JP2011236992A - Control device of vehicle driving system - Google Patents

Control device of vehicle driving system Download PDF

Info

Publication number
JP2011236992A
JP2011236992A JP2010109765A JP2010109765A JP2011236992A JP 2011236992 A JP2011236992 A JP 2011236992A JP 2010109765 A JP2010109765 A JP 2010109765A JP 2010109765 A JP2010109765 A JP 2010109765A JP 2011236992 A JP2011236992 A JP 2011236992A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
hydraulic
engine
energization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010109765A
Other languages
Japanese (ja)
Other versions
JP5454347B2 (en
Inventor
Ryuji Murakawa
隆二 村川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010109765A priority Critical patent/JP5454347B2/en
Publication of JP2011236992A publication Critical patent/JP2011236992A/en
Application granted granted Critical
Publication of JP5454347B2 publication Critical patent/JP5454347B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To reduce power consumption during an engine automatic stop (during an idle stop) in a vehicle driving system that performs an engine automatic stop when the engine automatic stop is required and an engine restart when the engine restart is required.SOLUTION: Energization stop control to stop energization to each of hydraulic control valves 36-38 other than a hydraulic control valve 35 for a clutch C0 to decide a gear change for start (for example, 1st speed) is performed at automatic engine stop, and semi-engagement control to control energization to the hydraulic control valve 35 for a clutch C0 to decide a gear change for start is performed so as to maintain the clutch C0 at a semi-engagement state. The energization stop control and the semi-engagement control reduce power consumption during the engine automatic stop to suppress the consumption of battery power, while suppressing the transmission of starting torque of an engine 10 at the engine restart via a transmission gear mechanism 15 to prevent an unpleasant shock.

Description

本発明は、内燃機関の自動停止要求が発生したときに該内燃機関を自動停止させ、内燃機関の再始動要求が発生したときに該内燃機関を再始動させるアイドルストップ制御機能を備えた車両駆動システムの制御装置に関する発明である。   The present invention provides a vehicle drive having an idle stop control function for automatically stopping an internal combustion engine when a request for automatic stop of the internal combustion engine is generated, and restarting the internal combustion engine when a restart request for the internal combustion engine is generated. The present invention relates to a system control apparatus.

車両に搭載される自動変速機は、変速機構にクラッチやブレーキ等の複数の摩擦係合要素を設けると共に、各摩擦係合要素に作用させる油圧を制御する複数の油圧制御弁(電磁弁)を設け、各油圧制御弁への通電を個別に制御して各摩擦係合要素に作用させる油圧を個別に制御することで、各摩擦係合要素の係合と解放を選択的に切り換えて、変速機構の変速段(変速比)を切り換えるようにしたものがある。   An automatic transmission mounted on a vehicle is provided with a plurality of friction engagement elements such as clutches and brakes in a transmission mechanism, and a plurality of hydraulic control valves (solenoid valves) for controlling the hydraulic pressure applied to each friction engagement element. Provided by controlling the energization to each hydraulic control valve individually and controlling the hydraulic pressure to be applied to each friction engagement element, selectively switching the engagement and release of each friction engagement element to change the speed There is one in which the gear stage (speed ratio) of the mechanism is switched.

このような自動変速機においては、例えば、特許文献1(特開2002−130460号公報)に記載されているように、エンジン回転速度が所定回転速度よりも低いときに、各油圧制御弁(電磁弁)への通電を禁止することで、エンジン始動前の各油圧制御弁への通電によるバッテリ電力の消耗を防止するようにしたものがある。   In such an automatic transmission, for example, as described in Patent Document 1 (Japanese Patent Laid-Open No. 2002-130460), when the engine rotation speed is lower than a predetermined rotation speed, each hydraulic control valve (electromagnetic) There is one that prevents the consumption of battery power by energizing each hydraulic control valve before starting the engine by prohibiting energization to the valve.

また、近年、エンジン(内燃機関)を搭載した車両においては、燃費節減、排気エミッション低減等を目的として、アイドルストップ制御システムを採用したものがある。このアイドルストップ制御システムでは、例えば、運転者が車両を停車させて自動停止要求が発生したときにエンジンを自動的に停止させ、その後、運転者が車両を発進させようとする操作を行って再始動要求が発生したときにエンジンを自動的に再始動させるようにしている。   In recent years, some vehicles equipped with an engine (internal combustion engine) employ an idle stop control system for the purpose of reducing fuel consumption and exhaust emission. In this idle stop control system, for example, when the driver stops the vehicle and an automatic stop request is generated, the engine is automatically stopped, and then the driver performs an operation to start the vehicle and restarts. The engine is automatically restarted when a start request occurs.

特開2002−130460号公報JP 2002-130460 A

ところで、エンジン自動停止中(アイドルストップ中)は、エンジンの動力で駆動される発電機(オルタネータ)の発電も停止される。このため、エンジン自動停止中に、変速機構の変速段を発進用の変速段(例えば1速)に切り換えた状態に維持するように各油圧制御弁の通電を制御すると、その分、エンジン自動停止中(つまり発電機の発電停止中)の消費電力が増加するため、バッテリ電力が消耗して、いわゆるバッテリ上がりを引き起こす可能性がある。   By the way, during automatic engine stop (during idle stop), power generation of a generator (alternator) driven by engine power is also stopped. For this reason, when the energization of each hydraulic control valve is controlled so that the gear position of the speed change mechanism is switched to the starting gear position (for example, the first gear) during the automatic engine stop, the engine automatic stop is correspondingly performed. Since the power consumption in the middle (that is, when the power generation of the generator is stopped) increases, the battery power may be consumed and the battery may be discharged.

そこで、本発明が解決しようとする課題は、内燃機関の自動停止中の消費電力を低減することができる車両駆動システムの制御装置を提供することにある。   Accordingly, an object of the present invention is to provide a control device for a vehicle drive system that can reduce power consumption during automatic stop of an internal combustion engine.

上記課題を解決するために、請求項1に係る発明は、内燃機関の動力を変速機構を介して車輪側に伝達する車両駆動システムに適用され、変速機構に設けられた複数の摩擦係合要素に作用させる油圧を制御する複数の油圧制御弁と、各油圧制御弁への通電を個別に制御して各摩擦係合要素に作用させる油圧を個別に制御することで各摩擦係合要素の係合と解放を選択的に切り換えて変速機構の変速段を切り換える変速制御手段と、内燃機関の自動停止要求が発生したときに該内燃機関を自動停止させ、内燃機関の再始動要求が発生したときに該内燃機関を再始動させるアイドルストップ制御手段と、アイドルストップ制御手段による内燃機関の自動停止中に油圧を発生させるために作動する電動油圧ポンプとを備えた車両駆動システムの制御装置において、変速制御手段によって、内燃機関の自動停止時に、車両発進に使用可能な変速段(以下「発進用変速段」という)を確定する摩擦係合要素用の油圧制御弁以外の各油圧制御弁への通電を停止する通電停止制御を実行すると共に、発進用変速段を確定する摩擦係合要素を半係合状態に維持するように該摩擦係合要素用の油圧制御弁への通電を制御する構成としたものである。   In order to solve the above-described problem, the invention according to claim 1 is applied to a vehicle drive system that transmits power of an internal combustion engine to a wheel side via a speed change mechanism, and a plurality of friction engagement elements provided in the speed change mechanism. A plurality of hydraulic control valves that control the hydraulic pressure applied to each of the friction engagement elements, and the hydraulic pressure applied to each friction engagement element by individually controlling the energization of each hydraulic control valve, thereby controlling the engagement of each friction engagement element. A shift control means for selectively switching between shifting and releasing to switch the gear stage of the transmission mechanism, and when the internal combustion engine is automatically stopped when a request for automatic stop of the internal combustion engine is generated, and when a restart request for the internal combustion engine is generated Control of a vehicle drive system comprising: an idle stop control means for restarting the internal combustion engine; and an electric hydraulic pump that operates to generate hydraulic pressure during the automatic stop of the internal combustion engine by the idle stop control means. The hydraulic control other than the hydraulic control valve for the friction engagement element that determines the gear stage that can be used for vehicle start (hereinafter referred to as “start gear stage”) when the internal combustion engine is automatically stopped by the shift control means. Energization stop control for stopping energization of the valve is executed, and energization of the hydraulic control valve for the friction engagement element is performed so as to maintain the friction engagement element for determining the start gear stage in the half engagement state. It is set as the structure controlled.

この構成では、内燃機関の自動停止時に、発進用変速段(例えば1速)を確定する摩擦係合要素用の油圧制御弁以外の油圧制御弁への通電を停止する通電停止制御を実行することで、内燃機関の自動停止中の消費電力を低減することができる。   In this configuration, when the internal combustion engine is automatically stopped, the energization stop control is performed to stop energization of the hydraulic control valves other than the hydraulic control valve for the frictional engagement element that determines the start gear stage (for example, the first speed). Thus, power consumption during automatic stop of the internal combustion engine can be reduced.

また、油圧制御弁への通電停止時に摩擦係合要素が係合状態となるシステムの場合、内燃機関の自動停止時に、全ての油圧制御弁への通電を停止するようにすると、内燃機関の再始動時に、内燃機関の始動トルクが変速機構を介して車輪側に伝達されて、不快なショックが発生する可能性があるが、本発明では、内燃機関の自動停止時に、発進用変速段(例えば1速)を確定する摩擦係合要素を半係合状態に維持するように該摩擦係合要素用の油圧制御弁への通電を制御することで、内燃機関の再始動時に、内燃機関の始動トルクが変速機構を介して車輪側に伝達されることを抑制して、不快なショックが発生することを防止できる。   Also, in a system in which the friction engagement element is engaged when the energization of the hydraulic control valve is stopped, if the energization of all the hydraulic control valves is stopped when the internal combustion engine is automatically stopped, the internal combustion engine is restarted. At the time of start-up, the starting torque of the internal combustion engine is transmitted to the wheel side through the speed change mechanism, which may cause an unpleasant shock. However, in the present invention, when the internal combustion engine is automatically stopped, the starting gear stage (for example, The internal combustion engine is started when the internal combustion engine is restarted by controlling the energization of the hydraulic control valve for the friction engagement element so that the friction engagement element that determines the first speed) is maintained in the half-engaged state. It is possible to prevent the torque from being transmitted to the wheel side via the speed change mechanism, thereby preventing an unpleasant shock.

この場合、請求項2のように、内燃機関の再始動時に、通電停止制御を終了して変速機構の変速段を発進用変速段に切り換えた状態にするように各油圧制御弁への通電を制御するようにすると良い。ここで、発進用変速段に切り換えた状態とは、発進用変速段を確定する摩擦係合要素を半係合状態に維持する状態も含むものとする。このようにすれば、内燃機関の再始動後に、車両を速やかに発進させることができる。   In this case, as described in claim 2, when the internal combustion engine is restarted, energization of each hydraulic control valve is performed so that the energization stop control is terminated and the shift speed of the speed change mechanism is switched to the start speed. It is good to control. Here, the state of switching to the starting gear stage includes a state in which the frictional engagement element that determines the starting gear stage is maintained in the half-engaged state. In this way, the vehicle can be started quickly after the internal combustion engine is restarted.

ところで、変速機構の作動油の粘性が高く(流動性が悪く)なる低油温領域や、作動油の漏れが多くなる高油温領域では、油圧の応答性が低下するため、内燃機関の自動停止時に通電停止制御を実行すると、内燃機関の再始動時に変速機構の変速段を速やかに発進用変速段に切り換えた状態にできない可能性がある。   By the way, in a low oil temperature range where the viscosity of the hydraulic fluid of the transmission mechanism is high (poor fluidity) and in a high oil temperature region where the hydraulic oil leaks frequently, the hydraulic response decreases. If the energization stop control is executed at the time of stop, there is a possibility that the gear stage of the transmission mechanism cannot be promptly switched to the starting gear stage when the internal combustion engine is restarted.

そこで、請求項3のように、変速機構の作動油の温度が所定温度領域外のときに通電停止制御を禁止するようにしても良い。つまり、油温(作動油の温度)が所定温度領域外のときには、油圧の応答性が悪いため、内燃機関の自動停止時に通電停止制御を実行すると、内燃機関の再始動時に変速機構の変速段を速やかに発進用変速段に切り換えた状態にできない可能性があると判断して、通電停止制御を禁止する。これにより、内燃機関の再始動時に変速機構の変速段を速やかに発進用変速段に切り換えた状態にできないといった事態を未然に防止することができる。   Therefore, as in claim 3, the energization stop control may be prohibited when the temperature of the hydraulic fluid of the transmission mechanism is outside the predetermined temperature range. That is, when the oil temperature (hydraulic oil temperature) is outside the predetermined temperature range, the responsiveness of the hydraulic pressure is poor. Therefore, if the energization stop control is executed during the automatic stop of the internal combustion engine, the shift stage of the transmission mechanism is restarted when the internal combustion engine is restarted. Therefore, it is determined that there is a possibility that the vehicle cannot be quickly switched to the start gear position, and the power supply stop control is prohibited. As a result, it is possible to prevent a situation in which the gear stage of the transmission mechanism cannot be quickly switched to the starting gear stage when the internal combustion engine is restarted.

また、油圧制御弁への通電停止時に摩擦係合要素が係合状態となるシステムの場合、内燃機関の自動停止時に変速機構の回転部材の回転が停止する前に通電停止制御を実行すると、変速機構の回転部材の回転中に、発進用変速段を確定する摩擦係合要素以外の全ての摩擦係合要素が係合状態となって、変速機構が正常動作できないロック状態になる可能性がある。   Further, in a system in which the friction engagement element is engaged when the energization of the hydraulic control valve is stopped, if the energization stop control is executed before the rotation of the rotating member of the speed change mechanism is stopped during the automatic stop of the internal combustion engine, During rotation of the rotating member of the mechanism, there is a possibility that all the friction engagement elements other than the friction engagement element that determines the start gear stage will be engaged, and the transmission mechanism may be locked so that it cannot operate normally. .

そこで、請求項4のように、内燃機関の自動停止時に変速機構の回転部材の回転が停止したときに通電停止制御を許可するようにすると良い。このようにすれば、変速機構の回転部材の回転中に、発進用変速段を確定する摩擦係合要素以外の全ての摩擦係合要素が係合状態となることを回避することができ、変速機構が正常動作できないロック状態になることを未然に防止することができる。   Therefore, as in claim 4, when the rotation of the rotating member of the speed change mechanism is stopped during the automatic stop of the internal combustion engine, the energization stop control may be permitted. In this way, it is possible to avoid that all the friction engagement elements other than the friction engagement element that determines the start gear stage are engaged during the rotation of the rotating member of the transmission mechanism. It is possible to prevent the mechanism from entering a locked state where it cannot operate normally.

また、請求項5のように、内燃機関の動力を変速機構を介して車輪側に伝達する車両駆動システムに適用され、変速機構に設けられた複数の摩擦係合要素に作用させる油圧を制御する複数の油圧制御弁と、各油圧制御弁への通電を個別に制御して各摩擦係合要素に作用させる油圧を個別に制御することで各摩擦係合要素の係合と解放を選択的に切り換えて変速機構の変速段を切り換える変速制御手段と、内燃機関の自動停止要求が発生したときに該内燃機関を自動停止させ、内燃機関の再始動要求が発生したときに該内燃機関を再始動させるアイドルストップ制御手段と、アイドルストップ制御手段による内燃機関の自動停止中に油圧を発生させるために作動する電動油圧ポンプとを備えた車両駆動システムの制御装置において、変速制御手段によって、内燃機関の自動停止時に、変速機構の変速段を車両発進に使用可能な複数の変速段のうちの各油圧制御弁の消費電力の合計が少なくなる変速段に切り換えた状態にするように各油圧制御弁への通電を制御する構成としても良い。   Further, as in claim 5, it is applied to a vehicle drive system that transmits the power of the internal combustion engine to the wheels via the speed change mechanism, and controls the hydraulic pressure applied to a plurality of friction engagement elements provided in the speed change mechanism. Selectively engage and release each friction engagement element by individually controlling the hydraulic pressure applied to each friction engagement element by individually controlling the energization of each hydraulic control valve and each hydraulic control valve A shift control means for switching the shift stage of the transmission mechanism, and automatically stopping the internal combustion engine when an automatic stop request for the internal combustion engine is generated, and restarting the internal combustion engine when a restart request for the internal combustion engine is generated In a control device for a vehicle drive system, comprising: an idle stop control means for controlling the engine; and an electric hydraulic pump that operates to generate hydraulic pressure during automatic stop of the internal combustion engine by the idle stop control means. Thus, when the internal combustion engine is automatically stopped, the shift stage of the transmission mechanism is switched to a shift stage that reduces the total power consumption of each hydraulic control valve among the plurality of shift stages that can be used for starting the vehicle. It is good also as a structure which controls electricity supply to each hydraulic control valve.

この構成では、内燃機関の自動停止時に、変速機構の変速段を車両発進に使用可能な複数の変速段のうちの各油圧制御弁の消費電力の合計が少なくなる変速段(例えば2速)に切り換えた状態にするように各油圧制御弁への通電を制御することで、内燃機関の自動停止中の消費電力を低減することができる。しかも、内燃機関の自動停止中に車両発進に使用可能な変速段に切り換えた状態に維持することができるため、万一、油圧制御弁等の故障によって変速段を切り換え不能になっても、車両を発進させることができる。   In this configuration, when the internal combustion engine is automatically stopped, the shift speed of the transmission mechanism is set to a shift speed (for example, 2nd speed) in which the total power consumption of each hydraulic control valve is reduced among a plurality of shift speeds that can be used for starting the vehicle. By controlling energization to each hydraulic control valve so as to be switched, it is possible to reduce power consumption during automatic stop of the internal combustion engine. In addition, since the internal combustion engine can be maintained in a state of being switched to a gear stage that can be used for vehicle start-up while the internal combustion engine is automatically stopped, even if the gear stage cannot be switched due to a failure of a hydraulic control valve or the like, the vehicle Can be started.

図1は本発明の実施例1における自動変速機全体の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of the entire automatic transmission according to Embodiment 1 of the present invention. 図2は自動変速機の機械的構成を模式的に示す図である。FIG. 2 is a diagram schematically showing the mechanical configuration of the automatic transmission. 図3は各変速段毎のクラッチC0〜C2とブレーキB0,B1の係合/解放の組み合わせを示す図である。FIG. 3 is a diagram showing a combination of engagement / release of the clutches C0 to C2 and the brakes B0 and B1 for each gear. 図4は各変速段毎のクラッチC0,C2用の油圧制御弁とブレーキB0,B1用の油圧制御弁の通電状態を示す図である。FIG. 4 is a diagram showing the energized state of the hydraulic control valves for the clutches C0 and C2 and the hydraulic control valves for the brakes B0 and B1 at each gear position. 図5は実施例1の通電停止制御及び半係合制御を説明する図である。FIG. 5 is a diagram for explaining energization stop control and half-engagement control according to the first embodiment. 図6は実施例1のアイドルストップ制御ルーチンの処理の流れを説明するフローチャートである。FIG. 6 is a flowchart illustrating the processing flow of the idle stop control routine according to the first embodiment. 図7は実施例2のアイドルストップ制御ルーチンの処理の流れを説明するフローチャートである。FIG. 7 is a flowchart illustrating the processing flow of the idle stop control routine according to the second embodiment.

以下、本発明を実施するための形態を具体化した幾つかの実施例を説明する。   Hereinafter, some embodiments embodying the mode for carrying out the present invention will be described.

本発明の実施例1を図1乃至図6に基づいて説明する。
まず、図1及び図2に基づいて自動変速機11の概略構成を説明する。
図2に示すように、内燃機関であるエンジン10の出力軸には、トルクコンバータ12の入力軸13が連結され、このトルクコンバータ12の出力軸14に、油圧駆動式の変速歯車機構15(変速機構)が連結されている。トルクコンバータ12の内部には、流体継手を構成するポンプインペラ31とタービンランナ32が対向して設けられ、ポンプインペラ31とタービンランナ32との間には、オイルの流れを整流するステータ33が設けられている。ポンプインペラ31は、トルクコンバータ12の入力軸13に連結され、タービンランナ32は、トルクコンバータ12の出力軸14に連結されている。
A first embodiment of the present invention will be described with reference to FIGS.
First, a schematic configuration of the automatic transmission 11 will be described with reference to FIGS. 1 and 2.
As shown in FIG. 2, an input shaft 13 of a torque converter 12 is connected to an output shaft of an engine 10 that is an internal combustion engine, and a hydraulically driven transmission gear mechanism 15 (speed change) is connected to the output shaft 14 of the torque converter 12. Mechanism). Inside the torque converter 12, a pump impeller 31 and a turbine runner 32 constituting a fluid coupling are provided to face each other, and a stator 33 for rectifying the flow of oil is provided between the pump impeller 31 and the turbine runner 32. It has been. The pump impeller 31 is connected to the input shaft 13 of the torque converter 12, and the turbine runner 32 is connected to the output shaft 14 of the torque converter 12.

また、トルクコンバータ12には、入力軸13側と出力軸14側との間を係合又は切り離しするためのロックアップクラッチ16が設けられている。エンジン10の出力トルクは、トルクコンバータ12を介して変速歯車機構15に伝達され、変速歯車機構15の複数のギヤ(遊星歯車等)で変速されて、車両の駆動輪(前輪又は後輪)に伝達される。   The torque converter 12 is provided with a lock-up clutch 16 for engaging or disengaging between the input shaft 13 side and the output shaft 14 side. The output torque of the engine 10 is transmitted to the transmission gear mechanism 15 via the torque converter 12 and is shifted by a plurality of gears (planetary gears or the like) of the transmission gear mechanism 15 to the driving wheels (front wheels or rear wheels) of the vehicle. Communicated.

変速歯車機構15には、複数の変速段を切り換えるための摩擦係合要素である複数のクラッチC0,C1,C2とブレーキB0,B1が設けられ、図3に示すように、これら各クラッチC0,C1,C2と各ブレーキB0,B1の係合/解放を油圧で切り換えて、動力を伝達するギヤの組み合わせを切り換えることによって変速比を切り換えるようになっている。   The transmission gear mechanism 15 is provided with a plurality of clutches C0, C1, C2 and brakes B0, B1, which are friction engagement elements for switching a plurality of shift stages. As shown in FIG. The gear ratio is switched by switching engagement / release of C1 and C2 and the brakes B0 and B1 with hydraulic pressure and switching a combination of gears for transmitting power.

尚、図3は4速自動変速機のクラッチC0,C1,C2とブレーキB0,B1の係合の組み合せを示すもので、○印はその変速段で係合状態(トルク伝達状態)に保持されるクラッチとブレーキを示し、無印は解放状態を示している。また、1速ではOWC(ワンウェイクラッチ)が作動可能な状態になる。例えば、Dレンジのアクセル踏み込み状態(スロットルバルブが開いた状態)では、車速が上がるにつれて、1速、2速、3速、4速へとアップシフトしていく。1速から2速への変速では、C0のみの係合から新たにB1を係合する。2速から3速への変速では、C0及びB1の係合からB1を解放し、新たにC2を係合する。3速から4速への変速では、C0及びC2の係合からC0を解放し、新たにB1を係合する。   FIG. 3 shows the combination of the engagement of the clutches C0, C1, C2 and the brakes B0, B1 of the 4-speed automatic transmission. The circles are held in the engaged state (torque transmission state) at that gear stage. The clutch and brake are shown, and the unmarked state shows the released state. Further, at the first speed, an OWC (one-way clutch) is operable. For example, when the accelerator is depressed in the D range (throttle valve is opened), the vehicle speed is upshifted to the first speed, the second speed, the third speed, and the fourth speed as the vehicle speed increases. In the shift from the first speed to the second speed, B1 is newly engaged from the engagement of only C0. In the shift from the second speed to the third speed, B1 is released from the engagement of C0 and B1, and C2 is newly engaged. In the shift from the third speed to the fourth speed, C0 is released from the engagement of C0 and C2, and B1 is newly engaged.

図1に示すように、変速歯車機構15には、エンジン動力で駆動される油圧ポンプ18が設けられ、作動油(オイル)を貯溜するオイルパン(図示せず)内には、油圧制御回路17が設けられている。この油圧制御回路17は、ライン圧制御回路19、自動変速制御回路20、ロックアップ制御回路21、手動切換弁26等から構成され、オイルパンから油圧ポンプ18で汲み上げられた作動油がライン圧制御回路19を介して自動変速制御回路20とロックアップ制御回路21に供給される。   As shown in FIG. 1, the transmission gear mechanism 15 is provided with a hydraulic pump 18 driven by engine power, and a hydraulic control circuit 17 is provided in an oil pan (not shown) for storing hydraulic oil (oil). Is provided. The hydraulic control circuit 17 includes a line pressure control circuit 19, an automatic transmission control circuit 20, a lock-up control circuit 21, a manual switching valve 26, and the like. The hydraulic oil pumped up from the oil pan by the hydraulic pump 18 is line pressure controlled. This is supplied to the automatic transmission control circuit 20 and the lockup control circuit 21 via the circuit 19.

また、後述するエンジン自動停止中(アイドルストップ中)に油圧を発生させるための電動油圧ポンプ22が設けられ、エンジン自動停止中は電動油圧ポンプ22で汲み上げられた作動油がライン圧制御回路19を介して自動変速制御回路20とロックアップ制御回路21に供給される。   An electric hydraulic pump 22 is provided for generating hydraulic pressure during automatic engine stop (idle stop), which will be described later, and hydraulic oil pumped up by the electric hydraulic pump 22 passes through the line pressure control circuit 19 during automatic engine stop. To the automatic transmission control circuit 20 and the lockup control circuit 21.

ライン圧制御回路19には、油圧ポンプ18(又は電動油圧ポンプ22)からの油圧を所定のライン圧に制御するライン圧制御用の油圧制御弁(図示せず)が設けられ、自動変速制御回路20には、変速歯車機構15の各クラッチC0,C2と各ブレーキB0,B1に供給する油圧を制御する複数の変速用の油圧制御弁35〜38が設けられている。また、ロックアップ制御回路21には、ロックアップクラッチ16に供給する油圧を制御するロックアップ制御用の油圧制御弁(図示せず)が設けられている。   The line pressure control circuit 19 is provided with a hydraulic control valve (not shown) for line pressure control for controlling the hydraulic pressure from the hydraulic pump 18 (or the electric hydraulic pump 22) to a predetermined line pressure. 20, a plurality of shift hydraulic control valves 35 to 38 for controlling the hydraulic pressure supplied to the clutches C0 and C2 and the brakes B0 and B1 of the transmission gear mechanism 15 are provided. The lockup control circuit 21 is provided with a lockup control hydraulic control valve (not shown) for controlling the hydraulic pressure supplied to the lockup clutch 16.

各油圧制御弁は、例えば、リニアソレノイドバルブ等の電磁バルブにより構成され、所定のデューティにて電圧を印加して流れる電流により発生する吸引力にて油圧を制御している。このため、油圧制御弁の電流と油圧は、密接な関係となり、電流値を制御することにより油圧を制御している。   Each hydraulic control valve is constituted by, for example, an electromagnetic valve such as a linear solenoid valve, and controls the hydraulic pressure with a suction force generated by a flowing current by applying a voltage with a predetermined duty. For this reason, the current of the hydraulic control valve and the hydraulic pressure are closely related, and the hydraulic pressure is controlled by controlling the current value.

また、ライン圧制御回路19と自動変速制御回路20との間には、シフトレバー25の操作に連動して切り換えられる手動切換弁26が設けられている。シフトレバー25がニュートラルレンジ(Nレンジ)又はパーキングレンジ(Pレンジ)に操作されているときには、自動変速制御回路20の油圧制御弁35〜38への通電が停止(オフ)された状態になっていても、手動切換弁26によって変速歯車機構15に供給する油圧が変速歯車機構15をニュートラル状態とするように切り換えられる。   A manual switching valve 26 that is switched in conjunction with the operation of the shift lever 25 is provided between the line pressure control circuit 19 and the automatic transmission control circuit 20. When the shift lever 25 is operated to the neutral range (N range) or the parking range (P range), power supply to the hydraulic control valves 35 to 38 of the automatic transmission control circuit 20 is stopped (off). However, the hydraulic pressure supplied to the transmission gear mechanism 15 by the manual switching valve 26 is switched so that the transmission gear mechanism 15 is in the neutral state.

一方、エンジン10には、エンジン回転速度Neを検出するエンジン回転速度センサ27が設けられ、変速歯車機構15には、変速歯車機構15の入力軸回転速度Nt(トルクコンバータ12の出力軸回転速度)を検出する入力軸回転速度センサ28と、変速歯車機構15の出力軸回転速度Noを検出する出力軸回転速度センサ29が設けられている。   On the other hand, the engine 10 is provided with an engine rotation speed sensor 27 that detects the engine rotation speed Ne, and the transmission gear mechanism 15 has an input shaft rotation speed Nt (output shaft rotation speed of the torque converter 12) of the transmission gear mechanism 15. An input shaft rotational speed sensor 28 for detecting the output shaft and an output shaft rotational speed sensor 29 for detecting the output shaft rotational speed No of the transmission gear mechanism 15 are provided.

これら各種センサの出力信号は、電子制御回路(以下「ECU」と表記する)30に入力される。このECU30は、エンジン10と自動変速機11を総合的に制御する1個又は複数個のマイクロコンピュータを主体として構成され、エンジン制御プログラムを(図示せず)を実行することで、エンジン運転状態に応じて、燃料噴射量、点火時期、スロットル開度(吸入空気量)等を制御すると共に、変速制御プログラム(図示せず)を実行することで、予め設定した変速パターンに従って変速歯車機構15の変速が行われるように、シフトレバー25の操作位置や運転条件(スロットル開度、車速等)に応じて自動変速制御回路20の各油圧制御弁35〜38への通電を制御して、変速歯車機構15の各クラッチC0,C1,C2と各ブレーキB0,B1に作用させる油圧を制御することによって、図3に示すように、各クラッチC0,C1,C2と各ブレーキB0,B1の係合/解放を切り換えて、動力を伝達するギヤの組み合わせを切り換えることで、変速歯車機構15の変速比を切り換える。尚、ECU30は、エンジンを制御するエンジンECUと、自動変速機11を制御するAT−ECUとを別々に備えた構成としても良い。   Output signals of these various sensors are input to an electronic control circuit (hereinafter referred to as “ECU”) 30. The ECU 30 is mainly composed of one or a plurality of microcomputers that comprehensively control the engine 10 and the automatic transmission 11 and executes an engine control program (not shown) to bring the engine into an operating state. Accordingly, by controlling the fuel injection amount, ignition timing, throttle opening (intake air amount), etc., and executing a shift control program (not shown), the shift gear mechanism 15 shifts according to a preset shift pattern. The transmission gear mechanism is controlled by controlling the energization of the hydraulic control valves 35 to 38 of the automatic transmission control circuit 20 in accordance with the operation position of the shift lever 25 and the operating conditions (throttle opening, vehicle speed, etc.). By controlling the hydraulic pressure applied to each of the 15 clutches C0, C1, C2 and the brakes B0, B1, as shown in FIG. 1, C2 and switching the engagement / release of the brakes B0, B1, by switching the combination of gears for transmitting power to switch the transmission ratio of the transmission gear mechanism 15. Note that the ECU 30 may include an engine ECU that controls the engine and an AT-ECU that controls the automatic transmission 11 separately.

図4は各変速段毎のクラッチC0,C2用の油圧制御弁35,36とブレーキB0,B1用の油圧制御弁37,38の通電状態の組み合せを示すもので、「max」はその変速段で最大通電状態(通電電流=最大値)となる油圧制御弁を示し、「min」はその変速段で通電停止状態(通電電流=0)となる油圧制御弁を示している。図3及び図4に示すように、油圧制御弁を最大通電状態(通電電流=最大値)に制御したときに、その油圧制御弁に対応するクラッチ又はブレーキが解放状態となり、油圧制御弁を通電停止状態(通電電流=0)に制御したときに、その油圧制御弁に対応するクラッチ又はブレーキが係合状態となる。例えば、Dレンジの1速では、1速を確定するクラッチC0用の油圧制御弁35を通電停止状態に制御してクラッチC0を係合状態に維持し、クラッチC2用の油圧制御弁36及びブレーキB0,B1用の油圧制御弁37,38を全て最大通電状態(通電電流=最大値)に制御してクラッチC2及びブレーキB0,B1を全て解放状態に維持する。   FIG. 4 shows a combination of energized states of the hydraulic control valves 35 and 36 for the clutches C0 and C2 and the hydraulic control valves 37 and 38 for the brakes B0 and B1 at each gear stage, and “max” indicates the gear stage. Indicates a hydraulic control valve that is in a maximum energized state (energized current = maximum value), and “min” indicates a hydraulic control valve that is in an energized stop state (energized current = 0) at that gear position. As shown in FIGS. 3 and 4, when the hydraulic control valve is controlled to the maximum energized state (energized current = maximum value), the clutch or brake corresponding to the hydraulic control valve is released, and the hydraulic control valve is energized. When controlled to a stop state (energization current = 0), the clutch or brake corresponding to the hydraulic control valve is engaged. For example, in the first speed of the D range, the hydraulic control valve 35 for the clutch C0 that determines the first speed is controlled to be in the energized stop state to maintain the clutch C0 in the engaged state, and the hydraulic control valve 36 for the clutch C2 and the brake The hydraulic control valves 37 and 38 for B0 and B1 are all controlled to the maximum energized state (energized current = maximum value), and the clutch C2 and the brakes B0 and B1 are all maintained in the released state.

また、ECU30は、後述する図6のアイドルストップ制御ルーチンを実行することで、エンジン運転中にエンジン自動停止要求が発生したときに、エンジン10の燃焼(燃料噴射及び/又は点火)を停止させてエンジン10を自動的に停止させるエンジン自動停止制御(アイドルストップ制御)を実行する。エンジン自動停止制御を実行する運転領域は、車両停止中のみとしても良いし、車両走行中に車両停止に至る可能性のある低速での減速領域まで拡大するようにしても良い。   Further, the ECU 30 executes an idle stop control routine shown in FIG. 6 described later to stop combustion (fuel injection and / or ignition) of the engine 10 when an engine automatic stop request is generated during engine operation. Engine automatic stop control (idle stop control) for automatically stopping the engine 10 is executed. The operation region where the engine automatic stop control is executed may be only when the vehicle is stopped, or may be extended to a deceleration region at a low speed that may cause the vehicle to stop while the vehicle is running.

このエンジン自動停止制御(アイドルストップ制御)によるエンジン自動停止中(アイドルストップ中)に、運転者が車両を発進又は加速させようとする操作(例えば、ブレーキ解除操作、アクセル踏み込み操作等)を行ってエンジン再始動要求が発生したときに、エンジン10を自動的に再始動させる。その他、バッテリ充電制御システムやエアコン等の車載機器の制御システムから再始動要求が発生してエンジン10を再始動させる場合もある。   During automatic engine stop (during idle stop) by this automatic engine stop control (idle stop control), the driver performs an operation (for example, brake release operation, accelerator depression operation, etc.) to start or accelerate the vehicle. When an engine restart request is generated, the engine 10 is automatically restarted. In addition, the engine 10 may be restarted when a restart request is generated from a control system of an in-vehicle device such as a battery charging control system or an air conditioner.

ところで、エンジン自動停止中(アイドルストップ中)は、エンジン10の動力で駆動される発電機(オルタネータ)の発電も停止される。このため、エンジン自動停止中に、変速歯車機構15の変速段を発進用の変速段(例えば1速)に切り換えた状態に維持するように各油圧制御弁35〜38の通電を制御する(つまり、1速を確定するクラッチC0用の油圧制御弁35を通電停止状態に制御すると共に、クラッチC2用の油圧制御弁36及びブレーキB0,B1用の油圧制御弁37,38を全て最大通電状態に制御する)と、その分、エンジン自動停止中(つまり発電機の発電停止中)の消費電力が増加するため、バッテリ電力が消耗して、いわゆるバッテリ上がりを引き起こす可能性がある。   By the way, during automatic engine stop (during idle stop), power generation of a generator (alternator) driven by the power of the engine 10 is also stopped. For this reason, during the automatic engine stop, the energization of the hydraulic control valves 35 to 38 is controlled so as to keep the shift speed of the transmission gear mechanism 15 switched to the start speed (for example, the first speed) (that is, the first gear). The hydraulic control valve 35 for the clutch C0 that determines the first speed is controlled to be in the energized stop state, and the hydraulic control valves 36 and 38 for the brakes B0 and B1 are all set to the maximum energized state. Control), the power consumption during the automatic engine stop (that is, during the power generation stop of the generator) increases accordingly, so that the battery power may be consumed and the battery may be increased.

そこで、ECU30は、エンジン自動停止時に、車両発進に使用可能な変速段(以下「発進用変速段」という)を確定する摩擦係合要素用の油圧制御弁以外の各油圧制御弁への通電を停止する通電停止制御を実行すると共に、発進用変速段を確定する摩擦係合要素を半係合状態に維持するように該摩擦係合要素用の油圧制御弁への通電を制御する半係合制御を実行する。   Therefore, the ECU 30 energizes each hydraulic control valve other than the hydraulic control valve for the friction engagement element that determines a gear stage that can be used for vehicle start (hereinafter referred to as “start gear stage”) when the engine is automatically stopped. Half-engagement for controlling energization to the hydraulic control valve for the frictional engagement element so as to execute energization stop control for stopping and to maintain the frictional engagement element for determining the starting gear stage in the half-engaged state Execute control.

具体的には、図5に示すように、エンジン自動停止時に、発進用変速段(例えば1速)を確定するクラッチC0用の油圧制御弁35以外の各油圧制御弁36〜38(クラッチC2用の油圧制御弁36及びブレーキB0,B1用の油圧制御弁37,38)を全て通電停止状態にすることで通電停止制御を実行すると共に、発進用変速段(例えば1速)を確定するクラッチC0を半係合状態(滑りを発生させながら動力伝達する状態、又は作動油の充填完了状態で伝達トルク=0の状態)に維持するようにクラッチC0用の油圧制御弁35への通電電流を中間値(最大値よりも小さい電流値)に制御することで半係合制御を実行する。この際、エンジン動力で駆動される油圧ポンプ18は停止しているため、制御圧の元圧となる油圧を発生させるために電動油圧ポンプ22を作動させる。   Specifically, as shown in FIG. 5, the hydraulic control valves 36 to 38 (for the clutch C <b> 2) other than the hydraulic control valve 35 for the clutch C <b> 0 that determines the start gear stage (for example, the first speed) when the engine is automatically stopped. The hydraulic control valve 36 and the hydraulic control valves 37, 38 for the brakes B0, B1 are all turned off, and the power supply stop control is executed, and the clutch C0 that establishes the starting gear stage (for example, the first speed). Is maintained in a semi-engaged state (a state in which power is transmitted while causing slippage, or a state in which transmission torque = 0 when hydraulic oil is filled), and the energization current to the hydraulic control valve 35 for the clutch C0 is intermediate The half-engagement control is executed by controlling the value (current value smaller than the maximum value). At this time, since the hydraulic pump 18 driven by the engine power is stopped, the electric hydraulic pump 22 is operated in order to generate the hydraulic pressure that is the source pressure of the control pressure.

以下、ECU30が実行する図6のアイドルストップ制御ルーチンの処理内容を説明する。
図6に示すアイドルストップ制御ルーチンは、ECU30の電源オン中に所定周期で繰り返し実行され、特許請求の範囲でいう変速制御手段及びアイドルストップ制御手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ101で、エンジン自動停止要求が発生したか否かを判定し、エンジン自動停止要求が発生していなければ、ステップ102以降の処理を行うことなく、本ルーチンを終了する。
Hereinafter, the processing content of the idle stop control routine of FIG. 6 executed by the ECU 30 will be described.
The idle stop control routine shown in FIG. 6 is repeatedly executed at a predetermined period while the ECU 30 is powered on, and serves as a shift control means and an idle stop control means in the claims. When this routine is started, it is first determined in step 101 whether or not an engine automatic stop request has been generated. If an engine automatic stop request has not been generated, the present process is performed without performing the processing from step 102 onward. End the routine.

その後、エンジン自動停止要求が発生したときに、ステップ101からステップ102に進み、エンジン10の燃焼(燃料噴射及び/又は点火)を停止させてエンジン10を自動的に停止させると共に、電動油圧ポンプ22を駆動して制御圧の元圧となる油圧を発生させる。   Thereafter, when an engine automatic stop request is generated, the process proceeds from step 101 to step 102 to stop combustion (fuel injection and / or ignition) of the engine 10 to automatically stop the engine 10 and to drive the electric hydraulic pump 22. To generate a hydraulic pressure that is a source pressure of the control pressure.

この後、ステップ103に進み、油温(作動油の温度)が所定温度領域内であるか否かを判定する。ここで、所定温度領域は、油圧の応答性が確保できる温度領域であり、例えば、80から110℃までの領域に設定されている。尚、油温は、油温センサで実際に油温を検出するようにしても良いし、或は、冷却水温や吸気温等から油温を推定するようにしても良い。   Thereafter, the process proceeds to step 103, where it is determined whether or not the oil temperature (hydraulic oil temperature) is within a predetermined temperature range. Here, the predetermined temperature region is a temperature region in which the responsiveness of the hydraulic pressure can be ensured, and is set to a region from 80 to 110 ° C., for example. The oil temperature may be actually detected by an oil temperature sensor, or the oil temperature may be estimated from the cooling water temperature, the intake air temperature, or the like.

このステップ103で、油温が所定温度領域外であると判定された場合には、油圧の応答性が悪いため、エンジン自動停止時に通電停止制御を実行すると、エンジン再始動時に変速歯車機構15の変速段を速やかに発進用変速段(例えば1速)に切り換えた状態にできない可能性があると判断して、通電停止制御を禁止する。この場合、ステップ104,105の処理を飛ばして、ステップ106に進む。   If it is determined in step 103 that the oil temperature is outside the predetermined temperature range, the response of the hydraulic pressure is poor. Therefore, if the energization stop control is executed when the engine is automatically stopped, the transmission gear mechanism 15 is Since it is determined that there is a possibility that the gear position cannot be quickly switched to the starting gear position (for example, the first speed), the energization stop control is prohibited. In this case, the process of steps 104 and 105 is skipped and the process proceeds to step 106.

一方、上記ステップ103で、油温が所定温度領域内であると判定された場合には、油圧の応答性が確保できると判断して、通電停止制御を許可する。この場合、まず、ステップ104で、変速歯車機構15の回転部材の回転が停止したか否かを、例えば、入力軸回転速度センサ28で検出した変速歯車機構15の入力軸回転速度Ntと、出力軸回転速度センサ29で検出した変速歯車機構15の出力軸回転速度Noが両方とも0になったか否かによって判定する。   On the other hand, if it is determined in step 103 that the oil temperature is within the predetermined temperature range, it is determined that the responsiveness of the hydraulic pressure can be ensured, and energization stop control is permitted. In this case, first, in step 104, whether or not the rotation of the rotating member of the transmission gear mechanism 15 is stopped, for example, the input shaft rotation speed Nt of the transmission gear mechanism 15 detected by the input shaft rotation speed sensor 28 and the output. The determination is made based on whether or not both of the output shaft rotational speeds No of the transmission gear mechanism 15 detected by the shaft rotational speed sensor 29 have become zero.

このステップ104で、変速歯車機構15の回転部材の回転がまだ停止していないと判定された場合には、ステップ106に進み、エンジン再始動要求が発生したか否かを判定し、エンジン再始動要求が発生していなければ、ステップ103に戻る。   If it is determined in step 104 that the rotation of the rotating member of the transmission gear mechanism 15 has not yet stopped, the process proceeds to step 106, in which it is determined whether an engine restart request has been generated, and the engine restart is performed. If no request has occurred, the process returns to step 103.

その後、ステップ104で、変速歯車機構15の回転部材の回転が停止したと判定されたときに、ステップ105に進み、発進用変速段(例えば1速)を確定するクラッチC0用の油圧制御弁35以外の各油圧制御弁36〜38(クラッチC2用の油圧制御弁36及びブレーキB0,B1用の油圧制御弁37,38)を全て通電停止状態にすることで通電停止制御を実行すると共に、発進用変速段(例えば1速)を確定するクラッチC0を半係合状態(滑りを発生させながら動力伝達する状態、又は作動油の充填完了状態で伝達トルク=0の状態)に維持するようにクラッチC0用の油圧制御弁35への通電電流を中間値(最大値よりも小さい電流値)に制御することで半係合制御を実行する。   Thereafter, when it is determined in step 104 that the rotation of the rotating member of the transmission gear mechanism 15 has stopped, the process proceeds to step 105, where the hydraulic control valve 35 for the clutch C0 that determines the start gear stage (for example, the first speed). All of the other hydraulic control valves 36 to 38 (the hydraulic control valve 36 for the clutch C2 and the hydraulic control valves 37 and 38 for the brakes B0 and B1) are energized and stopped. The clutch C0 for determining the gear position (for example, the first speed) is maintained in a half-engaged state (a state in which power is transmitted while causing slippage, or a state in which the transmission torque = 0 when the hydraulic oil is completely charged). The half-engagement control is executed by controlling the energization current to the C0 hydraulic control valve 35 to an intermediate value (current value smaller than the maximum value).

この後、ステップ106に進み、エンジン再始動要求が発生したか否かを判定し、エンジン再始動要求が発生したときに、ステップ107に進み、エンジン10を自動的に再始動させた後、ステップ108に進み、エンジン再始動時に、通電停止制御を終了して、変速歯車機構15の変速段を発進用変速段(例えば1速)に切り換えた状態にするように各油圧制御弁35〜38への通電を制御する。ここで、発進用変速段(例えば1速)に切り換えた状態とは、発進用変速段(例えば1速)を確定するクラッチC0を半係合状態に維持する状態も含むものとする。   Thereafter, the process proceeds to step 106, where it is determined whether or not an engine restart request has occurred. When an engine restart request has occurred, the process proceeds to step 107, and after the engine 10 is automatically restarted, Proceeding to step 108, when the engine is restarted, the energization stop control is terminated, and the hydraulic control valves 35 to 38 are set so that the shift stage of the transmission gear mechanism 15 is switched to the start shift stage (for example, first speed). Control energization. Here, the state of switching to the starting gear stage (for example, the first speed) includes a state in which the clutch C0 that determines the starting gear stage (for example, the first speed) is maintained in the half-engaged state.

この後、ステップ109に進み、エンジン10が完爆したか否かを、例えば、エンジン回転速度が所定の完爆判定値を越えたか否かによって判定し、エンジン10が完爆したと判定されたときに、ステップ110に進み、電動油圧ポンプ22を停止する。   Thereafter, the routine proceeds to step 109, where it is determined whether or not the engine 10 has completely exploded, for example, by whether or not the engine rotation speed has exceeded a predetermined complete explosion determination value. Sometimes, the process proceeds to step 110 and the electric hydraulic pump 22 is stopped.

以上説明した本実施例1では、エンジン自動停止時に、発進用変速段(例えば1速)を確定するクラッチC0用の油圧制御弁35以外の各油圧制御弁36〜38への通電を停止する通電停止制御を実行するようにしたので、エンジン自動停止中の消費電力を低減することができ、これにより、エンジン自動停止中のバッテリ電力の消耗を抑制して、バッテリ上がりを防止することができる。しかも、エンジン自動停止時に、発進用変速段(例えば1速)を確定するクラッチC0を半係合状態に維持するようにクラッチC0用の油圧制御弁35への通電を制御するようにしたので、エンジン再始動時に、エンジン10の始動トルクが変速歯車機構15を介して車輪側に伝達されることを抑制して、不快なショックが発生することを防止できる。   In the first embodiment described above, energization is performed to stop energization of the hydraulic control valves 36 to 38 other than the hydraulic control valve 35 for the clutch C0 that determines the start gear stage (for example, first gear) when the engine is automatically stopped. Since the stop control is executed, it is possible to reduce the power consumption during the automatic engine stop, thereby suppressing the battery power consumption during the automatic engine stop and preventing the battery from running out. In addition, when the engine is automatically stopped, the energization of the hydraulic control valve 35 for the clutch C0 is controlled so as to maintain the clutch C0 for determining the start gear position (for example, the first speed) in the half-engaged state. When the engine is restarted, it is possible to prevent the starting torque of the engine 10 from being transmitted to the wheel side via the transmission gear mechanism 15 and to prevent an unpleasant shock from occurring.

また、本実施例1では、エンジン再始動時に、通電停止制御を終了して変速歯車機構15の変速段を発進用変速段(例えば1速)に切り換えた状態にするように各油圧制御弁35〜38への通電を制御するようにしたので、エンジン再始動後に、車両を速やかに発進させることができる。   In the first embodiment, when the engine is restarted, each hydraulic control valve 35 is set so that the energization stop control is terminated and the gear position of the transmission gear mechanism 15 is switched to the start gear position (for example, the first speed). Since energization to .about.38 is controlled, the vehicle can be started immediately after the engine is restarted.

更に、本実施例1では、油温が所定温度領域外のときには、油圧の応答性が悪いため、エンジン自動停止時に通電停止制御を実行すると、エンジン再始動時に変速歯車機構15の変速段を速やかに発進用変速段(例えば1速)に切り換えた状態にできない可能性があると判断して、通電停止制御を禁止するようにしたので、エンジン再始動時に変速歯車機構15の変速段を速やかに発進用変速段(例えば1速)に切り換えた状態にできないといった事態を未然に防止することができる。   Further, in the first embodiment, when the oil temperature is outside the predetermined temperature range, the response of the hydraulic pressure is poor. Therefore, when the energization stop control is executed at the time of the engine automatic stop, the gear stage of the transmission gear mechanism 15 is quickly changed when the engine is restarted. Since it is determined that there is a possibility that the gear cannot be switched to the starting gear (for example, first gear), the power supply stop control is prohibited. It is possible to prevent a situation in which it is not possible to switch to the starting gear stage (for example, the first speed).

また、エンジン自動停止時に変速歯車機構15の回転部材の回転が停止する前に通電停止制御を実行すると、変速歯車機構15の回転部材の回転中に、発進用変速段(例えば1速)を確定するクラッチC0以外の全ての摩擦係合要素(クラッチC2及びブレーキB0,B1)が係合状態となって、変速歯車機構15が正常動作できないロック状態になる可能性があるが、本実施例1では、エンジン自動停止時に変速歯車機構15の回転部材の回転が停止したときに通電停止制御を許可するようにしたので、変速歯車機構15の回転部材の回転中に、発進用変速段(例えば1速)を確定するクラッチC0以外の全ての摩擦係合要素(クラッチC2及びブレーキB0,B1)が係合状態となることを回避することができ、変速歯車機構15が正常動作できないロック状態になることを未然に防止することができる。   In addition, when the energization stop control is executed before the rotation of the rotating member of the transmission gear mechanism 15 is stopped when the engine is automatically stopped, the start gear stage (for example, the first speed) is determined while the rotating member of the transmission gear mechanism 15 is rotating. Although all the friction engagement elements (clutch C2 and brakes B0 and B1) other than the clutch C0 to be engaged may be engaged and the transmission gear mechanism 15 may be locked so that it cannot operate normally. Then, the energization stop control is permitted when the rotation of the rotating member of the transmission gear mechanism 15 is stopped when the engine is automatically stopped. Therefore, during the rotation of the rotating member of the transmission gear mechanism 15, the start gear stage (for example, 1 Speed) can be avoided from engaging all the frictional engagement elements (clutch C2 and brakes B0, B1) other than the clutch C0, and the transmission gear mechanism 15 is normal. It is possible to prevent that in the locked state can not be created.

尚、上記実施例1では、エンジン自動停止時に、1速を確定するクラッチC0用の油圧制御弁35以外の各油圧制御弁36〜38への通電を停止すると共に、1速を確定するクラッチC0を半係合状態に維持するようにクラッチC0用の油圧制御弁35への通電電流を中間値に制御するようにしたが、これに限定されず、例えば、L速を確定するクラッチC2及びブレーキB1用の油圧制御弁36,38以外の各油圧制御弁35,37への通電を停止すると共に、L速を確定するクラッチC2及びブレーキB1を半係合状態に維持するようにクラッチC2及びブレーキB1用の油圧制御弁36,38への通電電流を中間値に制御するようにしても良い。或は、2速を確定するクラッチC2及びブレーキB0用の油圧制御弁36,37以外の各油圧制御弁35,38への通電を停止すると共に、2速を確定するクラッチC2及びブレーキB0を半係合状態に維持するようにクラッチC2及びブレーキB0用の油圧制御弁36,37への通電電流を中間値に制御するようにしても良い。   In the first embodiment, when the engine is automatically stopped, the energization of the hydraulic control valves 36 to 38 other than the hydraulic control valve 35 for the clutch C0 for determining the first speed is stopped and the clutch C0 for determining the first speed. The current supplied to the hydraulic control valve 35 for the clutch C0 is controlled to an intermediate value so as to maintain the semi-engaged state. However, the present invention is not limited to this. For example, the clutch C2 and the brake for determining the L speed The clutch C2 and the brake C2 and the brake B1 are stopped so that the energization of the hydraulic control valves 35 and 37 other than the hydraulic control valve 36 and 38 for the B1 is stopped and the clutch C2 and the brake B1 for determining the L speed are maintained in a half-engaged state. The energizing current to the hydraulic control valves 36 and 38 for B1 may be controlled to an intermediate value. Alternatively, energization of the hydraulic control valves 35 and 38 other than the hydraulic control valves 36 and 37 for the clutch C2 and the brake B0 for determining the second speed is stopped, and the clutch C2 and the brake B0 for determining the second speed are set to half. The energization current to the hydraulic control valves 36 and 37 for the clutch C2 and the brake B0 may be controlled to an intermediate value so as to maintain the engaged state.

次に、図7を用いて本発明の実施例2を説明する。但し、前記実施例1と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。   Next, Embodiment 2 of the present invention will be described with reference to FIG. However, description of substantially the same parts as those in the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.

本実施例2では、ECU30により後述する図7のアイドルストップ制御ルーチンを実行することで、エンジン自動停止時に、変速歯車機構15の変速段を車両発進に使用可能な複数の変速段(例えばL速と1速と2速)のうちの各油圧制御弁35〜38の消費電力の合計が少なくなる変速段(例えばL速又は2速)に切り換えた状態にするように各油圧制御弁35〜38への通電を制御するようにしている。   In the second embodiment, the ECU 30 executes an idle stop control routine of FIG. 7 to be described later, whereby a plurality of shift speeds (for example, L speed) that can be used for starting the vehicle at the shift gear mechanism 15 when the engine is automatically stopped. 1st speed and 2nd speed), each hydraulic control valve 35-38 is switched to a shift stage (for example, L speed or 2nd speed) in which the total power consumption of each hydraulic control valve 35-38 is reduced. The energization to is controlled.

図4に示すように、変速歯車機構15の変速段を1速に切り換えた状態にする場合には、3つの油圧制御弁(クラッチC2用の油圧制御弁36及びブレーキB0,B1用の油圧制御弁37,38)を最大通電状態に制御する必要があるが、変速歯車機構15の変速段をL速に切り換えた状態にする場合には、2つの油圧制御弁(クラッチC2用の油圧制御弁36及びブレーキB1用の油圧制御弁38)を最大通電状態に制御するだけで良く、また、変速歯車機構15の変速段を2速に切り換えた状態にする場合には、2つの油圧制御弁(クラッチC2用の油圧制御弁36及びブレーキB0用の油圧制御弁37)を最大通電状態に制御するだけで良い。従って、変速歯車機構15の変速段を1速に切り換えた状態にする場合よりも、変速歯車機構15の変速段をL速又は2速に切り換えた状態にする場合の方が、各油圧制御弁35〜38の消費電力の合計が少なくなる。   As shown in FIG. 4, when the gear position of the transmission gear mechanism 15 is switched to the first speed, three hydraulic control valves (the hydraulic control valve 36 for the clutch C2 and the hydraulic controls for the brakes B0 and B1) are used. It is necessary to control the valves 37, 38) to the maximum energized state. However, when the gear position of the transmission gear mechanism 15 is switched to the L speed, two hydraulic control valves (hydraulic control valves for the clutch C2) are used. 36 and the hydraulic control valve 38 for the brake B1 only need to be controlled to the maximum energized state, and when the gear position of the transmission gear mechanism 15 is switched to the second speed, two hydraulic control valves ( It is only necessary to control the hydraulic control valve 36 for the clutch C2 and the hydraulic control valve 37) for the brake B0 to the maximum energized state. Accordingly, each hydraulic control valve is more effective when the gear position of the transmission gear mechanism 15 is switched to the L speed or the second speed than when the gear position of the transmission gear mechanism 15 is switched to the first speed. The total power consumption of 35 to 38 is reduced.

図7に示すアイドルストップ制御ルーチンでは、まず、ステップ201で、エンジン自動停止要求が発生したか否かを判定し、エンジン自動停止要求が発生したときに、ステップ202に進み、エンジン10の燃焼(燃料噴射及び/又は点火)を停止させてエンジン10を自動的に停止させると共に、電動油圧ポンプ22を駆動して制御圧の元圧となる油圧を発生させる。   In the idle stop control routine shown in FIG. 7, first, in step 201, it is determined whether or not an engine automatic stop request has been generated. When an engine automatic stop request has been generated, the routine proceeds to step 202 and combustion of the engine 10 ( The engine 10 is automatically stopped by stopping the fuel injection and / or ignition), and the electric hydraulic pump 22 is driven to generate a hydraulic pressure that serves as a control pressure.

この後、ステップ203に進み、変速歯車機構15の変速段を車両発進に使用可能な複数の変速段(例えばL速と1速と2速)のうちの各油圧制御弁35〜38の消費電力の合計が少なくなる変速段(例えばL速又は2速)に切り換えた状態にするように各油圧制御弁35〜38への通電を制御する。   Thereafter, the process proceeds to step 203, and the power consumption of the hydraulic control valves 35 to 38 among a plurality of shift speeds (for example, L speed, 1st speed, and 2nd speed) that can be used for starting the vehicle. The energization to each hydraulic control valve 35 to 38 is controlled so as to be switched to a gear position (for example, L speed or 2nd speed) in which the total of the hydraulic pressure is reduced.

具体的には、変速歯車機構15の変速段をL速に切り換えた状態にする場合には、クラッチC2用の油圧制御弁36及びブレーキB1用の油圧制御弁38を両方とも最大通電状態に制御すると共に、クラッチC0用の油圧制御弁35及びブレーキB0用の油圧制御弁37を両方とも通電停止状態に制御する。また、変速歯車機構15の変速段を2速に切り換えた状態にする場合には、クラッチC2用の油圧制御弁36及びブレーキB0用の油圧制御弁37を両方とも最大通電状態に制御すると共に、クラッチC0用の油圧制御弁35及びブレーキB1用の油圧制御弁38を両方とも通電停止状態に制御する。   Specifically, when the gear stage of the transmission gear mechanism 15 is switched to the L speed, both the hydraulic control valve 36 for the clutch C2 and the hydraulic control valve 38 for the brake B1 are controlled to the maximum energized state. At the same time, both the hydraulic control valve 35 for the clutch C0 and the hydraulic control valve 37 for the brake B0 are controlled to be in the energized stop state. Further, in the case where the gear position of the transmission gear mechanism 15 is switched to the second speed, both the hydraulic control valve 36 for the clutch C2 and the hydraulic control valve 37 for the brake B0 are controlled to the maximum energized state, Both the hydraulic control valve 35 for the clutch C0 and the hydraulic control valve 38 for the brake B1 are controlled to be in the energized stop state.

この後、ステップ204に進み、エンジン再始動要求が発生したか否かを判定し、エンジン再始動要求が発生したときに、ステップ205に進み、エンジン10を自動的に再始動させる。   Thereafter, the process proceeds to step 204, where it is determined whether or not an engine restart request has occurred. When an engine restart request has occurred, the process proceeds to step 205 and the engine 10 is automatically restarted.

この後、ステップ206に進み、エンジン10が完爆したか否かを、例えば、エンジン回転速度が所定の完爆判定値を越えたか否かによって判定し、エンジン10が完爆したと判定されたときに、ステップ207に進み、電動油圧ポンプ22を停止する。   Thereafter, the routine proceeds to step 206, where it is determined whether or not the engine 10 has completely exploded, for example, depending on whether or not the engine rotation speed has exceeded a predetermined complete explosion determination value. Sometimes, the process proceeds to step 207, and the electric hydraulic pump 22 is stopped.

以上説明した本実施例2では、エンジン自動停止時に、変速歯車機構15の変速段を車両発進に使用可能な複数の変速段(例えばL速と1速と2速)のうちの各油圧制御弁35〜38の消費電力の合計が少なくなる変速段(例えばL速又は2速)に切り換えた状態にするように各油圧制御弁35〜38への通電を制御するようにしたので、エンジン自動停止中の消費電力を低減することができる。しかも、エンジン自動停止中に車両発進に使用可能な変速段(例えばL速又は2速)に切り換えた状態に維持することができるため、万一、油圧制御弁等の故障によって変速段を切り換え不能になっても、車両を発進させることができる。   In the second embodiment described above, each hydraulic control valve among a plurality of shift speeds (for example, L speed, 1st speed, and 2nd speed) that can use the shift speed of the transmission gear mechanism 15 for starting the vehicle when the engine is automatically stopped. Since the power supply to each hydraulic control valve 35 to 38 is controlled so as to switch to a gear position (for example, L speed or 2nd speed) in which the total power consumption of 35 to 38 is reduced, the engine is automatically stopped. Power consumption can be reduced. Moreover, since the engine can be maintained in a state where it can be switched to a gear stage that can be used for starting the vehicle (for example, L-speed or 2-speed) while the engine is automatically stopped, the gear stage cannot be switched due to a malfunction of the hydraulic control valve or the like. Even if it becomes, it can start a vehicle.

10…エンジン(内燃機関)、11…自動変速機、12…トルクコンバータ、15…変速歯車機構(変速機構)、16…スロットルバルブ、17…油圧制御回路、18…油圧ポンプ、20…自動変速制御回路、22…電動油圧ポンプ、27…エンジン回転速度センサ、28…入力軸回転速度センサ、29…出力軸回転速度センサ、30…ECU(変速制御手段,アイドルストップ制御手段)、35〜38…油圧制御弁、C0〜C2…クラッチ(摩擦係合要素)、B0,B1…ブレーキ(摩擦係合要素)   DESCRIPTION OF SYMBOLS 10 ... Engine (internal combustion engine), 11 ... Automatic transmission, 12 ... Torque converter, 15 ... Transmission gear mechanism (transmission mechanism), 16 ... Throttle valve, 17 ... Hydraulic control circuit, 18 ... Hydraulic pump, 20 ... Automatic transmission control Circuit: 22 ... Electric hydraulic pump, 27 ... Engine rotation speed sensor, 28 ... Input shaft rotation speed sensor, 29 ... Output shaft rotation speed sensor, 30 ... ECU (shift control means, idle stop control means), 35-38 ... Hydraulic pressure Control valve, C0 to C2 ... clutch (friction engagement element), B0, B1 ... brake (friction engagement element)

Claims (5)

内燃機関の動力を変速機構を介して車輪側に伝達する車両駆動システムに適用され、前記変速機構に設けられた複数の摩擦係合要素に作用させる油圧を制御する複数の油圧制御弁と、各油圧制御弁への通電を個別に制御して各摩擦係合要素に作用させる油圧を個別に制御することで各摩擦係合要素の係合と解放を選択的に切り換えて前記変速機構の変速段を切り換える変速制御手段と、前記内燃機関の自動停止要求が発生したときに該内燃機関を自動停止させ、前記内燃機関の再始動要求が発生したときに該内燃機関を再始動させるアイドルストップ制御手段と、前記アイドルストップ制御手段による内燃機関の自動停止中に油圧を発生させるために作動する電動油圧ポンプとを備えた車両駆動システムの制御装置において、
前記変速制御手段は、前記内燃機関の自動停止時に、車両発進に使用可能な変速段(以下「発進用変速段」という)を確定する摩擦係合要素用の油圧制御弁以外の各油圧制御弁への通電を停止する通電停止制御を実行すると共に、前記発進用変速段を確定する摩擦係合要素を半係合状態に維持するように該摩擦係合要素用の油圧制御弁への通電を制御することを特徴とする車両駆動システムの制御装置。
A plurality of hydraulic control valves that are applied to a vehicle drive system that transmits the power of the internal combustion engine to the wheels via a transmission mechanism, and that control the hydraulic pressure that is applied to the plurality of friction engagement elements provided in the transmission mechanism; By individually controlling energization to the hydraulic control valve and individually controlling the hydraulic pressure applied to each friction engagement element, the engagement and release of each friction engagement element can be selectively switched to change the gear stage of the transmission mechanism. Shift control means for switching between, and an idle stop control means for automatically stopping the internal combustion engine when a request for automatic stop of the internal combustion engine is generated, and restarting the internal combustion engine when a request for restart of the internal combustion engine is generated And an electric hydraulic pump that operates to generate hydraulic pressure during automatic stop of the internal combustion engine by the idle stop control means,
The shift control means includes a hydraulic control valve other than the hydraulic control valve for a friction engagement element that determines a shift stage (hereinafter referred to as “starting shift stage”) that can be used for starting the vehicle when the internal combustion engine is automatically stopped. Energization stop control is performed to stop energization, and energization of the hydraulic control valve for the friction engagement element is performed so as to maintain the friction engagement element for determining the starting shift stage in a half-engaged state. A control device for a vehicle drive system, characterized by controlling.
前記変速制御手段は、前記内燃機関の再始動時に、前記通電停止制御を終了して前記変速機構の変速段を前記発進用変速段に切り換えた状態にするように各油圧制御弁への通電を制御することを特徴とする請求項1に記載の車両駆動システムの制御装置。   The shift control means energizes each hydraulic control valve so that when the internal combustion engine is restarted, the energization stop control is ended and the shift stage of the transmission mechanism is switched to the start shift stage. The control device for a vehicle drive system according to claim 1, wherein control is performed. 前記変速制御手段は、前記変速機構の作動油の温度が所定温度領域外のときに前記通電停止制御を禁止することを特徴とする請求項1又は2に記載の車両駆動システムの制御装置。   3. The vehicle drive system control device according to claim 1, wherein the shift control unit prohibits the energization stop control when a temperature of hydraulic oil of the transmission mechanism is outside a predetermined temperature range. 4. 前記変速制御手段は、前記内燃機関の自動停止時に前記変速機構の回転部材の回転が停止したときに前記通電停止制御を許可することを特徴とする請求項1乃至3のいずれかに記載の車両駆動システムの制御装置。   The vehicle according to any one of claims 1 to 3, wherein the shift control means permits the energization stop control when rotation of a rotating member of the transmission mechanism is stopped when the internal combustion engine is automatically stopped. Control device for drive system. 内燃機関の動力を変速機構を介して車輪側に伝達する車両駆動システムに適用され、前記変速機構に設けられた複数の摩擦係合要素に作用させる油圧を制御する複数の油圧制御弁と、各油圧制御弁への通電を個別に制御して各摩擦係合要素に作用させる油圧を個別に制御することで各摩擦係合要素の係合と解放を選択的に切り換えて前記変速機構の変速段を切り換える変速制御手段と、前記内燃機関の自動停止要求が発生したときに該内燃機関を自動停止させ、前記内燃機関の再始動要求が発生したときに該内燃機関を再始動させるアイドルストップ制御手段と、前記アイドルストップ制御手段による内燃機関の自動停止中に油圧を発生させるために作動する電動油圧ポンプとを備えた車両駆動システムの制御装置において、
前記変速制御手段は、前記内燃機関の自動停止時に、前記変速機構の変速段を車両発進に使用可能な複数の変速段のうちの各油圧制御弁の消費電力の合計が少なくなる変速段に切り換えた状態にするように各油圧制御弁への通電を制御することを特徴とする車両駆動システムの制御装置。
A plurality of hydraulic control valves that are applied to a vehicle drive system that transmits the power of the internal combustion engine to the wheels via a transmission mechanism, and that control the hydraulic pressure that is applied to the plurality of friction engagement elements provided in the transmission mechanism; By individually controlling energization to the hydraulic control valve and individually controlling the hydraulic pressure applied to each friction engagement element, the engagement and release of each friction engagement element can be selectively switched to change the gear stage of the transmission mechanism. Shift control means for switching between, and an idle stop control means for automatically stopping the internal combustion engine when a request for automatic stop of the internal combustion engine is generated, and restarting the internal combustion engine when a request for restart of the internal combustion engine is generated And an electric hydraulic pump that operates to generate hydraulic pressure during automatic stop of the internal combustion engine by the idle stop control means,
The shift control means switches the shift stage of the transmission mechanism to a shift stage that reduces the total power consumption of each hydraulic control valve among a plurality of shift stages that can be used for vehicle start when the internal combustion engine is automatically stopped. A control device for a vehicle drive system, wherein energization of each hydraulic control valve is controlled so as to be in a closed state.
JP2010109765A 2010-05-12 2010-05-12 Control device for vehicle drive system Expired - Fee Related JP5454347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010109765A JP5454347B2 (en) 2010-05-12 2010-05-12 Control device for vehicle drive system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010109765A JP5454347B2 (en) 2010-05-12 2010-05-12 Control device for vehicle drive system

Publications (2)

Publication Number Publication Date
JP2011236992A true JP2011236992A (en) 2011-11-24
JP5454347B2 JP5454347B2 (en) 2014-03-26

Family

ID=45325197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010109765A Expired - Fee Related JP5454347B2 (en) 2010-05-12 2010-05-12 Control device for vehicle drive system

Country Status (1)

Country Link
JP (1) JP5454347B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055611A (en) * 2012-09-11 2014-03-27 Hitachi Automotive Systems Ltd Shift control device of automatic transmission
KR20190042236A (en) * 2017-10-16 2019-04-24 현대 파워텍 주식회사 Control method of restart in isg mode
CN111132881A (en) * 2017-10-03 2020-05-08 马自达汽车株式会社 Control device for vehicle with multi-stage automatic transmission

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101887986B1 (en) * 2016-11-08 2018-08-13 현대오트론 주식회사 Method and apparatus for Controlling Automatic Transmission of Vehicle Having Idle Stop and Go Function

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002130460A (en) * 2000-10-30 2002-05-09 Denso Corp Control device for automatic transmission
JP2002168330A (en) * 2000-11-30 2002-06-14 Denso Corp Hydraulic control device of automatic transmission
JP2003074688A (en) * 2001-08-31 2003-03-12 Aisin Aw Co Ltd Control unit of vehicle
JP2003172444A (en) * 2001-12-07 2003-06-20 Aisin Aw Co Ltd Drive control device for vehicle
JP2005351282A (en) * 2004-06-08 2005-12-22 Mazda Motor Corp Controller of vehicle with idle stop
JP2006170399A (en) * 2004-12-20 2006-06-29 Mazda Motor Corp Automatic transmission control device
JP2006283809A (en) * 2005-03-31 2006-10-19 Jatco Ltd Automatic transmission
JP2006348997A (en) * 2005-06-14 2006-12-28 Denso Corp Automatic transmission controller
JP2007046634A (en) * 2005-08-08 2007-02-22 Fujitsu Ten Ltd Controller and control method of electric oil pump

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002130460A (en) * 2000-10-30 2002-05-09 Denso Corp Control device for automatic transmission
JP2002168330A (en) * 2000-11-30 2002-06-14 Denso Corp Hydraulic control device of automatic transmission
JP2003074688A (en) * 2001-08-31 2003-03-12 Aisin Aw Co Ltd Control unit of vehicle
JP2003172444A (en) * 2001-12-07 2003-06-20 Aisin Aw Co Ltd Drive control device for vehicle
JP2005351282A (en) * 2004-06-08 2005-12-22 Mazda Motor Corp Controller of vehicle with idle stop
JP2006170399A (en) * 2004-12-20 2006-06-29 Mazda Motor Corp Automatic transmission control device
JP2006283809A (en) * 2005-03-31 2006-10-19 Jatco Ltd Automatic transmission
JP2006348997A (en) * 2005-06-14 2006-12-28 Denso Corp Automatic transmission controller
JP2007046634A (en) * 2005-08-08 2007-02-22 Fujitsu Ten Ltd Controller and control method of electric oil pump

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055611A (en) * 2012-09-11 2014-03-27 Hitachi Automotive Systems Ltd Shift control device of automatic transmission
CN111132881A (en) * 2017-10-03 2020-05-08 马自达汽车株式会社 Control device for vehicle with multi-stage automatic transmission
CN111132881B (en) * 2017-10-03 2023-04-11 马自达汽车株式会社 Control device for vehicle with multi-stage automatic transmission
KR20190042236A (en) * 2017-10-16 2019-04-24 현대 파워텍 주식회사 Control method of restart in isg mode
KR102006358B1 (en) 2017-10-16 2019-08-02 현대트랜시스 주식회사 Control method of restart in isg mode

Also Published As

Publication number Publication date
JP5454347B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5799873B2 (en) Control device for hybrid vehicle
WO2011089818A1 (en) Control device and method for vehicle
JP5924315B2 (en) Vehicle control device
JP6369549B2 (en) Vehicle control apparatus and vehicle control method
JP2006161838A (en) Hydraulic oil feeder
CN107380166B (en) Method for operating an automatic start/stop system in a vehicle using a torque converter
JP5531915B2 (en) Vehicle control device
WO2014068656A1 (en) Vehicle control device
JP5035376B2 (en) Control device for vehicle lock-up clutch
JP4729937B2 (en) Control device for vehicle lock-up clutch
US10215241B2 (en) Method for operating an automatic start/stop system in a vehicle utilizing a fluid launch clutch
JP2013204625A (en) Control device for vehicle
JP4675370B2 (en) Control method of car
JP5454347B2 (en) Control device for vehicle drive system
JP5252317B2 (en) Vehicle control device
JP4208545B2 (en) Control method of car
JP4566083B2 (en) Automotive control device
JP2010228672A (en) Vehicle system
JP5807590B2 (en) Control device for automatic transmission for hybrid vehicle
JP5534212B2 (en) Vehicle control device
JP2007211619A (en) Fuel-cut control device of engine
JP4182607B2 (en) Control device for vehicle having flywheel for energy storage
JP2017003007A (en) Control device of vehicle
JP2012132421A (en) Vehicle control device
JP2011194939A (en) Vehicular power transmission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131223

R151 Written notification of patent or utility model registration

Ref document number: 5454347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees