the cavity 14 is vented using both the exhaust side passage 18 and the gas vent pipe 62 at the time of injection, and the shut valve 30 is closed when the molten metal is completely filled in the cavity 14. Therefore, the gas in the cavity 14 can be surely vented, and a high-quality cast product without a nest can be manufactured. Operations other than those described above are the same as in the second embodiment.
 なお、第3実施形態においては、射出時に金型内部情報計測センサー100を用いてキャビティ14内のガス圧を計測したが、ガス圧センサー72を用いてキャビティ14内のガス圧を計測するようにしてもよい。ガス圧センサー72を用いてキャビティ14内のガス圧を計測する場合には、ガス抜き配管62内のガスが外部に漏れないように切替バルブ70を閉状態にして、ガス抜き配管62を大気から遮断した状態で計測する必要がある。射出時に切替バルブ70を閉状態に切り替えるためには、制御装置40が備えるグラフィックパネルに、ガス圧センサー72をガス抜きに用いる標準モードと、ガス圧計測に用いるガス圧計測モードと、を選択するための切替スイッチを設けるとよい。そして、制御装置40は、外部からの切替スイッチの操作によりガス圧計測モードが選択されたことを検知した場合、射出開始時に閉状態への切替を指示する制御信号をバルブ70に送信するようにすればよい。そして、制御装置40は、ガス圧センサー72により計測されたガス圧のデータを受信し、モニター装置に射出時のガスのピーク圧を表示するようにすればよい。 In the third embodiment, the gas pressure in the cavity 14 is measured using the mold internal information measuring sensor 100 at the time of injection, but the gas pressure in the cavity 14 is measured using the gas pressure sensor 72. May be. When the gas pressure in the cavity 14 is measured using the gas pressure sensor 72, the switching valve 70 is closed so that the gas in the gas vent pipe 62 does not leak to the outside, and the gas vent pipe 62 is removed from the atmosphere. It is necessary to measure in the blocked state. In order to switch the switching valve 70 to the closed state at the time of injection, a standard mode in which the gas pressure sensor 72 is used for degassing and a gas pressure measurement mode used in gas pressure measurement are selected on the graphic panel provided in the control device 40. For this purpose, a changeover switch may be provided. When the control device 40 detects that the gas pressure measurement mode has been selected by operating the changeover switch from the outside, the control device 40 transmits a control signal instructing switching to the closed state to the valve 70 at the start of injection. do it. And the control apparatus 40 should just receive the data of the gas pressure measured by the gas pressure sensor 72, and may display the peak pressure of the gas at the time of injection | emission on a monitor apparatus.
 なお、上述した実施形態では、ガスフィルター50を用いてダイカスト装置10のキャビティ14内のガスを排出する例について説明したが、ガスフィルター50A、50Bを用いてもよい。また、ガスフィルター50、50A、50Bを用いることができる装置はダイカスト装置10に限定されることはなく、例えば、鋳造品、樹脂成型品、プラスチック成型品等を製造する重力鋳造機、低圧鋳造機、射出成形機等の、金型を備えたあらゆる装置に適用することができる。 In the above-described embodiment, the example in which the gas in the cavity 14 of the die casting apparatus 10 is discharged using the gas filter 50 has been described. However, the gas filters 50A and 50B may be used. Moreover, the apparatus which can use gas filter 50, 50A, 50B is not limited to the die-casting apparatus 10, For example, the gravity casting machine and low pressure casting machine which manufacture a casting, a resin molding, a plastic molding, etc. The present invention can be applied to any apparatus equipped with a mold, such as an injection molding machine.
10、10A、10B………ダイカスト装置、12………金型、12a………固定金型、12b………可動金型、14………キャビティ、16………ゲート、18………排気側通路、20………溶湯射出装置、22………スリーブ、24………プランジャ、30………シャットバルブ、64………センサー装着孔、100………金型内部情報計測センサー、102………計測ロッド、104………センサーブロック、106………食込み継手、108………止めネジ、110………固定ユニット、112………外筒ケーシング、114………圧力伝達ロッド、115………通気路、116………多孔質フィルター、119………通気孔、120………ブロック本体、122………ガス導入室、122a………ケーシング取付孔、124………隔壁、126………第1センサー室、130………Oリング、132………ブロック蓋、134………圧力伝達ブロック、136………ロードセル、138………第2センサー室、140………ガス圧センサー、142………押さえブロック、144………センサー固定ボルト、146………パージエア導入孔、148………圧縮エア供給管、150………細孔、151………メタル温度検出端、152………熱電対、158………リード線、160………切り込み溝、162………端子ボックス、40………制御装置、50………ガスフィルター、51、52………管、53………間隔保持部、54………スリット状空間部、55………位置決め部材、55a………円筒部、55b………張出部、55c………連通路、56、57………スリット、56a………長スリット、56b………短スリット、58………ホルダー、59………カプラ、62………ガス抜き配管、70………切替バルブ、70a………第1ソレノイド、70b………第2ソレノイド、72………ガス圧センサー、74………真空タンク、80………エア調整部、88………エア源。 10, 10A, 10B ......... Die-casting device, 12 ......... Mold, 12a ......... Fixed die, 12b ......... Moveable die, 14 ......... Cavity, 16 ...... Gate, 18 ......... Exhaust side passage, 20 ......... Melting device, 22 ......... Sleeve, 24 ...... Plunger, 30 ......... Shut valve, 64 ...... Sensor mounting hole, 100 ...... Mold internal information measuring sensor, 102 ......... Measuring rod, 104 ......... Sensor block, 106 ......... Screw joint, 108 ......... Set screw, 110 ......... Fixing unit, 112 ......... Outer casing, 114 ......... Pressure transmission rod 115 ......... Ventilation channel, 116 ......... Porous filter, 119 ......... Vent hole, 120 ......... Block body, 122 ......... Gas introduction chamber, 122a ......... Case mounting hole, 124 ......... Wall, 126 ......... First sensor chamber, 130 ......... O-ring, 132 ......... Block lid, 134 ......... Pressure transmission block, 136 ......... Load cell, 138 ......... Second sensor chamber, 140 ... ...... Gas pressure sensor, 142 ......... Pressure block, 144 ......... Sensor fixing bolt, 146 ......... Purge air introduction hole, 148 ......... Compressed air supply pipe, 150 ......... Pole, 151 ......... Metal Temperature detection end, 152... Thermocouple, 158... Lead wire, 160... Cut groove, 162... Terminal box, 40. ...... Tube, 53 ......... Interval holding part, 54 ......... Slit-like space part, 55 ......... Positioning member, 55a ......... Cylindrical part, 55b ...... Overhang part, 55c ... Communication path, 56, 57 ... …… 56a ......... long slit, 56b ... short slit, 58 ......... holder, 59 ......... coupler, 62 ......... gas venting pipe, 70 ......... switching valve, 70a ......... first Solenoid, 70b ......... Second solenoid, 72 ......... Gas pressure sensor, 74 ......... Vacuum tank, 80 ...... Air adjusting unit, 88 ...... Air source.

Claims (18)

  1.  金型のキャビティ内からガス抜きを行うガスフィルターであって、
     金属で形成され、軸方向に貫通するスリット状空間部を有する棒状部材を備えたことを特徴とするガスフィルター。
    A gas filter that vents gas from the mold cavity,
    A gas filter comprising a rod-like member made of metal and having a slit-like space portion penetrating in the axial direction.
  2.  前記スリット状空間部は、前記棒状部材の外周面から中心部に向かって切り欠かれた1又は複数の空間部であることを特徴とする。請求項1に記載のガスフィルター。 The slit-shaped space portion is one or a plurality of space portions cut out from the outer peripheral surface of the rod-shaped member toward the center portion. The gas filter according to claim 1.
  3.  前記スリット状空間部の横断面形状は曲線形状を含むことを特徴とする請求項2に記載のガスフィルター。 The gas filter according to claim 2, wherein a cross-sectional shape of the slit-like space portion includes a curved shape.
  4.  前記棒状部材は、多重管構造を有する複数の管であり、
     前記複数の管同士の間に前記スリット状空間部が形成されていることを特徴とする請求項1に記載のガスフィルター。
    The rod-shaped member is a plurality of tubes having a multiple tube structure,
    The gas filter according to claim 1, wherein the slit-like space is formed between the plurality of tubes.
  5.  前記複数の管それぞれの外周面には、該外周面から一定の高さを有する間隔保持部が形成されていることを特徴とする請求項4に記載のガスフィルター。 The gas filter according to claim 4, wherein an interval holding portion having a certain height from the outer peripheral surface is formed on the outer peripheral surface of each of the plurality of tubes.
  6.  前記複数の管それぞれの内周面には、該内周面から一定の高さを有する間隔保持部が形成されていることを特徴とする請求項4に記載のガスフィルター。 5. The gas filter according to claim 4, wherein a spacing portion having a certain height from the inner peripheral surface is formed on the inner peripheral surface of each of the plurality of tubes.
  7.  前記間隔保持部は、軸方向に沿って複数形成されていることを特徴とする請求項5又は6に記載のガスフィルター。 The gas filter according to claim 5 or 6, wherein a plurality of the interval holding portions are formed along the axial direction.
  8.  前記複数の管のうち径の最も小さい管には、位置決め部材が挿通され、
     前記位置決め部材の一方の端部側の外周面には張出部が設けられ、
     前記張出部には、前記スリット状空間部に連通する連通路が形成されていることを特徴とする請求項4から7の何れか1項に記載のガスフィルター。
    A positioning member is inserted into a pipe having the smallest diameter among the plurality of pipes,
    An overhang portion is provided on the outer peripheral surface on one end side of the positioning member,
    The gas filter according to any one of claims 4 to 7, wherein a communication passage communicating with the slit-like space is formed in the overhanging portion.
  9.  請求項1から8の何れか1項に記載のガスフィルターを、金型のキャビティに通じるガス抜き配管に配設した金型装置。 A mold apparatus in which the gas filter according to any one of claims 1 to 8 is disposed in a gas vent pipe that communicates with a cavity of the mold.
  10.  前記ガス抜き配管に接続された切替バルブと、
     前記ガス抜き配管の前記ガスフィルターが配設された位置と前記切替バルブが接続された位置との間に設けられ、前記切替バルブにより前記ガス抜き配管を大気から遮断した状態で前記ガス抜き配管内のガス圧の計測するガス圧センサーと、
     を備えたことを特徴とする請求項9に記載の金型装置。
    A switching valve connected to the gas vent pipe;
    The degassing pipe is provided between the position where the gas filter is disposed and the position where the switching valve is connected, and the degassing pipe is shut off from the atmosphere by the switching valve. A gas pressure sensor that measures the gas pressure of
    The mold apparatus according to claim 9, further comprising:
  11.  前記ガス圧センサーにより計測されたガス圧の低下勾配に基づいて、前記ガスフィルターの目詰まりを判定する制御手段を備えたことを特徴とする請求項10に記載の金型装置。 11. The mold apparatus according to claim 10, further comprising a control unit that determines clogging of the gas filter based on a gas pressure decrease gradient measured by the gas pressure sensor.
  12.  前記切替バルブに接続されたエア源を備え、
     前記エア源は、前記切替バルブの切替により前記ガス抜き配管と接続された際に、前記ガス抜き配管を介して前記ガスフィルターに圧縮空気を供給することを特徴とする請求項10に記載の金型装置。
    An air source connected to the switching valve;
    11. The gold according to claim 10, wherein the air source supplies compressed air to the gas filter through the gas vent pipe when connected to the gas vent pipe by switching the switching valve. Mold device.
  13.  前記切替バルブに接続された真空タンクを備え、
     前記真空タンクは、前記切替バルブの切替により前記ガス抜き配管と接続された際に、前記ガス抜き配管及び前記ガスフィルターを介して前記キャビティ内のガスを真空吸引することを特徴とする請求項10又は11に記載の金型装置。
    A vacuum tank connected to the switching valve;
    11. The vacuum tank, when connected to the gas vent pipe by switching the switching valve, vacuums the gas in the cavity through the gas vent pipe and the gas filter. Or the metal mold apparatus of 11.
  14.  金型に穿設され前記金型のキャビティに開口する装着孔に装着可能なロッド形ケーシングと、
     前記ロッド形ケーシングの先端に配置された請求項1から8の何れか1項に記載のガスフィルターと、
     前記ガスフィルターの後方に設けられ前記ガスフィルターを通じて前記キャビティ内のガスを導入する導入室と、
     前記導入室内のガスの圧力を検出するガス圧センサーと、
     を有することを特徴とする金型内部情報計測センサー。
    A rod-shaped casing that can be mounted in a mounting hole that is drilled in the mold and opens into the cavity of the mold;
    The gas filter according to any one of claims 1 to 8, disposed at a tip of the rod-shaped casing;
    An introduction chamber provided behind the gas filter for introducing the gas in the cavity through the gas filter;
    A gas pressure sensor for detecting the pressure of the gas in the introduction chamber;
    A mold internal information measuring sensor characterized by comprising:
  15.  溶湯を金型のキャビティ内に充填して射出成形品を製造する際の金型内のガス抜き方法であって、
     前記キャビティに通じるように前記金型に穿設されたガス抜き配管に、請求項1から8の何れか1項に記載されたガスフィルターを配設し、前記ガスフィルターを介して前記キャビティ内のガス抜きを行うことを特徴とする金型内のガス抜き方法。
    A method for venting gas in a mold when filling a mold cavity with a molten metal to produce an injection molded product,
    The gas filter according to any one of claims 1 to 8 is disposed in a gas vent pipe drilled in the mold so as to communicate with the cavity, and the inside of the cavity is interposed through the gas filter. A method for venting gas from a mold, wherein the venting is performed.
  16.  金型のキャビティに通じるように前記金型に穿設されたガス抜き配管に請求項1から8の何れか1項に記載されたガスフィルターを配設した前記金型を用いて、射出成形品を製造する射出成形品製造方法であって、
     前記キャビティ内に溶湯を射出する工程で、前記ガス抜き配管の大気開放又は真空引きを行い、前記ガスフィルターを介して前記キャビティ内のガスを放出することを特徴とする射出成形品製造方法。
    An injection molded product using the mold in which the gas filter according to any one of claims 1 to 8 is disposed in a gas vent pipe formed in the mold so as to communicate with a cavity of the mold. An injection molded product manufacturing method for manufacturing
    A method for producing an injection-molded product, wherein in the step of injecting molten metal into the cavity, the gas vent pipe is opened to the atmosphere or evacuated, and the gas in the cavity is released through the gas filter.
  17.  前記金型のキャビティ面への離型剤の塗布時と、型締め時と、型開き時とに、前記ガスフィルターに圧縮空気を供給することを特徴とする請求項16に記載の射出成形品製造方法。 The injection-molded product according to claim 16, wherein compressed air is supplied to the gas filter when a release agent is applied to the cavity surface of the mold, when the mold is clamped, and when the mold is opened. Production method.
  18.  前記圧縮空気の供給が終了した後に、前記ガス抜き配管内のガス圧を計測することを特徴とする請求項17に記載の射出成形品製造方法。 The injection molded product manufacturing method according to claim 17, wherein the gas pressure in the gas vent pipe is measured after the supply of the compressed air is completed.
PCT/JP2013/064997 2012-06-12 2013-05-30 Gas filter, mold device, mold interior information measurement sensor, method for removing gas in mold, and method for manufacturing injection-molded product WO2013187239A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-133323 2012-06-12
JP2012133323A JP6134974B2 (en) 2012-06-12 2012-06-12 Gas filter, mold apparatus, mold internal information measuring sensor, degassing method in mold and injection molded product manufacturing method

Publications (1)

Publication Number Publication Date
WO2013187239A1 true WO2013187239A1 (en) 2013-12-19

Family

ID=49758068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064997 WO2013187239A1 (en) 2012-06-12 2013-05-30 Gas filter, mold device, mold interior information measurement sensor, method for removing gas in mold, and method for manufacturing injection-molded product

Country Status (2)

Country Link
JP (1) JP6134974B2 (en)
WO (1) WO2013187239A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110465639A (en) * 2019-09-16 2019-11-19 姜秀芳 A kind of hardened structure of composite exhaust for high vacuum casting mould
EP3653316A1 (en) * 2018-11-14 2020-05-20 Meissner Ag Modell- Und Werkzeugfabrik Casting tool, for example core shooting tool or mould and corresponding casting method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6624442B2 (en) * 2016-01-22 2019-12-25 株式会社デンソー Vacuum die casting equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4847813U (en) * 1971-10-06 1973-06-23
JPH105968A (en) * 1996-06-14 1998-01-13 Toyota Motor Corp Gas-venting structure in mold
JPH10249509A (en) * 1997-03-13 1998-09-22 Toyota Motor Corp Method for detecting abnormality of gas venting device for metallic mold
JP2003164959A (en) * 2001-11-30 2003-06-10 Ryobi Ltd Gas vent plug for die casting
JP2011183431A (en) * 2010-03-08 2011-09-22 Asahi:Kk Method of producing porous structural body
WO2011115276A1 (en) * 2010-03-18 2011-09-22 株式会社ダイレクト21 Measurement sensor for information regarding inside of mold

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB362261A (en) * 1930-11-10 1931-12-03 Carlo Borgo Improved top plug for a die for casting pistons for internal combustion engine cylinders
JP3321575B2 (en) * 1993-11-08 2002-09-03 旭テック株式会社 Molding equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4847813U (en) * 1971-10-06 1973-06-23
JPH105968A (en) * 1996-06-14 1998-01-13 Toyota Motor Corp Gas-venting structure in mold
JPH10249509A (en) * 1997-03-13 1998-09-22 Toyota Motor Corp Method for detecting abnormality of gas venting device for metallic mold
JP2003164959A (en) * 2001-11-30 2003-06-10 Ryobi Ltd Gas vent plug for die casting
JP2011183431A (en) * 2010-03-08 2011-09-22 Asahi:Kk Method of producing porous structural body
WO2011115276A1 (en) * 2010-03-18 2011-09-22 株式会社ダイレクト21 Measurement sensor for information regarding inside of mold

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3653316A1 (en) * 2018-11-14 2020-05-20 Meissner Ag Modell- Und Werkzeugfabrik Casting tool, for example core shooting tool or mould and corresponding casting method
CN111185576A (en) * 2018-11-14 2020-05-22 迈斯纳模型和制造股份公司 Casting tool, such as a core shooting tool or a permanent mold, and corresponding casting method
CN110465639A (en) * 2019-09-16 2019-11-19 姜秀芳 A kind of hardened structure of composite exhaust for high vacuum casting mould

Also Published As

Publication number Publication date
JP6134974B2 (en) 2017-05-31
JP2013255932A (en) 2013-12-26

Similar Documents

Publication Publication Date Title
JP4945013B2 (en) Mold internal information measuring sensor
KR20060047239A (en) Diecasting device and reduced-pressure casting method
JP6134974B2 (en) Gas filter, mold apparatus, mold internal information measuring sensor, degassing method in mold and injection molded product manufacturing method
WO2013132983A1 (en) Die casting apparatus
KR20190094330A (en) Injection device and casting method for casting device
KR100567696B1 (en) Apparatus and method for manufacturing die-cast product
JP2011131265A (en) Vacuum die casting apparatus and vacuum die casting method
JP4794611B2 (en) Degassing unit, casting mold, and casting method
JP2013099756A (en) Die casting system and die-casting manufacturing method
JP2008254011A (en) Casting method and die casting machine
JP2011005504A (en) Vacuum die casting apparatus and method
WO2021024582A1 (en) Control device for die casting machine, and device and method for acquiring index value used to set control parameter
JP5544436B2 (en) Gas vent unit
JPH0966351A (en) Vacuum die casting method
JP2008149358A (en) Casting method and casting apparatus
JP2014151351A (en) Die casting device
JP4189408B2 (en) Low pressure casting apparatus and low pressure casting method
JP3898545B2 (en) Casting method and casting apparatus used therefor
JP2006026698A (en) Instrument for measuring inner pressure of cavity in die for die casting
JP2014069219A (en) Monitor display means, molding apparatus using the same and monitor display method
JP6132129B2 (en) Die casting degassing apparatus and degassing method
KR102543175B1 (en) Backflow prevention device of light metal injection device and backflow prevention method of light metal injection device
JP5588609B2 (en) Casting mold and casting method
JP4810194B2 (en) Pressure detection device
JP2009285679A (en) Diecasting machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13804363

Country of ref document: EP

Kind code of ref document: A1