JP2011237276A - Method for retreating flaw detection head and flaw detection apparatus - Google Patents

Method for retreating flaw detection head and flaw detection apparatus Download PDF

Info

Publication number
JP2011237276A
JP2011237276A JP2010108847A JP2010108847A JP2011237276A JP 2011237276 A JP2011237276 A JP 2011237276A JP 2010108847 A JP2010108847 A JP 2010108847A JP 2010108847 A JP2010108847 A JP 2010108847A JP 2011237276 A JP2011237276 A JP 2011237276A
Authority
JP
Japan
Prior art keywords
defect inspection
sensor
inspection head
convex
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010108847A
Other languages
Japanese (ja)
Other versions
JP5552890B2 (en
Inventor
Takahiro Koshihara
敬弘 腰原
Hiroharu Kato
宏晴 加藤
Akio Nagamune
章生 長棟
Keiji Ekusa
圭二 江草
Tomohiko Ito
友彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010108847A priority Critical patent/JP5552890B2/en
Publication of JP2011237276A publication Critical patent/JP2011237276A/en
Application granted granted Critical
Publication of JP5552890B2 publication Critical patent/JP5552890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for retreating a flaw detection head and a flaw detection apparatus with which a surface flaw can be detected even if shape defect exits in a steel plate which is an object to be detected without breakage of the flaw detection head through contact of the shape defect portions with the surface flaw detection apparatus.SOLUTION: A flaw detection apparatus includes a flaw detection head arranged at a portion where a steel plate is wound around a roll and opposite to the steel plate, a large protrusion sensor for detecting protrusions of a size of 5 mm or more, and a small protrusion sensor for detecting protrusions of a size of less than 5 mm to 1 mm or more, a calculation processing apparatus for performing output of retreating signals based on signals from the large protrusion sensor and the small protrusion sensor and a control device for sending retreat instruction to each actuator which moves the entire flaw detection head or the sensor portions of the flaw detection head based on the retreat signals.

Description

本発明は、磁性金属の微小凹凸表面欠陥検出を行う表面欠陥の検出方法および装置に関し、特に、金属表面に非常に大きな凸欠陥や形状不良が発生した場合における、欠陥探傷ヘッドの退避方法および欠陥探傷装置に関するものである。   The present invention relates to a surface defect detection method and apparatus for detecting minute surface irregularities of a magnetic metal, and in particular, a method for retracting a defect inspection head and a defect when a very large convex defect or shape defect occurs on the metal surface. The present invention relates to a flaw detection apparatus.

磁性金属の微小凹凸表面欠陥検出を行う技術としては、これまでに例えば特許文献1に開示された技術がある。   As a technique for detecting a minute uneven surface defect of a magnetic metal, there is a technique disclosed in Patent Document 1 so far.

この技術は、連続焼鈍ラインの調質圧延機後に漏洩磁束探傷装置を小さなリフトオフ(鋼板と装置の距離、例えば1mm)で設置し、漏洩磁束探傷装置(ヘッド)内の磁化器から磁束を鋼板に与え、鋼板に存在する微小凹凸表面欠陥によって乱される磁束の変化を検出するものである。   This technology installs a leakage flux testing device after a temper rolling mill in a continuous annealing line with a small lift-off (distance between the steel plate and the device, for example, 1 mm), and magnetic flux from the magnetizer in the leakage flux testing device (head) to the steel plate. The magnetic flux change disturbed by the minute uneven surface defects present on the steel sheet is detected.

特開2007−256274号公報JP 2007-256274 A

しかしながら、上記した特許文献1に開示された技術では、高速に動く鋼板に対して小さなリフトオフで漏洩磁束探傷装置を設置するため、探傷対象の鋼板に絞りが生じたり、またはヘゲと呼ばれるような非常に大きな凸欠陥が発生したり、さらに鋼板の形状が悪化して耳波、中伸びといった形状不良が発生した場合には、これら鋼板に発生した凸部が漏洩磁束探傷装置と接触して装置を壊してしまうという問題があった。   However, in the technique disclosed in Patent Document 1 described above, a leakage magnetic flux flaw detector is installed with a small lift-off for a steel plate that moves at high speed, so that the steel plate to be flawed is squeezed or referred to as “hege”. When a very large convex defect occurs, or when the shape of the steel plate deteriorates and shape defects such as ear waves and middle elongation occur, the convex portion generated on these steel plates comes into contact with the leakage magnetic flux flaw detector. There was a problem of breaking.

本発明は、このような事情に鑑みてなされたものであり、探傷対象の鋼板に形状不良があっても、この形状不良部分と表面欠陥探傷装置とが接触して欠陥探傷ヘッドを破損することがなく表面欠陥の検出を行うことができる、欠陥探傷ヘッドの退避方法および欠陥探傷装置を提供することを課題とする。   The present invention has been made in view of such circumstances, and even if a steel plate to be flawed has a shape defect, the defective shape portion and the surface defect flaw detector come into contact with each other to damage the flaw detection head. It is an object of the present invention to provide a defect inspection head retracting method and a defect inspection apparatus capable of detecting surface defects without any defects.

本発明の第一の発明は、鋼板表面の凸部と欠陥探傷ヘッドとの接触を避ける、欠陥探傷ヘッドの退避方法であって、欠陥探傷ヘッドを鋼板がロールに巻きついた箇所で鋼板に対向させて設置するとともに、該欠陥探傷ヘッドの設置箇所の上流、かつ鋼板がロールに巻きついた箇所に鋼板表面の凸部を検知する凸部検知センサを設置し、該凸部検知センサが所定値以上の凸部を検知した場合に、前記欠陥探傷ヘッドを退避させることを特徴とする欠陥探傷ヘッドの退避方法である。   The first invention of the present invention is a method for retracting a defect inspection head that avoids contact between the convex portion on the surface of the steel sheet and the defect inspection head. The defect inspection head is opposed to the steel sheet at a place where the steel sheet is wound around a roll. And installing a convex detection sensor for detecting a convex portion on the surface of the steel sheet upstream of the installation location of the defect inspection head and at a location where the steel sheet is wound around the roll, and the convex detection sensor is a predetermined value. The defect flaw detection head retracting method is characterized in that the defect flaw detection head is retracted when the above convex portions are detected.

また、本発明の第二の発明は、前記第一の発明の欠陥探傷ヘッドの退避方法において、前記欠陥探傷ヘッドは、漏洩磁束探傷ヘッドであり、前記凸部検知センサは、5mm以上の凸部を検知する大凸部センサおよび5mm未満1mm以上の凸部を検知する小凸部センサにより構成されることを特徴とする欠陥探傷ヘッドの退避方法である。   Further, the second invention of the present invention is the method of retracting a defect inspection head according to the first invention, wherein the defect inspection head is a leakage magnetic flux inspection head, and the protrusion detection sensor is a protrusion of 5 mm or more. A defect flaw detection head retracting method comprising: a large convex sensor for detecting a protrusion and a small convex sensor for detecting a convex part of less than 5 mm and 1 mm or more.

また、本発明の第三の発明は、前記第二の発明の欠陥探傷ヘッドの退避方法において、前記大凸部センサを連続焼鈍ラインの焼鈍炉出側に設置し、5mm以上の凸部を検知した場合には、前記欠陥探傷ヘッド全体を退避させ、前記焼鈍炉の下流にある調質圧延機の出側に、前記小凸部センサを設置し、5mm未満1mm以上の凸部を検知した場合には、前記欠陥探傷ヘッドのセンサ部のみを退避させることを特徴とする欠陥探傷ヘッドの退避方法である。   According to a third aspect of the present invention, in the method for retracting a defect inspection head according to the second aspect, the large convex portion sensor is installed on the exit side of the continuous annealing line to detect a convex portion of 5 mm or more. In the case where the entire defect inspection head is retracted, the small convex sensor is installed on the exit side of the temper rolling mill downstream of the annealing furnace, and a convex part of less than 5 mm and 1 mm or more is detected In this method, the defect inspection head is retracted only by retracting only the sensor portion of the defect inspection head.

また、本発明の第四の発明は、前記第二または第三の発明の欠陥探傷ヘッドの退避方法において、前記小凸部センサは、鋼板からのスリット反射光を撮影するリニアアレイカメラであり、該リニアアレイカメラの視野からスリット光線が外れた場合に凸部が存在すると判定することを特徴とする欠陥探傷ヘッドの退避方法である。   Further, a fourth invention of the present invention is the linear array camera for photographing the slit reflected light from the steel plate, in the method for retracting the defect inspection head of the second or third invention, A method for retracting a defect inspection head characterized in that it is determined that a convex portion is present when a slit light beam deviates from the field of view of the linear array camera.

また、本発明の第五の発明は、鋼板表面の凸部と欠陥探傷ヘッドとの接触を避ける、退避機構を備えた欠陥探傷装置であって、鋼板がロールに巻きついた箇所で鋼板に対向させて設置する欠陥探傷ヘッドと、5mm以上の凸部を検知する大凸部センサ、および5mm未満1mm以上の凸部を検知する小凸部センサと、前記大凸部センサおよび小凸部センサからの信号に基き退避信号を出力する演算処理装置と、退避信号に基き前記欠陥探傷ヘッド全体または前記欠陥探傷ヘッド中のセンサ部を動かす各アクチュエータに退避指令を送る制御装置とを、備えることを特徴とする欠陥探傷装置である。   The fifth invention of the present invention is a defect inspection device having a retraction mechanism that avoids contact between the convex portion of the steel sheet surface and the defect inspection head, and is opposed to the steel sheet at a place where the steel sheet is wound around the roll. A defect inspection head to be installed, a large convex sensor for detecting a convex part of 5 mm or more, a small convex sensor for detecting a convex part of less than 5 mm and 1 mm, and the large convex sensor and the small convex sensor. An arithmetic processing unit that outputs a retraction signal based on the signal and a control unit that sends a retraction command to each actuator that moves the entire defect inspection head or the sensor unit in the defect inspection head based on the retraction signal. This is a defect inspection device.

さらに、本発明の第六の発明は、前記第五の発明に記載の欠陥探傷装置において、前記欠陥探傷ヘッドを連続焼鈍ライン中の焼鈍炉の下流にある調質圧延機の出側に設置し、前記大凸部センサを前記焼鈍炉出側に設置し、5mm以上の凸部を検知した場合には、前記欠陥探傷ヘッド全体を退避させ、前記小凸部センサを前記調質圧延機の出側でかつ前記欠陥探傷ヘッドの設置個所より上流に設置し、5mm未満1mm以上の凸部を検知した場合には、前記欠陥探傷ヘッドのセンサ部のみを退避させることを特徴とする欠陥探傷装置である。   Furthermore, a sixth invention of the present invention is the defect inspection apparatus according to the fifth invention, wherein the defect inspection head is installed on the exit side of the temper rolling mill downstream of the annealing furnace in the continuous annealing line. When the large convexity sensor is installed on the exit side of the annealing furnace and a convexity of 5 mm or more is detected, the entire defect inspection head is retracted and the small convexity sensor is moved out of the temper rolling mill. The defect inspection device is characterized in that, when a convex portion of less than 5 mm and 1 mm or more is detected on the side and upstream from the installation location of the defect inspection head, only the sensor portion of the defect inspection head is retracted. is there.

本発明によれば、鋼板表面の凸部を検出し、欠陥探傷ヘッドを退避するようにしたので、探傷対象の鋼板に形状不良があっても、それが表面欠陥探傷装置と接触して欠陥探傷ヘッドを破損することがなく表面欠陥の検出を行うことができるようになった。   According to the present invention, since the convex portion on the surface of the steel sheet is detected and the defect inspection head is retracted, even if there is a defect in the shape of the steel sheet to be inspected, it is in contact with the surface defect inspection device to detect the defect. Surface defects can be detected without damaging the head.

リニアアレイカメラを用いた凸部検出の様子を説明する図である。It is a figure explaining the mode of convex part detection using a linear array camera. 漏洩磁束探傷ヘッドの構造を模式的に示す図である。It is a figure which shows typically the structure of a magnetic flux leakage test head. 本実施例に係る装置構成を示す図である。It is a figure which shows the apparatus structure which concerns on a present Example. 漏洩磁束探傷ヘッドへの退避信号の流れを示す図である。It is a figure which shows the flow of the evacuation signal to a magnetic flux leakage test head. 凸部計測から漏洩磁束探傷ヘッド退避に至る処理手順の一例を示す図である。It is a figure which shows an example of the process sequence from a convex-part measurement to a leakage magnetic flux test head retraction | saving.

先ず発明者らは、前述した形状不良の発生状況を詳細に調べたところ、以下の3種類に形状不良を分類できることが分った。
A:耳波、中伸び
B:焼鈍炉、調質圧延機で発生する絞り
C:連続焼鈍ラインに入れられる冷延鋼板に元々ついているヘゲ
さらに、Aの耳波および中伸びについては、ロールが鋼板に巻きついている箇所では、生じていた耳波および中伸びの形状がp-p(peak to peak)200μm以内に矯正されることが分った。
First, the inventors examined in detail the state of occurrence of the aforementioned shape defects, and found that the shape defects could be classified into the following three types.
A: Ear wave, medium stretch
B: Drawing generated in annealing furnace and temper rolling mill
C: Hege originally attached to the cold-rolled steel sheet put in the continuous annealing line.Furthermore, with regard to the ear wave and the middle elongation of A, the shape of the generated ear wave and the middle elongation at the place where the roll is wound around the steel sheet pp (peak to peak) was found to be corrected within 200 μm.

この矯正されたp-p200μm以内の凹凸は、漏洩磁束計測上もまた、例えば1mmといったリフトオフで設置した漏洩磁束探傷ヘッドとの接触という観点からも問題のないレベルの凹凸である。このため、ロールが鋼板に巻きついている箇所で、前記漏洩磁束探傷装置による表面欠陥の検出を行うこととした。   The unevenness within the corrected p-p of 200 μm is an unevenness of a level that causes no problem in terms of leakage magnetic flux measurement and also from the viewpoint of contact with a leakage magnetic flux inspection head installed at a lift-off of, for example, 1 mm. For this reason, the surface defect is detected by the leakage magnetic flux flaw detector at the place where the roll is wound around the steel plate.

また、前述のBおよびCの絞り・ヘゲ凸部については、漏洩磁束探傷ヘッドの上流側で、かつこの探傷ヘッドが設置されている状況と機械的に同じ状況の場所に凸部を検知する凸部検知センサを設け、ここで凸部を検知した場合に、接触を避けるために漏洩磁束探傷ヘッドを退避させることを考えた。なおここで、機械的に同じ状況とは、たとえば、同じ径のロールに巻きついている、同じ張力がかかる、振動の程度が同じになる構造を持つ、ロールの偏芯が同程度である、と言うような状況を指す。   In addition, with regard to the aforementioned B and C iris / heavy convex portions, the convex portions are detected on the upstream side of the leakage magnetic flux flaw detection head and at the same mechanical location as the flaw detection head is installed. In order to avoid contact when a convex portion is detected by providing a convex portion detection sensor, it has been considered to retract the leakage magnetic flux flaw detection head. Here, the mechanically the same situation means, for example, that the roll is wound around the same diameter, has the same tension, has the same degree of vibration, and the roll has the same eccentricity. It refers to the situation that says.

そして凸部を検知する方法としては、5mm以上の凸部を検知する方法としてワイヤ式およびレーザ透過式があるものの、いずれの方式も1mm程度の凸部を検知するには検出能不足である。この条件を満足する検出能が高い方法には、2次元のエリアカメラを用いる光切断式があるものの、2次元データの処理に時間がかかってしまい、漏洩磁束探傷ヘッドを退避させるには応答速度不足であるという問題がある。   As a method for detecting a convex portion, there are a wire type and a laser transmission type as a method for detecting a convex portion of 5 mm or more. However, either method is insufficient in detecting a convex portion of about 1 mm. Although there is a light cutting method using a two-dimensional area camera as a method with high detection capability that satisfies this condition, it takes time to process the two-dimensional data, and the response speed is required to retract the leakage flux testing head. There is a problem of lack.

そこで、本発明では、処理時間の短縮を図ることができる、1次元のリニアアレイカメラを用いる方法を採る。図1は、リニアアレイカメラを用いた凸部検出の様子を説明する図である。図中、1はリニアアレイカメラ、2はレーザースリット光源、3はモニタ、4は鋼板、および5は凸部をそれぞれ表し、図1(a)は鋼板に凸部がない場合、図1(b)は鋼板に凸部がある場合の検出の様子を模式的に示している。   Therefore, the present invention adopts a method using a one-dimensional linear array camera that can shorten the processing time. FIG. 1 is a diagram for explaining how convex portions are detected using a linear array camera. In the figure, 1 is a linear array camera, 2 is a laser slit light source, 3 is a monitor, 4 is a steel plate, and 5 is a convex portion. FIG. 1 (a) is a case where the steel plate has no convex portion. ) Schematically shows a state of detection when the steel plate has a convex portion.

具体的な凸部検知手順は、以下のとおりである。
(1) レーザースリット光源2からのスリット光を、搬送中の鋼板4の表面に斜めから照射する。
(2)リニアアレイカメラ1でスリット光を、鋼板4の表面と直角方向から観測する。
(3) 図1(a)のように鋼板4に凸部がない場合には、モニタ3にはリニアアレイカメラ1の視野範囲である鋼板幅方向に亘って均一な明るさで、リニアアレイカメラ1の視野範囲が映し出される。一方、図1(b)に示すように鋼板4に凸部5がある場合には、鋼板4の凸部5によりスリット光がずれ、リニアアレイカメラ1の視野範囲の一部が暗くなってしまう。
(4)そこで、リニアアレイカメラ1の視野範囲の一部が暗くなった場合に、鋼板4に凸部5ありと判定するものである。
The specific convex part detection procedure is as follows.
(1) The slit light from the laser slit light source 2 is irradiated obliquely onto the surface of the steel plate 4 being conveyed.
(2) The slit light is observed with the linear array camera 1 from a direction perpendicular to the surface of the steel plate 4.
(3) When the steel plate 4 has no projection as shown in FIG. 1 (a), the monitor 3 has a linear array camera with uniform brightness over the steel plate width direction, which is the visual field range of the linear array camera 1. One field of view is projected. On the other hand, when the steel plate 4 has the convex portion 5 as shown in FIG. 1B, the slit light is shifted by the convex portion 5 of the steel plate 4, and a part of the visual field range of the linear array camera 1 becomes dark. .
(4) Therefore, when a part of the visual field range of the linear array camera 1 becomes dark, it is determined that the convex portion 5 is present on the steel plate 4.

上述の凸部検知手順で凸部検知を行うための凸部検知センサを、漏洩磁束探傷ヘッドの上流側に配置し1mm以上の凸部を検知して、凸部による衝突を避けるべく漏洩磁束探傷ヘッドを退避させる。   The convex part detection sensor for detecting the convex part in the above-mentioned convex part detection procedure is arranged on the upstream side of the leakage magnetic flux flaw detection head, detects the convex part of 1 mm or more, and leaks magnetic flux flaw detection to avoid the collision by the convex part. Retract the head.

しかしながら、さらなる問題が残っている。つまり、先に述べたA,B,Cの凸部を漏れなく検知しようとすると、Bの凸部(すなわち、焼鈍炉、調質圧延機で発生する絞り)があるため、調質圧延機後に凸部検知センサを設けねばならないこととなる。   However, further problems remain. In other words, if you try to detect the A, B, and C convex parts mentioned above without omission, there is a convex part of B (that is, a drawing generated in an annealing furnace and a temper rolling mill), so after the temper rolling mill A convex portion detection sensor must be provided.

またその一方で、特許文献1で述べられているように、微小凹凸表面欠陥を精度よく検知するためには、調質圧延機直後に漏洩磁束探傷ヘッドを設置する方が良いという点がある。   On the other hand, as described in Patent Document 1, there is a point that it is better to install the leakage magnetic flux flaw detection head immediately after the temper rolling mill in order to accurately detect the minute uneven surface defects.

すなわち以上のことをまとめると、調質圧延機直後に凸部検知センサを設け、かつ調質圧延機後で凸部検知センサ設置場所の下流に漏洩磁束探傷ヘッドを設置することとなる。このことは、凸部検知センサと漏洩磁束探傷ヘッドの間の間隔を、あまり大きく取ることができないことを意味する。実際に、本発明を適用するラインにおいて上記条件を満足する適切な場所を探したところ、長くても15m程度とることが精一杯であった。   That is, in summary, the convex portion detection sensor is provided immediately after the temper rolling mill, and the leakage magnetic flux flaw detection head is installed downstream of the convex portion detection sensor installation location after the temper rolling mill. This means that the interval between the convex portion detection sensor and the leakage magnetic flux flaw detection head cannot be made too large. Actually, when a suitable place satisfying the above conditions was searched for in the line to which the present invention was applied, it was as much as possible to take about 15 m at the longest.

さらにこの15mという間隔は、例えばライン速度600mpmで鋼板を流した場合には、凸部検知センサから漏洩磁束探傷ヘッドに到達するのに、わずか1.5秒という短さであり、15mより間隔が短くなればさらに短い時間で検査装置から漏洩磁束探傷ヘッドに到達してしまい衝突回避条件はさらに厳しくなってしまう。   Furthermore, the interval of 15m is as short as 1.5 seconds to reach the leakage magnetic flux flaw detection head from the convex detection sensor when a steel plate is flowed at a line speed of 600mpm, for example, and the interval can be shorter than 15m. In this case, the collision avoidance condition becomes more severe because it reaches the leakage magnetic flux testing head from the inspection device in a shorter time.

漏洩磁束探傷ヘッドが軽く、この時間内で十分退避可能な場合は問題ないが、一般に漏洩磁束探傷ヘッド内には、鋼板を磁化するための磁化器が設けられている。この磁化器は、例えば重量約60kg程度と非常に重くなることがあり、この場合には、わずか1.5秒以内で凸部を検知して重量物である磁化器を退避移動することは、技術的にも費用的にも非常に困難になる。   There is no problem if the leakage magnetic flux flaw detection head is light and can be retracted sufficiently within this time, but in general, the leakage magnetic flux flaw detection head is provided with a magnetizer for magnetizing the steel sheet. This magnetizer may become very heavy, for example, about 60 kg in weight. In this case, it is technically necessary to detect the convex portion within just 1.5 seconds and retreat the heavy magnetizer. In addition, it becomes very difficult in terms of cost.

そこで、本発明者らは、前記B,Cに分類された凸部を発生箇所毎に再度分類するとともに、漏洩磁束探傷ヘッドの構造を調査して、以下の知見を得た。
・凸部は、5mm以上となる大きな凸部と5mm未満1mm以上の小さな凸部に分類される。
・大きな凸部は、
B1:焼鈍炉内で発生する炉内絞りであり、
・小さな凸部は、
B2:調質圧延機で発生する絞りと、
C:連続焼鈍ラインに入れられる冷延鋼板に元々ついているヘゲとである。
Therefore, the present inventors reclassified the convex portions classified as B and C for each occurrence location, and investigated the structure of the leakage magnetic flux flaw detection head to obtain the following knowledge.
-The convex part is classified into a large convex part that is 5 mm or more and a small convex part that is less than 5 mm and 1 mm or more.
・ Large protrusions
B1: In-furnace drawing generated in the annealing furnace,
・ Small convex parts
B2: Drawing generated in temper rolling mill,
C: It is the baldness originally attached to the cold-rolled steel sheet put in the continuous annealing line.

さらに、漏洩磁束探傷ヘッドについては、重量物であり検査対象から5mm程度離して設置可能な重量物(例えば、重さ約60kg)である磁化器部と、漏洩磁束探傷のために検査対象とのリフトオフを1mm程度に保持しなければならない軽量物(例えば、数100g)であるセンサ部とに大きく2分割できることも分った。   Furthermore, the magnetic flux leakage test head is a heavy object that can be installed at a distance of about 5 mm from the inspection target (for example, a weight of about 60 kg) and the inspection target for leakage magnetic flux inspection. It was also found that the lift-off can be roughly divided into two parts, that is, a lightweight sensor (for example, several hundred grams) that must be maintained at about 1 mm.

図2は、漏洩磁束探傷ヘッドの構造を模式的に示す図である。図中、4は鋼板、6はセンサ部、7は電磁アクチュエータ、8は磁化器部、9は油圧シリンダ、10はローラ、11は漏洩磁束探傷ヘッド、および27はロールCをそれぞれ表す。   FIG. 2 is a diagram schematically showing the structure of the leakage flux testing head. In the figure, 4 is a steel plate, 6 is a sensor unit, 7 is an electromagnetic actuator, 8 is a magnetizer unit, 9 is a hydraulic cylinder, 10 is a roller, 11 is a leakage flux test head, and 27 is a roll C.

漏洩磁束探傷ヘッド11は、磁化器部8、センサ部6、およびロールC27に巻き付いた鋼板4の移動に倣うためのローラ10で大きく構成される。さらに、磁化器部8の移動用のアクチュエータとして油圧シリンダ9を、センサ部6の移動用のアクチュエータとして電磁アクチュエータ7をそれぞれ備えている。なお、油圧シリンダ9の移動によって漏洩磁束探傷ヘッド11全体、すなわち磁化器部8およびセンサ部6が一体となって動くが、電磁アクチュエータ7の移動によってはセンサ部6のみが独立して動くようにして微少かつ速い動きを実現している。   The magnetic flux leakage inspection head 11 is largely composed of a magnetizer unit 8, a sensor unit 6, and a roller 10 for following the movement of the steel plate 4 wound around the roll C27. Further, a hydraulic cylinder 9 is provided as an actuator for moving the magnetizer unit 8, and an electromagnetic actuator 7 is provided as an actuator for moving the sensor unit 6. The entire leakage flux testing head 11, that is, the magnetizer unit 8 and the sensor unit 6 are moved together by the movement of the hydraulic cylinder 9, but only the sensor unit 6 is moved independently by the movement of the electromagnetic actuator 7. It realizes small and fast movement.

以上説明してきた知見を総合して、本発明を得るに至った。本発明を箇条書きに簡単にまとめると、以下のようである。   By combining the findings described above, the present invention has been obtained. The present invention can be briefly summarized as follows.

1. 焼鈍炉出側に大きな(5mm以上)凸部を検知する大凸部センサを設置し、ここで大きな凸部が検出された場合に、漏洩磁束探傷ヘッド全体を退避する。焼鈍炉の出側と調質圧延機の直後に設置された漏洩磁束探傷ヘッドの間は、通常十分な距離が有り十分な退避時間(約10秒以上)を取ることができる。   1. Install a large convex sensor that detects a large convex part (5mm or more) on the exit side of the annealing furnace. If a large convex part is detected, the entire leakage flux testing head is retracted. There is usually a sufficient distance between the exit side of the annealing furnace and the leakage magnetic flux testing head installed immediately after the temper rolling mill, and a sufficient retreat time (about 10 seconds or more) can be taken.

この大凸部センサは、5mm以上の凸部を検知すればよく、分解能が低くてもかまわないため、従来用いられてきたようなワイヤ接触式のセンサや、レーザ透過式のセンサなどを用いることができる。   This large convex part sensor only needs to detect convex parts of 5 mm or more, and it does not matter if the resolution is low, so use a wire contact type sensor or a laser transmission type sensor as used conventionally. Can do.

2.調質圧延機の出側に1mm以上の凸部を検知することができる小凸部センサ (1次元のリニアアレイカメラを用いる)を設け、1mm以上5mm未満の小さな凸部はここで検知して、漏洩磁束探傷ヘッド中の軽いセンサ部のみを退避させる。ここで、1mm以上5mm未満の小さな凸部の検出は、レーザースリット光源2の入射角度とリニアアレイカメラ1の角度調整により行うことができる。   2. A small convex sensor (using a one-dimensional linear array camera) is provided on the exit side of the temper rolling mill to detect a convex part of 1 mm or more, and small convex parts of 1 mm or more and less than 5 mm are detected here. Then, only the light sensor part in the leakage magnetic flux inspection head is retracted. Here, detection of a small convex part of 1 mm or more and less than 5 mm can be performed by adjusting the incident angle of the laser slit light source 2 and the angle of the linear array camera 1.

なお、これまで磁性金属の微小凹凸表面欠陥検出を行う装置として漏洩磁束探傷装置を例に、凸部衝突回避について説明を行ってきたが、渦流探傷装置など他の方式の探傷装置に適用しても構わない。   Up to now, the magnetic flux metal flaw detector has been explained as an example of a magnetic metal micro uneven surface defect detection device, but the projection collision avoidance has been described. However, it is applicable to other types of flaw detectors such as eddy current flaw detectors. It doesn't matter.

本発明を連続焼鈍ラインに適用した実施例について、以下説明を行う。図3は、本実施例に係る装置構成を示す図である。図中、20は焼鈍炉、21はルーパー、22は調質圧延機、23はロールA、24は凸部センサA、25はロールB、26は凸部センサB、27はロールC、28は演算処理装置、29は制御装置、4は鋼板、および11は漏洩磁束探傷ヘッドをそれぞれ表す。   An example in which the present invention is applied to a continuous annealing line will be described below. FIG. 3 is a diagram illustrating an apparatus configuration according to the present embodiment. In the figure, 20 is an annealing furnace, 21 is a looper, 22 is a temper rolling mill, 23 is roll A, 24 is convex sensor A, 25 is roll B, 26 is convex sensor B, 27 is roll C, and 28 is roll C. An arithmetic processing unit, 29 is a control unit, 4 is a steel plate, and 11 is a leakage flux testing head.

焼鈍炉20、ルーパー21、および調質圧延機22の順に鋼板4を連続的に処理する連続焼鈍ラインであり、焼鈍炉20の出側のロールA23に、レーザ透過式の5mm以上の凸部を検知する凸部センサA(大凸部センサ)24を、調質圧延機22直後のロールB25に、リニアアレイカメラ式の1mm以上の凸部を検知する凸部センサB(小凸部センサ)26をそれぞれ設置している。   It is a continuous annealing line for continuously treating the steel plate 4 in the order of the annealing furnace 20, the looper 21, and the temper rolling mill 22, and a laser transmission type convex portion of 5 mm or more is provided on the exit roll A23 of the annealing furnace 20. A convex sensor B (small convex sensor) 26 that detects a convex part of 1 mm or more of a linear array camera type is applied to a roll B 25 immediately after the temper rolling mill 22 with a convex sensor A (large convex sensor) 24 to be detected. Is installed.

そして、ロールB25から下流に15mの所にあるロールC27に、退避対象でもある漏洩磁束探傷ヘッド11を設置している。凸部センサA24および凸部センサB26からの信号は、演算処理装置28にて演算処理され凸部が検知されれば、退避信号が制御装置29に送られ、制御装置29により漏洩磁束探傷ヘッド11またはセンサ部6の退避動作が行われる。   The leakage magnetic flux testing head 11 which is also a retreat target is installed on a roll C27 located 15 m downstream from the roll B25. The signals from the convex sensor A24 and the convex sensor B26 are arithmetically processed by the arithmetic processing unit 28, and if a convex part is detected, a retract signal is sent to the control unit 29. Alternatively, the retracting operation of the sensor unit 6 is performed.

図4は、漏洩磁束探傷ヘッドへの退避信号の流れを示す図である。図中の符号は、図2および図3と同じであるので説明は省略する。また、図5は、凸部計測から漏洩磁束探傷ヘッド退避に至る処理手順の一例を示す図である。   FIG. 4 is a diagram illustrating a flow of a retract signal to the leakage magnetic flux testing head. The reference numerals in the figure are the same as those in FIGS. FIG. 5 is a diagram illustrating an example of a processing procedure from the measurement of the convex portion to the retraction of the leakage magnetic flux flaw detection head.

図3の凸部センサA24で5mm以上の凸部を検知すると、漏洩磁束探傷ヘッド11本体をサーボモータ(図2では、9として油圧シリンダとしたが、本実施例ではサーボモータを使用)で100mm退避(約3秒で退避)し、図3の凸部センサB26で1mm以上5mm未満の小さな凸部を検知すると、電磁アクチュエータ7でセンサ部6のみを5mm退避(約1秒で退避)する (図4参照)。なお、退避動作終了後は、制御装置はセンサ部ならびに漏洩磁束探傷ヘッド本体を速やかに元の正常な位置に戻し、微小凹凸表面欠陥検出を継続する。   When a convex part of 5 mm or more is detected by the convex part sensor A24 in FIG. 3, the leakage magnetic flux flaw detection head 11 body is 100 mm by a servo motor (in FIG. 2, 9 is a hydraulic cylinder, but this embodiment uses a servo motor). When the convex portion sensor B26 of FIG. 3 detects a small convex portion of 1 mm or more and less than 5 mm, the electromagnetic actuator 7 retracts only the sensor portion 6 by 5 mm (retracts in about 1 second) (retracted in about 1 second). (See FIG. 4). After the retreat operation is completed, the control device quickly returns the sensor unit and the leakage magnetic flux flaw detection head main body to the original normal position, and continues detection of minute uneven surface defects.

凸部計測から漏洩磁束探傷ヘッド退避に至る処理手順は、図5に示すが、Step01〜Step04に至る一連の流れは、凸部センサA24で5mm以上の凸部を検知した場合も、凸部センサB26で1mm以上5mm未満の小さな凸部を検知した場合も同じである。ただ、5mm以上の凸部を検知した場合の、Step04での退避動作の対象が漏洩磁束探傷ヘッド本体を動かすサーボモータであるか、1mm以上5mm未満の小さな凸部を検知した場合の、Step04での退避動作の対象がセンサ部のみを動かす電磁アクチュエータであるかの違いだけである。   The processing procedure from the convex measurement to the leakage magnetic flux flaw detection head retraction is shown in FIG. 5, but the series of flow from Step 01 to Step 04 is also performed when the convex sensor A24 detects a convex part of 5 mm or more. The same applies when a small convex part of 1 mm or more and less than 5 mm is detected in B26. However, if a convex part of 5mm or more is detected, the target of the evacuation operation in Step 04 is a servo motor that moves the leakage flux testing head body, or if a small convex part of 1mm or more and less than 5mm is detected in Step 04 The only difference is whether the object of the retraction operation is an electromagnetic actuator that moves only the sensor unit.

以上説明した本実施例により、連続焼鈍ラインの調質圧延後に設置した漏洩磁束探傷ヘッドと鋼板に発生した凸部との接触および探傷ヘッドの破損が防止でき、微小凹凸表面欠陥検出が可能となった。   According to the present embodiment described above, contact between the leakage magnetic flux inspection head installed after the temper rolling of the continuous annealing line and the convex portion generated on the steel plate and damage to the inspection head can be prevented, and micro uneven surface defects can be detected. It was.

1 リニアアレイカメラ
2 レーザースリット光源
3 モニタ
4 鋼板
5 凸部
6 センサ部
7 電磁アクチュエータ
8 磁化器部
9 油圧シリンダ
10 ローラ
11 漏洩磁束探傷ヘッド
20 焼鈍炉
21 ルーパー
22 調質圧延機
23 ロールA
24 凸部センサA
25 ロールB
26 凸部センサB
27 ロールC
28 演算処理装置
29 制御装置
DESCRIPTION OF SYMBOLS 1 Linear array camera 2 Laser slit light source 3 Monitor 4 Steel plate 5 Convex part 6 Sensor part 7 Electromagnetic actuator 8 Magnetizer part 9 Hydraulic cylinder 10 Roller 11 Leakage magnetic flux inspection head 20 Annealing furnace 21 Looper 22 Temper rolling machine 23 Roll A
24 Convex sensor A
25 Roll B
26 Convex sensor B
27 Roll C
28 arithmetic processing unit 29 control unit

Claims (6)

鋼板表面の凸部と欠陥探傷ヘッドとの接触を避ける、欠陥探傷ヘッドの退避方法であって、
欠陥探傷ヘッドを鋼板がロールに巻きついた箇所で鋼板に対向させて設置するとともに、
該欠陥探傷ヘッドの設置箇所の上流、かつ鋼板がロールに巻きついた箇所に鋼板表面の凸部を検知する凸部検知センサを設置し、
該凸部検知センサが所定値以上の凸部を検知した場合に、前記欠陥探傷ヘッドを退避させることを特徴とする欠陥探傷ヘッドの退避方法。
A method for retracting a defect inspection head that avoids contact between the convex portion of the steel sheet surface and the defect inspection head,
While installing the defect inspection head facing the steel plate at the place where the steel plate is wound around the roll,
Install a convexity detection sensor that detects the convexity on the surface of the steel sheet upstream of the installation location of the defect inspection head and where the steel sheet is wound around the roll,
A method for retracting a defect inspection head, comprising: retracting the defect inspection head when the protrusion detection sensor detects a protrusion greater than a predetermined value.
請求項1記載の欠陥探傷ヘッドの退避方法において、
前記欠陥探傷ヘッドは、漏洩磁束探傷ヘッドであり、
前記凸部検知センサは、5mm以上の凸部を検知する大凸部センサおよび5mm未満1mm以上の凸部を検知する小凸部センサにより構成されることを特徴とする欠陥探傷ヘッドの退避方法。
The method of retracting a defect inspection head according to claim 1,
The defect inspection head is a leakage magnetic flux inspection head,
The method of retracting a defect inspection head, wherein the convex detection sensor includes a large convex sensor that detects a convex part of 5 mm or more and a small convex sensor that detects a convex part of less than 5 mm and 1 mm or more.
請求項2に記載の欠陥探傷ヘッドの退避方法において、
前記大凸部センサを連続焼鈍ラインの焼鈍炉出側に設置し、5mm以上の凸部を検知した場合には、前記欠陥探傷ヘッド全体を退避させ、
前記焼鈍炉の下流にある調質圧延機の出側に、前記小凸部センサを設置し、5mm未満1mm以上の凸部を検知した場合には、前記欠陥探傷ヘッドのセンサ部のみを退避させることを特徴とする欠陥探傷ヘッドの退避方法。
The method for retracting a defect inspection head according to claim 2,
When the large convexity sensor is installed on the exit side of the annealing furnace of the continuous annealing line and a convexity of 5 mm or more is detected, the entire defect inspection head is retracted,
The small convex sensor is installed on the exit side of the temper rolling mill downstream of the annealing furnace, and when a convex part of less than 5 mm and 1 mm or more is detected, only the sensor part of the defect inspection head is retracted. A method of retracting a defect inspection head characterized by the above.
請求項2または請求項3に記載の欠陥探傷ヘッドの退避方法において、
前記小凸部センサは、
鋼板からのスリット反射光を撮影するリニアアレイカメラであり、
該リニアアレイカメラの視野からスリット光線が外れた場合に凸部が存在すると判定することを特徴とする欠陥探傷ヘッドの退避方法。
In the method for retracting a defect inspection head according to claim 2 or claim 3,
The small convex sensor is
It is a linear array camera that photographs slit reflected light from a steel plate,
A method for retracting a defect inspection head, characterized in that it is determined that a convex portion exists when a slit light beam deviates from the field of view of the linear array camera.
鋼板表面の凸部と欠陥探傷ヘッドとの接触を避ける、退避機構を備えた欠陥探傷装置であって、
鋼板がロールに巻きついた箇所で鋼板に対向させて設置する欠陥探傷ヘッドと、
5mm以上の凸部を検知する大凸部センサ、および5mm未満1mm以上の凸部を検知する小凸部センサと、
前記大凸部センサおよび小凸部センサからの信号に基き退避信号を出力する演算処理装置と、
退避信号に基き前記欠陥探傷ヘッド全体または前記欠陥探傷ヘッド中のセンサ部を動かす各アクチュエータに退避指令を送る制御装置とを、
備えることを特徴とする欠陥探傷装置。
A defect flaw detector with a retracting mechanism that avoids contact between the convex portion of the steel sheet surface and the flaw detection head,
A defect inspection head installed opposite to the steel plate at the place where the steel plate is wound around the roll;
A large convex sensor that detects a convex part of 5 mm or more, and a small convex sensor that detects a convex part of less than 5 mm and 1 mm or more,
An arithmetic processing unit that outputs a retract signal based on signals from the large convex sensor and the small convex sensor;
A control device that sends a retraction command to each actuator that moves the entire defect inspection head or a sensor unit in the defect inspection head based on a retraction signal;
A defect inspection apparatus comprising:
請求項5に記載の欠陥探傷装置において、
前記欠陥探傷ヘッドを連続焼鈍ライン中の焼鈍炉の下流にある調質圧延機の出側に設置し、
前記大凸部センサを前記焼鈍炉出側に設置し、5mm以上の凸部を検知した場合には、前記欠陥探傷ヘッド全体を退避させるように構成し、
前記小凸部センサを前記調質圧延機の出側でかつ前記欠陥探傷ヘッドの設置個所より上流に設置し、5mm未満1mm以上の凸部を検知した場合には、前記欠陥探傷ヘッドのセンサ部のみを退避させるように構成することを特徴とする欠陥探傷装置。
In the defect inspection apparatus according to claim 5,
The defect inspection head is installed on the exit side of the temper rolling mill downstream of the annealing furnace in the continuous annealing line,
The large convex sensor is installed on the exit side of the annealing furnace, and when a convex part of 5 mm or more is detected, it is configured to retract the entire defect inspection head,
When the small convex sensor is installed on the exit side of the temper rolling mill and upstream from the installation location of the defect inspection head, and a convex portion of less than 5 mm and 1 mm or more is detected, the sensor portion of the defect inspection head A defect flaw detector characterized by being configured to retreat only.
JP2010108847A 2010-05-11 2010-05-11 Method of retracting defect inspection head and defect inspection apparatus Active JP5552890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010108847A JP5552890B2 (en) 2010-05-11 2010-05-11 Method of retracting defect inspection head and defect inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010108847A JP5552890B2 (en) 2010-05-11 2010-05-11 Method of retracting defect inspection head and defect inspection apparatus

Publications (2)

Publication Number Publication Date
JP2011237276A true JP2011237276A (en) 2011-11-24
JP5552890B2 JP5552890B2 (en) 2014-07-16

Family

ID=45325424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010108847A Active JP5552890B2 (en) 2010-05-11 2010-05-11 Method of retracting defect inspection head and defect inspection apparatus

Country Status (1)

Country Link
JP (1) JP5552890B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013134137A (en) * 2011-12-26 2013-07-08 Jfe Steel Corp Defect detection device and saving method therefor
KR20160077256A (en) * 2014-12-22 2016-07-04 주식회사 포스코 Apparatus and method of preventing collision of defect detector sensor
CN109097553A (en) * 2018-06-28 2018-12-28 首钢京唐钢铁联合有限责任公司 A kind of IF steel drum packet defect control method
KR102222655B1 (en) * 2019-09-10 2021-03-03 주식회사 포스코아이씨티 System for Automatically Inspecting Surface Defect of Coil
KR102287304B1 (en) * 2021-02-09 2021-08-09 나우 주식회사 Adaptive magnetic particle detection device and magnetic particle detection method using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326236A (en) * 1998-05-13 1999-11-26 Ricoh Co Ltd Surface layer defect-detection device
JP2005003691A (en) * 1999-02-08 2005-01-06 Jfe Steel Kk Surface inspection apparatus
JP2005043172A (en) * 2003-07-28 2005-02-17 Jfe Steel Kk Flaw detection device and sensor retraction method
JP2007256274A (en) * 2006-02-24 2007-10-04 Jfe Steel Kk Method and device for detecting small surface irregularity defect
JP2010014701A (en) * 2008-06-04 2010-01-21 Toshiba Corp Array-type magnetic sensor substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326236A (en) * 1998-05-13 1999-11-26 Ricoh Co Ltd Surface layer defect-detection device
JP2005003691A (en) * 1999-02-08 2005-01-06 Jfe Steel Kk Surface inspection apparatus
JP2005043172A (en) * 2003-07-28 2005-02-17 Jfe Steel Kk Flaw detection device and sensor retraction method
JP2007256274A (en) * 2006-02-24 2007-10-04 Jfe Steel Kk Method and device for detecting small surface irregularity defect
JP2010014701A (en) * 2008-06-04 2010-01-21 Toshiba Corp Array-type magnetic sensor substrate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013134137A (en) * 2011-12-26 2013-07-08 Jfe Steel Corp Defect detection device and saving method therefor
KR20160077256A (en) * 2014-12-22 2016-07-04 주식회사 포스코 Apparatus and method of preventing collision of defect detector sensor
KR101657804B1 (en) * 2014-12-22 2016-09-20 주식회사 포스코 Apparatus and method of preventing collision of defect detector sensor
CN109097553A (en) * 2018-06-28 2018-12-28 首钢京唐钢铁联合有限责任公司 A kind of IF steel drum packet defect control method
KR102222655B1 (en) * 2019-09-10 2021-03-03 주식회사 포스코아이씨티 System for Automatically Inspecting Surface Defect of Coil
KR102287304B1 (en) * 2021-02-09 2021-08-09 나우 주식회사 Adaptive magnetic particle detection device and magnetic particle detection method using the same

Also Published As

Publication number Publication date
JP5552890B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5552890B2 (en) Method of retracting defect inspection head and defect inspection apparatus
RU2320958C2 (en) Method and device for detecting surface defects of rod
RU2650449C1 (en) Device and a method of ultrasound defectoscopy
RU2531508C2 (en) Method and plant of ultrasonic control of welded joint of butt connection of two transverse ends of two metal strips
JP4898320B2 (en) Structure defect detection method and apparatus, and cargo handling machine having defect detection function
JP6074908B2 (en) Surface inspection apparatus and defect measurement method
US10209199B2 (en) Surface inspection method, surface inspection device, manufacturing system, method of identifying defect formed area, and manufacturing method of steel pipe
JP6365526B2 (en) Bearing deterioration detection method and bearing deterioration detection device for small diameter roll
TW201443425A (en) Device for glass sheet detection
JP2010243248A (en) Strip shape detection device and strip-shape detection method
JP2014048226A (en) Shape inspection device of bar steel, and shape inspection method of bar steel
KR101756263B1 (en) Apparatus for detecting defect using rotational megnetic sensor
JP5867069B2 (en) Defect detection apparatus and evacuation method thereof
JP2007333732A (en) Surface inspection system, and diagnositc method of inspection capacity of the surface inspection system
JP2006170684A (en) Method and device for inspecting press failure
KR20100076838A (en) Defect inspection apparatus and method of steel sheet
JP2013029383A (en) Inspection apparatus and inspection method
JP2007187497A (en) Method and device for detecting collapse in internal diameter of rolled coil
JP6597691B2 (en) Surface defect inspection method and surface defect inspection system
JP2004077426A (en) Defect inspecting method for drive belt
KR20160067535A (en) Apparatus and Method for preventing erroneous detection of welding part
CN205014952U (en) A device for measuring bimetal steel band pitch of weld
KR20200095194A (en) Testing device for weldment
JP2015004669A (en) Device and method for ultrasonic flaw detection of electro-resistance-welded tube and quality assurance method
KR20150062633A (en) Magnetic field generator for detecting device of rolled coil defect

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140513

R150 Certificate of patent or registration of utility model

Ref document number: 5552890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250