JP2011240374A - Brazing method for insulation laminated material - Google Patents

Brazing method for insulation laminated material Download PDF

Info

Publication number
JP2011240374A
JP2011240374A JP2010115022A JP2010115022A JP2011240374A JP 2011240374 A JP2011240374 A JP 2011240374A JP 2010115022 A JP2010115022 A JP 2010115022A JP 2010115022 A JP2010115022 A JP 2010115022A JP 2011240374 A JP2011240374 A JP 2011240374A
Authority
JP
Japan
Prior art keywords
flux
insulating
metal layer
brazing
brazed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010115022A
Other languages
Japanese (ja)
Other versions
JP5613452B2 (en
Inventor
Kazuhiko Minami
和彦 南
Ichiro Iwai
一郎 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2010115022A priority Critical patent/JP5613452B2/en
Publication of JP2011240374A publication Critical patent/JP2011240374A/en
Application granted granted Critical
Publication of JP5613452B2 publication Critical patent/JP5613452B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4882Assembly of heatsink parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PROBLEM TO BE SOLVED: To provide a brazing method for an insulation laminated material which prevents peeling of an insulation plate and a metal layer and is low in cost.SOLUTION: The brazing method for the insulation laminated material is applied to brazing of an insulation circuit board 4 and a stress relaxing member 8 as the insulation laminated material in a base for a power module. The insulation circuit board 4 is constituted of the insulation plate 5, an aluminum wiring layer formed on one surface of the insulation plate 5, and an aluminum heat conductive layer 7 formed on the other surface of the insulation plate 5. The heat conductive layer 7 of the insulation circuit board 4 is formed of Al-Mg alloy and a flux flow preventing material that stops flow of molten flux by reacting with the molten flux is made to be present at the surrounding of the heat conductive layer 7. In this state, the heat conductive layer 7 of the insulation circuit board 4 and the stress relaxing member 8 are brazed in a furnace using the flux. The heat conductive layer 7 is formed of the Al-Mg alloy and the surface layer part of the circumferential surface 7a of the heat conductive layer 7 is made to react with the flux.

Description

この発明は絶縁積層材のろう付方法に関し、さらに詳しくは、絶縁板および絶縁板の少なくとも片面に設けられた金属層よりなる絶縁積層材を金属部材にろう付する方法に関する。   The present invention relates to a method for brazing an insulating laminated material, and more particularly to a method for brazing an insulating laminated material comprising a metal layer provided on at least one surface of an insulating plate and an insulating plate to a metal member.

この明細書において、「アルミニウム」という用語には、「純アルミニウム」と表現する場合を除いて、純アルミニウムの他にアルミニウム合金を含むものとする。   In this specification, the term “aluminum” includes aluminum alloys in addition to pure aluminum, except when expressed as “pure aluminum”.

たとえばIGBT(Insulated Gate Bipolar Transistor)などの半導体素子からなるパワーデバイスを備えたパワーモジュールにおいては、半導体素子から発せられる熱を効率良く放熱して、半導体素子の温度を所定温度以下に保つ必要がある。そこで、従来、パワーデバイスを実装するパワーモジュール用ベースとして、セラミックス製絶縁板、絶縁板の一面に形成されたアルミニウム製配線層(金属層)、および絶縁板の他面に形成されたアルミニウム製伝熱層(金属層)からなる絶縁回路基板(絶縁積層材)と、絶縁回路基板の伝熱層がろう付されたアルミニウム製放熱部材と、放熱部材における絶縁回路基板にろう付された側と反対側の面にろう付されかつ内部に冷却液流路が形成されたアルミニウム製ヒートシンクとからなるものが提案されている(特許文献1参照)。   For example, in a power module equipped with a power device composed of a semiconductor element such as an IGBT (Insulated Gate Bipolar Transistor), it is necessary to efficiently dissipate heat generated from the semiconductor element to keep the temperature of the semiconductor element below a predetermined temperature. . Therefore, conventionally, as a power module base for mounting a power device, a ceramic insulating plate, an aluminum wiring layer (metal layer) formed on one surface of the insulating plate, and an aluminum transmission formed on the other surface of the insulating plate. Insulated circuit board (insulating laminate) consisting of a heat layer (metal layer), an aluminum heat dissipating member brazed to the heat transfer layer of the insulating circuit board, and the opposite side of the heat dissipating member brazed to the insulating circuit board There has been proposed an aluminum heat sink that is brazed to the side surface and has a coolant flow path formed therein (see Patent Document 1).

特許文献1記載のパワーモジュール用ベースにおいては、絶縁回路基板の配線層上にパワーデバイスが実装されてパワーモジュールとして用いられる。そして、パワーデバイスから発せられた熱は、配線層、絶縁板、伝熱層および放熱部材を経てヒートシンクに伝えられ、冷却液流路内を流れる冷却液に放熱されるようになっている。   In the power module base described in Patent Document 1, a power device is mounted on a wiring layer of an insulated circuit board and used as a power module. The heat generated from the power device is transmitted to the heat sink through the wiring layer, the insulating plate, the heat transfer layer, and the heat dissipation member, and is radiated to the coolant flowing in the coolant flow path.

ところで、特許文献1記載のパワーモジュール用ベースにおいては、絶縁回路基板の伝熱層と放熱部材とのろう付は、真空雰囲気中で行われている(特許文献1の段落0023参照)。しかしながら、真空雰囲気中で行う真空ろう付は、コストが高くなるという問題がある。   By the way, in the base for power modules described in Patent Document 1, the heat transfer layer of the insulating circuit board and the heat radiating member are brazed in a vacuum atmosphere (see Paragraph 0023 of Patent Document 1). However, vacuum brazing performed in a vacuum atmosphere has a problem of high cost.

そこで、フラックスを使用する一般的な炉中ろう付法により、絶縁回路基板の伝熱層と放熱部材とのろう付を行うことが考えられる。この方法では、フラックスを放熱部材に塗布しておくことが一般的である。しかしながら、フラックスを使用する炉中ろう付法により、絶縁回路基板の伝熱層と放熱部材とのろう付を行う場合、溶融したフラックスが絶縁回路基板の伝熱層の周面に沿って絶縁板側に流れて絶縁板と伝熱層との界面の周縁に至り、その結果溶融フラックスが絶縁板と伝熱層との界面に悪影響を及ぼして、絶縁板と伝熱層とが剥離するという問題がある。   Therefore, it is conceivable to braze the heat transfer layer of the insulated circuit board and the heat radiating member by a general in-furnace brazing method using flux. In this method, it is common to apply flux to the heat radiating member. However, when brazing the heat transfer layer of the insulated circuit board and the heat radiating member by brazing in the furnace using the flux, the molten flux is insulated along the peripheral surface of the heat transfer layer of the insulated circuit board. To the periphery of the interface between the insulating plate and the heat transfer layer, and as a result, the melt flux adversely affects the interface between the insulating plate and the heat transfer layer, causing the insulating plate and the heat transfer layer to peel off. There is.

特開2003−86744号公報JP 2003-86744 A

この発明の目的は、上記問題を解決し、絶縁板と金属層との剥離を防止しうるとともにコストの安い絶縁積層材のろう付方法を提供することにある。   An object of the present invention is to provide a brazing method for an insulating laminated material that solves the above-described problems and can prevent the insulating plate and the metal layer from being peeled and is inexpensive.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)絶縁板および絶縁板の少なくとも片面に設けられた金属層よりなる絶縁積層材の金属層を金属部材にろう付する方法であって、
金属部材にろう付される絶縁積層材の金属層の周囲に、溶融したフラックスと反応して溶融フラックスの流れを止めるフラックス流動防止物を存在させておき、フラックスを使用して炉中でろう付することを特徴とする絶縁積層材のろう付方法。
1) A method of brazing a metal layer of an insulating laminate consisting of an insulating plate and a metal layer provided on at least one side of the insulating plate to a metal member,
Around the metal layer of the insulation laminate to be brazed to the metal member, there is a flux flow preventer that stops the flow of the molten flux by reacting with the molten flux, and brazing in the furnace using the flux. A method for brazing an insulating laminated material.

2)絶縁積層材の金属層をAl−Mg合金で形成しておき、当該金属層の周面の表層部をフラックス侵入防止物として機能させる上記1)記載の絶縁積層材のろう付方法。   2) The method for brazing an insulating laminated material according to 1) above, wherein the metal layer of the insulating laminated material is formed of an Al—Mg alloy, and the surface layer portion on the peripheral surface of the metal layer functions as a flux intrusion preventive.

3)絶縁積層材の金属層を形成するAl−Mg合金が、Mg0.005〜0.2質量%を含み、残部Alおよび不可避不純物からなる上記2)記載の絶縁積層材のろう付方法。   3) The method for brazing an insulating laminate according to 2) above, wherein the Al—Mg alloy forming the metal layer of the insulating laminate contains 0.005 to 0.2% by mass of Mg, and the balance is Al and inevitable impurities.

4)絶縁積層材の金属層の周面に沿って、金属層とは別個に形成されたAl−Mg合金からなるフラックス流動防止物、金属層とは別個に形成されたMg合金からなるフラックス流動防止物、および金属層とは別個に形成されたMg化合物からなるフラックス流動防止物のうちの少なくとも1つを存在させておく上記1)記載の絶縁積層材の製造方法。   4) Flux flow prevention material made of Al-Mg alloy formed separately from the metal layer along the peripheral surface of the metal layer of the insulating laminate, and flux flow made of Mg alloy formed separately from the metal layer The method for producing an insulating laminated material according to 1), wherein at least one of the preventive and the flux flow preventive made of Mg compound formed separately from the metal layer is present.

5)フラックス流動防止物が箔または線材であり、当該箔または線材を金属層の周囲に配置しておく上記4)記載の絶縁積層材の製造方法。   5) The method for producing an insulating laminate according to 4) above, wherein the flux flow prevention material is a foil or a wire, and the foil or wire is disposed around the metal layer.

6)フラックス流動防止物が粒子状であり、当該粒子状フラックス流動防止物とバインダとの混合物を金属層の周面に塗布しておく上記4)記載の絶縁積層材の製造方法。   6) The method for producing an insulating laminate according to 4) above, wherein the flux flow preventive is in the form of particles, and a mixture of the particulate flux flow preventive and the binder is applied to the peripheral surface of the metal layer.

7)Al−Mg合金が、Mg0.005〜0.2質量%を含み、残部Alおよび不可避不純物からなる上記4)〜6)のうちのいずれかに記載の絶縁積層材のろう付方法。   7) The method for brazing an insulating laminate according to any one of 4) to 6) above, wherein the Al—Mg alloy contains 0.005 to 0.2% by mass of Mg, and the balance is Al and inevitable impurities.

8)Mg合金が、Mgを90質量%以上含む上記4)〜6)のうちのいずれかに記載の絶縁積層材のろう付方法。   8) The brazing method for an insulating laminated material according to any one of 4) to 6) above, wherein the Mg alloy contains 90% by mass or more of Mg.

9)Mg化合物が、FおよびKのうちの少なくとも1つを含む上記4)〜6)のうちのいずれかに記載の絶縁積層材のろう付方法。   9) The method for brazing an insulating laminate according to any one of 4) to 6) above, wherein the Mg compound contains at least one of F and K.

10)絶縁積層材の絶縁板の周縁部が、金属部材にろう付される金属層よりも外方に張り出しており、絶縁板における当該外方張り出し部における金属部材側を向いた面に沿ってフラックス流動防止物を配置しておく上記1)〜9)のうちのいずれかに記載の絶縁積層材のろう付方法。   10) The peripheral edge of the insulating plate of the insulating laminated material protrudes outward from the metal layer brazed to the metal member, and along the surface facing the metal member side in the outward protruding portion of the insulating plate. The method for brazing an insulating laminated material according to any one of 1) to 9) above, wherein a flux flow preventive is disposed.

11)絶縁積層材の両面に金属層が設けられており、金属部材にろう付される金属層とは反対側の金属層の周囲に、溶融したフラックスと反応して溶融フラックスの流れを止めるフラックス流動防止物を存在させておく上記1)〜10)のうちのいずれかに記載の絶縁積層材のろう付方法。   11) Flux that has metal layers on both sides of the insulating laminate and stops the flow of molten flux around the metal layer opposite to the metal layer to be brazed to the metal member by reacting with the molten flux The method for brazing an insulating laminated material according to any one of 1) to 10) above, wherein a flow preventive is present.

12)フラックスとしてKAlFを用いる上記1)〜11)のうちのいずれかに記載の絶縁積層材のろう付方法。 12) The method for brazing an insulating laminate according to any one of 1) to 11) above, wherein KAlF 4 is used as a flux.

13)絶縁板および絶縁板の両面に金属層が設けられた絶縁積層材と、絶縁積層材の一方の金属層がろう付されたヒートシンクとを備えた放熱装置であって、
絶縁積層材の一方の金属層とヒートシンクとが、上記1)〜12)のうちのいずれかに記載の方法によりろう付されており、ヒートシンクにろう付された金属層の周面に、フラックスとフラックス侵入防止物との反応物が残存している放熱装置。
13) A heat dissipating device comprising an insulating plate and an insulating laminate having a metal layer provided on both surfaces of the insulating plate, and a heat sink in which one metal layer of the insulating laminate is brazed.
One metal layer of the insulating laminate and the heat sink are brazed by the method described in any one of 1) to 12) above, and the flux and the peripheral surface of the metal layer brazed to the heat sink A heat dissipation device in which a reaction product with the flux intrusion prevention material remains.

14)絶縁板および絶縁板の両面に金属層が設けられた絶縁積層材と、絶縁積層材の一方の金属層がろう付された応力緩和部材と、応力緩和部材における絶縁積層材の一方の金属層とろう付された面とは反対側の面がろう付されたヒートシンクとを備えた放熱装置であって、
絶縁積層材の一方の金属層と応力緩和部材とが、上記1)〜12)のうちのいずれかに記載の方法によりろう付されており、応力緩和部材にろう付された金属層の周面に、フラックスとフラックス侵入防止物との反応物が残存している放熱装置。
14) Insulating plate and insulating laminate having metal layers provided on both sides of the insulating plate, a stress relaxation member brazed with one metal layer of the insulating laminate, and one metal of the insulating laminate in the stress relaxation member A heat dissipating device comprising a layer and a heat sink brazed on the surface opposite to the brazed surface,
One metal layer of the insulating laminate and the stress relaxation member are brazed by the method described in any one of 1) to 12) above, and the peripheral surface of the metal layer brazed to the stress relaxation member In addition, a heat dissipation device in which a reaction product between the flux and the flux intrusion prevention material remains.

15)フラックスとフラックス侵入防止物との反応物が、KMgF、MgF、KMgFおよびAlFの少なくとも1つからなる上記13)または14)記載の放熱装置。 15) The heat radiating device according to 13) or 14) above, wherein a reaction product of the flux and the flux intrusion prevention material is at least one of KMgF 3 , MgF 2 , K 2 MgF 4 and AlF 3 .

上記1)〜12)の絶縁積層材のろう付方法によれば、溶融したフラックスと反応して溶融フラックスの流れを止めるフラックス流動防止物を、金属部材にろう付される金属層の周囲に存在させておくので、フラックス流動防止物が溶融フラックスと反応することにより、溶融フラックスの流れを止められ、溶融フラックスが金属層の周面に沿って絶縁板と金属層の界面まで流れることが防止される。したがって、溶融フラックスが絶縁板と伝熱層との界面に悪影響を及ぼすことがなくなり、絶縁積層材の絶縁板と金属層との剥離が防止される。   According to the brazing method for insulating laminates of the above 1) to 12), a flux flow preventer that reacts with the melted flux to stop the flow of the melted flux is present around the metal layer to be brazed to the metal member. Therefore, the flux flow preventive substance reacts with the molten flux to stop the flow of the molten flux, and the molten flux is prevented from flowing to the interface between the insulating plate and the metal layer along the peripheral surface of the metal layer. The Therefore, the melt flux does not adversely affect the interface between the insulating plate and the heat transfer layer, and peeling of the insulating laminate from the insulating plate and the metal layer is prevented.

上記2)および3)の絶縁積層材のろう付方法によれば、絶縁積層材の金属層と別個にフラックス流動防止物を形成する必要がない。   According to the brazing method of the insulating laminate of the above 2) and 3), it is not necessary to form a flux flow preventer separately from the metal layer of the insulating laminate.

この発明の方法によりろう付された絶縁回路基板および応力緩和部材を備えたパワーモジュール用ベースにパワーデバイスが実装されることにより構成されたパワーモジュールを示す垂直断面図である。It is a vertical sectional view showing a power module configured by mounting a power device on a power module base including an insulated circuit board and a stress relaxation member brazed by the method of the present invention. 図1のパワーモジュールに用いられている応力緩和部材の斜視図である。It is a perspective view of the stress relaxation member used for the power module of FIG. 図1のパワーモジュール用ベースの絶縁回路基板と応力緩和部材とのろう付方法の他の実施形態を示す部分拡大垂直断面図である。FIG. 5 is a partially enlarged vertical sectional view showing another embodiment of the brazing method for the power module base insulating circuit board and the stress relaxation member of FIG. 1. 図1のパワーモジュール用ベースの絶縁回路基板と応力緩和部材とのろう付方法のさらに他の実施形態を示す部分拡大垂直断面図である。FIG. 10 is a partially enlarged vertical sectional view showing still another embodiment of the brazing method for the power module base insulating circuit board and the stress relaxation member of FIG. 1.

以下、この発明の実施形態を、図面を参照して説明する。この実施形態は、この発明によるろう付方法を、パワーモジュール用ベースにおける絶縁積層材としての絶縁回路基板と、応力緩和部材とのろう付に適用したものである。なお、以下の説明において、図1の上下を上下というものとする。   Embodiments of the present invention will be described below with reference to the drawings. In this embodiment, the brazing method according to the present invention is applied to brazing between an insulating circuit board as an insulating laminate in a power module base and a stress relaxation member. In the following description, the top and bottom in FIG.

図1はパワーモジュールの全体構成を示し、図2は応力緩和部材を示す。   FIG. 1 shows the overall configuration of the power module, and FIG. 2 shows a stress relaxation member.

図1において、パワーモジュール(1)は、パワーモジュール用ベース(2)と、パワーモジュール用ベース(2)に実装されたパワーデバイス(3)とよりなる。   In FIG. 1, the power module (1) includes a power module base (2) and a power device (3) mounted on the power module base (2).

パワーモジュール用ベース(2)は、方形のセラミックス製絶縁板(5)、絶縁板(5)の上面に形成された方形のアルミニウム製配線層(6)、および絶縁板(5)の下面に形成された方形のアルミニウム製伝熱層(7)(金属層)からなる絶縁回路基板(4)(絶縁積層材)と、絶縁回路基板(4)の伝熱層(7)がろう付されたアルミニウム製応力緩和部材(8)と、応力緩和部材(8)における絶縁回路基板(4)にろう付された側と反対側の面にろう付されたアルミニウム製ヒートシンク(9)とからなる。   The power module base (2) is formed on a rectangular ceramic insulating plate (5), a rectangular aluminum wiring layer (6) formed on the upper surface of the insulating plate (5), and a lower surface of the insulating plate (5). Insulated circuit board (4) (insulating laminate) consisting of a rectangular aluminum heat transfer layer (7) (metal layer) and aluminum with the heat transfer layer (7) of the insulated circuit board (4) brazed It comprises a stress-reducing member (8) and an aluminum heat sink (9) brazed to the opposite side of the stress-relieving member (8) from the side brazed to the insulated circuit board (4).

絶縁回路基板(4)の絶縁板(5)は、必要とされる絶縁特性、熱伝導率および機械的強度を満たしていれば、どのようなセラミックから形成されていてもよいが、たとえばAlN、Al、Siなどにより形成される。配線層(6)は、導電性に優れたアルミニウム、銅などの金属により形成されるが、電気伝導率が高く、変形能が高く、しかも半導体素子とのはんだ付け性に優れた純度の高い純アルミニウムにより形成されていることが好ましい。伝熱層(7)は、熱伝導性に優れたアルミニウム、ここではMg0.005〜0.2質量%を含み、残部Alおよび不可避不純物からなるAl−Mg合金により形成されている。配線層(6)および伝熱層(7)の大きさは同一であるとともに、絶縁板(5)よりも小さくなっており、絶縁板(5)の周縁寄りの部分は配線層(6)および伝熱層(7)の周縁から外側に張り出している。張り出し部を(5a)で示す。 The insulating plate (5) of the insulating circuit board (4) may be formed of any ceramic as long as it satisfies the required insulating properties, thermal conductivity and mechanical strength. For example, AlN, It is formed of Al 2 O 3 , Si 3 N 4 or the like. The wiring layer (6) is made of a metal such as aluminum or copper having excellent conductivity, but it has high electrical conductivity, high deformability, and excellent solderability with semiconductor elements. It is preferable that it is formed of aluminum. The heat transfer layer (7) is formed of an Al—Mg alloy containing aluminum having excellent thermal conductivity, here 0.005 to 0.2% by mass of Mg, and the balance being Al and inevitable impurities. The wiring layer (6) and the heat transfer layer (7) have the same size and are smaller than the insulating plate (5), and the portion near the periphery of the insulating plate (5) is the wiring layer (6) and Projecting outward from the periphery of the heat transfer layer (7). The overhang is indicated by (5a).

応力緩和部材(8)は、図2に示すように、両面にろう材層を有するアルミニウムブレージングシートからなり、複数の円形貫通穴(11)が千鳥配置状に形成されている。   As shown in FIG. 2, the stress relaxation member (8) is made of an aluminum brazing sheet having a brazing filler metal layer on both sides, and a plurality of circular through holes (11) are formed in a staggered arrangement.

ヒートシンク(9)は、複数の冷却流体通路(12)が並列状に設けられた扁平中空状であり、熱伝導性に優れるとともに、軽量であるアルミニウムにより形成されていることが好ましい。冷却流体としては、液体および気体のいずれを用いてもよい。   The heat sink (9) is preferably a flat hollow shape in which a plurality of cooling fluid passages (12) are provided in parallel, is excellent in thermal conductivity, and is preferably formed of lightweight aluminum. Either a liquid or a gas may be used as the cooling fluid.

パワーデバイス(3)は、絶縁回路基板(4)の配線層(6)上にはんだ付けされており、これによりパワーモジュール用ベース(2)に実装されている。パワーデバイス(3)から発せられる熱は、配線層(6)、絶縁板(5)、伝熱層(7)および応力緩和部材(8)を経てヒートシンク(9)に伝えられ、冷却流体通路(12)内を流れる冷却流体に放熱されるようになっている。   The power device (3) is soldered onto the wiring layer (6) of the insulating circuit board (4), and is thereby mounted on the power module base (2). Heat generated from the power device (3) is transferred to the heat sink (9) through the wiring layer (6), the insulating plate (5), the heat transfer layer (7) and the stress relaxation member (8), and the cooling fluid passage ( 12) Heat is dissipated to the cooling fluid flowing in the interior.

パワーモジュール用ベース(2)は、絶縁回路基板(4)と応力緩和部材(8)とヒートシンク(9)とを一括してろう付することによりつくられる。    The power module base (2) is produced by brazing together the insulating circuit board (4), the stress relaxation member (8), and the heat sink (9).

絶縁回路基板(4)と応力緩和部材(8)とヒートシンク(9)とのろう付方法は、次の通りである。   The method of brazing the insulating circuit board (4), the stress relaxation member (8), and the heat sink (9) is as follows.

まず、絶縁板(5)の一面に配線層(6)が形成されるとともに、他面に伝熱層(7)が形成された絶縁回路基板(4)と、応力緩和部材(8)と、ヒートシンク(9)とを用意する。ここで、Mg0.005〜0.2質量%を含み、残部Alおよび不可避不純物からなるAl−Mg合金により形成されている伝熱層(7)の周面(7a)の表層部が、溶融したフラックスと反応して溶融フラックスの流れを止めるフラックス流動防止物となっている。伝熱層(7)を形成するAl−Mg合金において、Mg含有量を0.005〜0.2質量%としたのは、Mg含有量が少ないとフラックスとの反応による溶融フラックスの流れを止める効果が十分ではなく、多すぎると応力緩和部材(8)とのろう付性が低下するとともに、熱伝導性が低下するおそれがあるからである。Mg含有量は0.01〜0.15質量%であることが好ましい。   First, an insulating circuit board (4) in which a wiring layer (6) is formed on one surface of an insulating plate (5) and a heat transfer layer (7) is formed on the other surface, a stress relaxation member (8), Prepare a heat sink (9). Here, the surface layer portion of the peripheral surface (7a) of the heat transfer layer (7) formed of an Al-Mg alloy including Mg 0.005 to 0.2 mass% and including the balance Al and inevitable impurities was melted. It is a flux flow prevention material that reacts with the flux to stop the flow of the molten flux. In the Al-Mg alloy forming the heat transfer layer (7), the Mg content is set to 0.005 to 0.2% by mass. When the Mg content is low, the flow of the molten flux due to the reaction with the flux is stopped. This is because the effect is not sufficient, and if too much, the brazing property with the stress relaxation member (8) is lowered and the thermal conductivity may be lowered. The Mg content is preferably 0.01 to 0.15% by mass.

ついで、ヒートシンク(9)上に応力緩和部材(8)を配置するとともに、応力緩和部材(8)にフッ化物系のフラックス、たとえばKAlFの懸濁液を塗布した後、応力緩和部材(8)上に絶縁回路基板(4)を配置する。 Next, the stress relaxation member (8) is disposed on the heat sink (9), and after applying a fluoride-based flux, for example, a suspension of KAlF 4 to the stress relaxation member (8), the stress relaxation member (8). An insulated circuit board (4) is placed on top.

その後、ヒートシンク(9)、応力緩和部材(8)および絶縁回路基板(4)を適当な手段で仮止めし、不活性ガス雰囲気、たとえば窒素ガス雰囲気とされた炉中において、適当な温度に適当な時間加熱し、ヒートシンク(9)と応力緩和部材(8)、および応力緩和部材(8)と絶縁回路基板(4)の伝熱層(7)をろう付する。こうして、パワーモジュール用ベース(2)が製造される。   Thereafter, the heat sink (9), the stress relaxation member (8), and the insulated circuit board (4) are temporarily fixed by an appropriate means, and are appropriately set to an appropriate temperature in a furnace having an inert gas atmosphere, for example, a nitrogen gas atmosphere. Heating is performed for a long time, and the heat sink (9) and the stress relaxation member (8), and the heat relaxation layer (7) of the stress relaxation member (8) and the insulated circuit board (4) are brazed. Thus, the power module base (2) is manufactured.

ヒートシンク(9)、応力緩和部材(8)および絶縁回路基板(4)を加熱した際に、溶融したフラックスが絶縁回路基板(4)の伝熱層(7)の周面(7a)に流れてくるが、伝熱層(7)の周面(7a)の表層部がフラックス侵入防止物として機能し、伝熱層(7)に含まれるMgとフラックスとが、たとえば
3Mg+2KAlF→2KMgF+MgF+2Al・・・(a)
という反応を起こす。したがって、溶融フラックスの流れが止められることになり、溶融フラックスが伝熱層(7)の周面(7a)に沿って伝熱層(7)と絶縁板(5)との界面まで流れることが防止される。その結果、溶融フラックスが絶縁板(5)と伝熱層(7)との界面に悪影響を及ぼすことがなくなって、絶縁回路基板(4)の絶縁板(5)と伝熱層(7)との剥離が防止される。
When the heat sink (9), the stress relaxation member (8), and the insulated circuit board (4) are heated, the melted flux flows to the peripheral surface (7a) of the heat transfer layer (7) of the insulated circuit board (4). However, the surface layer portion of the peripheral surface (7a) of the heat transfer layer (7) functions as a flux intrusion preventer, and Mg and flux contained in the heat transfer layer (7) are, for example, 3Mg + 2KAlF 4 → 2KMgF 3 + MgF 2 + 2Al ... (a)
The reaction is caused. Therefore, the flow of the molten flux is stopped, and the molten flux may flow along the peripheral surface (7a) of the heat transfer layer (7) to the interface between the heat transfer layer (7) and the insulating plate (5). Is prevented. As a result, the molten flux does not adversely affect the interface between the insulating plate (5) and the heat transfer layer (7), and the insulating plate (5) and the heat transfer layer (7) of the insulating circuit board (4) Is prevented from peeling.

そして、伝熱層(7)の周面(7a)には、フラックスとフラックス侵入防止物との反応物であるKMgFおよびMgFという反応生成物(図示略)が残存する。 Then, on the peripheral surface (7a) of the heat transfer layer (7), reaction products (not shown) such as KMgF 3 and MgF 2 which are reaction products of the flux and the flux intrusion preventive substance remain.

図3は、パワーモジュール用ベースの絶縁回路基板と応力緩和部材とのろう付方法の他の実施形態を示す。   FIG. 3 shows another embodiment of a method for brazing an insulating circuit board of a power module base and a stress relaxation member.

まず、絶縁板(5)、配線層(6)および導電性に優れたアルミニウム、銅などの金属により形成され伝熱層(15)を有する絶縁回路基板(4)を用意する。絶縁回路基板(4)の伝熱層(15)は、電気伝導率が高く、変形能が高く、しかも半導体素子とのはんだ付け性に優れた純度の高い純アルミニウムにより形成されていることが好ましい。   First, an insulating circuit board (4) formed of an insulating plate (5), a wiring layer (6), and a metal such as aluminum and copper having excellent conductivity and having a heat transfer layer (15) is prepared. The heat transfer layer (15) of the insulated circuit board (4) is preferably formed of pure aluminum having high electrical conductivity, high deformability, and excellent solderability with a semiconductor element. .

ついで、ヒートシンク(9)上に応力緩和部材(8)を配置するとともに、応力緩和部材(8)にフッ化物系のフラックス、たとえばKAlFの懸濁液を塗布した後、応力緩和部材(8)上に絶縁回路基板(4)を配置する。 Next, the stress relaxation member (8) is disposed on the heat sink (9), and after applying a fluoride-based flux, for example, a suspension of KAlF 4 to the stress relaxation member (8), the stress relaxation member (8). An insulated circuit board (4) is placed on top.

また、絶縁回路基板(4)の伝熱層(15)の周面(15a)に沿って、溶融したフラックスと反応して溶融フラックスの流れを止めるフラックス流動防止物からなり、かつ伝熱層(15)とは別個に形成された箔(16)を配置する。箔(16)を形成するフラックス流動防止物としては、Al−Mg合金、Mg合金またはMg化合物が用いられる。箔(16)を形成するフラックス流動防止物の量は、伝熱層(15)の周面(15a)の単位面積当たり0.1〜20g/mであることが好ましい。フラックス流動防止物の量が少ないとフラックスとの反応による溶融フラックスの流れを止める効果が十分ではなく、多すぎるとコストが高くなるおそれがあるからである。 Further, along the peripheral surface (15a) of the heat transfer layer (15) of the insulated circuit board (4), the heat transfer layer is made of a flux flow prevention material that reacts with the melted flux to stop the flow of the melted flux ( A foil (16) formed separately from 15) is arranged. As the flux flow prevention material forming the foil (16), an Al—Mg alloy, Mg alloy or Mg compound is used. The amount of the flux flow preventive that forms the foil (16) is preferably 0.1 to 20 g / m 2 per unit area of the peripheral surface (15a) of the heat transfer layer (15). This is because if the amount of the flux flow prevention material is small, the effect of stopping the flow of the molten flux due to the reaction with the flux is not sufficient, and if it is too large, the cost may increase.

Al−Mg合金としては、図1に示す絶縁回路基板(4)の伝熱層(7)と同様に、Mg0.005〜0.2質量%を含み、残部Alおよび不可避不純物からなるものが用いられる。Mg合金としては、Mgを90質量%以上含むものが用いられる。Mg合金中のMg含有量が90質量%未満であると、不純物量が過剰になり、加工性が低下したり、応力緩和部材(8)と伝熱層(15)とのろう付性が低下したりするおそれがある。Mg化合物としては、MgF、KMgFなどのFおよびKのうちの少なくとも1つを含むものが用いられる。 As the Al—Mg alloy, similar to the heat transfer layer (7) of the insulated circuit board (4) shown in FIG. 1, an alloy containing 0.005 to 0.2% by mass of Mg and the balance being Al and inevitable impurities is used. It is done. As the Mg alloy, an alloy containing 90% by mass or more of Mg is used. If the Mg content in the Mg alloy is less than 90% by mass, the amount of impurities becomes excessive, workability is reduced, and brazing between the stress relaxation member (8) and the heat transfer layer (15) is reduced. There is a risk of doing so. As the Mg compound, a compound containing at least one of F and K such as MgF 2 and KMgF 3 is used.

その後、ヒートシンク(9)、応力緩和部材(8)および絶縁回路基板(4)を適当な手段で仮止めし、不活性ガス雰囲気、たとえば窒素ガス雰囲気とされた炉中において、適当な温度に適当な時間加熱し、ヒートシンク(9)と応力緩和部材(8)、および応力緩和部材(8)と絶縁回路基板(4)の伝熱層(15)(7)をろう付する。こうして、パワーモジュール用ベース(2)が製造される。   Thereafter, the heat sink (9), the stress relaxation member (8), and the insulated circuit board (4) are temporarily fixed by an appropriate means, and are appropriately set to an appropriate temperature in a furnace having an inert gas atmosphere, for example, a nitrogen gas atmosphere. Heating is performed for a long time, and the heat sink (9) and the stress relaxation member (8), and the stress relaxation member (8) and the heat transfer layers (15) and (7) of the insulated circuit board (4) are brazed. Thus, the power module base (2) is manufactured.

ヒートシンク(9)、応力緩和部材(8)および絶縁回路基板(4)を加熱した際に、溶融したフラックスが絶縁回路基板(4)の伝熱層(15)の周面(15a)に流れてくるが、箔(16)を構成するフラックス侵入防止物とフラックスとが反応を起こす。したがって、溶融フラックスの流れが止められることになり、溶融フラックスが伝熱層(15)の周面(15a)に沿って伝熱層(15)と絶縁板(5)との界面まで流れることが防止される。その結果、溶融フラックスが絶縁板(5)と伝熱層(15)との界面に悪影響を及ぼすことがなくなって、絶縁回路基板(4)の絶縁板(5)と伝熱層(15)との剥離が防止される。   When the heat sink (9), the stress relaxation member (8), and the insulated circuit board (4) are heated, the melted flux flows to the peripheral surface (15a) of the heat transfer layer (15) of the insulated circuit board (4). However, the flux intrusion prevention material constituting the foil (16) reacts with the flux. Therefore, the flow of the molten flux is stopped, and the molten flux may flow along the peripheral surface (15a) of the heat transfer layer (15) to the interface between the heat transfer layer (15) and the insulating plate (5). Is prevented. As a result, the molten flux does not adversely affect the interface between the insulating plate (5) and the heat transfer layer (15), and the insulating plate (5) and the heat transfer layer (15) of the insulating circuit board (4) Is prevented from peeling.

箔(16)を形成するフラックス流動防止物としてAl−Mg合金を用いる場合のフラックスとの反応は、上記式(a)の通りである。   The reaction with the flux in the case of using an Al—Mg alloy as the flux flow preventive for forming the foil (16) is represented by the above formula (a).

箔(16)を形成するフラックス流動防止物としてMg化合物を用いる場合、フラックスとは、次の反応を起こす。   When an Mg compound is used as the flux flow preventive for forming the foil (16), the following reaction occurs with the flux.

MgF+KAlF→KMgF+AlF・・・(b)
KMgF+KAlF→KMgF+AlF・・・(c)
箔(16)を形成するフラックス流動防止物としてMg合金を用いる場合、フラックスとは、次の反応を起こす。
MgF 2 + KAlF 4 → KMgF 3 + AlF 3 (b)
KMgF 3 + KAlF 4 → K 2 MgF 4 + AlF 3 (c)
When an Mg alloy is used as the flux flow preventive for forming the foil (16), the following reaction occurs with the flux.

3Mg+2KAlF→2KMgF+MgF+2Al・・・(d)
したがって、溶融フラックスの流れが止められることになり、溶融フラックスが伝熱層(15)の周面(15a)に沿って伝熱層(15)と絶縁板(5)との界面まで流れることが防止される。その結果、溶融フラックスが絶縁板(5)と伝熱層(15)との界面に悪影響を及ぼすことがなくなって、絶縁回路基板(4)の絶縁板(5)と伝熱層(15)との剥離が防止される。
3Mg + 2KAlF 4 → 2KMgF 3 + MgF 2 + 2Al (d)
Therefore, the flow of the molten flux is stopped, and the molten flux may flow along the peripheral surface (15a) of the heat transfer layer (15) to the interface between the heat transfer layer (15) and the insulating plate (5). Is prevented. As a result, the molten flux does not adversely affect the interface between the insulating plate (5) and the heat transfer layer (15), and the insulating plate (5) and the heat transfer layer (15) of the insulating circuit board (4) Is prevented from peeling.

そして、伝熱層(15)の周面(15a)には、フラックスとフラックス侵入防止物との反応物である2KMgF、MgF、KMgF、AlF、KMgFなどの反応生成物(図示略)が残存する。 On the peripheral surface (15a) of the heat transfer layer (15), reaction products such as 2KMgF 3 , MgF 2 , KMgF 3 , AlF 3 , K 2 MgF 4 , which are reactants of the flux and the flux intrusion preventive, are formed. (Not shown) remains.

図4は、パワーモジュール用ベースの絶縁回路基板と応力緩和部材とのろう付方法のさらに他の実施形態を示す。   FIG. 4 shows still another embodiment of the brazing method between the power module base insulating circuit board and the stress relaxation member.

図4に示す方法においては、フラックス流動防止物からなる箔(16)の代わりに、絶縁回路基板(4)の伝熱層(15)の周面(15a)に沿って、溶融したフラックスと反応して溶融フラックスの流れを止めるフラックス流動防止物からなり、かつ伝熱層(15)とは別個に形成された線材(20)を配置する。その他は、図3に示す方法と同様である。線材(20)は、箔(16)と同様な材料からなり、箔(16)と同様にして溶融フラックスと反応を起こす。   In the method shown in FIG. 4, instead of the foil (16) made of flux flow prevention material, the molten flux reacts with the molten flux along the peripheral surface (15a) of the heat transfer layer (15) of the insulated circuit board (4). Then, a wire rod (20) made of a flux flow prevention material that stops the flow of the molten flux and formed separately from the heat transfer layer (15) is disposed. Others are the same as the method shown in FIG. The wire (20) is made of the same material as the foil (16), and reacts with the molten flux in the same manner as the foil (16).

さらに、図3および図4に示すパワーモジュール用ベースの絶縁回路基板と応力緩和部材とのろう付方法において、フラックス流動防止物からなる箔(16)または線材(20)の代わりに、伝熱層(15)の周面(15a)に、粒子状のフラックス流動防止物を付着させておいてもよい。フラックス流動防止物としては、MgF、KMgFなどのF、KおよびAlのうちの少なくとも1つを含むMg化合物が用いられる。伝熱層(15)の周面(15a)に付着させる粒子状フラックス流動防止物の量は、伝熱層(15)の周面(15a)の単位面積当たり0.1〜20g/mであることが好ましい。フラックス流動防止物の量が少ないとフラックスとの反応による溶融フラックスの流れを止める効果が十分ではなく、多すぎるとコストが高くなるおそれがあるからである。 Further, in the method for brazing the insulating circuit board of the power module base and the stress relaxation member shown in FIGS. 3 and 4, a heat transfer layer is used instead of the foil (16) or the wire (20) made of the flux flow prevention material. A particulate flux flow preventive may be adhered to the peripheral surface (15a) of (15). As the flux flow preventive, an Mg compound containing at least one of F, K and Al such as MgF 2 and KMgF 3 is used. The amount of the particulate flux flow preventive material adhered to the peripheral surface (15a) of the heat transfer layer (15) is 0.1 to 20 g / m 2 per unit area of the peripheral surface (15a) of the heat transfer layer (15). Preferably there is. This is because if the amount of the flux flow prevention material is small, the effect of stopping the flow of the molten flux due to the reaction with the flux is not sufficient, and if it is too large, the cost may increase.

粒子状フラックス流動防止物は、バインダと混合して塗布することにより伝熱層(15)の周面(15a)に付着させられる。ここで、粒子状フラックス流動防止物の平均粒径は3〜100μm程度であることが好ましい。また、バインダとしてはアクリル系のものが用いられる。粒子状フラックス流動防止物とバインダとの混合比は、粒子状フラックス流動防止物100重量部に対して、バインダ30〜300重量部とすることが好ましい。   The particulate flux flow preventive is adhered to the peripheral surface (15a) of the heat transfer layer (15) by being mixed with a binder and applied. Here, the average particle diameter of the particulate flux flow preventive is preferably about 3 to 100 μm. An acrylic material is used as the binder. The mixing ratio of the particulate flux flow preventive and the binder is preferably 30 to 300 parts by weight of the binder with respect to 100 parts by weight of the particulate flux flow preventive.

上記において、絶縁回路基板(4)の伝熱層(7)(15)は応力緩和部材(8)にろう付されているが、応力緩和部材(8)は必ずしも必要とせず、絶縁回路基板(4)の伝熱層(7)(15)が直接ヒートシンク(9)にろう付されていてもよい。   In the above, the heat transfer layer (7) (15) of the insulated circuit board (4) is brazed to the stress relaxation member (8), but the stress relaxation member (8) is not necessarily required, and the insulated circuit board ( The heat transfer layers (7) and (15) of 4) may be brazed directly to the heat sink (9).

次に、この発明の具体的実施例を比較例とともに述べる。   Next, specific examples of the present invention will be described together with comparative examples.

実施例1
厚みが0.6mmの窒化アルミニウム製絶縁板(5)と、純度99.99wt%の純アルミニウムからなり、かつ絶縁板(5)の一面に形成された厚みが0.6mmの配線層(6)と、純度99.99wt%の純アルミニウムからなり、かつ絶縁板(5)の他面に形成された厚みが0.6mmの伝熱層(15)とよりなる絶縁回路基板(4)を用意した。また、アルミニウム製ヒートシンク(9)と、両面にろう材層が設けられ、かつ複数の円形貫通穴(11)が形成されたアルミニウムブレージングシート製応力緩和部材(8)とを用意した。
Example 1
An aluminum nitride insulating plate (5) having a thickness of 0.6 mm and a wiring layer (6) made of pure aluminum having a purity of 99.99 wt% and formed on one surface of the insulating plate (5) having a thickness of 0.6 mm And an insulating circuit board (4) made of pure aluminum having a purity of 99.99 wt% and comprising a heat transfer layer (15) having a thickness of 0.6 mm formed on the other surface of the insulating plate (5). . In addition, an aluminum heat sink (9) and an aluminum brazing sheet stress relaxation member (8) provided with a brazing filler metal layer on both sides and formed with a plurality of circular through holes (11) were prepared.

ついで、ヒートシンク(9)上に応力緩和部材(8)を配置するとともに、応力緩和部材(8)にKAlFの懸濁液を、KAlFの付着量が5g/mとなるように塗布した。KAlFの塗布は、KAlFを水に懸濁させた懸濁液をスプレーで塗布することにより行った。 Then, along with arranging the stress relaxation member (8) on the heat sink (9), a suspension of KAlF 4 the stress relaxation member (8), the adhesion amount of KAlF 4 was coated to a 5 g / m 2 . KAlF 4 was applied by spraying a suspension of KAlF 4 in water.

ついで、応力緩和部材(8)上に絶縁回路基板(4)を配置し、絶縁回路基板(4)の伝熱層(15)の周囲に、Al3質量%、Zn1質量%を含み、残部Mgおよび不可避不純物からなるMg合金で形成され、かつ伝熱層(15)とは別個に形成された箔(16)を配置した。箔(16)を形成するフラックス流動防止物の量は、伝熱層(15)の周面(15a)の単位面積当たり10g/mとした。なお、上記Mg合金中のMg含有量は当然のことながら90質量%以上である。 Next, the insulating circuit board (4) is arranged on the stress relaxation member (8), and the surrounding of the heat transfer layer (15) of the insulating circuit board (4) contains Al 3 mass%, Zn 1 mass%, and the remaining Mg and A foil (16) formed of an Mg alloy made of inevitable impurities and formed separately from the heat transfer layer (15) was disposed. The amount of the flux flow prevention material forming the foil (16) was 10 g / m 2 per unit area of the peripheral surface (15a) of the heat transfer layer (15). In addition, naturally Mg content in the said Mg alloy is 90 mass% or more.

その後、ヒートシンク(9)、応力緩和部材(8)および絶縁回路基板(4)を適当な手段で仮止めし、窒素ガス雰囲気とされた炉中において、600℃に5分間加熱し、ヒートシンク(9)と応力緩和部材(8)、および応力緩和部材(8)と絶縁回路基板(4)の伝熱層(15)をろう付した。   Thereafter, the heat sink (9), the stress relieving member (8) and the insulating circuit board (4) are temporarily fixed by appropriate means, heated in a furnace in a nitrogen gas atmosphere at 600 ° C. for 5 minutes, and the heat sink (9 ) And the stress relaxation member (8), and the heat transfer layer (15) of the stress relaxation member (8) and the insulated circuit board (4).

ろう付後の伝熱層(15)の周面(15a)には、MgF、KMgF、KMgFが残存していた。 MgF 2 , KMgF 3 , and K 2 MgF 4 remained on the peripheral surface (15a) of the heat transfer layer (15) after brazing.

実施例2
フラックス流動防止物として、粒子状のMgFを使用し、粒子状MgFをアクリル系バインダと混合して塗布することによって、伝熱層(15)の周面(15a)に付着させた。フラックス流動防止物の量は、伝熱層(15)の周面(15a)の単位面積当たり10g/mとした。その他は、上記実施例1と同様な条件で、ヒートシンク(9)と応力緩和部材(8)、および応力緩和部材(8)と絶縁回路基板(4)の伝熱層(15)をろう付した。
Example 2
Particulate MgF 2 was used as a flux flow preventive, and the particulate MgF 2 was mixed with an acrylic binder and applied to adhere to the peripheral surface (15a) of the heat transfer layer (15). The amount of the flux flow preventive was 10 g / m 2 per unit area of the peripheral surface (15a) of the heat transfer layer (15). Other than that, the heat sink (9) and the stress relaxation member (8) and the heat transfer layer (15) of the stress relaxation member (8) and the insulated circuit board (4) were brazed under the same conditions as in Example 1 above. .

ろう付後の伝熱層(15)の周面(15a)には、KMgFおよびAlFが残存していた。 KMgF 3 and AlF 3 remained on the peripheral surface (15a) of the heat transfer layer (15) after brazing.

実施例3
フラックス侵入防止物として、粒子状のKMgFを使用し、粒子状KMgFをアクリル系バインダと混合して塗布することによって、伝熱層(15)の周面(15a)に付着させた。フラックス流動防止物の量は、伝熱層(15)の周面(15a)の単位面積当たり10g/mとした。その他は、上記実施例1と同様な条件で、ヒートシンク(9)と応力緩和部材(8)、および応力緩和部材(8)と絶縁回路基板(4)の伝熱層(15)をろう付した。
Example 3
Particulate KMgF 3 was used as a flux intrusion preventive, and the particulate KMgF 3 was mixed with an acrylic binder and applied to adhere to the peripheral surface (15a) of the heat transfer layer (15). The amount of the flux flow preventive was 10 g / m 2 per unit area of the peripheral surface (15a) of the heat transfer layer (15). Other than that, the heat sink (9) and the stress relaxation member (8) and the heat transfer layer (15) of the stress relaxation member (8) and the insulated circuit board (4) were brazed under the same conditions as in Example 1 above. .

ろう付後の伝熱層(15)の周面(15a)には、KMgFおよびAlFが残存していた。 K 2 MgF 4 and AlF 3 remained on the peripheral surface (15a) of the heat transfer layer (15) after brazing.

実施例4
フラックス侵入防止物として、Mg0.1質量%を含み、残部Alおよび不可避不純物よりなるAl−Mg合金からなり、かつ伝熱層(15)とは別個に形成された箔(16)を配置した。箔(16)を形成するフラックス流動防止物の量は、伝熱層(15)の周面(15a)の単位面積当たり10g/mとした。その他は、上記実施例1と同様な条件で、ヒートシンク(9)と応力緩和部材(8)、および応力緩和部材(8)と絶縁回路基板(4)の伝熱層(15)をろう付した。
Example 4
As a flux intrusion prevention material, a foil (16) containing 0.1% by mass of Mg, made of an Al—Mg alloy composed of the balance Al and inevitable impurities, and formed separately from the heat transfer layer (15) was disposed. The amount of the flux flow prevention material forming the foil (16) was 10 g / m 2 per unit area of the peripheral surface (15a) of the heat transfer layer (15). Other than that, the heat sink (9) and the stress relaxation member (8) and the heat transfer layer (15) of the stress relaxation member (8) and the insulated circuit board (4) were brazed under the same conditions as in Example 1 above. .

ろう付後の伝熱層(15)の周面(15a)には、KMgFおよびMgFが残存していた。 KMgF 3 and MgF 2 remained on the peripheral surface (15a) of the heat transfer layer (15) after brazing.

実施例5
絶縁回路基板(4)として、厚みが0.6mmの窒化アルミニウム製絶縁板(5)と、純度99.99wt%の純アルミニウムで形成された厚みが0.6mmの配線層(6)と、Mg0.01質量%を含み、残部Alおよび不可避不純物よりなるAl−Mg合金で形成された厚みが0.6mmの伝熱層(7)を有するものを用いた。
Example 5
As an insulating circuit board (4), an aluminum nitride insulating plate (5) having a thickness of 0.6 mm, a wiring layer (6) having a thickness of 0.6 mm made of pure aluminum having a purity of 99.99 wt%, and Mg0 A layer having a heat transfer layer (7) having a thickness of 0.6 mm and made of an Al—Mg alloy including the remaining Al and inevitable impurities was used.

そして、伝熱層(7)の周囲にフラックス流動防止物を配置しなかったことを除いては上記実施例1と同様な条件で、ヒートシンク(9)と応力緩和部材(8)、および応力緩和部材(8)と絶縁回路基板(4)の伝熱層(7)をろう付した。   The heat sink (9), the stress relaxation member (8), and the stress relaxation are the same as in Example 1 except that no flux flow prevention material is disposed around the heat transfer layer (7). The member (8) and the heat transfer layer (7) of the insulated circuit board (4) were brazed.

ろう付後の伝熱層(15)の周面(15a)には、KMgFおよびMgFが残存していた。 KMgF 3 and MgF 2 remained on the peripheral surface (15a) of the heat transfer layer (15) after brazing.

実施例6
絶縁回路基板(4)の厚みが0.6mmである伝熱層(7)を、Mg0.002質量%を含み、残部Alおよび不可避不純物よりなるAl−Mg合金で形成しておいた。
Example 6
The heat transfer layer (7) having an insulating circuit board (4) thickness of 0.6 mm was made of an Al—Mg alloy containing 0.002% by mass of Mg and the balance being Al and inevitable impurities.

その他は、上記実施例5と同様な条件で、ヒートシンク(9)と応力緩和部材(8)、および応力緩和部材(8)と絶縁回路基板(4)の伝熱層(15)をろう付した。   Otherwise, the heat sink (9) and the stress relaxation member (8) and the heat transfer layer (15) of the stress relaxation member (8) and the insulated circuit board (4) were brazed under the same conditions as in Example 5 above. .

ろう付後の伝熱層(15)の周面(15a)には、KMgFおよびMgFが残存していた。 KMgF 3 and MgF 2 remained on the peripheral surface (15a) of the heat transfer layer (15) after brazing.

比較例
絶縁回路基板の伝熱層の周囲にフラックス流動防止物を配置しなかったことを除いては、上記実施例1と同様な条件で、ヒートシンク(9)と応力緩和部材(8)、および応力緩和部材(8)と絶縁回路基板(4)の伝熱層(15)をろう付した。なお、当然のことながら、伝熱層(15)はフラックス流動防止物として機能するAl−Mg合金で形成されていない。
Comparative Example A heat sink (9), a stress relieving member (8), and a heat sink (9) under the same conditions as in Example 1 above, except that no flux flow prevention material was disposed around the heat transfer layer of the insulated circuit board. The stress relaxation member (8) and the heat transfer layer (15) of the insulated circuit board (4) were brazed. As a matter of course, the heat transfer layer (15) is not formed of an Al—Mg alloy functioning as a flux flow preventer.

評価試験
応力緩和部材(8))にろう付された絶縁回路基板(4)を観察し、伝熱層(7)(15)の絶縁板(5)からの剥離の有無および剥離が生じた場合の剥離量を調べた。剥離量は、伝熱層(7)(15)の周縁部からの剥離の距離を測定した。その結果を表1に示す。なお、実施例1〜6においては、表1に、用いたフラックス流動防止物の種類も記入した。

Figure 2011240374
Evaluation test When the insulated circuit board (4) brazed to the stress relaxation member (8)) is observed, and the presence or absence of peeling from the insulating plate (5) of the heat transfer layer (7) (15) occurs. The amount of peeling was examined. The amount of peeling was measured by the distance of peeling from the peripheral edge of the heat transfer layer (7) (15). The results are shown in Table 1. In Examples 1 to 6, in Table 1, the type of the flux flow preventive used was also entered.
Figure 2011240374

表1の評価の欄において、○は、伝熱層(7)(15)の絶縁板(5)からの剥離が認められなかったものを示し、△は、剥離量(伝熱層(7)(15)の周縁部からの剥離距離)が100μm未満のもとを示し、×は、剥離量(伝熱層(7)(15)の周縁部からの剥離距離)が100μmのものを示す。   In the evaluation column of Table 1, ○ indicates that the heat transfer layer (7) (15) was not peeled from the insulating plate (5), and Δ indicates the amount of peel (heat transfer layer (7) (15) indicates that the peel distance from the peripheral portion is less than 100 μm, and x indicates that the peel amount (the peel distance from the peripheral portion of the heat transfer layer (7) (15)) is 100 μm.

この発明による積層絶縁材のろう付方法は、パワーデバイスが実装されてパワーモジュールとされるパワモジュール用ベースの製造に適用される。   The method for brazing a laminated insulating material according to the present invention is applied to manufacture of a power module base in which a power device is mounted to form a power module.

(4):絶縁回路基板(絶縁積層材)
(5):絶縁板
(6):配線層(金属層)
(7)(15):伝熱層(金属層)
(7a)(15a):周面
(8):応力緩和部材(金属部材)
(16):フラックス流動防止物からなる箔
(20):フラックス流動防止物からなる線材
(4): Insulated circuit board (insulating laminated material)
(5): Insulating plate
(6): Wiring layer (metal layer)
(7) (15): Heat transfer layer (metal layer)
(7a) (15a): Circumferential surface
(8): Stress relaxation member (metal member)
(16): Foil made of flux flow prevention material
(20): Wire made of flux flow prevention material

Claims (15)

絶縁板および絶縁板の少なくとも片面に設けられた金属層よりなる絶縁積層材の金属層を金属部材にろう付する方法であって、
金属部材にろう付される絶縁積層材の金属層の周囲に、溶融したフラックスと反応して溶融フラックスの流れを止めるフラックス流動防止物を存在させておき、フラックスを使用して炉中でろう付することを特徴とする絶縁積層材のろう付方法。
A method for brazing a metal layer of an insulating laminate comprising an insulating plate and a metal layer provided on at least one side of the insulating plate to a metal member,
Around the metal layer of the insulation laminate to be brazed to the metal member, there is a flux flow preventer that stops the flow of the molten flux by reacting with the molten flux, and brazing in the furnace using the flux. A method for brazing an insulating laminated material.
絶縁積層材の金属層をAl−Mg合金で形成しておき、当該金属層の周面の表層部をフラックス侵入防止物として機能させる請求項1記載の絶縁積層材のろう付方法。 The method for brazing an insulating laminated material according to claim 1, wherein the metal layer of the insulating laminated material is formed of an Al-Mg alloy, and the surface layer portion of the peripheral surface of the metal layer is made to function as a flux intrusion preventive. 絶縁積層材の金属層を形成するAl−Mg合金が、Mg0.005〜0.2質量%を含み、残部Alおよび不可避不純物からなる請求項2記載の絶縁積層材のろう付方法。 The method for brazing an insulating laminated material according to claim 2, wherein the Al-Mg alloy forming the metal layer of the insulating laminated material contains 0.005 to 0.2 mass% of Mg, and the balance is Al and inevitable impurities. 絶縁積層材の金属層の周面に沿って、金属層とは別個に形成されたAl−Mg合金からなるフラックス流動防止物、金属層とは別個に形成されたMg合金からなるフラックス流動防止物、および金属層とは別個に形成されたMg化合物からなるフラックス流動防止物のうちの少なくとも1つを存在させておく請求項1記載の絶縁積層材の製造方法。 A flux flow prevention material made of an Al-Mg alloy formed separately from the metal layer along the peripheral surface of the metal layer of the insulating laminate, and a flux flow prevention material made of an Mg alloy formed separately from the metal layer And a method for producing an insulating laminate according to claim 1, wherein at least one of flux preventives made of Mg compound formed separately from the metal layer is present. フラックス流動防止物が箔または線材であり、当該箔または線材を金属層の周囲に配置しておく請求項4記載の絶縁積層材の製造方法。 The method for producing an insulating laminate according to claim 4, wherein the flux flow prevention material is a foil or a wire, and the foil or wire is disposed around the metal layer. フラックス流動防止物が粒子状であり、当該粒子状フラックス流動防止物とバインダとの混合物を金属層の周面に塗布しておく請求項4記載の絶縁積層材の製造方法。 The method for producing an insulating laminate according to claim 4, wherein the flux flow preventive is particulate, and a mixture of the particulate flux flow preventive and the binder is applied to the peripheral surface of the metal layer. Al−Mg合金が、Mg0.005〜0.2質量%を含み、残部Alおよび不可避不純物からなる請求項4〜6のうちのいずれかに記載の絶縁積層材のろう付方法。 The method for brazing an insulating laminated material according to any one of claims 4 to 6, wherein the Al-Mg alloy contains 0.005 to 0.2 mass% of Mg, and the balance is Al and inevitable impurities. Mg合金が、Mgを90質量%以上含む請求項4〜6のうちのいずれかに記載の絶縁積層材のろう付方法。 The insulating laminated material brazing method according to any one of claims 4 to 6, wherein the Mg alloy contains 90 mass% or more of Mg. Mg化合物が、FおよびKのうちの少なくとも1つを含む請求項4〜6のうちのいずれかに記載の絶縁積層材のろう付方法。 The method for brazing an insulating laminated material according to any one of claims 4 to 6, wherein the Mg compound contains at least one of F and K. 絶縁積層材の絶縁板の周縁部が、金属部材にろう付される金属層よりも外方に張り出しており、絶縁板における当該外方張り出し部における金属部材側を向いた面に沿ってフラックス流動防止物を配置しておく請求項1〜9のうちのいずれかに記載の絶縁積層材のろう付方法。 The peripheral edge portion of the insulating plate of the insulating laminate protrudes outward from the metal layer brazed to the metal member, and the flux flows along the surface of the insulating plate facing the metal member side in the outward protruding portion. The method for brazing an insulating laminated material according to any one of claims 1 to 9, wherein a preventive is arranged. 絶縁積層材の両面に金属層が設けられており、金属部材にろう付される金属層とは反対側の金属層の周囲に、溶融したフラックスと反応して溶融フラックスの流れを止めるフラックス流動防止物を存在させておく請求項1〜10のうちのいずれかに記載の絶縁積層材のろう付方法。 Flux flow prevention that has a metal layer on both sides of the insulation laminate and stops the flow of the molten flux around the metal layer opposite to the metal layer to be brazed to the metal member by reacting with the molten flux The method for brazing an insulating laminated material according to claim 1, wherein an object is allowed to exist. フラックスとしてKAlFを用いる請求項1〜11のうちのいずれかに記載の絶縁積層材のろう付方法。 The method for brazing an insulating laminated material according to claim 1, wherein KAlF 4 is used as a flux. 絶縁板および絶縁板の両面に金属層が設けられた絶縁積層材と、絶縁積層材の一方の金属層がろう付されたヒートシンクとを備えた放熱装置であって、
絶縁積層材の一方の金属層とヒートシンクとが、請求項1〜12のうちのいずれかに記載の方法によりろう付されており、ヒートシンクにろう付された金属層の周面に、フラックスとフラックス侵入防止物との反応物が残存している放熱装置。
A heat dissipation device comprising an insulating laminate and an insulating laminate having metal layers provided on both sides of the insulating plate, and a heat sink in which one metal layer of the insulating laminate is brazed,
One metal layer of the insulating laminate and the heat sink are brazed by the method according to any one of claims 1 to 12, and a flux and a flux are formed on a peripheral surface of the metal layer brazed to the heat sink. A heat dissipation device in which reactants with intrusion prevention substances remain.
絶縁板および絶縁板の両面に金属層が設けられた絶縁積層材と、絶縁積層材の一方の金属層がろう付された応力緩和部材と、応力緩和部材における絶縁積層材の一方の金属層とろう付された面とは反対側の面がろう付されたヒートシンクとを備えた放熱装置であって、
絶縁積層材の一方の金属層と応力緩和部材とが、請求項1〜12のうちのいずれかに記載の方法によりろう付されており、応力緩和部材にろう付された金属層の周面に、フラックスとフラックス侵入防止物との反応物が残存している放熱装置。
Insulating plate and insulating laminated material provided with metal layers on both surfaces of insulating plate, stress relaxation member in which one metal layer of insulating laminated material is brazed, and one metal layer of insulating laminated material in stress relaxing member A heat dissipating device comprising a heat sink brazed on the surface opposite to the brazed surface,
The one metal layer of the insulating laminate and the stress relaxation member are brazed by the method according to any one of claims 1 to 12, and the peripheral surface of the metal layer brazed to the stress relaxation member The heat dissipation device in which the reaction product of the flux and the flux intrusion prevention material remains.
フラックスとフラックス侵入防止物との反応物が、KMgF、MgF、KMgFおよびAlFの少なくとも1つからなる請求項13または14記載の放熱装置。 The heat radiating device according to claim 13 or 14, wherein the reaction product of the flux and the flux intrusion prevention material comprises at least one of KMgF 3 , MgF 2 , K 2 MgF 4, and AlF 3 .
JP2010115022A 2010-05-19 2010-05-19 Brazing method for insulating laminates Active JP5613452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010115022A JP5613452B2 (en) 2010-05-19 2010-05-19 Brazing method for insulating laminates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010115022A JP5613452B2 (en) 2010-05-19 2010-05-19 Brazing method for insulating laminates

Publications (2)

Publication Number Publication Date
JP2011240374A true JP2011240374A (en) 2011-12-01
JP5613452B2 JP5613452B2 (en) 2014-10-22

Family

ID=45407573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010115022A Active JP5613452B2 (en) 2010-05-19 2010-05-19 Brazing method for insulating laminates

Country Status (1)

Country Link
JP (1) JP5613452B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094839A (en) * 2010-09-29 2012-05-17 Mitsubishi Materials Corp Substrate for power module, and method for manufacturing substrate for power module with heat sink
JP2012146813A (en) * 2011-01-12 2012-08-02 Showa Denko Kk Method of manufacturing substrate for mounting electronic element
JP2013121611A (en) * 2011-12-12 2013-06-20 Mitsubishi Materials Corp Paste for forming flux component intrusion-preventing layer, and method for joining junction body
JP2013122996A (en) * 2011-12-12 2013-06-20 Mitsubishi Materials Corp Substrate for power module, substrate for power module with heat sink, and power module
WO2013089099A1 (en) * 2011-12-12 2013-06-20 三菱マテリアル株式会社 Power module substrate, substrate for power module with heat sink, power module, paste for forming flux component penetration prevention layer, and bonding method for article to be bonded
JP2013157464A (en) * 2012-01-30 2013-08-15 Mitsubishi Materials Corp Manufacturing method of substrate for power module with heat sink
JP2013157524A (en) * 2012-01-31 2013-08-15 Mitsubishi Materials Corp Manufacturing method of substrate for power module with heat sink and substrate for power module
JP2013157361A (en) * 2012-01-26 2013-08-15 Mitsubishi Materials Corp Manufacturing method of substrate for power module with heat sink
JP2013191641A (en) * 2012-03-12 2013-09-26 Mitsubishi Materials Corp Method for manufacturing substrate for power module with heat sink
CN104582894A (en) * 2012-09-04 2015-04-29 株式会社神户制钢所 Aluminum composite material, heat exchanger, and flux

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6444267A (en) * 1987-08-12 1989-02-16 Furukawa Aluminium Production of lamination heat exchanger
JPH091384A (en) * 1995-06-15 1997-01-07 Nippon Genma:Kk Method for brazing magnesium-containing aluminum alloy
JP2003181629A (en) * 2001-12-18 2003-07-02 Denso Corp Method for manufacturing aluminum heat exchanger
JP2006294699A (en) * 2005-04-06 2006-10-26 Toyota Industries Corp Heat sink
JP2009105166A (en) * 2007-10-22 2009-05-14 Toyota Motor Corp Cooling device for semiconductor module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6444267A (en) * 1987-08-12 1989-02-16 Furukawa Aluminium Production of lamination heat exchanger
JPH091384A (en) * 1995-06-15 1997-01-07 Nippon Genma:Kk Method for brazing magnesium-containing aluminum alloy
JP2003181629A (en) * 2001-12-18 2003-07-02 Denso Corp Method for manufacturing aluminum heat exchanger
JP2006294699A (en) * 2005-04-06 2006-10-26 Toyota Industries Corp Heat sink
JP2009105166A (en) * 2007-10-22 2009-05-14 Toyota Motor Corp Cooling device for semiconductor module

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094839A (en) * 2010-09-29 2012-05-17 Mitsubishi Materials Corp Substrate for power module, and method for manufacturing substrate for power module with heat sink
JP2012146813A (en) * 2011-01-12 2012-08-02 Showa Denko Kk Method of manufacturing substrate for mounting electronic element
CN103988297A (en) * 2011-12-12 2014-08-13 三菱综合材料株式会社 Power module substrate, substrate for power module with heat sink, power module, paste for forming flux component penetration prevention layer, and bonding method for article to be bonded
JP2013122996A (en) * 2011-12-12 2013-06-20 Mitsubishi Materials Corp Substrate for power module, substrate for power module with heat sink, and power module
WO2013089099A1 (en) * 2011-12-12 2013-06-20 三菱マテリアル株式会社 Power module substrate, substrate for power module with heat sink, power module, paste for forming flux component penetration prevention layer, and bonding method for article to be bonded
JP2013121611A (en) * 2011-12-12 2013-06-20 Mitsubishi Materials Corp Paste for forming flux component intrusion-preventing layer, and method for joining junction body
JP2013157361A (en) * 2012-01-26 2013-08-15 Mitsubishi Materials Corp Manufacturing method of substrate for power module with heat sink
JP2013157464A (en) * 2012-01-30 2013-08-15 Mitsubishi Materials Corp Manufacturing method of substrate for power module with heat sink
JP2013157524A (en) * 2012-01-31 2013-08-15 Mitsubishi Materials Corp Manufacturing method of substrate for power module with heat sink and substrate for power module
JP2013191641A (en) * 2012-03-12 2013-09-26 Mitsubishi Materials Corp Method for manufacturing substrate for power module with heat sink
CN104582894A (en) * 2012-09-04 2015-04-29 株式会社神户制钢所 Aluminum composite material, heat exchanger, and flux
US20150211816A1 (en) * 2012-09-04 2015-07-30 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum composite material, heat exchanger, and flux
US20180347922A1 (en) * 2012-09-04 2018-12-06 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum composite material, heat exchanger, and flux

Also Published As

Publication number Publication date
JP5613452B2 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
JP5613452B2 (en) Brazing method for insulating laminates
KR102027615B1 (en) Power module substrate with heat sink, power module substrate with cooler, and power module
US9807865B2 (en) Substrate for power modules, substrate with heat sink for power modules, and power module
US9480144B2 (en) Power module substrate, power module substrate with heat sink, and power module
CN103733329B (en) Power module substrate, carry the manufacture method of the power module substrate of radiator, power model and power module substrate
KR101419627B1 (en) Substrate for power module, and power module
WO2013147144A1 (en) Substrate for power module, substrate for power module with heat sink, power module, and method for manufacturing substrate for power module
KR20160047474A (en) Assembly and power-module substrate
JP2014112732A (en) Substrate for power module with heat sink and power module
TWI499100B (en) Light emitting diode carrier assemblies and method of fabricating the same
US20200111722A1 (en) Method for producing ceramic-aluminum bonded body, method for producing power module substrate, ceramic-aluminum bonded body, and power module substrate
JP2008235672A (en) Semiconductor device and its manufacturing method
JP2011228563A (en) Method of brazing insulating laminate material
JP2012129548A (en) Substrate for power module and method for manufacturing the same
JP2013041913A (en) Power module substrate, power module substrate with heat sink, power module and power module substrate manufacturing method
TWI708754B (en) Bonded body, power module substrate, power mosule, method of producing bonded body and method of producing power module substrate
JP5724273B2 (en) Power module substrate, power module substrate with heat sink, power module, method for manufacturing power module substrate, and method for manufacturing power module substrate with heat sink
JP2009158715A (en) Heat dissipator and power module
JP2012164708A (en) Manufacturing method for substrate for power module, and substrate for power module
JP5707278B2 (en) Insulated circuit board manufacturing method
JP5560441B2 (en) Electric circuit board manufacturing method and electric circuit applied product
CN102646604B (en) Carry the power module substrate of radiator and manufacture method thereof and power model
JP2013214562A (en) Power module substrate with heat sink, power module substrate with cooler, and power module
JP2013038123A (en) Method for manufacturing insulation circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140908

R150 Certificate of patent or registration of utility model

Ref document number: 5613452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350