JP2011228460A - Semiconductor device and manufacturing method for the same - Google Patents

Semiconductor device and manufacturing method for the same Download PDF

Info

Publication number
JP2011228460A
JP2011228460A JP2010096509A JP2010096509A JP2011228460A JP 2011228460 A JP2011228460 A JP 2011228460A JP 2010096509 A JP2010096509 A JP 2010096509A JP 2010096509 A JP2010096509 A JP 2010096509A JP 2011228460 A JP2011228460 A JP 2011228460A
Authority
JP
Japan
Prior art keywords
semiconductor device
substrate
mounting
heat radiating
radiating plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010096509A
Other languages
Japanese (ja)
Inventor
Katsuki Utsumi
勝喜 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010096509A priority Critical patent/JP2011228460A/en
Publication of JP2011228460A publication Critical patent/JP2011228460A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • H01L2224/48228Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item the bond pad being disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48471Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area being a ball bond, i.e. wedge-to-ball, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device that can suppress a breaking trouble of an electrode portion caused by overheat of a light source, and a manufacturing method for the same.SOLUTION: A semiconductor device is mounted on a mount board, and has a first radiation plate 9 having a radiation plate hole 10 penetrating from the upper surface to the lower surface of the first radiation plate 9, a mount terminal 4 which is provided at the lower surface side of the first radiation plate 9 and electrically connected to a terminal of the mount board, a light source 1 provided on the upper surface of the first radiation plate 9, a wire 6 for electrically connecting the light source 1 and the mount terminal 4 through the radiation plate hole 10, a reflection plate 3 which is provided on the upper surface of the first radiation plate 9 and reflects light of the light source 1, and a lens 2 which is provided on the upper surface of the first radiation plate 9 so as to cover the light source 1, the wire 6 and the reflection plate 3 and focuses light of the light source 1.

Description

本発明は、半導体装置とその製造方法に関するものである。   The present invention relates to a semiconductor device and a manufacturing method thereof.

近年、例えば液晶パネルなどのバックライトには発光ダイオード(以降LED(Light Emitting Diode)と記載)を用いてきている。このLEDとは順方向に電圧を加えた際に発光する半導体素子(半導体チップ)のことである。寿命は白熱電球に比べてかなり長く、製品寿命は封止樹脂の劣化により透光性が落ち、発光量が一定以下になった時点をいうが、素子そのものはほぼ半永久的に使える。LEDを光源に用いた発光装置(半導体装置)が使用不能になるほとんどの原因はLEDの電極部分の金属の酸化及び劣化、並びに過熱及び衝撃などに起因する内部の金線の断線によるものである。また、従来からある液晶パネルでは冷陰極管(CCFL)がバックライトに用いられていたが、CCFLに代えて液晶パネル用光源(バックライト)として高輝度LEDを用いたLEDバックライトの液晶パネルが広がりを見せている。LEDバックライトを液晶パネルに用いると、既存の液晶パネルと比べて色再現性に優れるというメリットがある。また、LEDバックライト液晶パネルの特徴は消費電力の低減を狙うことにあるため、LED自体の更なる省電力化が求められている。   In recent years, light emitting diodes (hereinafter referred to as LEDs (Light Emitting Diodes)) have been used for backlights such as liquid crystal panels. This LED is a semiconductor element (semiconductor chip) that emits light when a voltage is applied in the forward direction. The lifetime is considerably longer than that of incandescent bulbs, and the lifetime of the product is the point where the translucency is lowered due to deterioration of the sealing resin and the light emission amount becomes below a certain level, but the device itself can be used almost semi-permanently. Most of the causes of the unusability of light emitting devices (semiconductor devices) using LEDs as light sources are due to metal oxidation and deterioration of the electrode portions of the LEDs, and internal gold wire disconnection due to overheating and impact. . Further, in the conventional liquid crystal panel, a cold cathode fluorescent lamp (CCFL) is used for the backlight, but instead of the CCFL, a liquid crystal panel of an LED backlight using a high-brightness LED as a light source (backlight) for the liquid crystal panel is used. It is spreading. When an LED backlight is used for a liquid crystal panel, there is a merit that color reproducibility is excellent as compared with an existing liquid crystal panel. Moreover, since the feature of the LED backlight liquid crystal panel is to reduce power consumption, further power saving of the LED itself is required.

LEDの省電力化と光の変換効率の向上には様々な手法が用いられてきているが、LED自体の光源の出力アップが主流である。しかしながら、この場合には、上述の如く、光源の出力アップの為にLEDが過熱されて電極部が断線し、発光装置の寿命が短くなる課題がある。このLEDの過熱を低減する為に放熱板を用いる手法がある。この放熱板方式の発光装置を開示する先行文献としては、特許文献1及び2がある。   Various methods have been used for power saving of LEDs and improvement of light conversion efficiency, but increasing the output of the light source of the LED itself is the mainstream. However, in this case, as described above, there is a problem that the LED is overheated to increase the output of the light source, the electrode portion is disconnected, and the life of the light emitting device is shortened. There is a method of using a heat sink to reduce overheating of the LED. Patent Documents 1 and 2 are prior art documents disclosing this heat radiation plate type light emitting device.

特許文献1では、配線基板の貫通孔内部に放熱板が設けられ、その放熱板の上に光源が配されている。また、特許文献2では、熱源としての光源とフォトセンサとの間にフォトセンサを覆う態様で放熱板が設けられている。   In Patent Document 1, a heat sink is provided inside a through hole of a wiring board, and a light source is disposed on the heat sink. Moreover, in patent document 2, the heat sink is provided in the aspect which covers a photo sensor between the light source as a heat source, and a photo sensor.

特開2006−339559号公報JP 2006-339559 A 実開平5−31265号公報Japanese Utility Model Publication No. 5-31265

しかしながら、特許文献1に記載の技術では、配線基板の中央部に貫通孔をわざわざ設置しその中に放熱板を設置しなければならず、製造工程の複雑化及びコストアップとなる課題がある。   However, in the technique described in Patent Document 1, a through-hole must be installed in the center of the wiring board and a heat sink must be installed therein, resulting in a problem in that the manufacturing process is complicated and the cost is increased.

また、特許文献2に記載の技術では、折れ曲がった複雑な形状を有する放熱板をわざわざ外付け設置しなければならず、コストアップ及び大型化となる課題がある。   Moreover, in the technique described in Patent Document 2, it is necessary to externally install a heat sink having a complicated shape that is bent, and there is a problem that the cost is increased and the size is increased.

そこで、本発明は、光源の過熱による電極部断線の不具合を低減することが可能な半導体装置とその製造方法を提供することを目的とするものである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device and a method for manufacturing the same that can reduce the problem of electrode disconnection due to overheating of a light source.

上記の課題を解決するために、本発明の一態様に係る半導体装置は、実装基板に実装される半導体装置であって、上面から下面に向けて貫通する放熱板孔が形成された第1の放熱板と、前記第1の放熱板の下面側に設けられ、前記実装基板の端子と電気的に接続される実装端子と、前記第1の放熱板の上面上に設けられた発光素子と、前記放熱板孔を介して、前記発光素子と前記実装端子とを電気的に接続するワイヤーと、前記第1の放熱板の上面上に設けられ、前記発光素子の光を反射する反射板と、前記発光素子、前記ワイヤー及び前記反射板を覆うように前記第1の放熱板の上面上に設けられ、前記発光素子の光を集光するレンズとを備えることを特徴とする。ここで、前記半導体装置は、さらに、上面上に基板電極が設けられた基板と、前記基板の上面と前記第1の放熱板の下面とを接着する接着剤とを備え、前記実装端子は、前記基板の下面上に設けられ、前記基板電極と電気的に接続され、前記ワイヤーは、一端が前記発光素子と接続され、他端が前記基板電極と接続され、前記基板は、前記基板電極の上方に前記放熱板孔が位置するように前記第1の放熱板と接着されてもよい。   In order to solve the above problems, a semiconductor device according to one embodiment of the present invention is a semiconductor device mounted on a mounting substrate, and includes a first heat dissipation plate hole penetrating from an upper surface toward a lower surface. A heat dissipating plate, a mounting terminal provided on the lower surface side of the first heat dissipating plate and electrically connected to a terminal of the mounting substrate, a light emitting element provided on the upper surface of the first heat dissipating plate, A wire that electrically connects the light emitting element and the mounting terminal through the heat dissipation plate hole, a reflective plate that is provided on an upper surface of the first heat dissipation plate and reflects light of the light emitting element; And a lens that is provided on an upper surface of the first heat radiating plate so as to cover the light emitting element, the wire, and the reflecting plate, and collects light of the light emitting element. Here, the semiconductor device further includes a substrate provided with a substrate electrode on an upper surface, and an adhesive that bonds the upper surface of the substrate and the lower surface of the first heat dissipation plate, and the mounting terminal includes: The wire is provided on a lower surface of the substrate and is electrically connected to the substrate electrode. The wire has one end connected to the light emitting element, the other end connected to the substrate electrode, and the substrate is connected to the substrate electrode. You may adhere | attach with a said 1st heat sink so that the said heat sink hole may be located upwards.

本態様によると、発熱する光源直下に第1の放熱板を設置することで、半導体装置の放熱特性を向上させて過熱による電極部断線の不具合を低減することができ、半導体装置自体の寿命を長くすることができる。   According to this aspect, by installing the first heat radiating plate directly under the light source that generates heat, it is possible to improve the heat dissipation characteristics of the semiconductor device and reduce the failure of the electrode part disconnection due to overheating, and the life of the semiconductor device itself can be reduced. Can be long.

また、前記実装端子は、該実装端子の上方に前記放熱板孔が位置するように前記第1の放熱板の下面上に接着剤を介して接着されていてもよい。   The mounting terminal may be bonded to the lower surface of the first heat dissipation plate via an adhesive so that the heat dissipation plate hole is positioned above the mounting terminal.

本態様によると、発熱する光源直下に第1の放熱板を設置し、且つ実装端子以外の箇所で第1の放熱板の下面をむき出しにするすることで、半導体装置の放熱特性を更に向上させて過熱による電極部断線の不具合を低減することができ、半導体装置自体の寿命を更に長くすることができる。   According to this aspect, the heat dissipation characteristics of the semiconductor device can be further improved by installing the first heat radiating plate directly under the heat generating light source and exposing the lower surface of the first heat radiating plate at a place other than the mounting terminal. Thus, it is possible to reduce the failure of the electrode portion disconnection due to overheating, and to further extend the life of the semiconductor device itself.

また、前記接着剤は、前記第1の放熱板の下面において前記実装端子の周囲に延在していてもよい。   The adhesive may extend around the mounting terminal on the lower surface of the first heat radiating plate.

本態様によると、半導体装置を実装基板に半田を介して実装する際にも、接着剤上には半田が濡れず、結果として実装端子と第1の放熱板とが半田でブリッジせず電気ショートしない半導体装置を提供できる。   According to this aspect, even when the semiconductor device is mounted on the mounting substrate via the solder, the solder does not get wet on the adhesive, and as a result, the mounting terminal and the first heat radiating plate are not bridged by the solder and are electrically short-circuited. A semiconductor device that does not work can be provided.

また、前記第1の放熱板と前記実装基板とは、前記実装端子と前記実装基板の端子とを半田により接合する際に、前記半田により接合されてもよい。   Further, the first heat radiating plate and the mounting board may be joined by the solder when the mounting terminal and the terminal of the mounting board are joined by solder.

本態様によると、発熱する光源直下に第1の放熱板を設置し、且つ第1の放熱板から半田を介して実装基板に熱を逃がすことができ、更に半導体装置の放熱特性を向上させて過熱による電極部断線の不具合を低減することができ、半導体装置自体の寿命を更に長くすることができる。   According to this aspect, the first heat radiating plate can be installed immediately below the light source that generates heat, and heat can be released from the first heat radiating plate to the mounting substrate via solder, and further, the heat dissipation characteristics of the semiconductor device can be improved. The problem of disconnection of the electrode part due to overheating can be reduced, and the life of the semiconductor device itself can be further extended.

また、前記半導体装置は、さらに、前記第1の放熱板の下面上に設けられた第2の放熱板を備えてもよい。   The semiconductor device may further include a second heat radiating plate provided on the lower surface of the first heat radiating plate.

本態様によると、発熱する光源直下に第1の放熱板を設置し、且つ第1の放熱板の下面に第2の放熱板を設置することで、半導体装置の放熱特性がさらに向上し、過熱による電極部断線不具合を低減することで半導体装置自体の寿命もさらに長くなる。   According to this aspect, the heat dissipation characteristic of the semiconductor device is further improved by installing the first heat sink directly under the light source that generates heat, and the second heat sink on the lower surface of the first heat sink. The lifetime of the semiconductor device itself can be further extended by reducing the problem of disconnection of the electrode part due to the above.

また、前記接着剤は、前記第1の放熱板の下面上において前記実装端子の周囲に延在していてもよい。   The adhesive may extend around the mounting terminal on the lower surface of the first heat radiating plate.

本態様によると、半導体装置を実装基板に半田を介して実装する際にも、接着剤上には半田が濡れず、結果として実装端子と第1の放熱板及び第2の放熱板とが半田でブリッジせず電気ショートしない半導体装置を提供できる。   According to this aspect, even when the semiconductor device is mounted on the mounting substrate via the solder, the solder does not get wet on the adhesive, and as a result, the mounting terminal, the first heat radiating plate, and the second heat radiating plate are soldered. Thus, it is possible to provide a semiconductor device that does not bridge and does not cause an electrical short circuit.

また、前記第2の放熱板と前記実装基板とは、前記実装端子と前記実装基板の端子とを半田により接合する際に、前記半田により接合されてもよい。   Further, the second heat radiating plate and the mounting board may be joined by the solder when the mounting terminal and the terminal of the mounting board are joined by solder.

本態様によると、発熱する光源直下に第1の放熱板を設置し、且つ第1の放熱板の下面に第2の放熱板を設置し、且つ第1の放熱板及び第2の放熱板から半田を介して実装基板に熱を逃がすことで、さらに半導体装置の放熱特性を向上させて過熱による電極部断線の不具合を低減することができ、半導体装置自体の寿命をさらに長くすることができる。   According to this aspect, the first heat radiating plate is installed immediately below the light source that generates heat, the second heat radiating plate is installed on the lower surface of the first heat radiating plate, and the first and second heat radiating plates are separated from each other. By dissipating heat to the mounting substrate through the solder, the heat dissipation characteristics of the semiconductor device can be further improved, and defects in the electrode part disconnection due to overheating can be reduced, and the life of the semiconductor device itself can be further extended.

また、本発明の一態様に係る半導体装置の製造方法は、実装基板に実装される半導体装置の製造方法であって、上面上に基板電極が設けられ、下面上に前記基板電極と電気的に接続された実装端子が設けられた基板の上面と、上面から下面に向けて貫通する放熱板孔が形成された第1の放熱板の下面とを、前記放熱板孔と前記基板電極とを合せて接着剤により接着し、前記第1の放熱板の上面上に複数の発光素子を形成し、前記第1の放熱板の上面上に、前記発光素子の光を反射する反射板を形成し、前記複数の発光素子と前記基板電極とを前記放熱板孔を介して電気的にワイヤーで接続し、前記複数の発光素子、前記ワイヤー及び前記反射板を覆うようにレンズを形成し、前記基板を切断して前記複数の発光素子を分離することを特徴とする。   A method for manufacturing a semiconductor device according to one embodiment of the present invention is a method for manufacturing a semiconductor device mounted on a mounting substrate, in which a substrate electrode is provided on an upper surface, and the substrate electrode is electrically connected to a lower surface. The upper surface of the substrate on which the connected mounting terminals are provided and the lower surface of the first heat radiating plate in which a heat radiating plate hole penetrating from the upper surface toward the lower surface is aligned with the heat radiating plate hole and the substrate electrode. Bonding with an adhesive, forming a plurality of light emitting elements on the upper surface of the first heat dissipation plate, forming a reflection plate reflecting the light of the light emitting element on the upper surface of the first heat dissipation plate, The plurality of light emitting elements and the substrate electrode are electrically connected via wires through the heat dissipation plate holes, a lens is formed so as to cover the plurality of light emitting elements, the wires, and the reflection plate, and the substrate is formed. The plurality of light emitting elements are separated by cutting. .

本態様によると、光源の発熱を放熱する第1の放熱板を内臓する放熱板内蔵構造を有した半導体装置を製造することができる。また、ブレード切断することで半導体装置の製造コストダウンができる。   According to this aspect, it is possible to manufacture a semiconductor device having a heat sink built-in structure that incorporates the first heat sink that radiates the heat generated by the light source. Moreover, the manufacturing cost of the semiconductor device can be reduced by cutting the blade.

また、本発明の一態様に係る半導体装置の製造方法は、実装基板に実装される半導体装置の製造方法であって、上面から下面に向けて貫通する放熱板孔が形成された第1の放熱板の下面と実装端子とを、前記放熱板孔と前記実装端子とを合せて接着剤により接着し、前記第1の放熱板の上面上に複数の発光素子を形成し、前記第1の放熱板の上面上に、前記発光素子の光を反射する反射板を形成し、前記複数の発光素子と前記実装端子とを前記放熱板孔を介して電気的にワイヤーで接続し、前記発光素子、前記ワイヤー及び前記反射板を覆うようにレンズを形成し、前記複数の発光素子を分離することを特徴とする。   The semiconductor device manufacturing method according to one embodiment of the present invention is a method for manufacturing a semiconductor device mounted on a mounting substrate, and includes a first heat dissipation plate in which a heat dissipation plate hole penetrating from the upper surface toward the lower surface is formed. The lower surface of the plate and the mounting terminal are bonded together with the heat radiating plate hole and the mounting terminal, and a plurality of light emitting elements are formed on the upper surface of the first heat radiating plate. On the upper surface of the plate, a reflecting plate that reflects the light of the light emitting element is formed, the plurality of light emitting elements and the mounting terminals are electrically connected through the heat dissipation plate holes, the light emitting element, A lens is formed so as to cover the wire and the reflection plate, and the plurality of light emitting elements are separated.

本態様によると、放熱板内蔵構造を有した半導体装置を製造することができる。また、ブレード切断することで半導体装置の製造コストダウンができる。   According to this aspect, a semiconductor device having a heat sink built-in structure can be manufactured. Moreover, the manufacturing cost of the semiconductor device can be reduced by cutting the blade.

また、前記第1の放熱板の下面上に第2の放熱板を形成してもよい。
本態様によると、高い放熱特性の半導体装置を製造することができる。
A second heat radiating plate may be formed on the lower surface of the first heat radiating plate.
According to this aspect, a semiconductor device having high heat dissipation characteristics can be manufactured.

本発明の一態様に係る構成により、半導体装置の輝度アップの為に光源に大電流を印加することで半導体装置が過熱しても、半導体装置に放熱構造を内蔵している為、半導体装置に不具合が生じ難い。その結果、長寿命、高信頼性かつ量産性の高い半導体装置とその製造方法を実現することができる。   With the structure according to one embodiment of the present invention, even if the semiconductor device is overheated by applying a large current to the light source to increase the luminance of the semiconductor device, the semiconductor device has a heat dissipation structure built therein. It is difficult for problems to occur. As a result, a semiconductor device having a long life, high reliability, and high mass productivity and a manufacturing method thereof can be realized.

本発明の一態様に係る構成により、半導体装置の製造工程に要する時間を短縮化するとともに、歩留まりの低下を抑えることができ、コストアップを抑えることができる。また、放熱板を内蔵した小型化に適した構造の半導体装置を実現でき、半導体装置を用いた商品の薄型化および小型化が実現可能となる。また、放熱性の高い構造の半導体装置を実現することができる。   With the structure according to one embodiment of the present invention, the time required for the manufacturing process of a semiconductor device can be shortened, a decrease in yield can be suppressed, and an increase in cost can be suppressed. In addition, a semiconductor device having a structure suitable for miniaturization with a built-in heat sink can be realized, and a product using the semiconductor device can be thinned and miniaturized. In addition, a semiconductor device having a structure with high heat dissipation can be realized.

よって、本発明の一態様に係る構成は、今後益々要求される高輝度及び省電力化を満たす複数のLEDを組み合せた液晶パネル等を実現可能とする。   Therefore, the structure according to one embodiment of the present invention can realize a liquid crystal panel or the like in which a plurality of LEDs satisfying higher luminance and power saving that are increasingly required in the future are combined.

本発明の実施の形態1の半導体装置の構成の詳細を示す図である。It is a figure which shows the detail of a structure of the semiconductor device of Embodiment 1 of this invention. 同半導体装置の上面からみた外観図である。It is an external view seen from the upper surface of the semiconductor device. 同半導体装置の断面図(図1BのA−A’線における断面図)である。FIG. 2 is a cross-sectional view of the same semiconductor device (a cross-sectional view taken along line A-A ′ in FIG. 1B). 同半導体装置の下面からみた外観図である。It is an external view seen from the lower surface of the semiconductor device. 本発明の実施の形態2の半導体装置の構成の詳細を示す図である。It is a figure which shows the detail of a structure of the semiconductor device of Embodiment 2 of this invention. 同半導体装置の上面からみた外観図である。It is an external view seen from the upper surface of the semiconductor device. 同半導体装置の断面図(図2BのA−A’線における断面図)である。FIG. 3B is a cross-sectional view of the same semiconductor device (a cross-sectional view taken along line A-A ′ in FIG. 2B). 同半導体装置の下面からみた外観図である。It is an external view seen from the lower surface of the semiconductor device. 同半導体装置の実装基板への実装状態の一例の詳細を示す断面図である。It is sectional drawing which shows the detail of an example of the mounting state to the mounting board | substrate of the same semiconductor device. 同半導体装置の実装基板への実装状態の一例の詳細を示す外観図である。FIG. 28D is an exterior diagram illustrating details of an example of a mounting state of the semiconductor device on the mounting substrate. 本発明の実施の形態3の半導体装置の構成の詳細を示す図である。It is a figure which shows the detail of a structure of the semiconductor device of Embodiment 3 of this invention. 同半導体装置の上面からみた外観図である。It is an external view seen from the upper surface of the semiconductor device. 同半導体装置の断面図(図4BのA−A’線における断面図)である。FIG. 4B is a cross-sectional view of the same semiconductor device (a cross-sectional view taken along line A-A ′ in FIG. 4B). 同半導体装置の下面からみた外観図である。It is an external view seen from the lower surface of the semiconductor device. 同半導体装置の実装基板への実装状態の一例の詳細を示す断面図である。It is sectional drawing which shows the detail of an example of the mounting state to the mounting board | substrate of the same semiconductor device. 同半導体装置の実装基板への実装状態の一例の詳細を示す外観図である。FIG. 28D is an exterior diagram illustrating details of an example of a mounting state of the semiconductor device on the mounting substrate. 本発明の実施の形態4の半導体装置の製造方法の概略を示す外観図である。It is an external view which shows the outline of the manufacturing method of the semiconductor device of Embodiment 4 of this invention. 同半導体装置の製造方法の一工程において半導体装置全体を下方から見た外観図である。It is the external view which looked at the whole semiconductor device from the downward direction in 1 process of the manufacturing method of the same semiconductor device.

以下、本発明の実施の形態を示す半導体装置およびその製造方法について、図面を参照しながら具体的に説明する。なお、図面で同じ符号が付いたものは、説明を省略する場合もある。また、図面は、理解しやすくするためにそれぞれの構成要素を主体に模式的に示している。   Hereinafter, a semiconductor device and a manufacturing method thereof according to an embodiment of the present invention will be specifically described with reference to the drawings. In addition, what attached | subjected the same code | symbol in drawing may abbreviate | omit description. Further, the drawings schematically show the respective constituent elements mainly for easy understanding.

(実施の形態1)
図1Aは実施の形態1の半導体装置7の構成の詳細を示す図(レンズ2で封止される前の状態を示す図)である。図1Bは、半導体装置7の上面からみた外観図である。図1Cは、半導体装置7の断面図(図1BのA−A’線における断面図)である。図1Dは、半導体装置7の下面からみた外観図である。
(Embodiment 1)
FIG. 1A is a diagram illustrating details of the configuration of the semiconductor device 7 according to the first embodiment (a diagram illustrating a state before sealing with the lens 2). FIG. 1B is an external view of the semiconductor device 7 as viewed from above. 1C is a cross-sectional view of the semiconductor device 7 (a cross-sectional view taken along line AA ′ in FIG. 1B). FIG. 1D is an external view of the semiconductor device 7 as viewed from the bottom surface.

この半導体装置7は、実装基板に実装される半導体装置であって、光源1、レンズ2、反射板(リフレクター)3、実装端子4、基板5、ワイヤー6、第1の放熱板9、及び接着剤11を備える。   The semiconductor device 7 is a semiconductor device mounted on a mounting substrate, and includes a light source 1, a lens 2, a reflector (reflector) 3, a mounting terminal 4, a substrate 5, a wire 6, a first heat radiating plate 9, and an adhesive. Agent 11 is provided.

光源1は、LED等の発光素子から構成される。光源1は、第1の放熱板9の上面上に設けられ、接着剤などによって第1の放熱板9と接着されている。光源1の搭載に用いる接着剤には放熱性を考慮し熱伝導性のよい材料が用いられる。   The light source 1 includes a light emitting element such as an LED. The light source 1 is provided on the upper surface of the first heat radiating plate 9 and is bonded to the first heat radiating plate 9 with an adhesive or the like. For the adhesive used for mounting the light source 1, a material having good heat conductivity is used in consideration of heat dissipation.

基板5は、インターポーザ基板などである。基板5の上面上には基板電極が設けられ、第1の放熱板9の下面側、具体的には基板5の下面上には実装基板の端子と電気的に接続される実装端子4が設けられている。ここで、基板5の基板電極と実装端子4とは電気的に接続されている。   The substrate 5 is an interposer substrate or the like. A substrate electrode is provided on the upper surface of the substrate 5, and a mounting terminal 4 electrically connected to a terminal of the mounting substrate is provided on the lower surface side of the first heat radiating plate 9, specifically on the lower surface of the substrate 5. It has been. Here, the substrate electrode of the substrate 5 and the mounting terminal 4 are electrically connected.

なお、図1A〜図1Dでは、光源1として実装端子数の少ないLEDなどを想定した為、基板5は単層基板であるが、実装端子4の数及び配列などを増やしたい場合は2層以上の多層基板にされる。また、図1A〜図1Dでは基板5として一般的な樹脂系有機基板を想定しているが、基板5はリードフレームのCu系及びFe系等の金属材料及びセラミック材料などから構成される無機基板であっても構わない。   1A to 1D, since the light source 1 is assumed to be an LED having a small number of mounting terminals, the substrate 5 is a single-layer substrate. However, when it is desired to increase the number and arrangement of the mounting terminals 4, two or more layers are required. Of multi-layer substrate. 1A to 1D, a general resin-based organic substrate is assumed as the substrate 5, but the substrate 5 is an inorganic substrate composed of a metal material such as a Cu-based or Fe-based lead frame and a ceramic material. It does not matter.

第1の放熱板9は、基板5の上面上に設けられ、少なくとも上面から下面に向けて貫通する放熱板孔10が形成されている。第1の放熱板9は、放熱板孔10と基板電極とを合せた状態で接着剤11等により基板5上に搭載される。基板5は、基板電極の上方に放熱板孔10が位置するように第1の放熱板9と接着される。   The first heat radiating plate 9 is provided on the upper surface of the substrate 5, and a heat radiating plate hole 10 penetrating from the upper surface to the lower surface is formed at least. The first heat radiating plate 9 is mounted on the substrate 5 with an adhesive 11 or the like in a state where the heat radiating plate hole 10 and the substrate electrode are combined. The board | substrate 5 is adhere | attached with the 1st heat sink 9 so that the heat sink hole 10 may be located above a board | substrate electrode.

接着剤11は、樹脂系材料などから構成され、基板5の上面と第1の放熱板9の下面とを接着する。接着剤11は、基板電極を避けて基板5上に塗布され、予め放熱板孔10が形成された第1の放熱板9と基板5とが貼付けられる。接着剤11は、第1の放熱板9の基板5側の面つまり下面が絶縁材料より構成されている場合には、導電性の材料から構成され、そうでない場合には絶縁性の材料より構成される。   The adhesive 11 is made of a resin material or the like, and bonds the upper surface of the substrate 5 and the lower surface of the first heat radiating plate 9. The adhesive 11 is applied on the substrate 5 while avoiding the substrate electrode, and the first heat dissipation plate 9 and the substrate 5 in which the heat dissipation plate holes 10 are formed are pasted. The adhesive 11 is made of a conductive material when the surface of the first heat radiating plate 9 on the substrate 5 side, that is, the lower surface is made of an insulating material, and is made of an insulating material otherwise. Is done.

なお、接着剤11には、樹脂系材料を用いたが別材料が用いられても構わない。また、基板5には基板電極を避けて接着剤11が塗布されるとしたが、基板5に接着剤11を塗布した後にドリル加工及びエッチング加工等で基板電極上の接着剤11が取り除されても構わない。更に、基板5には予め放熱板孔10のあいた第1の放熱板9が貼付けられるとしたが、放熱板孔10のあいていない第1の放熱板9を基板5に接着した後に基板電極上の第1の放熱板9及び接着剤11をドリル加工及びエッチング加工等で同時に除去して放熱板孔10が形成されても構わない。   In addition, although the resin-type material was used for the adhesive agent 11, another material may be used. Further, the adhesive 11 is applied to the substrate 5 while avoiding the substrate electrode. However, after the adhesive 11 is applied to the substrate 5, the adhesive 11 on the substrate electrode is removed by drilling or etching. It doesn't matter. Further, the first heat sink 9 with the heat sink hole 10 is previously attached to the substrate 5. However, after the first heat sink 9 without the heat sink hole 10 is bonded to the substrate 5, The first heat sink 9 and the adhesive 11 may be simultaneously removed by drilling, etching, or the like to form the heat sink hole 10.

反射板3は、第1の放熱板9の上面上に設けられ、光源1の光を上方に向けて反射する。反射板3は、光反射性を考慮して表面に蛍光体が塗布された白色系の熱可塑性樹脂材料により構成され、第1の放熱板9の上面上に封止などによって搭載されている。   The reflecting plate 3 is provided on the upper surface of the first heat radiating plate 9 and reflects the light from the light source 1 upward. The reflecting plate 3 is made of a white thermoplastic resin material having a phosphor coated on the surface in consideration of light reflectivity, and is mounted on the upper surface of the first heat radiating plate 9 by sealing or the like.

なお、反射板3には量産性を考慮して樹脂材料が用いられたが、第1の放熱板9に貼り合せてられた金属板等が用いられても構わない。   In addition, although the resin material was used for the reflecting plate 3 in consideration of mass productivity, a metal plate or the like bonded to the first heat radiating plate 9 may be used.

ワイヤー6は、Auボールボンド方式のワイヤーであり、一端が光源1と接続され、他端が基板電極と接続されている。ワイヤー6は、放熱板孔10を介して光源1と実装端子4とを電気的に接続(導通)する。   The wire 6 is an Au ball bond type wire, and one end is connected to the light source 1 and the other end is connected to the substrate electrode. The wire 6 electrically connects (conducts) the light source 1 and the mounting terminal 4 via the heat sink hole 10.

なお、図1A〜図1Dでは光源1の電極がAl系であった為、ワイヤー6にはAuボールボンド方式が使用されたが、ワイヤー6はCu系ボールボンド方式及びAl系ウェッジボンド方式などのワイヤーでも構わない。また、図1A〜図1Dではワイヤーボンド方式の接続方法により光源1と基板5の基板電極とを接続したが、フリップチップバンプ接続や近年注目されているTSV(Si貫通電極(Through-Silicon Via))を用いた接続方法で接続されても構わない。   1A to 1D, since the electrode of the light source 1 is Al-based, the Au ball bond method is used for the wire 6, but the wire 6 is a Cu-based ball bond method, an Al-based wedge bond method, or the like. You can use wires. 1A to 1D, the light source 1 and the substrate electrode of the substrate 5 are connected by a wire bonding method, but flip-chip bump connection and TSV (Through-Silicon Via) attracting attention in recent years. ) May be used for connection.

レンズ2は、光透過性を考慮して透明系の熱硬化性樹脂材料で構成され、光源1及びワイヤー6並びに反射板3の少なくとも反射部を覆う(封止する)ように第1の放熱板9の上面上に設けられ、光源1の光を集光する。   The lens 2 is made of a transparent thermosetting resin material in consideration of light transmittance, and the first heat radiating plate is provided so as to cover (seal) at least the reflecting portion of the light source 1, the wire 6, and the reflecting plate 3. 9 is provided on the upper surface of the light source 9 to collect the light from the light source 1.

なお、図1A〜図1Dでは、量産性を考慮してレンズ2に樹脂材料を用いたが、ガラス等を基板5に貼り合せて形成されたものが用いられても構わない。   1A to 1D, a resin material is used for the lens 2 in consideration of mass productivity. However, a lens formed by bonding glass or the like to the substrate 5 may be used.

上記構造を有する半導体装置7が実装基板等に実装された場合、実装基板等からの供給電流は実装端子4からワイヤー6を介して光源1に入力される。光源1は入力された電流により発光する。発光した光は反射板3によって効率よく集光され、更にレンズ1を介し半導体装置7外に放出される。   When the semiconductor device 7 having the above structure is mounted on a mounting substrate or the like, a supply current from the mounting substrate or the like is input from the mounting terminal 4 to the light source 1 through the wire 6. The light source 1 emits light by the input current. The emitted light is efficiently collected by the reflector 3 and further emitted outside the semiconductor device 7 through the lens 1.

上記構造を有する半導体装置は、次のように製造される。
すなわち、まずは基板5が用意され、第1の放熱板9が接着剤11等により基板5の上面に搭載される。続いて、反射板3が第1の放熱板9の上面に搭載された後、第1の放熱板9の上面に光源1が接着剤等によって接着される。最後に、光源1と基板電極とが電気的にワイヤー6で接続された後、光源1、ワイヤー6及び反射板3上にレンズ2が形成される。
The semiconductor device having the above structure is manufactured as follows.
That is, first, the substrate 5 is prepared, and the first heat radiating plate 9 is mounted on the upper surface of the substrate 5 with the adhesive 11 or the like. Subsequently, after the reflecting plate 3 is mounted on the upper surface of the first heat radiating plate 9, the light source 1 is bonded to the upper surface of the first heat radiating plate 9 with an adhesive or the like. Finally, after the light source 1 and the substrate electrode are electrically connected by the wire 6, the lens 2 is formed on the light source 1, the wire 6 and the reflection plate 3.

以上のように本実施の形態の半導体装置によれば、発熱する光源1直下に第1の放熱板9が設置されるので、光源1の発熱は第1の放熱板9を伝播し、実装基板及び空気中などの半導体装置7外に放熱される。従って、半導体装置の放熱特性が向上し、過熱による電極部断線の不具合が低減されるので、半導体装置自体の寿命が長くなる。   As described above, according to the semiconductor device of the present embodiment, the first heat radiating plate 9 is installed immediately below the light source 1 that generates heat. Therefore, the heat generated by the light source 1 propagates through the first heat radiating plate 9 and is mounted on the mounting substrate. In addition, heat is radiated to the outside of the semiconductor device 7 such as in the air. Therefore, the heat dissipation characteristics of the semiconductor device are improved, and the failure of the electrode disconnection due to overheating is reduced, so that the life of the semiconductor device itself is extended.

(実施の形態2)
図2Aは実施の形態2の半導体装置17の構成の詳細を示す図(レンズ2で封止される前の状態を示す図)である。図2Bは、半導体装置17の上面からみた外観図である。図2Cは、半導体装置17の断面図(図2BのA−A’線における断面図)である。図2Dは、半導体装置17の下面からみた外観図である。
(Embodiment 2)
FIG. 2A is a diagram showing details of the configuration of the semiconductor device 17 according to the second embodiment (a diagram showing a state before sealing with the lens 2). FIG. 2B is an external view of the semiconductor device 17 as viewed from the upper surface. 2C is a cross-sectional view of the semiconductor device 17 (cross-sectional view taken along line AA ′ in FIG. 2B). FIG. 2D is an external view of the semiconductor device 17 as seen from the bottom surface.

この半導体装置17は、基板5を取り除き、実装端子4が形成された領域以外で第1の放熱板9の下面をむき出しにしている点で図1の半導体装置7と相違する。第1の放熱板9がむき出しなので、光源1の発熱は第1の放熱板9を伝播し、「主に空気中」及び実装端子4等を伝播し実装基板などの半導体装置17外に放熱される。従って、半導体装置17の放熱特性が向上し、過熱による電極部断線の不具合が低減されるので、半導体装置17の寿命が長くなる。   This semiconductor device 17 is different from the semiconductor device 7 of FIG. 1 in that the substrate 5 is removed and the lower surface of the first heat radiating plate 9 is exposed outside the region where the mounting terminals 4 are formed. Since the first heat radiating plate 9 is exposed, the heat generated by the light source 1 propagates through the first heat radiating plate 9, propagates "mainly in the air", the mounting terminals 4, etc., and is radiated outside the semiconductor device 17 such as the mounting substrate. The Accordingly, the heat dissipation characteristics of the semiconductor device 17 are improved, and the failure of the electrode portion disconnection due to overheating is reduced, so that the life of the semiconductor device 17 is extended.

実装端子4は、該実装端子4の上方に放熱板孔10が位置するように第1の放熱板9の下面上に接着剤11を介して接着されている。   The mounting terminal 4 is bonded to the lower surface of the first heat radiating plate 9 with an adhesive 11 so that the heat radiating plate hole 10 is located above the mounting terminal 4.

図3Aは本実施の形態の半導体装置17の実装基板16への実装状態の一例の詳細を示す断面図である。図3Bは、半導体装置17の実装基板16への実装状態の一例の詳細を示す外観図(半導体装置17の下面からみた外観図)である。なお、図3Aにおいて、左半分は図2BのA−A’線で示す実装端子4が設けられた部分の断面図であり、右半分は実装端子4が設けられていない側端部の断面図である。   FIG. 3A is a sectional view showing details of an example of a mounting state of the semiconductor device 17 of the present embodiment on the mounting substrate 16. FIG. 3B is an external view (external view seen from the bottom surface of the semiconductor device 17) showing details of an example of the mounting state of the semiconductor device 17 on the mounting substrate 16. In FIG. 3A, the left half is a cross-sectional view of the portion provided with the mounting terminal 4 indicated by the line AA ′ in FIG. 2B, and the right half is a cross-sectional view of the side end portion where the mounting terminal 4 is not provided. It is.

図2A〜図2Dの半導体装置17では基板5が取り除かれ、実装端子4以外で第1の放熱板9の下面がむき出しにされているので、実装端子4と実装基板16の端子とを半田15により接合させる際に、第1の放熱板9と実装基板16とを半田15により接合させることが可能となる。従って、光源1の発熱は第1の放熱板9を伝播し、フラックスとして機能する半田15を伝播し実装基板16に直接放熱されるため、半導体装置17の放熱特性が「更に」向上し、過熱による電極部断線の不具合が「更に」低減されるため、半導体装置17自体の寿命を「更に」長くすることができる。   In the semiconductor device 17 of FIGS. 2A to 2D, the substrate 5 is removed, and the lower surface of the first heat radiating plate 9 is exposed except for the mounting terminals 4. Therefore, the mounting terminals 4 and the terminals of the mounting substrate 16 are soldered 15. The first heat radiating plate 9 and the mounting substrate 16 can be joined by the solder 15 when joining by the soldering. Accordingly, the heat generated by the light source 1 propagates through the first heat radiating plate 9, propagates through the solder 15 functioning as a flux, and is directly radiated to the mounting substrate 16. Therefore, the heat radiation characteristics of the semiconductor device 17 are further improved, and overheating Since the problem of the disconnection of the electrode part due to the above is reduced further, the life of the semiconductor device 17 itself can be further extended.

ここで、特記すべきは図2A〜図2Dの半導体装置17において、少なくとも放熱板孔10を具備した第1の放熱板9と実装端子4とを、放熱板孔10と実装端子4とを合せて接着剤11により接合する際に、「接着剤11を実装端子4周囲よりもはみ出させ」つまり「接着剤11を第1の放熱板9の下面において実装端子4の周囲に延在させ」、かつ「接着剤11自体を絶縁材料」としたことである。従って、第1の放熱板9と実装基板16とを半田15により接合させる際に、接着剤11は絶縁材料であるために半田15は接着剤11に接合されない。更に、半田15は通常溶融状態の液体であり、液体は空中よりも物体の表面上を伝播するので、接着剤11がダムとして機能し、接着剤11上には半田15が流れ込みにくくなる。従って、実装端子4と第1の放熱板9とが半田15でブリッジせず電気ショートしないことが可能となる。一方、実装基板16の端子及び第1の放熱板9に対しても金属メッキし、その端子と第1の放熱板9との間にもレジストなどを塗布すれば、実装基板16でも端子と第1の放熱板9とが半田15でブリッジせず電気ショートしないようにできる。以上により、放熱性の高い半導体装置17を実装基板16に接合することができる。   Here, it should be noted that in the semiconductor device 17 of FIGS. 2A to 2D, the first heat sink 9 and the mounting terminal 4 having at least the heat sink hole 10 are combined with the heat sink hole 10 and the mounting terminal 4. When joining with the adhesive 11, the "adhesive 11 protrudes from the periphery of the mounting terminal 4", that is, "the adhesive 11 extends around the mounting terminal 4 on the lower surface of the first heat radiating plate 9", And “adhesive 11 itself is an insulating material”. Accordingly, when the first heat radiating plate 9 and the mounting substrate 16 are joined by the solder 15, the solder 15 is not joined to the adhesive 11 because the adhesive 11 is an insulating material. Furthermore, the solder 15 is usually a liquid in a molten state, and the liquid propagates on the surface of the object rather than in the air. Therefore, the adhesive 11 functions as a dam, and the solder 15 does not easily flow onto the adhesive 11. Therefore, the mounting terminal 4 and the first heat radiating plate 9 are not bridged by the solder 15 and can not be short-circuited. On the other hand, if the terminal of the mounting substrate 16 and the first heat radiating plate 9 are also metal-plated and a resist or the like is applied between the terminal and the first heat radiating plate 9, the terminal and the first heat radiating plate 9 are also connected. It is possible to prevent the heat sink 9 from bridging with the solder 15 and not to cause an electrical short circuit. Thus, the semiconductor device 17 with high heat dissipation can be bonded to the mounting substrate 16.

(実施の形態3)
図4Aは実施の形態3の半導体装置27の構成の詳細を示す図(レンズ2で封止される前の状態を示す図)である。図4Bは、半導体装置27の上面からみた外観図である。図4Cは、半導体装置27の断面図(図4BのA−A’線における断面図)である。図4Dは、半導体装置27の下面からみた外観図である。
(Embodiment 3)
FIG. 4A is a diagram illustrating details of the configuration of the semiconductor device 27 according to the third embodiment (a diagram illustrating a state before sealing with the lens 2). FIG. 4B is an external view of the semiconductor device 27 as viewed from above. 4C is a cross-sectional view of the semiconductor device 27 (a cross-sectional view taken along line AA ′ in FIG. 4B). FIG. 4D is an external view of the semiconductor device 27 as seen from the bottom surface.

この半導体装置27は、第1の放熱板9の下面(第1の放熱板9の光源1が設けられている面と反対の面)上における実装端子4が形成された領域及びその周囲の領域を除く領域に接着剤11を介して第2の放熱板12が搭載されている点で図2の半導体装置17と相違する。従って、発熱する光源1直下に第1の放熱板9が設置され、且つ第1の放熱板9直下に第2の放熱板12が設置されるので、光源1の発熱は第1の放熱板9から第2の放熱板12を伝播し、実装基板16及び空気中などの半導体装置27外に放熱される。従って、半導体装置27の放熱特性が向上し、過熱による電極部断線の不具合が低減されるので、半導体装置27の寿命が長くなる。   The semiconductor device 27 includes a region where the mounting terminals 4 are formed on a lower surface of the first heat radiating plate 9 (a surface opposite to the surface where the light source 1 of the first heat radiating plate 9 is provided) and a region around the region. 2 is different from the semiconductor device 17 of FIG. 2 in that the second heat radiating plate 12 is mounted via the adhesive 11 in a region excluding. Accordingly, since the first heat radiating plate 9 is installed immediately below the light source 1 that generates heat, and the second heat radiating plate 12 is installed directly below the first heat radiating plate 9, the heat generated by the light source 1 is generated by the first heat radiating plate 9. From the semiconductor device 27 such as in the mounting substrate 16 and in the air. Accordingly, the heat dissipation characteristics of the semiconductor device 27 are improved, and defects in the electrode part disconnection due to overheating are reduced, so that the life of the semiconductor device 27 is extended.

なお、図4A〜図4Dでは、量産性を考慮し第1の放熱板9と第2の放熱板12とは接着剤11により接着されるとしたが、例えば第1の放熱板9と第2の放熱板12とは一体ものでも構わない。   In FIG. 4A to FIG. 4D, the first heat radiating plate 9 and the second heat radiating plate 12 are bonded by the adhesive 11 in consideration of mass productivity. The heat radiating plate 12 may be integrated.

図5Aは本実施の形態の半導体装置27の実装基板16への実装状態の一例の詳細を示す断面図である。図5Bは、半導体装置27の実装基板16への実装状態の一例の詳細を示す外観図(半導体装置27の下面からみた外観図)である。なお、図5Aにおいて、左半分は図4BのA−A’線で示す実装端子4が設けられた部分の断面図であり、右半分は実装端子4が設けられていない側端部の断面図である。   FIG. 5A is a cross-sectional view showing details of an example of a mounting state of the semiconductor device 27 of the present embodiment on the mounting substrate 16. FIG. 5B is an external view (external view seen from the bottom surface of the semiconductor device 27) showing details of an example of a state in which the semiconductor device 27 is mounted on the mounting substrate 16. FIG. In FIG. 5A, the left half is a cross-sectional view of the portion provided with the mounting terminal 4 indicated by the line AA ′ in FIG. 4B, and the right half is a cross-sectional view of the side end portion where the mounting terminal 4 is not provided. It is.

図4A〜図4Dの半導体装置27では第1の放熱板9の下面上における実装端子4が形成された領域及びその周囲の領域を除く領域に第2の放熱板12が搭載されているので、実装端子4と実装基板16の端子とを半田15により接合させる際に、第1の放熱板9、第2の放熱板12及び実装基板16を半田15により接合させることが可能となる。従って、光源1の発熱は第1の放熱板9を伝播し、第2の放熱板12を伝播し、半田15を伝播し実装基板16に直接放熱されるため、半導体装置27の放熱特性が「更に」向上し、過熱による電極部断線の不具合が「更に」低減されるため、半導体装置27自体の寿命を「更に」長くすることができる。また、第2の放熱板12がある為に半田15の使用量を削減することができる。   In the semiconductor device 27 of FIGS. 4A to 4D, the second heat dissipation plate 12 is mounted in the region excluding the region where the mounting terminals 4 are formed and the surrounding region on the lower surface of the first heat dissipation plate 9. When the mounting terminal 4 and the terminal of the mounting substrate 16 are joined by the solder 15, the first heat radiating plate 9, the second heat radiating plate 12 and the mounting substrate 16 can be joined by the solder 15. Accordingly, the heat generated by the light source 1 propagates through the first heat radiating plate 9, propagates through the second heat radiating plate 12, propagates through the solder 15, and is directly radiated to the mounting substrate 16. Furthermore, the failure of the electrode part disconnection due to overheating is further “reduced”, so that the life of the semiconductor device 27 itself can be “further increased”. Further, since the second heat radiating plate 12 is provided, the amount of solder 15 used can be reduced.

ここで、特記すべきは図4A〜図4Dの半導体装置27において、少なくとも放熱板孔10を具備した第1の放熱板9と実装端子4とを、放熱板孔10と実装端子4とを合せて接着剤11により接合する際に、「接着剤11を実装端子4周囲よりもはみ出させた状態で第1の放熱板9の下面上に第2の放熱板12を搭載し」つまり「接着剤11を第1の放熱板9の下面において実装端子4の周囲に延在させた状態で第1の放熱板9の下面上に第2の放熱板12を搭載し」、かつ「接着剤11自体を絶縁材料」としたことである。従って、第1の放熱板9、第2の放熱板12及び実装基板16を半田15により接合させる際に、接着剤11は絶縁材料であるために半田15は接着剤11に接合されない。更に、半田15は通常溶融状態の液体であり、液体は空中よりも物体の表面上を伝播するので、接着剤11がダムとして機能し、接着剤11上には半田15が流れ込みにくくなる。従って、実装端子4と第1の放熱板9及び第2の放熱板12とが半田15でブリッジせず電気ショートしないことが可能となる。一方、実装基板16側の端子、第1の放熱板9及び第2の放熱板12に対しても金属メッキし、その端子と第1の放熱板9及び第2の放熱板12との間にもレジストなどを塗布すれば、実装基板16でも実装端子と第1の放熱板9及び第2の放熱板12とが半田15でブリッジせず電気ショートしないようにできる。以上により、放熱性の高い半導体装置27を実装基板16に接合することができる。   Here, it should be noted that in the semiconductor device 27 of FIGS. 4A to 4D, the first heat sink 9 and the mounting terminal 4 having at least the heat sink hole 10 are combined with the heat sink hole 10 and the mounting terminal 4. When bonding with the adhesive 11, “the second heat radiating plate 12 is mounted on the lower surface of the first heat radiating plate 9 with the adhesive 11 protruding beyond the periphery of the mounting terminal 4”, that is, “adhesive” 11 is mounted on the lower surface of the first heat radiating plate 9 with the lower surface of the first heat radiating plate 9 extending around the mounting terminals 4, and “the adhesive 11 itself Is an insulating material. Accordingly, when the first heat radiating plate 9, the second heat radiating plate 12 and the mounting substrate 16 are joined by the solder 15, the solder 11 is not joined to the adhesive 11 because the adhesive 11 is an insulating material. Furthermore, the solder 15 is usually a liquid in a molten state, and the liquid propagates on the surface of the object rather than in the air. Therefore, the adhesive 11 functions as a dam, and the solder 15 does not easily flow onto the adhesive 11. Therefore, the mounting terminals 4, the first heat radiating plate 9, and the second heat radiating plate 12 are not bridged by the solder 15 and an electrical short circuit can be prevented. On the other hand, the terminal on the mounting substrate 16 side, the first heat radiating plate 9 and the second heat radiating plate 12 are also metal-plated, and between the terminal and the first heat radiating plate 9 and the second heat radiating plate 12. Also, if a resist or the like is applied, the mounting terminals and the first heat radiation plate 9 and the second heat radiation plate 12 are not bridged by the solder 15 even on the mounting substrate 16 so that an electrical short circuit can be prevented. Thus, the semiconductor device 27 with high heat dissipation can be bonded to the mounting substrate 16.

また、図4A〜図4Dの半導体装置27では、量産性を考慮し、接着剤11は予め第1の放熱板9の下面全面に貼付され、第1の放熱板9と第2の放熱板12及び実装端子4とが接着剤11で接着される。   Also, in the semiconductor device 27 of FIGS. 4A to 4D, in consideration of mass productivity, the adhesive 11 is pasted on the entire lower surface of the first heat sink 9 in advance, and the first heat sink 9 and the second heat sink 12. The mounting terminal 4 is bonded with an adhesive 11.

(実施の形態4)
図6は実施の形態4の半導体装置17の製造方法の概略を示す外観図(半導体装置17の上面からみた外観図)である。
(Embodiment 4)
FIG. 6 is an external view (outside view of the semiconductor device 17 as seen from above) showing an outline of a method for manufacturing the semiconductor device 17 of the fourth embodiment.

先ず図6(a)に示されるように、実装端子4を複数保持する端子保持バー13を枠状の基板25に保持させる。   First, as shown in FIG. 6A, a terminal holding bar 13 that holds a plurality of mounting terminals 4 is held on a frame-like substrate 25.

ここで、最終用途別またコストダウン目的で実装端子4としてはCu合金系及びFe−Ni合金系等の材料より構成される所謂リードフレームが用いられる。また、実装端子4と端子保持バー13とはエッチング加工により形成されても、金型打ち抜き加工により形成されても構わない。   Here, a so-called lead frame made of a material such as a Cu alloy type or an Fe—Ni alloy type is used as the mounting terminal 4 for the purpose of end use or cost reduction. Further, the mounting terminal 4 and the terminal holding bar 13 may be formed by etching or die punching.

次に、少なくとも放熱板孔10が形成された第1の放熱板9の下面と実装端子4とを、放熱板孔10と実装端子4とを合せて(各実装端子4上方に対応する放熱板孔10が位置するように)接着剤11により接着した後、第1の放熱板9の上面上に反射板3を形成する。   Next, at least the lower surface of the first heat radiating plate 9 in which the heat radiating plate holes 10 are formed and the mounting terminals 4 are combined with the heat radiating plate holes 10 and the mounting terminals 4 (the heat radiating plates corresponding to the upper portions of the mounting terminals 4). After bonding with the adhesive 11 (so that the hole 10 is located), the reflector 3 is formed on the upper surface of the first heat sink 9.

ここで、反射板3の形成には熱硬化性樹脂を用いた一括封止トランスファー成形工法が用いられる。その後、図示はしていないが反射板3上に蛍光体を塗布し反射板の光反射率を向上させる。   Here, the formation of the reflecting plate 3 uses a batch sealing transfer molding method using a thermosetting resin. Thereafter, although not shown, a phosphor is applied on the reflector 3 to improve the light reflectivity of the reflector.

なお、実装端子4には予め放熱板孔10のあいた第1の放熱板9が貼付けられるとしたが、放熱板孔10のあいていない第1の放熱板9を実装端子4に接着した後に実装端子4上の第1の放熱板9と接着剤11とをドリル加工及びエッチング加工等で同時に除去して放熱板孔10が形成されても構わない。   The first heat radiating plate 9 having the heat radiating plate hole 10 is attached to the mounting terminal 4 in advance. However, the first heat radiating plate 9 having no heat radiating plate hole 10 is bonded to the mounting terminal 4 before mounting. The heat sink hole 10 may be formed by removing the first heat sink 9 and the adhesive 11 on the terminal 4 simultaneously by drilling and etching.

次に図6(b)に示されるように、第1の放熱板9の上面上に各実装端子4に対応するように複数の光源1を形成し、対応する光源1と実装端子4とを放熱板孔10を介して電気的にワイヤー6で接続する。   Next, as shown in FIG. 6B, a plurality of light sources 1 are formed on the upper surface of the first heat radiating plate 9 so as to correspond to the mounting terminals 4, and the corresponding light sources 1 and mounting terminals 4 are connected. The wire 6 is electrically connected through the heat sink hole 10.

次に図6(c)に示されるように、各光源1及びワイヤー6並びに反射板3の少なくとも反射部を覆うようにレンズ2を形成する。   Next, as shown in FIG. 6C, the lens 2 is formed so as to cover at least the reflection portion of each light source 1, the wire 6, and the reflection plate 3.

ここで、レンズ2形成において、レンズ2の封止成形を容易にし、またコストを削減する為に熱硬化性樹脂を用いた一括封止トランスファー成形工法が用いられる。この成形工法によると、一括封止トランスファー成形金型にレンズ2の形状を形成しておくだけで図2B及び図2Cのような円筒形状のレンズ2を形成することができる。レンズ2に熱硬化性樹脂を用いられるので約150〜250℃の熱にてまた酸化防止のためN2雰囲気中でレンズ2は硬化される。 Here, in forming the lens 2, a batch sealing transfer molding method using a thermosetting resin is used in order to facilitate the sealing molding of the lens 2 and reduce the cost. According to this molding method, the cylindrical lens 2 as shown in FIGS. 2B and 2C can be formed simply by forming the shape of the lens 2 in the batch sealing transfer mold. Since a thermosetting resin is used for the lens 2, the lens 2 is cured by heat of about 150 to 250 ° C. and in an N 2 atmosphere for preventing oxidation.

次に図6(d)に示されるように、隣接するレンズ2間のほぼ中央部付近で端子保持バー13、レンズ2、反射板3及び基板25をダイシングブレード等の刃を所定の方向(図6(d)の矢印で示す方向)に動かしながら同時切断し、ダイシングブレード等で複数の光源1を分離して個片化された半導体装置17を製造する。   Next, as shown in FIG. 6 (d), the terminal holding bar 13, the lens 2, the reflecting plate 3, and the substrate 25 are placed in a predetermined direction (see FIG. 6) near the center between the adjacent lenses 2. The semiconductor device 17 is manufactured by cutting it simultaneously while moving it in the direction indicated by the arrow 6 (d), separating the light sources 1 with a dicing blade or the like and separating them into individual pieces.

ここで、図6(d)は半導体装置17全体を上方(第1の放熱板9の上面側)から見た概略図であるが、図6(d)の工程において半導体装置17全体を下方(第1の放熱板9の下面側)から見た詳細図を図7に示す。図7に示されるように、ダイシングブレード等の刃14の幅を端子保持バー13の幅よりも大きく設定することで図6(d)の工程で端子保持バー13は刃14により完全除去され、複数の実装端子4は端子保持バー13より分離される。   Here, FIG. 6D is a schematic view of the entire semiconductor device 17 as viewed from above (the upper surface side of the first heat radiation plate 9). However, in the process of FIG. A detailed view seen from the lower surface side of the first heat radiating plate 9 is shown in FIG. As shown in FIG. 7, by setting the width of the blade 14 such as a dicing blade larger than the width of the terminal holding bar 13, the terminal holding bar 13 is completely removed by the blade 14 in the step of FIG. The plurality of mounting terminals 4 are separated from the terminal holding bar 13.

なお、端子保持バー13、レンズ2、反射板3及び基板25を1つの刃14で同時に切断するとしたが、種々の刃14のダイシングブレードで数回別々に切断しても構わない。また、ダイシングブレードの砥粒にダイヤモンドを用いたがCBNを用いても構わない。また砥粒を固着する為のボンド材としてCu−Sn系のメタルボンドを用いたがNi系のメタルボンド及び熱硬化性樹脂等を用いても構わない。また、ダイシングブレードにて切断する際の基板25の固定にテープを用いたが、別の固定方式、例えば真空吸着を用いても構わない。また、レンズ2が突起形状のために基板25側を固定して切断を行ったが、レンズ2の突起形状等を固定できうるならばレンズ2側を固定して切断を行っても構わない。また、ダイシングブレードで切断する際に発生する熱を冷却するために、また切断屑の除去などを行うために、一般的に切削水が使用されるが、この切削水の水流力及び切削屑などでレンズ2に傷損傷及び破壊等が発生しないように切断が行われる。   Although the terminal holding bar 13, the lens 2, the reflecting plate 3, and the substrate 25 are cut simultaneously with one blade 14, they may be cut separately several times with dicing blades of various blades 14. Moreover, although diamond was used for the abrasive grains of the dicing blade, CBN may be used. Further, although a Cu—Sn based metal bond is used as a bonding material for fixing the abrasive grains, a Ni based metal bond, a thermosetting resin, or the like may be used. Further, although the tape is used to fix the substrate 25 when cutting with a dicing blade, another fixing method, for example, vacuum suction may be used. In addition, since the lens 2 has a projection shape, the substrate 25 side is fixed and cut. However, if the projection shape of the lens 2 can be fixed, the lens 2 side may be fixed and cut. Moreover, in order to cool the heat generated when cutting with a dicing blade and to remove cutting waste, etc., cutting water is generally used. Thus, the lens 2 is cut so as not to be damaged or broken.

最後に図6(e)に示されるように、テープに保持された半導体装置17をピックアップし、半導体装置17を得る。図6(e)でのA−A’断面の詳細が図2Cの断面図となる。   Finally, as shown in FIG. 6E, the semiconductor device 17 held on the tape is picked up to obtain the semiconductor device 17. The details of the A-A ′ cross section in FIG. 6 (e) are the cross sectional view of FIG. 2C.

なお、図6では本発明の実施の形態2の図2A〜図2Dで示した半導体装置17の製造方法について示したが、図6で示した製造方法は一部を変更して実施の形態1の図1A〜図1Dで示した半導体装置7の製造方法及び実施の形態3の図4A〜図4Dで示した反動体装置27の製造方法等に応用されても構わない。   6 shows the manufacturing method of the semiconductor device 17 shown in FIGS. 2A to 2D according to the second embodiment of the present invention. However, the manufacturing method shown in FIG. The manufacturing method of the semiconductor device 7 shown in FIGS. 1A to 1D and the manufacturing method of the reaction body device 27 shown in FIGS. 4A to 4D of Embodiment 3 may be applied.

具体的には、実施の形態1の半導体装置7の製造方法では、図6(a)で示した工程は、上面上に基板電極が設けられ、下面上に基板電極と電気的に接続された実装端子4が形成された基板5を用意するだけの工程とされる。そして、図6(b)で示した工程では、基板5の上面と放熱板孔10が形成された第1の放熱板9の下面とが放熱板孔10と基板電極とを合せて接着剤により接着され、図6(c)で示した工程では、レンズ2、反射板3及び基板5がダイシングブレードで切断される。   Specifically, in the method of manufacturing the semiconductor device 7 according to the first embodiment, in the process shown in FIG. 6A, the substrate electrode is provided on the upper surface and electrically connected to the substrate electrode on the lower surface. This is a process only for preparing the substrate 5 on which the mounting terminals 4 are formed. In the step shown in FIG. 6B, the upper surface of the substrate 5 and the lower surface of the first heat radiating plate 9 in which the heat radiating plate holes 10 are formed are combined with the heat radiating plate holes 10 and the substrate electrodes by an adhesive. In the process shown in FIG. 6C, the lens 2, the reflection plate 3, and the substrate 5 are cut with a dicing blade.

また、実施の形態3の半導体装置27の製造方法では、図6(b)で示した工程で、第1の放熱板9の下面上における実装端子4が形成された領域及びその周囲の領域を除く領域に接着剤11を介して第2の放熱板12が形成される工程が追加される。   In the method for manufacturing the semiconductor device 27 according to the third embodiment, in the step shown in FIG. 6B, the region where the mounting terminals 4 are formed on the lower surface of the first heat radiating plate 9 and the surrounding region are formed. A step of forming the second heat radiating plate 12 via the adhesive 11 is added to the excluded region.

以上のように本実施の形態の半導体装置の製造方法によれば、放熱板内蔵構造を有した半導体装置を製造することができる。また、最後にブレード切断して複数の半導体装置を製造することで複数の半導体装置について同時に加工を行えるため、加工時間を短縮でき半導体装置の製造コストダウンを実現することができる。   As described above, according to the method for manufacturing a semiconductor device of the present embodiment, a semiconductor device having a heat sink built-in structure can be manufactured. In addition, since a plurality of semiconductor devices can be processed at the same time by cutting a blade at the end, the processing time can be shortened and the manufacturing cost of the semiconductor device can be reduced.

以上、本発明の半導体装置について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の要旨を逸脱しない範囲内で当業者が思いつく各種変形を施したものも本発明の範囲内に含まれる。また、発明の趣旨を逸脱しない範囲で、複数の実施の形態における各構成要素を任意に組み合わせてもよい。   As mentioned above, although the semiconductor device of this invention was demonstrated based on embodiment, this invention is not limited to this embodiment. The present invention includes various modifications made by those skilled in the art without departing from the scope of the present invention. Moreover, you may combine each component in several embodiment arbitrarily in the range which does not deviate from the meaning of invention.

本発明は、半導体装置とその製造方法に有用であり、特に液晶パネル等に有用である。   The present invention is useful for a semiconductor device and a manufacturing method thereof, and particularly useful for a liquid crystal panel or the like.

1 光源
2 レンズ
3 反射板
4 実装端子
5、25 基板
6 ワイヤー
7、17、27 半導体装置
9 第1の放熱板
10 放熱板孔
11 接着剤
12 第2の放熱板
13 端子保持バー
14 刃
15 半田
16 実装基板
DESCRIPTION OF SYMBOLS 1 Light source 2 Lens 3 Reflector 4 Mounting terminal 5, 25 Board | substrate 6 Wire 7, 17, 27 Semiconductor device 9 1st heat sink 10 Heat sink hole 11 Adhesive 12 Second heat sink 13 Terminal holding bar 14 Blade 15 Solder 16 Mounting board

Claims (11)

実装基板に実装される半導体装置であって、
上面から下面に向けて貫通する放熱板孔が形成された第1の放熱板と、
前記第1の放熱板の下面側に設けられ、前記実装基板の端子と電気的に接続される実装端子と、
前記第1の放熱板の上面上に設けられた発光素子と、
前記放熱板孔を介して、前記発光素子と前記実装端子とを電気的に接続するワイヤーと、
前記第1の放熱板の上面上に設けられ、前記発光素子の光を反射する反射板と、
前記発光素子、前記ワイヤー及び前記反射板を覆うように前記第1の放熱板の上面上に設けられ、前記発光素子の光を集光するレンズとを備える
半導体装置。
A semiconductor device mounted on a mounting board,
A first heat sink having a heat sink hole penetrating from the upper surface toward the lower surface;
A mounting terminal provided on a lower surface side of the first heat dissipation plate and electrically connected to a terminal of the mounting substrate;
A light emitting device provided on an upper surface of the first heat dissipation plate;
A wire for electrically connecting the light emitting element and the mounting terminal via the heat sink hole;
A reflection plate provided on the upper surface of the first heat dissipation plate and reflecting light of the light emitting element;
A semiconductor device comprising: a lens that is provided on an upper surface of the first heat radiating plate so as to cover the light emitting element, the wire, and the reflecting plate, and collects light of the light emitting element.
前記半導体装置は、さらに、
上面上に基板電極が設けられた基板と、
前記基板の上面と前記第1の放熱板の下面とを接着する接着剤とを備え、
前記実装端子は、前記基板の下面上に設けられ、前記基板電極と電気的に接続され、
前記ワイヤーは、一端が前記発光素子と接続され、他端が前記基板電極と接続され、
前記基板は、前記基板電極の上方に前記放熱板孔が位置するように前記第1の放熱板と接着される
請求項1記載の半導体装置。
The semiconductor device further includes:
A substrate provided with a substrate electrode on the upper surface;
An adhesive that bonds the upper surface of the substrate and the lower surface of the first heat dissipation plate;
The mounting terminal is provided on the lower surface of the substrate, and is electrically connected to the substrate electrode,
The wire has one end connected to the light emitting element and the other end connected to the substrate electrode.
The semiconductor device according to claim 1, wherein the substrate is bonded to the first heat dissipation plate so that the heat dissipation plate hole is located above the substrate electrode.
前記実装端子は、該実装端子の上方に前記放熱板孔が位置するように前記第1の放熱板の下面上に接着剤を介して接着されている
請求項1記載の半導体装置。
The semiconductor device according to claim 1, wherein the mounting terminal is bonded to the lower surface of the first heat dissipation plate with an adhesive so that the heat dissipation plate hole is positioned above the mounting terminal.
前記接着剤は、前記第1の放熱板の下面において前記実装端子の周囲に延在している
請求項3記載の半導体装置。
The semiconductor device according to claim 3, wherein the adhesive extends around the mounting terminal on the lower surface of the first heat radiating plate.
前記第1の放熱板と前記実装基板とは、前記実装端子と前記実装基板の端子とを半田により接合する際に、前記半田により接合される
請求項3記載の半導体装置。
The semiconductor device according to claim 3, wherein the first heat radiating plate and the mounting substrate are joined by the solder when the mounting terminals and the terminals of the mounting substrate are joined by solder.
前記半導体装置は、さらに、前記第1の放熱板の下面上に設けられた第2の放熱板を備える
請求項3記載の半導体装置。
The semiconductor device according to claim 3, further comprising a second heat radiating plate provided on a lower surface of the first heat radiating plate.
前記接着剤は、前記第1の放熱板の下面上において前記実装端子の周囲に延在している
請求項6記載の半導体装置。
The semiconductor device according to claim 6, wherein the adhesive extends around the mounting terminal on the lower surface of the first heat radiating plate.
前記第2の放熱板と前記実装基板とは、前記実装端子と前記実装基板の端子とを半田により接合する際に、前記半田により接合される
請求項6記載の半導体装置。
The semiconductor device according to claim 6, wherein the second heat radiating plate and the mounting substrate are joined by the solder when the mounting terminal and the terminal of the mounting substrate are joined by solder.
実装基板に実装される半導体装置の製造方法であって、
上面上に基板電極が設けられ、下面上に前記基板電極と電気的に接続された実装端子が設けられた基板の上面と、上面から下面に向けて貫通する放熱板孔が形成された第1の放熱板の下面とを、前記放熱板孔と前記基板電極とを合せて接着剤により接着し、
前記第1の放熱板の上面上に複数の発光素子を形成し、
前記第1の放熱板の上面上に、前記発光素子の光を反射する反射板を形成し、
前記複数の発光素子と前記基板電極とを前記放熱板孔を介して電気的にワイヤーで接続し、
前記複数の発光素子、前記ワイヤー及び前記反射板を覆うようにレンズを形成し、
前記基板を切断して前記複数の発光素子を分離する
半導体装置の製造方法。
A method of manufacturing a semiconductor device mounted on a mounting substrate,
A substrate electrode is provided on the top surface, a top surface of the substrate on which a mounting terminal electrically connected to the substrate electrode is provided on the bottom surface, and a heat sink plate hole penetrating from the top surface to the bottom surface is formed. The lower surface of the heat sink is bonded with an adhesive by combining the heat sink hole and the substrate electrode,
Forming a plurality of light emitting elements on an upper surface of the first heat dissipation plate;
On the upper surface of the first heat radiating plate, a reflecting plate that reflects the light of the light emitting element is formed,
The plurality of light emitting elements and the substrate electrode are electrically connected through wires through the heat sink holes,
Forming a lens so as to cover the plurality of light emitting elements, the wires and the reflector;
A method for manufacturing a semiconductor device, wherein the substrate is cut to separate the plurality of light emitting elements.
実装基板に実装される半導体装置の製造方法であって、
上面から下面に向けて貫通する放熱板孔が形成された第1の放熱板の下面と実装端子とを、前記放熱板孔と前記実装端子とを合せて接着剤により接着し、
前記第1の放熱板の上面上に複数の発光素子を形成し、
前記第1の放熱板の上面上に、前記発光素子の光を反射する反射板を形成し、
前記複数の発光素子と前記実装端子とを前記放熱板孔を介して電気的にワイヤーで接続し、
前記発光素子、前記ワイヤー及び前記反射板を覆うようにレンズを形成し、
前記複数の発光素子を分離する
半導体装置の製造方法。
A method of manufacturing a semiconductor device mounted on a mounting substrate,
The lower surface of the first heat radiating plate in which a heat radiating plate hole penetrating from the upper surface toward the lower surface and the mounting terminal are bonded with the adhesive by combining the heat radiating plate hole and the mounting terminal,
Forming a plurality of light emitting elements on an upper surface of the first heat dissipation plate;
On the upper surface of the first heat radiating plate, a reflecting plate that reflects the light of the light emitting element is formed,
The plurality of light emitting elements and the mounting terminals are electrically connected through wires through the heat sink holes,
Forming a lens so as to cover the light emitting element, the wire and the reflector;
A method for manufacturing a semiconductor device, wherein the plurality of light emitting elements are separated.
前記第1の放熱板の下面上に第2の放熱板を形成する
請求項10記載の半導体装置の製造方法。
The method for manufacturing a semiconductor device according to claim 10, wherein a second heat radiating plate is formed on a lower surface of the first heat radiating plate.
JP2010096509A 2010-04-19 2010-04-19 Semiconductor device and manufacturing method for the same Pending JP2011228460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010096509A JP2011228460A (en) 2010-04-19 2010-04-19 Semiconductor device and manufacturing method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010096509A JP2011228460A (en) 2010-04-19 2010-04-19 Semiconductor device and manufacturing method for the same

Publications (1)

Publication Number Publication Date
JP2011228460A true JP2011228460A (en) 2011-11-10

Family

ID=45043489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010096509A Pending JP2011228460A (en) 2010-04-19 2010-04-19 Semiconductor device and manufacturing method for the same

Country Status (1)

Country Link
JP (1) JP2011228460A (en)

Similar Documents

Publication Publication Date Title
JP4121536B2 (en) Semiconductor light emitting element, method for manufacturing the same, method for mounting the same, and light emitting device
TWI608637B (en) Light emitting device and method of manufacturing the same
TWI462343B (en) Light emitting device
JP4865525B2 (en) SML type light emitting diode lamp element and manufacturing method thereof
JP4841836B2 (en) Method for manufacturing light emitting device of flip chip type light emitting diode
CN102185091B (en) Light-emitting diode device and manufacturing method thereof
CN102185090B (en) Luminescent device adopting COB (chip on board) packaging and manufacturing method thereof
JP2006049442A (en) Semiconductor light emission device and its manufacturing method
JP2007250979A (en) Semiconductor package
JP2010258403A (en) Luminous device and manufacturing method therefor
JP5940799B2 (en) Electronic component mounting package, electronic component package, and manufacturing method thereof
JP2004259958A (en) Package for housing light emitting element, and light emitting device
JP2008166462A (en) Light-emitting device
JP6090680B2 (en) Light emitting module
JP4114557B2 (en) Light emitting device
JP2006514426A (en) Surface mount type light emitting diode
US20100044727A1 (en) Led package structure
WO2011083703A1 (en) Led module device and method for manufacturing same
JP2006100753A (en) Semiconductor module and its manufacturing method
JP2010003946A (en) Package of light emitting element, and manufacturing method of light emitting element
JP5155539B2 (en) Light emitting device
JP2007087669A (en) Manufacturing method of led luminaire
JP2010272744A (en) Led module device and method of manufacturing the same
TW201244056A (en) Light emitting diode module package structure
JP2011228460A (en) Semiconductor device and manufacturing method for the same