JP2011226757A - Air conditioner for fan coil type radiation air conditioning panel with heat pump - Google Patents

Air conditioner for fan coil type radiation air conditioning panel with heat pump Download PDF

Info

Publication number
JP2011226757A
JP2011226757A JP2010191397A JP2010191397A JP2011226757A JP 2011226757 A JP2011226757 A JP 2011226757A JP 2010191397 A JP2010191397 A JP 2010191397A JP 2010191397 A JP2010191397 A JP 2010191397A JP 2011226757 A JP2011226757 A JP 2011226757A
Authority
JP
Japan
Prior art keywords
water
refrigerant
air conditioning
heat exchanger
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010191397A
Other languages
Japanese (ja)
Other versions
JP5524768B2 (en
Inventor
Hidemi Yamao
秀美 山尾
Satoshi Terajima
聡 寺島
Toshiaki Saito
敏明 斉藤
Motoo Tanaka
基夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHIMOTO KENCHIKU JIMUSHO KK
Nippon Pmac Co Ltd
Original Assignee
ISHIMOTO KENCHIKU JIMUSHO KK
Nippon Pmac Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHIMOTO KENCHIKU JIMUSHO KK, Nippon Pmac Co Ltd filed Critical ISHIMOTO KENCHIKU JIMUSHO KK
Priority to JP2010191397A priority Critical patent/JP5524768B2/en
Publication of JP2011226757A publication Critical patent/JP2011226757A/en
Application granted granted Critical
Publication of JP5524768B2 publication Critical patent/JP5524768B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Abstract

PROBLEM TO BE SOLVED: To reduce installation costs of an air conditioner and to minimize heat recovery loss of hot/cold water in the air conditioner.SOLUTION: This air conditioner 1 includes a fan coil disposed in hot/cold water piping 20, a heat pump water-refrigerant heat exchanger 12 exchanging heat between hot/cold water in the hot/cold water piping 20 and a refrigerant of a compressor 10, a radiation air conditioning water-water heat exchanger 33 exchanging heat between circulated water in a circulation water channel 31 and the hot/cold water in the hot/cold water piping 20, a radiation air conditioning water-refrigerant heat exchanger 34 exchanging heat between the refrigerant in refrigerant piping 15 and the circulated water in the circulation water channel 31, and a refrigerant-air heat exchanger 14 exchanging heat between the air distributed from an air blower 21 and the refrigerant in the refrigerant piping 15. The radiation air conditioning water-water heat exchanger 33 is disposed between the fan coil 22 and the heat pump water-refrigerant heat exchanger 12 in the hot/cold water piping 20, and the hot/cold water piping 20 is provided with a bypass passage 35 bypassing the fan coil 22.

Description

本発明は、放射冷暖房、空調冷暖房及び外気処理を行うヒートポンプ付ファンコイル式放射空調パネル用空調機に関するものである。   The present invention relates to an air conditioner for a fan coil type radiant air conditioning panel with a heat pump that performs radiant cooling and heating, air conditioning cooling and heating, and outside air processing.

従来、ヒートポンプ式の冷凍サイクルの空調機としては、例えば、特許文献1に開示されるように、ファンコイルと、冷凍サイクルとしてのいわゆるヒートポンプとを組み合わせたものがある。   Conventionally, as an air conditioner of a heat pump type refrigeration cycle, for example, as disclosed in Patent Document 1, there is a combination of a fan coil and a so-called heat pump as a refrigeration cycle.

また、特許文献2には、流体を循環させ、その流体の放射熱を放出する放射空調パネルと、放射空調パネルに生じる結露により水滴が天井や室内に落下することを防止するための除湿装置とを有する空調機が開示されている。   Patent Document 2 discloses a radiant air-conditioning panel that circulates a fluid and releases radiant heat of the fluid, and a dehumidifying device that prevents water droplets from falling into the ceiling or the room due to condensation that occurs in the radiant air-conditioning panel. An air conditioner having

特開平9−196422号公報JP-A-9-196422 特開2008−51468号公報JP 2008-51468 A

ところで、特許文献2に開示されるような放射空調パネルを使用した空調機において、結露を防止するための別途の除湿装置を設ける必要があった。   By the way, in the air conditioner using the radiation air-conditioning panel as disclosed in Patent Document 2, it is necessary to provide a separate dehumidifying device for preventing condensation.

この点について本発明者らは、特許文献1に開示されるファンコイル及びヒートポンプを用いた空調機と、特許文献2に開示される、放射空調パネルを用いた空調機を組み合わせることができれば、夫々の利点を生かすことができることに着目した。具体的には、ファンコイル及びヒートポンプにより潜熱負荷の処理を行い、放射空調パネルにより顕熱負荷の処理を行うと共に、ファンコイル、ヒートポンプ及び放射空調パネルの負荷配分を調整することで、空調機全体としての運転負荷をきめ細かく制御することができる。   In this regard, the present inventors can combine an air conditioner using a fan coil and a heat pump disclosed in Patent Document 1 with an air conditioner using a radiant air conditioning panel disclosed in Patent Document 2, respectively. We focused on being able to take advantage of. Specifically, the latent heat load is processed by the fan coil and the heat pump, the sensible heat load is processed by the radiant air conditioning panel, and the load distribution of the fan coil, the heat pump and the radiant air conditioning panel is adjusted. As a result, the operation load can be finely controlled.

なお、ファンコイルで使用される冷温水の温度は、例えば冷房の場合で7℃及び暖房の場合で45℃であり、その一方で、放射空調パネルに用いられる循環水は、冷房の場合で16℃及び暖房の場合で34℃である。したがって、ファンコイルと、放射空調パネルとを組み合わせて用いる空調機においては、ファンコイルで使用する冷温水を供給する配管と、放射空調パネルに用いられる循環水と熱交換を行うための冷温水を供給する配管とは、内部を流れる水の温度が異なっており、夫々別個の系統として設ける必要がある。この場合、設備設計が複雑になるとともに、施工等のコストが掛かるという問題がある。   The temperature of the cold / hot water used in the fan coil is, for example, 7 ° C. in the case of cooling and 45 ° C. in the case of heating, while the circulating water used in the radiant air conditioning panel is 16 ° in the case of cooling. In the case of ℃ and heating, it is 34 ℃. Therefore, in an air conditioner that uses a combination of a fan coil and a radiant air conditioning panel, piping for supplying cold / hot water used in the fan coil and cold / hot water for heat exchange with circulating water used for the radiant air conditioning panel are provided. The temperature of the water flowing through the piping to be supplied is different, and it is necessary to provide each as a separate system. In this case, there is a problem that the facility design becomes complicated and the cost for construction and the like is increased.

発明者らはこの点について鋭意検討し、ファンコイルにおいて熱交換を行った後の冷温水を、放射空調パネルの循環水との熱交換に用い、さらにヒートポンプ用の吸排熱用の熱源として用いるような構成とすれば、ファンコイルで使用する冷温水を供給する配管と、放射空調パネルに用いられる循環水と熱交換を行うための冷温水を供給する配管と、ヒートポンプ用の吸排熱用の熱源としての冷温水を供給する配管とを共用できるようになり、その結果、特許文献1に開示されるファンコイル及びヒートポンプを用いた空調機と、特許文献2に開示される放射空調パネルを用いた空調機を組み合わせた場合においても、配管系統が複雑化するのを避けることができると共に、空調機の省エネルギー化を図ることができるとの着想を得た。   The inventors diligently studied this point, and the cold / hot water after heat exchange in the fan coil is used for heat exchange with the circulating water of the radiant air conditioning panel, and is further used as a heat source for intake / exhaust heat for the heat pump. If it is a simple structure, the piping for supplying cold / hot water used in the fan coil, the piping for supplying cold / hot water for heat exchange with the circulating water used in the radiant air-conditioning panel, and the heat source for intake and exhaust heat for the heat pump As a result, an air conditioner using a fan coil and a heat pump disclosed in Patent Document 1 and a radiant air conditioning panel disclosed in Patent Document 2 were used. Even when combined with an air conditioner, the idea is that the piping system can be prevented from becoming complicated and energy saving of the air conditioner can be achieved.

また、上述の冷温水は通常、空調機の外部に設けられた例えばボイラや冷凍機の組み合わせからなる中央熱源から供給されるが、一般に中央熱源から供給される際の冷温水の温度と中央熱源に戻る際の冷温水の温度との差が大きいほど中央熱源における熱効率が向上する。この点、ファンコイルにおいて熱交換を行った後の冷温水を、放射空調パネルの循環水との熱交換に用い、さらにヒートポンプ用の吸排熱用の熱源として用いるような構成とすることで空調機における冷温水の熱回収ロスを最小限とし、冷温水の空調機入口と出口との温度差、即ち中央熱源から供給される際の冷温水の温度と中央熱源に戻る際の冷温水の温度との差を従来よりも大きくすることができるので、中央熱源を含めたシステム全体の省エネルギー化も期待できる。   Moreover, although the above-mentioned cold / hot water is normally supplied from the central heat source which consists of the combination of the boiler and refrigerator provided outside the air conditioner, generally the temperature of the cold / warm water when the central heat source is supplied and the central heat source The larger the difference from the temperature of the cold / warm water when returning to, the higher the thermal efficiency in the central heat source. In this regard, the air conditioner is configured such that the cold / hot water after heat exchange in the fan coil is used for heat exchange with the circulating water of the radiant air conditioning panel, and is further used as a heat source for heat absorption and exhaust heat for the heat pump. The temperature difference between the cold / hot water air conditioner inlet and outlet, that is, the temperature of the cold / warm water when supplied from the central heat source and the temperature of the cold / warm water when returning to the central heat source are minimized. This difference can be made larger than before, so energy saving can be expected for the entire system including the central heat source.

本発明はかかる点に鑑みてなされたものであり、ヒートポンプを備えたファンコイル式の空調機に、放射空調パネルを追加し、放射空調を行うとともに、空調のピーク負荷時等に放射空調では対応することができない空調負荷を、ファンコイルとヒートポンプの空気熱交換器で処理し、放射空調では処理できない潜熱負荷をファンコイルとヒートポンプの空気熱交換器で補い、外気処理をファンコイルとヒートポンプの空気熱交換器で行うにあたり、空調機の設置コストを低減すると共に、空調機における冷温水の熱回収ロスを最小限とすることを目的としている。   The present invention has been made in view of the above points, and a radiant air conditioning panel is added to a fan coil type air conditioner equipped with a heat pump to perform radiant air conditioning, and radiant air conditioning can be used at the peak load of the air conditioning. Air conditioning load that cannot be processed by fan coil and heat pump air heat exchanger, latent heat load that cannot be handled by radiant air conditioning is supplemented by fan coil and heat pump air heat exchanger, and outside air treatment is performed by fan coil and heat pump air The purpose of the heat exchanger is to reduce the installation cost of the air conditioner and minimize the heat recovery loss of cold / hot water in the air conditioner.

前記の目的を達成するための本発明は、放射冷暖房、空調冷暖房及び外気処理を行うヒートポンプ付ファンコイル式放射空調パネル用空調機であって、空調用の冷温水を通水する冷温水配管に設けられ、送風機から送風される空気と前記冷温水配管内の冷温水との間で熱交換を行うファンコイルと、前記冷温水配管内の冷温水と圧縮機に接続された冷媒配管内の冷媒との間で熱交換を行うヒートポンプ用水対冷媒熱交換器と、空調機の外部に設けられた放射空調パネルに接続された循環水路内の循環水と前記冷温水配管内の冷温水との間で熱交換を行う放射空調用水対水熱交換器と、前記冷媒配管に設けられ、前記冷媒配管内の冷媒と前記循環水路内の循環水との間で熱交換を行う放射空調用水対冷媒熱交換器と、送風機から送風される空気と前記冷媒配管内の冷媒との間で熱交換を行う冷媒対空気熱交換器と、を有し、前記放射空調用水対水熱交換器と前記放射空調用水対冷媒熱交換器とは、前記循環水路において並列に設けられ、冷媒対空気熱交換器と前記放射空調用水対冷媒熱交換器とは、前記冷媒配管において並列に設けられ、前記放射空調用水対水熱交換器は、前記冷温水配管において前記ファンコイルと前記ヒートポンプ用水対冷媒熱交換器の間に設けられ、前記冷温水配管には、前記ファンコイルを迂回するバイパス路が形成されていることを特徴としている。   The present invention for achieving the above object is an air conditioner for a fan coil type radiant air conditioning panel with a heat pump that performs radiant cooling and heating, air conditioning cooling and heating, and external air treatment, to a chilled and hot water pipe for passing cold and hot water for air conditioning. A fan coil that is provided and exchanges heat between the air blown from the blower and the cold / hot water in the cold / hot water pipe, and the refrigerant in the refrigerant pipe connected to the cold / hot water in the cold / hot water pipe and the compressor Between the water-to-refrigerant heat exchanger for the heat pump that exchanges heat with the circulating water in the circulating water channel connected to the radiant air conditioning panel provided outside the air conditioner and the cold / hot water in the cold / hot water pipe Water-to-water heat exchanger for radiant air-conditioning that performs heat exchange in the air-cooling system, and water-to-refrigerant heat for radiant air-conditioning that is provided in the refrigerant pipe and exchanges heat between the refrigerant in the refrigerant pipe and the circulating water in the circulating water channel Exchanger and air blown from blower A refrigerant-to-air heat exchanger that exchanges heat with the refrigerant in the refrigerant pipe, and the radiant air-conditioning water-to-water heat exchanger and the radiant air-conditioning water-to-refrigerant heat exchanger The refrigerant-to-air heat exchanger and the radiant air-conditioning water-to-refrigerant heat exchanger are provided in parallel in the refrigerant pipe, and the radiant air-conditioning water-to-water heat exchanger is provided in the cold / hot water pipe. The heat pump water-to-refrigerant heat exchanger is provided with a bypass path that bypasses the fan coil.

本発明によれば、空調機が、冷温水配管においてファンコイルとヒートポンプ用水対冷媒熱交換器の間に設けられた放射空調用水対水熱交換器を有しているので、ファンコイルにより熱交換を行った冷温水を、再度放射空調用水対水熱交換器において循環水路の循環水との熱交換に用いることができる。したがって、従来のように、ヒートポンプを有する空調機と、放射空調パネルを用いた空調機とを組み合わせて用いる場合に別系統としていたヒートポンプの冷媒と熱交換を行うための配管と放射空調パネルの循環水と熱交換を行うための配管とを、個別の系統として設ける必要がなくなる。これにより、設備設計が複雑になることを防止して、施工等の設置コストを低減することができると共に、空調機における冷温水の熱回収ロスを最小限とすることができる。   According to the present invention, the air conditioner has the water-to-water heat exchanger for radiant air conditioning provided between the fan coil and the water-to-refrigerant heat exchanger for heat pump in the cold / hot water pipe. The cold / hot water that has been subjected to the above can be used again for heat exchange with the circulating water in the circulation channel in the water-to-water heat exchanger for radiant air conditioning. Therefore, as in the prior art, when an air conditioner having a heat pump and an air conditioner using a radiant air conditioning panel are used in combination, piping for heat exchange with the heat pump refrigerant, which has been a separate system, and circulation of the radiant air conditioning panel It is not necessary to provide piping for water and heat exchange as a separate system. Thereby, it is possible to prevent the facility design from becoming complicated, to reduce the installation cost for construction and the like, and to minimize the heat recovery loss of the cold / hot water in the air conditioner.

なお、前記循環水路には、当該循環水路内に循環水を循環させる循環ポンプと、前記放射空調用水対水熱交換器及び放射空調用水対冷媒熱交換器を迂回するバイパス路と、当該バイパス路を通過する前記循環水の量を制御する比例三方弁とが設けられていてもよい。かかる場合、前記循環水路における、前記バイパス路の下流側には、前記放射空調用水対水熱交換器と放射空調用水対冷媒熱交換器とへ循環水の通水を切り替える循環水三方弁が設けられていてもよい。   The circulation channel includes a circulation pump that circulates the circulating water in the circulation channel, a bypass channel that bypasses the water-to-water heat exchanger for radiant air conditioning and the water-to-refrigerant heat exchanger for radiant air conditioning, and the bypass channel. A proportional three-way valve that controls the amount of the circulating water passing through the pipe may be provided. In this case, a circulating water three-way valve for switching the circulating water flow to the radiant air conditioning water-to-water heat exchanger and the radiant air conditioning water-to-refrigerant heat exchanger is provided downstream of the bypass channel in the circulating water channel. It may be done.

前記循環水路には、当該循環水路内に循環水を循環させる循環ポンプと、並列に設けられた前記放射空調用水対水熱交換器及び放射空調用水対冷媒熱交換器へ通水する循環水を分配する比例三方弁が設けられていてもよい。   In the circulating water channel, circulating water that circulates the circulating water in the circulating water channel and circulating water that passes through the radiant air-conditioning water-to-water heat exchanger and the radiant air-conditioning water-to-refrigerant heat exchanger provided in parallel are provided. A proportional three-way valve for dispensing may be provided.

なお、前記比例三方弁は、前記循環水路における前記放射用空調パネルの入口において、前記循環水の温度を冷房時に16℃、暖房時に34℃となるように前記放射空調用水対水熱交換器及び/又は放射空調用水対冷媒熱交換器を通過する循環水の量を制御してもよい。   The proportional three-way valve has a water-to-water heat exchanger for radiant air conditioning at an inlet of the radiant air conditioning panel in the circulation channel so that the temperature of the circulating water is 16 ° C. during cooling and 34 ° C. during heating. The amount of circulating water passing through the radiant air conditioning water to refrigerant heat exchanger may be controlled.

また、前記冷温水配管における当該冷温水配管と前記バイパス路との合流箇所の下流には、放射空調用水対水熱交換器をバイパスする他のバイパス路と、当該他のバイパス路を通過する前記冷温水の量を制御する他の比例三方弁とが設けられていてもよい。かかる場合、前記他の比例三方弁は、前記循環水路における前記放射用空調パネルの入口において、前記循環水の温度を冷房時に16℃、暖房時に34℃となるように前記他のバイパス路を通過する冷温水の量を制御してもよい。   Further, downstream of the merging point between the cold / hot water pipe and the bypass path in the cold / hot water pipe, another bypass path that bypasses the water-to-water heat exchanger for radiant air conditioning, and the other bypass path that passes through the other bypass path Another proportional three-way valve for controlling the amount of cold / hot water may be provided. In such a case, the other proportional three-way valve passes through the other bypass passage so that the temperature of the circulating water is 16 ° C. during cooling and 34 ° C. during heating at the entrance of the radiation air conditioning panel in the circulation water passage. You may control the quantity of the cold / hot water to perform.

前記循環水路には、当該循環水路内に循環水を循環させる循環ポンプが設けられ、前記ポンプの回転数を制御することで、前記循環水路における前記放射用空調パネルの入口において、前記循環水の温度を冷房時に16℃、暖房時に34℃となるように前記放射空調用水対水熱交換器を通過する循環水量を制御してもよい。   The circulating water channel is provided with a circulating pump for circulating the circulating water in the circulating water channel, and the circulating water is controlled at the inlet of the radiation air conditioning panel in the circulating water channel by controlling the rotation speed of the pump. The amount of circulating water passing through the water-to-water heat exchanger for radiant air conditioning may be controlled so that the temperature is 16 ° C. during cooling and 34 ° C. during heating.

また、別な観点による本発明は、放射冷暖房、空調冷暖房及び外気処理を行うヒートポンプ付ファンコイル式放射空調パネル用空調機であって、空調用の冷温水を通水する冷温水配管に設けられ、送風機から送風される空気と冷温水配管内の冷温水との間で熱交換を行うファンコイルと、前記冷温水配管内の冷温水と圧縮機に接続された冷媒配管内の冷媒との間で熱交換を行うヒートポンプ用水対冷媒熱交換器と、放射空調パネルに接続された循環水路内の循環水と前記冷温水配管内の冷温水との間で熱交換を行う放射空調用水対水熱交換器と、前記冷媒配管に設けられ、前記冷媒配管内の冷媒と前記循環水路内の循環水との間で熱交換を行う放射空調用水対冷媒熱交換器と、を有し、前記放射空調用水対水熱交換器と前記放射空調用水対冷媒熱交換器とは、前記循環水路において直列に設けられ、
前記放射空調用水対水熱交換器は、前記冷温水配管において前記ファンコイルと前記ヒートポンプ用水対冷媒熱交換器の間に設けられ、冷媒対空気熱交換器と前記放射空調用水対冷媒熱交換器とは、前記冷媒配管において並列に設けられ、前記冷温水配管には、前記ファンコイル及び前記放射空調用水対水熱交換器を迂回するバイパス路が形成されていることを特徴としている。
Another aspect of the present invention is an air conditioner for a fan coil type radiant air conditioning panel with a heat pump that performs radiant cooling / heating, air conditioning cooling / heating, and outside air processing, and is provided in a chilled / hot water pipe through which chilled / warm water flows for air conditioning. The fan coil that exchanges heat between the air blown from the blower and the cold / hot water in the cold / hot water pipe, and the cold / hot water in the cold / hot water pipe and the refrigerant in the refrigerant pipe connected to the compressor Water-to-refrigerant heat exchanger for heat pump that performs heat exchange in the water, and water-to-water heat for radiant air-conditioning that performs heat exchange between the circulating water in the circulating water channel connected to the radiant air-conditioning panel and the cold / hot water in the cold / hot water pipe A radiant air conditioner, and a radiant air conditioning water-to-refrigerant heat exchanger that is provided in the refrigerant pipe and performs heat exchange between the refrigerant in the refrigerant pipe and the circulating water in the circulation channel. Water-to-water heat exchanger and water-to-cooling for radiant air conditioning The heat exchanger, arranged in series in the water circulation passage,
The water-to-water heat exchanger for radiant air conditioning is provided between the fan coil and the water-to-refrigerant heat exchanger for heat pump in the cold / hot water pipe, and the refrigerant-to-air heat exchanger and the water-to-refrigerant heat exchanger for radiant air conditioning Is provided in parallel in the refrigerant pipe, and the cold / hot water pipe is formed with a bypass path that bypasses the fan coil and the water-to-water heat exchanger for radiation air conditioning.

さらに、別な観点による本発明は、放射冷暖房、空調冷暖房及び外気処理を行うヒートポンプ付ファンコイル式放射空調パネル用空調機であって、空調用の冷温水を通水する冷温水配管に設けられ、送風機から送風される空気と冷温水配管内の冷温水との間で熱交換を行うファンコイルと、前記冷温水配管内の冷温水と圧縮機に接続された冷媒配管内の冷媒との間で熱交換を行うヒートポンプ用水対冷媒熱交換器と、空調機の外部に設けられた放射空調パネルに接続された循環水路内の循環水と前記冷温水配管内の冷温水との間で熱交換を行う放射空調用水対水熱交換器と、前記冷媒配管に設けられ、前記冷媒配管内の冷媒と前記循環水路内の循環水との間で熱交換を行う放射空調用水対冷媒熱交換器と、送風機から送風される空気と前記冷媒配管内の冷媒との間で熱交換を行う冷媒対空気熱交換器と、を有し、前記放射空調用水対水熱交換器と前記放射空調用水対冷媒熱交換器とは、前記循環水路において並列に設けられ、前記放射空調用水対水熱交換器は、前記冷温水配管において前記ファンコイルと前記ヒートポンプ用水対冷媒熱交換器の間に設けられ、冷媒対空気熱交換器と前記放射空調用水対冷媒熱交換器とは、前記冷媒配管において並列に設けられ、前記冷温水配管には、前記ファンコイル及び前記放射空調用水対水熱交換器を迂回するバイパス路が形成されていることを特徴としている。   Furthermore, the present invention according to another aspect is an air conditioner for a fan coil type radiant air conditioning panel with a heat pump that performs radiant cooling / heating, air conditioning heating / cooling, and outside air processing, and is provided in a chilled / hot water pipe through which chilled / hot water for air conditioning flows. The fan coil that exchanges heat between the air blown from the blower and the cold / hot water in the cold / hot water pipe, and the cold / hot water in the cold / hot water pipe and the refrigerant in the refrigerant pipe connected to the compressor Heat exchange between a water-to-refrigerant heat exchanger for heat pumps that performs heat exchange at the heat exchanger, circulating water in a circulating water channel connected to a radiant air conditioning panel provided outside the air conditioner, and cold / hot water in the cold / hot water pipe A water-to-water heat exchanger for radiant air-conditioning, and a water-to-refrigerant heat exchanger for radiant air-conditioning that is provided in the refrigerant pipe and performs heat exchange between the refrigerant in the refrigerant pipe and the circulating water in the circulation channel. The air blown from the blower and the cold A refrigerant-to-air heat exchanger that exchanges heat with the refrigerant in the pipe, and the water-to-water heat exchanger for radiant air conditioning and the water-to-refrigerant heat exchanger for radiant air conditioning are connected in the circulation channel. The radiant air-conditioning water-to-water heat exchanger is provided between the fan coil and the heat pump water-to-refrigerant heat exchanger in the cold / hot water pipe, and the refrigerant-to-air heat exchanger and the radiant air-conditioning water are provided in parallel. The refrigerant heat exchanger is provided in parallel in the refrigerant pipe, and the cold / hot water pipe is formed with a bypass path that bypasses the fan coil and the water-to-water heat exchanger for radiant air conditioning. It is said.

前記冷温水配管における当該冷温水配管と前記バイパス路との合流箇所の上流には、放射空調用水対水熱交換器をバイパスする他のバイパス路と、当該他のバイパス路を通過する前記冷温水の量を制御する他の比例三方弁とが設けられていてもよい。   In the cold / hot water pipe, upstream of the junction of the cold / hot water pipe and the bypass path is another bypass path that bypasses the water-to-water heat exchanger for radiation air conditioning, and the cold / hot water that passes through the other bypass path. Another proportional three-way valve for controlling the amount of

また、別な観点による本発明は、放射冷暖房、空調冷暖房及び外気処理を行うヒートポンプ付ファンコイル式放射空調パネル用の空調機であって、空調用の冷温水を通水する冷温水配管に設けられ、送風機から送風される空気と前記冷温水配管内の冷温水との間で熱交換を行うファンコイルと、前記冷温水配管内の冷温水と圧縮機に接続された冷媒配管内の冷媒との間で熱交換を行うヒートポンプ用水対冷媒熱交換器と、空調機の外部に設けられた放射空調パネルに接続された循環水路内の循環水と前記冷温水配管内の冷温水との間で熱交換を行う放射空調用水対水熱交換器と、前記冷媒配管に設けられ、前記冷媒配管内の冷媒と前記循環水路内の循環水との間で熱交換を行う放射空調用水対冷媒熱交換器と、送風機から送風される空気と前記冷媒配管内の冷媒との間で熱交換を行う冷媒対空気熱交換器と、を有し、前記放射空調用水対水熱交換器と前記放射空調用水対冷媒熱交換器とは、前記循環水路において並列に設けられ、冷媒対空気熱交換器と前記放射空調用水対冷媒熱交換器とは、前記冷媒配管において直列に設けられ、前記放射空調用水対水熱交換器は、前記冷温水配管において前記ファンコイルと前記ヒートポンプ用水対冷媒熱交換器の間に設けられ、前記冷温水配管には、前記ファンコイルを迂回するバイパス路が形成されていることを特徴としている。   Another aspect of the present invention is an air conditioner for a fan coil type radiant air-conditioning panel with a heat pump that performs radiant cooling / heating, air conditioning cooling / heating, and outside air processing, and is provided in a chilled / hot water pipe for passing cold / hot water for air conditioning. A fan coil for exchanging heat between the air blown from the blower and the cold / hot water in the cold / hot water pipe, the cold / hot water in the cold / hot water pipe, and the refrigerant in the refrigerant pipe connected to the compressor; Between the water-to-refrigerant heat exchanger for heat pump that performs heat exchange between the circulating water in the circulating water channel connected to the radiant air conditioning panel provided outside the air conditioner and the cold / hot water in the cold / hot water pipe Water-to-water heat exchanger for radiant air conditioning that performs heat exchange, and water-to-refrigerant heat exchange for radiant air conditioning that is provided in the refrigerant pipe and performs heat exchange between the refrigerant in the refrigerant pipe and the circulating water in the circulation channel. And the air blown from the blower A refrigerant-to-air heat exchanger that exchanges heat with the refrigerant in the refrigerant piping, and the water-to-water heat exchanger for radiant air conditioning and the water-to-refrigerant heat exchanger for radiant air conditioning are connected to the circulating water channel The refrigerant-to-air heat exchanger and the radiant air conditioning water-to-refrigerant heat exchanger are provided in series in the refrigerant pipe, and the radiant air-conditioning water-to-water heat exchanger is provided in the cold / hot water pipe. It is provided between the fan coil and the water-to-refrigerant heat exchanger for heat pump, and the cold / hot water pipe is formed with a bypass path that bypasses the fan coil.

前記循環水路には、当該循環水路内に循環水を循環させる循環ポンプと、前記放射空調用水対水熱交換器及び放射空調用水対冷媒熱交換器を迂回するバイパス路と、当該バイパス路を通過する前記循環水の量を制御する比例三方弁とが設けられていてもよい。   The circulation channel includes a circulation pump that circulates circulation water in the circulation channel, a bypass channel that bypasses the water-to-water heat exchanger for radiant air conditioning and the water-to-refrigerant heat exchanger for radiant air conditioning, and the bypass channel. And a proportional three-way valve for controlling the amount of the circulating water.

前記循環水路には、当該循環水路内に循環水を循環させる循環ポンプと、前記放射空調用水対水熱交換器又は/及び放射空調用水対冷媒熱交換器を通過する前記循環水の量を制御する比例三方弁とが設けられていてもよい。   In the circulation channel, a circulation pump that circulates the circulation water in the circulation channel and the amount of the circulating water that passes through the water-to-water heat exchanger for radiant air conditioning and / or the water-to-refrigerant heat exchanger for radiant air conditioning are controlled. A proportional three-way valve may be provided.

本発明によれば、ヒートポンプを備えたファンコイル式の空調機に、放射空調パネルを追加し、放射空調を行うとともに、空調のピーク負荷時等に放射空調では対応することができない空調負荷を、ファンコイルとヒートポンプの空気熱交換器で補い、放射空調では処理できない潜熱負荷をファンコイルとヒートポンプの空気熱交換器で処理し、外気処理をファンコイルとヒートポンプの空気熱交換器で行うにあたり、空調機の設置コストを低減すると共に、空調機における冷温水の熱回収ロスを最小限とすることができる。   According to the present invention, a radiant air conditioning panel is added to a fan coil type air conditioner equipped with a heat pump to perform radiant air conditioning, and an air conditioning load that cannot be dealt with by radiant air conditioning at the peak load of air conditioning, The air heat exchanger of the fan coil and heat pump compensates for the latent heat load that cannot be handled by radiant air conditioning, the air heat exchanger of the fan coil and heat pump treats the outside air, and the air heat exchanger of the fan coil and heat pump performs air conditioning. The installation cost of the machine can be reduced, and the heat recovery loss of cold / hot water in the air conditioner can be minimized.

本実施の形態に係る空調機の構成の概略を示す系統図である。It is a systematic diagram which shows the outline of a structure of the air conditioner which concerns on this Embodiment. 制御テーブルを示す説明図である。It is explanatory drawing which shows a control table. 他の実施の形態に係る空調機の構成の概略を示す系統図である。It is a systematic diagram which shows the outline of a structure of the air conditioning machine which concerns on other embodiment. 他の実施の形態に係る空調機の構成の概略を示す系統図である。It is a systematic diagram which shows the outline of a structure of the air conditioning machine which concerns on other embodiment. 他の実施の形態に係る空調機の構成の概略を示す系統図である。It is a systematic diagram which shows the outline of a structure of the air conditioning machine which concerns on other embodiment. 他の実施の形態に係る空調機の構成の概略を示す系統図である。It is a systematic diagram which shows the outline of a structure of the air conditioning machine which concerns on other embodiment. 他の実施の形態に係る空調機の構成の概略を示す系統図である。It is a systematic diagram which shows the outline of a structure of the air conditioning machine which concerns on other embodiment. 他の実施の形態に係る空調機の構成の概略を示す系統図である。It is a systematic diagram which shows the outline of a structure of the air conditioning machine which concerns on other embodiment. 他の実施の形態に係る空調機の構成の概略を示す系統図である。It is a systematic diagram which shows the outline of a structure of the air conditioning machine which concerns on other embodiment. 他の実施の形態に係る空調機の構成の概略を示す系統図である。It is a systematic diagram which shows the outline of a structure of the air conditioning machine which concerns on other embodiment. 他の実施の形態に係る空調機の構成の概略を示す系統図である。It is a systematic diagram which shows the outline of a structure of the air conditioning machine which concerns on other embodiment. 他の実施の形態に係る空調機の構成の概略を示す系統図である。It is a systematic diagram which shows the outline of a structure of the air conditioning machine which concerns on other embodiment. 他の実施の形態に係る空調機の構成の概略を示す系統図である。It is a systematic diagram which shows the outline of a structure of the air conditioning machine which concerns on other embodiment. 他の実施の形態に係る空調機の構成の概略を示す系統図である。It is a systematic diagram which shows the outline of a structure of the air conditioning machine which concerns on other embodiment. 他の実施の形態に係る空調機の構成の概略を示す系統図である。It is a systematic diagram which shows the outline of a structure of the air conditioning machine which concerns on other embodiment.

以下、本発明の実施の形態について説明する。図1は、本発明の空調機1の実施の形態の一例を示すものである。   Embodiments of the present invention will be described below. FIG. 1 shows an example of an embodiment of an air conditioner 1 of the present invention.

図1に示すように、空調機1は、例えば室内Rの天井部分Raに設けられたヒートポンプ回路部A、ファンコイル回路部B、放射空調パネル回路部C及び制御部Dから構成されている。   As shown in FIG. 1, the air conditioner 1 includes a heat pump circuit unit A, a fan coil circuit unit B, a radiant air conditioning panel circuit unit C, and a control unit D provided in a ceiling portion Ra of a room R, for example.

ヒートポンプ回路部Aは、圧縮機10と、ヒートポンプ回路部Aの運転モード、即ち冷房運転と暖房運転を切り換えるための四方弁11と、ファンコイル回路部Bに設けられた、後述する冷温水配管20内の冷水又は温水(以下、「冷温水」という)と圧縮機から供給される冷媒との間で熱交換を行うヒートポンプ用水対冷媒熱交換器12と、膨張弁13と、冷媒と空気との間で熱交換を行う冷媒対空気熱交換器14とが、この順に冷媒配管15に接続して構成されている。また、冷媒配管15には、冷媒対空気熱交換器14と並列に、後述する放射空調用水対冷媒熱交換器34が設けられている。冷媒配管15における冷媒対空気熱交換器14の入口側、及び放射空調用水対冷媒熱交換器34の入口側には、供給制御弁16a、16bが夫々設けられ、当該供給制御弁16a、16bの開閉操作を行うことで、冷媒対空気熱交換器14及び放射空調用水対冷媒熱交換器34への冷媒の供給を制御することができる。   The heat pump circuit unit A includes a compressor 10, a four-way valve 11 for switching between an operation mode of the heat pump circuit unit A, that is, a cooling operation and a heating operation, and a cold / hot water pipe 20 described later provided in the fan coil circuit unit B. A heat pump water-to-refrigerant heat exchanger 12 that performs heat exchange between the internal cold water or hot water (hereinafter referred to as “cold hot water”) and the refrigerant supplied from the compressor, the expansion valve 13, and the refrigerant and air. A refrigerant-to-air heat exchanger 14 that exchanges heat between them is connected to the refrigerant pipe 15 in this order. The refrigerant pipe 15 is provided with a water-to-refrigerant heat exchanger 34 for radiant air conditioning, which will be described later, in parallel with the refrigerant-to-air heat exchanger 14. Supply control valves 16a and 16b are respectively provided on the inlet side of the refrigerant-to-air heat exchanger 14 and the inlet side of the water-to-refrigerant heat exchanger 34 for the radiant air conditioning in the refrigerant pipe 15, and the supply control valves 16a and 16b are respectively provided. By performing the opening / closing operation, the supply of the refrigerant to the refrigerant-to-air heat exchanger 14 and the water-to-refrigerant heat exchanger 34 for radiant air conditioning can be controlled.

ファンコイル回路部Bは、図示しないポンプにより供給される冷温水を通水する冷温水配管20と、送風機21から送風される空気と冷温水配管20内の冷温水との間で熱交換を行う、冷温水配管20に設けられたファンコイル22と、を有している。冷温水配管20には、ファンコイル22を迂回する、即ち冷温水配管20におけるファンコイル22の入口側とファンコイル22の出口側とを接続するバイパス路23が形成されている。冷温水配管20からバイパス路23が分岐する箇所には、ファンコイル22への冷温水の通水を制御する冷温水三方弁24が設けられている。また、冷温水配管20におけるヒートポンプ用水対冷媒熱交換器12の入口には、冷温水配管20内の冷温水の温度を測定する冷温水温度センサ25が設けられている。なお、冷温水配管20に供給される冷温水は、中央熱源(図示せず)において所定の温度に調整されている。また、図1においては、送風機21は室内Rから循環する空気の空調を行う例を描図しているが、送風機21により送風する空気に外気を混合する、即ち、空調機1を外気処理に用いるようにしてもよい。   The fan coil circuit section B exchanges heat between the cold / hot water pipe 20 through which the cold / hot water supplied by a pump (not shown), the air blown from the blower 21 and the cold / hot water in the cold / hot water pipe 20. And a fan coil 22 provided in the cold / hot water pipe 20. The cold / hot water pipe 20 is provided with a bypass path 23 that bypasses the fan coil 22, that is, connects the inlet side of the fan coil 22 and the outlet side of the fan coil 22 in the cold / hot water pipe 20. A cold / hot water three-way valve 24 for controlling the flow of cold / hot water to the fan coil 22 is provided at a location where the bypass passage 23 branches from the cold / hot water pipe 20. In addition, a cold / hot water temperature sensor 25 that measures the temperature of the cold / hot water in the cold / hot water pipe 20 is provided at the inlet of the water-to-refrigerant heat exchanger 12 for heat pump in the cold / hot water pipe 20. The cold / hot water supplied to the cold / hot water pipe 20 is adjusted to a predetermined temperature in a central heat source (not shown). Moreover, in FIG. 1, although the air blower 21 is drawing the example which air-conditions the air which circulates from the room R, outside air is mixed with the air which blows with the air blower 21, ie, the air conditioner 1 is used for external air processing. You may make it use.

放射空調パネル回路部Cは、当該放射空調パネル回路部Cの外部、即ち空調機1の外部に設けられた放射空調パネル30に、当該放射空調パネル30用の循環水を循環させる循環水路31と、循環水路31に設けられた循環ポンプ32と、循環水路31内の循環水と冷温水配管20内の冷温水との間で熱交換を行う放射空調用水対水熱交換器33と、冷媒配管15内の冷媒と循環水路31内の循環水との間で熱交換を行う放射空調用水対冷媒熱交換器34と、を有している。循環水路31には、放射空調用水対水熱交換器33を迂回する、即ち循環水路31における放射空調用水対水熱交換器33の入口側と放射空調用水対水熱交換器33の出口側とを接続するバイパス路35が形成されている。循環水路31とバイパス路35とが合流する箇所には、バイパス路35を通過する循環水の流量を制御する比例三方弁36が設けられている。なお、放射空調パネル30は、室温27℃の雰囲気下で16℃の所定の量の循環水を通水した場合に、当該放射空調パネル30の出口での循環水温度が18℃となり、室温20℃の雰囲気下で34℃の所定の量の循環水を通水した場合においては、当該放射空調パネル30の出口での循環水温度が32℃となるようにその伝熱面積が決定されている。なお、上述の放射空調パネル30に通水する循環水の温度は本実施の形態に限定されるものではなく、任意に設定が可能である。   The radiant air-conditioning panel circuit unit C includes a circulation channel 31 for circulating circulating water for the radiant air-conditioning panel 30 to the radiant air-conditioning panel 30 provided outside the radiant air-conditioning panel circuit unit C, that is, outside the air conditioner 1. A circulation pump 32 provided in the circulation water channel 31, a water-to-water heat exchanger 33 for radiant air conditioning that performs heat exchange between the circulation water in the circulation water channel 31 and the cold / hot water in the cold / hot water pipe 20, and a refrigerant pipe 15, a water-to-refrigerant heat exchanger 34 for radiant air conditioning that performs heat exchange between the refrigerant in 15 and the circulating water in the circulation water channel 31. The circulation water channel 31 bypasses the radiant air-conditioning water-to-water heat exchanger 33, that is, the inlet side of the radiant air-conditioning water-to-water heat exchanger 33 and the outlet side of the radiant air-conditioning water-to-water heat exchanger 33 in the circulation water channel 31. Is formed. A proportional three-way valve 36 for controlling the flow rate of the circulating water passing through the bypass passage 35 is provided at a location where the circulation water passage 31 and the bypass passage 35 merge. The radiant air-conditioning panel 30 has a circulating water temperature of 18 ° C. at the outlet of the radiant air-conditioning panel 30 when a predetermined amount of circulating water of 16 ° C. is passed in an atmosphere at a room temperature of 27 ° C. In a case where a predetermined amount of circulating water of 34 ° C. is passed in an atmosphere of ° C., the heat transfer area is determined so that the circulating water temperature at the outlet of the radiation air conditioning panel 30 is 32 ° C. . The temperature of the circulating water that passes through the radiant air conditioning panel 30 is not limited to the present embodiment, and can be set arbitrarily.

また、循環水路31とバイパス路35とが分岐する箇所の下流側には、放射空調用水対水熱交換器33を迂回するように他の循環水路37が設けられ、当該他の循環水路37は循環水路31における比例三方弁36の上流側に接続されている。放射空調用水対冷媒熱交換器34はこの他の循環水路37に設けられており、放射空調用水対水熱交換器33とは循環水路31において並列の関係となっている。循環水路31と他の循環水路37とが分岐する箇所には循環水三方弁38が設けられ、当該循環水三方弁38を操作することで、放射空調用水対水熱交換器33と放射空調用水対冷媒熱交換器34のいずれに循環水を通水するかを切替えることができる。また、循環水路31における放射空調パネル30の入口には、当該循環水路31内の循環水の温度を測定する水温センサ39が設けられている。   Further, on the downstream side of the location where the circulation channel 31 and the bypass channel 35 are branched, another circulation channel 37 is provided so as to bypass the water-to-water heat exchanger 33 for radiant air conditioning. The circulation water channel 31 is connected to the upstream side of the proportional three-way valve 36. The radiant air conditioning water-to-refrigerant heat exchanger 34 is provided in the other circulating water channel 37, and the radiant air-conditioning water-to-water heat exchanger 33 is in parallel with the circulating water channel 31. A circulating water three-way valve 38 is provided at a location where the circulating water channel 31 and the other circulating water channel 37 branch. By operating the circulating water three-way valve 38, the water for radiant air conditioning to the water heat exchanger 33 and the water for radiant air conditioning are provided. It is possible to switch to which of the refrigerant heat exchanger 34 the circulating water is passed. A water temperature sensor 39 that measures the temperature of the circulating water in the circulating water channel 31 is provided at the entrance of the radiation air conditioning panel 30 in the circulating water channel 31.

送風機21の上流側には、空調機1による空調の対象となる室内の温度及び湿度を測定する室温センサ50及び湿度センサ51が設けられている。また、ヒートポンプ回路部Aの冷媒対空気熱交換機14の下流側の温度、即ち送風機21により送風された空気がファンコイル22及び冷媒対空気熱交換機14と熱交換を行った後の温度を測定する、吹出温度センサ52が設けられている。なお、図1においては、室温センサ50及び湿度センサ51は天井部分Raに設置されている状態を描図しているが、室温センサ50及び湿度センサ51は、例えば図1に破線で示すように室内Rに設置されていてもよい。   On the upstream side of the blower 21, a room temperature sensor 50 and a humidity sensor 51 are provided for measuring the temperature and humidity in the room to be air-conditioned by the air conditioner 1. Further, the temperature at the downstream side of the refrigerant-to-air heat exchanger 14 in the heat pump circuit section A, that is, the temperature after the air blown by the blower 21 exchanges heat with the fan coil 22 and the refrigerant-to-air heat exchanger 14 is measured. A blowing temperature sensor 52 is provided. In FIG. 1, the room temperature sensor 50 and the humidity sensor 51 are depicted as being installed on the ceiling portion Ra. However, the room temperature sensor 50 and the humidity sensor 51 are, for example, as shown by broken lines in FIG. It may be installed in the room R.

制御部Dには、各センサでの測定結果及び冷温水配管20に供給される冷温水の温度が入力される。また、制御部Dには、当該制御部Dに入力された各センサの測定結果に基づいて圧縮機10や循環ポンプ32といった、空調機1の各機器の動作を制御するためのパターンとしての、例えば図2に示す制御テーブルを構成するプログラムが格納されている。また、制御部Dには、室温の設定温度や空調機1の運転モードを切替えるための操作部(図示せず)が設けられている。   The control unit D receives the measurement results of the sensors and the temperature of the cold / hot water supplied to the cold / hot water pipe 20. In addition, the control unit D has a pattern for controlling the operation of each device of the air conditioner 1 such as the compressor 10 and the circulation pump 32 based on the measurement result of each sensor input to the control unit D. For example, the program which comprises the control table shown in FIG. 2 is stored. Further, the control unit D is provided with an operation unit (not shown) for switching the set temperature of the room temperature and the operation mode of the air conditioner 1.

制御テーブルについて説明する。図2に示すように、制御テーブルには、冷房及び暖房の各運転モードについて、制御部Dに入力される冷温水の温度並びに冷温水温度センサ25、室温センサ50及び湿度センサ51の各測定結果に対応する、空調機1を構成する各機器の動作のパターンが予め設定されている。なお、図2の「運転モード」の欄の「FCU」はファンコイル22を「HP」は圧縮機10を夫々示しており、また、「循環水三方弁」の欄の「水水」は循環水三方弁38を放射空調用水対水熱交換器33側に切り替えていることを、「水冷媒」は循環水三方弁38を放射空調用水対冷媒熱交換器34側に切り替えていることを示している。   The control table will be described. As shown in FIG. 2, the control table includes the temperature of the cold / hot water input to the control unit D and the measurement results of the cold / hot water temperature sensor 25, the room temperature sensor 50, and the humidity sensor 51 for the cooling and heating operation modes. The operation pattern of each device constituting the air conditioner 1 corresponding to is preset. In FIG. 2, “FCU” in the “operation mode” column indicates the fan coil 22 and “HP” indicates the compressor 10, and “water” in the “circulation water three-way valve” column indicates circulation. “Water refrigerant” indicates that the water three-way valve 38 is switched to the radiant air conditioning water-to-water heat exchanger 33 side, and “water refrigerant” indicates that the circulating water three-way valve 38 is switched to the radiant air-conditioning water-to-refrigerant heat exchanger 34 side. ing.

室温センサ50の測定結果は、圧縮機10、ファンコイル22及び循環ポンプ32の運転、停止の制御に反映される。制御テーブルに示されるパターン1〜3の冷房運転を例にして具体的に説明すると、室温センサ50での測定温度が、室温の設定温度を所定の温度以上上回っている場合は、空調機1の運転負荷が室内の熱負荷や外気温に対して十分なものとなっていないと判断できる。したがって、室温センサ50での測定温度が、室温の設定温度を第1の所定の温度以上上回っている場合は、空調機1を最大運転負荷で運用できるように、圧縮機10、ファンコイル22及び放射空調パネル30を全て運転するように設定されている(図2の運転パターン1)。なお、図2の制御テーブルにおいては、第1の所定の温度は2℃としているが、この温度は本実施の形態の内容に限定されるものではなく、任意に設定が可能である。   The measurement result of the room temperature sensor 50 is reflected in the control of operation and stop of the compressor 10, the fan coil 22, and the circulation pump 32. Specifically, the cooling operation of patterns 1 to 3 shown in the control table will be described as an example. When the temperature measured by the room temperature sensor 50 exceeds the set temperature of the room temperature by a predetermined temperature or more, the air conditioner 1 It can be determined that the operation load is not sufficient with respect to the indoor heat load and the outside air temperature. Therefore, when the temperature measured by the room temperature sensor 50 exceeds the set temperature of the room temperature by the first predetermined temperature or more, the compressor 10, the fan coil 22, and the fan 10 can be operated so that the air conditioner 1 can be operated at the maximum operating load. It is set to operate all the radiation air-conditioning panels 30 (operation pattern 1 in FIG. 2). In the control table of FIG. 2, the first predetermined temperature is 2 ° C., but this temperature is not limited to the contents of the present embodiment and can be set arbitrarily.

そして、空調機1の運転により、室温の設定温度と室温センサ50の測定結果との差が小さくなり、その差が第1の所定の温度より小さい第2の所定の温度以上となった場合は、空調機1を最大運転負荷で運用する必要がないものと判断し、例えば圧縮機10、すなわちヒートポンプ回路部Bを停止させる(図2の運転パターン2)。そして、さらに室温の設定温度と室温センサ50の測定結果との差が小さくなり、その差が第2の所定の温度より小さくなった場合は、さらにファンコイル22を停止させ、放射空調パネル30のみによる運転となる(図2の運転パターン3)。なお、ここでいうファンコイル22の停止とは、送風機21の運転状態に依らず、ファンコイル回路部Bの冷温水三方弁24をバイパス路23側に切り換えて、ファンコイル22への冷温水の通水を停止した状態をいう。また、第2の所定の温度は図2の制御テーブルにおいて1℃としているが、第1の所定の温度と同様に、任意に設定が可能である。   When the difference between the set temperature of the room temperature and the measurement result of the room temperature sensor 50 is reduced by the operation of the air conditioner 1, and the difference becomes equal to or higher than the second predetermined temperature smaller than the first predetermined temperature. Then, it is determined that it is not necessary to operate the air conditioner 1 with the maximum operation load, and for example, the compressor 10, that is, the heat pump circuit unit B is stopped (operation pattern 2 in FIG. 2). Further, when the difference between the set temperature of the room temperature and the measurement result of the room temperature sensor 50 becomes smaller and the difference becomes smaller than the second predetermined temperature, the fan coil 22 is further stopped and only the radiant air conditioning panel 30 is stopped. (Operation pattern 3 in FIG. 2). Note that the stop of the fan coil 22 here means that the cold / hot water to the fan coil 22 is switched to the bypass path 23 side by switching the cold / hot water three-way valve 24 of the fan coil circuit section B regardless of the operating state of the blower 21. The state where water flow is stopped. Further, the second predetermined temperature is set to 1 ° C. in the control table of FIG. 2, but can be arbitrarily set similarly to the first predetermined temperature.

冷温水温度センサ25の測定結果は、放射空調パネル回路部Cに設けられた循環水三方弁38の制御に反映される。上述の通り、放射空調パネル30は、例えば冷房運転においては、16℃の循環水を通水することで所定の冷却能力を得ることができるが、冷温水温度センサ25における循環水の測定温度が18℃以上となる場合は、放射空調パネル30が所定の冷却能力を得ることができない。したがって、冷温水温度センサ25における循環水の測定温度が18℃以上となった場合は、放射空調パネル回路部Cの切換三方弁38を、放射空調用水対水熱交換器33側から放射空調用水対冷媒熱交換器34側に切り替え、ヒートポンプ回路部Aにより循環水路31の循環水の冷却を行うように設定されている。   The measurement result of the cold / hot water temperature sensor 25 is reflected in the control of the circulating water three-way valve 38 provided in the radiation air conditioning panel circuit part C. As described above, the radiant air conditioning panel 30 can obtain a predetermined cooling capacity by passing circulating water at 16 ° C., for example, in the cooling operation, but the measured temperature of the circulating water in the cold / hot water temperature sensor 25 is When it becomes 18 degreeC or more, the radiation | emission air-conditioning panel 30 cannot obtain predetermined cooling capacity. Accordingly, when the measured temperature of the circulating water in the cold / hot water temperature sensor 25 is 18 ° C. or higher, the switching three-way valve 38 of the radiant air conditioning panel circuit unit C is connected to the radiant air conditioning water from the radiant air conditioning water to water heat exchanger 33 side. It switches to the refrigerant | coolant heat exchanger 34 side, and it sets so that the circulating water of the circulating water channel 31 may be cooled by the heat pump circuit part A.

湿度センサ51の測定結果は、例えば、室内Rの湿度が高い場合は放射空調パネル30において結露が生じる可能性がある。したがってその場合は、室温センサ50と湿度センサ51との測定結果から制御部Dにより露点温度を算出すると共に、水温センサ39の測定温度と比較を行い、放射空調パネル30において結露が生じないようにヒートポンプ回路部A又はファンコイル回路部Bの運転を行うために用いられる。   The measurement result of the humidity sensor 51 indicates that, for example, when the humidity in the room R is high, condensation may occur in the radiant air conditioning panel 30. Therefore, in that case, the dew point temperature is calculated by the control unit D from the measurement results of the room temperature sensor 50 and the humidity sensor 51 and is compared with the measured temperature of the water temperature sensor 39 so that no condensation occurs in the radiant air conditioning panel 30. It is used for operating the heat pump circuit part A or the fan coil circuit part B.

図2に示す制御テーブルには、上記の冷水を用いた冷房運転のパターンの他に、温水を使った冷房運転、温水を使った暖房運転及び冷水を使った暖房運転並びに、各運転モードにおいて冷温水配管から供給される冷温水の温度が変化した場合についても同様に設定されている。   The control table shown in FIG. 2 includes a cooling operation using hot water, a cooling operation using hot water, a heating operation using hot water, a heating operation using cold water, and a cooling temperature in each operation mode. It is similarly set when the temperature of the cold / hot water supplied from the water pipe is changed.

本実施の形態にかかる空調機1は以上のように構成されており、次にこの空調機1による空調方法について説明する。空調方法の第1の例として、冷房運転により室温を27℃にする場合であって、冷温水配管20に供給される冷温水が7℃の場合(図2のパターン1〜3)について説明する。   The air conditioner 1 according to the present embodiment is configured as described above. Next, an air conditioning method using the air conditioner 1 will be described. As a first example of the air conditioning method, a case where the room temperature is set to 27 ° C. by cooling operation and the cold / hot water supplied to the cold / hot water pipe 20 is 7 ° C. (patterns 1 to 3 in FIG. 2) will be described. .

先ず、空調機1の運転を開始するにあたり、空調機1による室内の空調温度を27℃に設定すると共に、冷温水配管20に冷温水を通水する。なお、この状態においては、室温センサ50における測定温度が設定温度の27℃を2℃以上上回っているものとする。   First, when starting the operation of the air conditioner 1, the air conditioning temperature in the room by the air conditioner 1 is set to 27 ° C., and cold / hot water is passed through the cold / hot water pipe 20. In this state, it is assumed that the temperature measured by the room temperature sensor 50 exceeds the set temperature of 27 ° C. by 2 ° C. or more.

次いで、制御部Dによりファンコイル回路部Bの冷温水三方弁24をファンコイル22側に、放射空調パネル回路部Cの循環水三方弁38を放射空調用水対水熱交換器33側に切替えると共に、循環水が通水されない他の循環水路37に設けられた放射空調用水対冷媒熱交換器34の冷媒配管15の供給制御弁16aを閉止する。その後、圧縮機10、循環水ポンプ32及び送風機21の運転が開始される。   Next, the control unit D switches the cold / hot water three-way valve 24 of the fan coil circuit unit B to the fan coil 22 side and the circulating water three-way valve 38 of the radiant air conditioning panel circuit unit C to the radiant air conditioning water-to-water heat exchanger 33 side. Then, the supply control valve 16a of the refrigerant pipe 15 of the radiant air conditioning water-to-refrigerant heat exchanger 34 provided in the other circulating water passage 37 through which the circulating water is not passed is closed. Thereafter, the operation of the compressor 10, the circulating water pump 32, and the blower 21 is started.

そして、制御部Dにより、放射空調パネル回路部Cの水温センサ39での検出温度が16℃となるように比例三方弁36の開度を調整して、放射空調用水対水熱交換器33において冷温水と熱交換を行う循環水の量を制御する。   Then, the opening degree of the proportional three-way valve 36 is adjusted by the control unit D so that the temperature detected by the water temperature sensor 39 of the radiant air conditioning panel circuit unit C is 16 ° C., and in the water-to-water heat exchanger 33 for radiant air conditioning. Controls the amount of circulating water that exchanges heat with cold and hot water.

水温センサ39での検出温度が16℃に安定すると、制御部Dは圧縮機10の負荷を調整し、室温が設定温度の27℃に達するように制御を行う(図2の運転パターン1)。なお、この場合においては、冷温水温度センサ25における冷温水の測定温度は、例えば17℃であり、循環水の冷却には、放射空調用水対水熱交換器33が用いられる。   When the temperature detected by the water temperature sensor 39 is stabilized at 16 ° C., the control unit D adjusts the load of the compressor 10 and performs control so that the room temperature reaches the set temperature of 27 ° C. (operation pattern 1 in FIG. 2). In this case, the measured temperature of the cold / hot water in the cold / hot water temperature sensor 25 is, for example, 17 ° C., and the water-to-water heat exchanger 33 for radiant air conditioning is used for cooling the circulating water.

その後、例えば外気温の低下や空調機1の運転によって、室温センサ50での測定温度が設定温度+1℃以上で且つ設定温度+2℃未満になると、空調機1は、制御テーブルの運転パターン1から運転パターン2の状態に移行する。具体的には圧縮機10の運転を停止し、空調機1の負荷調整は送風機21の風量を調整することにより行われる(図2の運転パターン2)。   Thereafter, for example, when the temperature measured by the room temperature sensor 50 is equal to or higher than the set temperature + 1 ° C. and lower than the set temperature + 2 ° C. due to a decrease in the outside air temperature or the operation of the air conditioner 1, the air conditioner 1 starts from the operation pattern 1 of the control table. Transition to the operation pattern 2 state. Specifically, the operation of the compressor 10 is stopped, and the load adjustment of the air conditioner 1 is performed by adjusting the air volume of the blower 21 (operation pattern 2 in FIG. 2).

その後、さらに室温センサ50での測定温度が低下し、当該測定温度が設定温度+1℃未満になると、制御テーブルに従い制御部Dによりファンコイル22が停止させられると共に、ファンコイル回路部Bの冷温水三方弁24がバイパス路23側に切り替えられ、空調機1は放射空調パネル回路部Cのみの運転となる(図2の運転パターン3)。放射空調パネル回路部Cのみの運転となった状態における空調機1の負荷調整は、比例三方弁36により、バイパス路35を流れる循環水の量、即ち放射空調用水対水熱交換器33において冷温水配管20内を流れる冷温水と循環水との間の熱交換量を制御して、水温センサ39での検出温度を16℃に保つことで行われる。その後、室温センサ50における測定温度が室温の設定温度に達すると、循環ポンプ32が停止する。また、循環ポンプ32の停止により室温が上昇した場合は、再度循環ポンプ32が起動し、放射空調パネル回路部Cによる冷房運転が行われる。   Thereafter, when the temperature measured by the room temperature sensor 50 further decreases and the measured temperature becomes lower than the set temperature + 1 ° C., the fan coil 22 is stopped by the control unit D according to the control table, and the cold / hot water of the fan coil circuit unit B The three-way valve 24 is switched to the bypass path 23 side, and the air conditioner 1 is operated only by the radiant air conditioning panel circuit portion C (operation pattern 3 in FIG. 2). The load adjustment of the air conditioner 1 in a state where only the radiant air conditioning panel circuit unit C is operated is performed by adjusting the amount of circulating water flowing through the bypass passage 35 by the proportional three-way valve 36, that is, cooling / cooling in the water-to-water heat exchanger 33 for radiant air conditioning. This is performed by controlling the amount of heat exchange between the cold / hot water flowing in the water pipe 20 and the circulating water, and keeping the temperature detected by the water temperature sensor 39 at 16 ° C. Thereafter, when the temperature measured by the room temperature sensor 50 reaches the set temperature of the room temperature, the circulation pump 32 stops. When the room temperature rises due to the stop of the circulation pump 32, the circulation pump 32 is activated again, and the cooling operation by the radiation air conditioning panel circuit unit C is performed.

なお、上記の第1の例においては、冷温水配管20に供給される冷温水の温度が7℃であったが、供給される冷温水の温度が7℃より高い、例えば13℃であった場合は、ファンコイル22において熱交換された冷温水の、冷温水温度センサ25における測定温度が18℃以上となる。この場合、上述の通り循環水三方弁38により、循環水路31の循環水が放射空調用水対冷媒熱交換器34により熱交換されるように操作される(図2の運転パターン4)。なお、冷温水の温度が13℃の場合においては、例えば室温の低下により冷媒対空気熱交換器14の熱交換用として圧縮機10の運転が不要となっても、圧縮機10は、放射空調用水対冷媒熱交換器34による循環水の冷却に用いられるので、この場合は圧縮機10の運転が継続される(図2のパターン5)。そして、さらに空調機1の運転負荷が低下すると、ファンコイル22の運転が停止されるが、この場合、冷温水三方弁24がバイパス路23側に切り替えられることにより、ファンコイル22が運転されているときよりも放射空調用水対水熱交換器33の入口における冷温水の温度が低下し、放射空調用水対水熱交換器33による循環水の冷却が可能となるので、圧縮機10は停止され、空調機1は放射空調パネル回路部Cのみの運転となる(図2のパターン6)。なお、このパターン6においては空調機1の各機器の運転状態が、上述のパターン3の状態と同一となるが、パターン3とパターン6とでは、冷温水配管20に供給される冷温水の温度の違いにより、比例三方弁36によってバイパス路35に通水される循環水の量に違いが生じる。   In the first example, the temperature of the cold / hot water supplied to the cold / hot water pipe 20 is 7 ° C., but the temperature of the supplied cold / hot water is higher than 7 ° C., for example, 13 ° C. In this case, the temperature measured by the cold / hot water temperature sensor 25 of the cold / hot water heat-exchanged in the fan coil 22 is 18 ° C. or higher. In this case, as described above, the circulating water three-way valve 38 is operated so that the circulating water in the circulating water channel 31 is heat-exchanged by the radiant air conditioning water-to-refrigerant heat exchanger 34 (operation pattern 4 in FIG. 2). When the temperature of the cold / hot water is 13 ° C., for example, even if the operation of the compressor 10 is not necessary for heat exchange of the refrigerant-to-air heat exchanger 14 due to a decrease in room temperature, Since it is used for cooling the circulating water by the water-to-refrigerant heat exchanger 34, the operation of the compressor 10 is continued in this case (pattern 5 in FIG. 2). When the operating load of the air conditioner 1 further decreases, the operation of the fan coil 22 is stopped. In this case, the fan coil 22 is operated by switching the cold / hot water three-way valve 24 to the bypass path 23 side. Since the temperature of the cold / hot water at the inlet of the radiant air-conditioning water-to-water heat exchanger 33 is lower than when it is, the cooling water can be cooled by the radiant air-conditioning water-to-water heat exchanger 33, so the compressor 10 is stopped. The air conditioner 1 is operated only by the radiation air conditioning panel circuit part C (pattern 6 in FIG. 2). In this pattern 6, the operating state of each device of the air conditioner 1 is the same as the state of pattern 3 described above. However, in pattern 3 and pattern 6, the temperature of the cold / hot water supplied to the cold / hot water pipe 20 is as follows. Therefore, a difference occurs in the amount of circulating water that is passed through the bypass passage 35 by the proportional three-way valve 36.

冷温水配管20に供給される冷温水の温度が13℃よりさらに高い、例えば20℃の場合においては、冷温水によるファンコイル22の冷却能力が十分でないため、当該冷温水はファンコイル22の運転には使用できないが、ヒートポンプ用水対冷媒熱交換器12における冷媒の冷却には用いることができるので、図2のパターン7に示すように、ヒートポンプ回路部Aにより冷媒対空気熱交換器14と放射空調用水対冷媒熱交換器34に対して冷媒が供給されるように循環水三方弁38の動作が制御される。そして、室温が低下すると、図2のパターン8に示すように冷媒対空気熱交換器14への冷媒の供給が停止され、空調機1は放射空調パネル回路部Cによる冷房運転となるが、この場合においては、放射空調用水対冷媒熱交換器34における循環水の冷却のために、圧縮機10の運転、即ちヒートポンプ回路部A運転は継続される。   When the temperature of the cold / hot water supplied to the cold / hot water pipe 20 is higher than 13 ° C., for example, 20 ° C., the cooling capacity of the fan coil 22 by the cold / hot water is not sufficient. However, it can be used for cooling the refrigerant in the water-to-refrigerant heat exchanger 12 for the heat pump, so that the heat-to-air heat exchanger 14 and the radiation are radiated by the heat pump circuit section A as shown in the pattern 7 of FIG. The operation of the circulating water three-way valve 38 is controlled such that the refrigerant is supplied to the air-conditioning water-to-refrigerant heat exchanger 34. When the room temperature decreases, the supply of the refrigerant to the refrigerant-to-air heat exchanger 14 is stopped as shown in the pattern 8 of FIG. 2, and the air conditioner 1 is in the cooling operation by the radiant air conditioning panel circuit unit C. In some cases, the operation of the compressor 10, that is, the operation of the heat pump circuit section A is continued for cooling the circulating water in the radiant air conditioning water-to-refrigerant heat exchanger 34.

次に、空調機1による空調方法の第2の例として、空調機1の冷房運転を行うにあたり、除湿再熱を行う場合について説明する。空調機1により除湿再熱を行う場合は、四方弁11を切替えて冷媒が冷媒対空気熱交換器14からヒートポンプ用水対冷媒熱交換器12に向かって流れるようにする。四方弁11を切替えることで、冷媒対空気熱交換器14には高温の冷媒が供給される。かかる場合、ファンコイル22により冷却されて、例えば湿度が飽和状態となった空気が、冷媒対空気熱交換器14において除湿再熱される(図2の運転パターン9)。これにより空調機1において除湿再熱が可能となる。   Next, as a second example of the air conditioning method by the air conditioner 1, a case where dehumidification and reheating are performed when the air conditioner 1 is cooled will be described. When dehumidifying and reheating is performed by the air conditioner 1, the four-way valve 11 is switched so that the refrigerant flows from the refrigerant-to-air heat exchanger 14 toward the heat-pump water-to-refrigerant heat exchanger 12. By switching the four-way valve 11, a high-temperature refrigerant is supplied to the refrigerant-to-air heat exchanger 14. In such a case, air cooled by the fan coil 22 and saturated in humidity, for example, is dehumidified and reheated in the refrigerant-to-air heat exchanger 14 (operation pattern 9 in FIG. 2). Thereby, dehumidification reheating is possible in the air conditioner 1.

次に、空調機1による空調方法の第3の例として、暖房運転により室温を20℃にする場合であって、冷温水配管20に供給される冷温水が45℃の場合について説明する。   Next, as a third example of the air conditioning method by the air conditioner 1, a case where the room temperature is set to 20 ° C. by heating operation and the cold / hot water supplied to the cold / hot water pipe 20 is 45 ° C. will be described.

空調機1により暖房運転を行う場合も、空調機1により冷房運転を行う場合と同様に、空調機1の運転を開始するにあたり室内の空調温度を設定する。なお、暖房運転においては、空調温度は例えば20℃に設定される。次いで、冷温水配管20に冷温水を通水すると共に、制御部Dによりファンコイル回路部Bの冷温水三方弁24をファンコイル22側に、放射空調パネル回路部Cの循環水三方弁38を放射空調用水対水熱交換器33側に切替えると共に、循環水が通水されない他の循環水路37に設けられた放射空調用水対冷媒熱交換器34の冷媒配管15の供給制御弁16aを閉止する。次いで、圧縮機10、循環水ポンプ32及び送風機21の運転が開始される。   In the case of performing the heating operation by the air conditioner 1, as in the case of performing the cooling operation by the air conditioner 1, the indoor air conditioning temperature is set when the operation of the air conditioner 1 is started. In the heating operation, the air conditioning temperature is set to 20 ° C., for example. Next, while passing cold / hot water through the cold / hot water pipe 20, the control part D sets the cold / hot water three-way valve 24 of the fan coil circuit part B to the fan coil 22 side and the circulating water three-way valve 38 of the radiant air conditioning panel circuit part C. While switching to the radiant air-conditioning water-to-water heat exchanger 33 side, the supply control valve 16a of the refrigerant pipe 15 of the radiant air-conditioning water-to-refrigerant heat exchanger 34 provided in the other circulating water passage 37 through which the circulating water is not passed is closed. . Next, the operation of the compressor 10, the circulating water pump 32, and the blower 21 is started.

そして、制御部Dにより、放射空調パネル回路部Cの水温センサ39での検出温度が34℃となるように比例三方弁36の開度が調整され、放射空調用水対水熱交換器33において冷温水と熱交換を行う循環水の量が制御される。   Then, the opening degree of the proportional three-way valve 36 is adjusted by the control unit D so that the temperature detected by the water temperature sensor 39 of the radiant air conditioning panel circuit unit C is 34 ° C. The amount of circulating water that exchanges heat with water is controlled.

水温センサ39での検出温度が34℃に達すると、制御部Dは圧縮機10の負荷を調整し、室温が設定温度の20℃に達するように制御を行う(図2の運転パターン10)。なお、この場合においては、冷温水温度センサ25における冷温水の測定温度は、例えば35℃であり、循環水の加熱には、放射空調用水対水熱交換器33が用いられる。   When the temperature detected by the water temperature sensor 39 reaches 34 ° C., the control unit D adjusts the load of the compressor 10 and controls the room temperature to reach the set temperature of 20 ° C. (operation pattern 10 in FIG. 2). In this case, the measured temperature of the cold / hot water in the cold / hot water temperature sensor 25 is, for example, 35 ° C., and the water-to-water heat exchanger 33 for radiant air conditioning is used to heat the circulating water.

その後、例えば外気温の上昇や空調機1の運転によって、室温センサ50での測定温度が設定温度−1℃以下で且つ設定温度−2℃を越えて高くなると、空調機1は、制御テーブルの運転パターン10から運転パターン11の状態に移行する。具体的には圧縮機10の運転を停止し、空調機1の負荷調整は送風機21の風量の調整により行われる。   Thereafter, when the temperature measured by the room temperature sensor 50 becomes lower than the set temperature −1 ° C. and exceeds the set temperature −2 ° C. due to, for example, an increase in the outside air temperature or the operation of the air conditioner 1, the air conditioner 1 The operation pattern 10 is shifted to the operation pattern 11 state. Specifically, the operation of the compressor 10 is stopped, and the load adjustment of the air conditioner 1 is performed by adjusting the air volume of the blower 21.

その後、さらに室温センサ50での測定温度が上昇し、当該測定温度が設定温度−1℃を越えて高くなると、制御テーブルに従い制御部Dによりファンコイル22が停止させられると共に、ファンコイル回路部Bの冷温水三方弁24がバイパス路23側に切り替えられ、空調機1は放射空調パネル回路部Cのみの運転となる(図2の運転パターン12)。放射空調パネル回路部Cのみの運転となった状態における空調機1の負荷調整は、冷房運転時と同様に、比例三方弁36により水温センサ39での検出温度を34℃に保つことで行われる。その後、室温センサ50における測定温度が室温の設定温度に達すると、循環ポンプ32が停止する。また、循環ポンプ32の停止により室温が低下した場合は、再度循環ポンプ32が起動し、放射空調パネル回路部Cによる暖房運転が行われる。   Thereafter, when the temperature measured by the room temperature sensor 50 further rises and becomes higher than the set temperature −1 ° C., the fan coil 22 is stopped by the control unit D according to the control table, and the fan coil circuit unit B The cold / hot water three-way valve 24 is switched to the bypass path 23 side, and the air conditioner 1 is operated only by the radiant air conditioning panel circuit portion C (operation pattern 12 in FIG. 2). The load adjustment of the air conditioner 1 in a state where only the radiation air conditioning panel circuit section C is operated is performed by maintaining the temperature detected by the water temperature sensor 39 at 34 ° C. by the proportional three-way valve 36 as in the cooling operation. . Thereafter, when the temperature measured by the room temperature sensor 50 reaches the set temperature of the room temperature, the circulation pump 32 stops. When the room temperature decreases due to the stop of the circulation pump 32, the circulation pump 32 is activated again, and the heating operation by the radiant air-conditioning panel circuit unit C is performed.

なお、空調機1の暖房運転において、冷温水配管20に供給される冷温水の温度が45℃以下の温度である場合には、冷温水の温度がファンコイル22の暖房運転に用いることができない場合であっても、図2の運転パターン13〜15に示すように、ヒートポンプ回路部A及びファンコイル回路部Bの運用を制御することで、空調機1により暖房運転を行うことができる。また、冷温水の供給温度が、図2の運転パターン1〜3の冷房運転に用いられる場合と同様の7℃であっても、ヒートポンプ回路部Aにより冷温水から熱の汲み上げを行うことにより、図2の運転パターン18及び19に示すように暖房運転を行うことができる。   In the heating operation of the air conditioner 1, when the temperature of the cold / hot water supplied to the cold / hot water pipe 20 is 45 ° C. or less, the temperature of the cold / hot water cannot be used for the heating operation of the fan coil 22. Even if it is a case, heating operation can be performed by the air conditioner 1 by controlling the operation of the heat pump circuit unit A and the fan coil circuit unit B as shown in the operation patterns 13 to 15 of FIG. Moreover, even if the supply temperature of cold / hot water is 7 degreeC similar to the case where it is used for the cooling operation of the operation patterns 1-3 of FIG. 2, by pumping heat from cold / hot water by the heat pump circuit part A, Heating operation can be performed as shown in operation patterns 18 and 19 in FIG.

また、運転パターン18及び19とは反対に、空調機1の冷房運転において、冷却水配管20に供給される冷温水の温度が、図2の運転パターン10〜12の暖房運転に用いられる場合と同様の45℃であっても、ヒートポンプ回路部Aにより冷温水に熱を排出することにより図2の運転パターン20及び21のように冷房運転を行うことができる。   In contrast to the operation patterns 18 and 19, in the cooling operation of the air conditioner 1, the temperature of the cold / hot water supplied to the cooling water pipe 20 is used for the heating operation of the operation patterns 10 to 12 in FIG. Even at the same 45 ° C., the cooling operation can be performed like the operation patterns 20 and 21 of FIG. 2 by discharging heat to the cold / hot water by the heat pump circuit unit A.

以上の実施の形態によれば、空調機1が、冷温水配管20においてファンコイル22とヒートポンプ用水対冷媒熱交換器12の間に設けられた放射空調用水対水熱交換器33を有しているので、ファンコイル22により熱交換を行った冷温水を、再度放射空調用水対水熱交換器33において循環水路31の循環水との熱交換に用いることができる。したがって、従来のように、ヒートポンプを有する空調機と、放射空調パネルを用いた空調機とを組み合わせて用いる場合に別系統としていたヒートポンプの冷媒と熱交換を行うための配管と放射空調パネルの循環水と熱交換を行うための配管とを、個別の系統として設ける必要がなくなる。これにより、設備設計が複雑になることを防止して施工等のコストを低減することができると共に、空調機における冷温水の熱回収ロスを最小限とすることができる。   According to the above embodiment, the air conditioner 1 has the radiant air conditioning water-to-water heat exchanger 33 provided between the fan coil 22 and the heat pump water-to-refrigerant heat exchanger 12 in the cold / hot water pipe 20. Therefore, the cold / hot water that has been heat-exchanged by the fan coil 22 can be used again for heat exchange with the circulating water in the circulation channel 31 in the water-to-water heat exchanger 33 for radiant air conditioning. Therefore, as in the prior art, when an air conditioner having a heat pump and an air conditioner using a radiant air conditioning panel are used in combination, piping for heat exchange with the heat pump refrigerant, which has been a separate system, and circulation of the radiant air conditioning panel It is not necessary to provide piping for water and heat exchange as a separate system. Thereby, it is possible to prevent the facility design from becoming complicated and reduce the cost of construction and the like, and it is possible to minimize the heat recovery loss of the cold / hot water in the air conditioner.

また、空調機1は、放射空調では処理できない潜熱負荷をファンコイル回路部Bとヒートポンプ回路部Aにより補うことができる。   In addition, the air conditioner 1 can compensate for the latent heat load that cannot be processed by radiant air conditioning by the fan coil circuit unit B and the heat pump circuit unit A.

さらには、図2に示す運転パターン20及び21のように、冷温水の温度が、例えば45℃の場合においても冷房運転が可能であり、また、冷温水の温度が7℃の場合であっても運転パターン18及び19のように暖房運転が可能となるので、例えば、ビル内に1系統の冷温水配管20のみが設けられている場合であっても、各空調機1の運転モードを選択できる。したがって、冷温水の温度条件によらず、空調機1が設けられた部屋ごとに最適な空調を行うことができる。   Further, as in the operation patterns 20 and 21 shown in FIG. 2, the cooling operation is possible even when the temperature of the cold / hot water is 45 ° C., for example, and the temperature of the cold / hot water is 7 ° C. Since the heating operation is possible as in operation patterns 18 and 19, for example, even when only one system of cold / hot water pipe 20 is provided in the building, the operation mode of each air conditioner 1 is selected. it can. Therefore, optimal air conditioning can be performed for each room in which the air conditioner 1 is provided regardless of the temperature condition of the cold / hot water.

なお、以上の実施の形態においては、循環水三方弁38を用いて循環水の熱交換を放射空調用水対水熱交換器33と放射空調用水対冷媒熱交換器34のいずれかで行うことを選択していたが、例えば図3に示すように、循環水三方弁38を設ける代わりに循環水路31と他の循環水路37との合流箇所に比例三方弁36を設け、当該比例三方弁36により、各熱交換器33、34に分配する循環水の量を調整することで、循環水の温度を制御するようにしてもよい。なお、図3に示す系統における比例三方弁36の制御は、図2の制御テーブルに示す循環水三方弁38の切り替えを行った場合に準じて行われる。かかる場合、循環水三方弁38及びバイパス路35が不要となるため、放射空調パネル回路部Cを簡素化することができる。   In the embodiment described above, the heat exchange of the circulating water is performed by either the radiant air conditioning water-to-water heat exchanger 33 or the radiant air-conditioning water-to-refrigerant heat exchanger 34 using the circulating water three-way valve 38. Although selected, for example, as shown in FIG. 3, instead of providing the circulating water three-way valve 38, a proportional three-way valve 36 is provided at the junction of the circulating water channel 31 and the other circulating water channel 37, and the proportional three-way valve 36 The temperature of the circulating water may be controlled by adjusting the amount of the circulating water distributed to each of the heat exchangers 33 and 34. The control of the proportional three-way valve 36 in the system shown in FIG. 3 is performed according to the case where the circulating water three-way valve 38 shown in the control table of FIG. 2 is switched. In such a case, since the circulating water three-way valve 38 and the bypass passage 35 are not necessary, the radiant air conditioning panel circuit portion C can be simplified.

また、循環水路31の循環水の温度を制御するにあたっては、放射空調用水対水熱交換器33を通過する循環水の流量を制御するのではなく、放射空調用水対水熱交換器33を通過する冷温水の流量を制御して行ってもよい。具体的には、例えば図4の系統図に示すように、上述の比例三方弁36を用いる代わりに、冷温水配管20において放射空調用水対水熱交換器33の入口側から出口側にバイパスする、他のバイパス路60を設け、冷温水配管20と他のバイパス路60が合流する箇所に比例三方弁61を設けてもよい。なお、図4に示す系統における比例三方弁61の制御についても、図2の制御テーブルに示す循環水三方弁38の切り替えを行った場合に準じて行われる。かかる場合も、比例三方弁61により放射空調用水対水熱交換器33における冷温水と循環水との熱交換量を制御できる。   Further, in controlling the temperature of the circulating water in the circulation channel 31, the flow rate of the circulating water passing through the radiant air-conditioning water-to-water heat exchanger 33 is not controlled, but passing through the radiant air-conditioning water-to-water heat exchanger 33. You may carry out by controlling the flow volume of the cold / hot water. Specifically, for example, as shown in the system diagram of FIG. 4, instead of using the proportional three-way valve 36 described above, the cold / hot water pipe 20 is bypassed from the inlet side to the outlet side of the water-to-water heat exchanger 33 for radiant air conditioning. Alternatively, the other bypass passage 60 may be provided, and the proportional three-way valve 61 may be provided at a location where the cold / hot water pipe 20 and the other bypass passage 60 merge. Note that the control of the proportional three-way valve 61 in the system shown in FIG. 4 is also performed in accordance with the switching of the circulating water three-way valve 38 shown in the control table of FIG. Also in this case, the heat exchange amount between the cold / hot water and the circulating water in the water-to-water heat exchanger 33 for radiant air conditioning can be controlled by the proportional three-way valve 61.

上述のように、冷却水配管20に他のバイパス路60と比例三方弁61を設ける場合、例えば図5に示すようにバイパス路23に代えて、ファンコイル22と放射空調用水対水熱交換器23を迂回する、即ち冷温水配管20におけるファンコイル22の入口側と放射空調用水対水熱交換器23の出口側とを接続するバイパス路63を設けてもよい。かかる場合、冷温水配管20を流れる冷温水の全量を、バイパス路63と冷温水三方弁24とによりファンコイル22と放射空調用水対水熱交換器23を迂回して流すことができる。   As described above, when the cooling water pipe 20 is provided with another bypass passage 60 and a proportional three-way valve 61, for example, instead of the bypass passage 23 as shown in FIG. 5, the fan coil 22 and the water-to-water heat exchanger for radiant air conditioning are used. 23, that is, a bypass path 63 connecting the inlet side of the fan coil 22 in the cold / hot water pipe 20 and the outlet side of the water-to-water heat exchanger 23 for radiant air conditioning may be provided. In such a case, the entire amount of the cold / hot water flowing through the cold / hot water pipe 20 can be diverted by the bypass path 63 and the cold / hot water three-way valve 24, bypassing the fan coil 22 and the radiant air conditioning water-to-water heat exchanger 23.

なお、冷温水配管20に設けた比例三方弁61により放射空調用水対水熱交換器33における冷温水と循環水との熱交換量を制御する場合には、例えば図6
に示すように、循環水三方弁38を設けずに、放射空調用水対水熱交換器33と放射空調用水対冷媒熱交換器34を循環水路20に対して直列に設けるようにしてもよい。図6の系統においても、例えば比例三方弁61により冷温水配管20に供給される冷温水の全量を他のバイパス路60に通水することで、図2の制御テーブルのパターン4と同じ運転状態とすることができる。かかる場合、放射空調パネル回路部Cに三方弁が一切不要となるため、系統を簡素化することができる。
When the heat exchange amount between the cold / warm water and the circulating water in the water / water heat exchanger 33 for radiant air conditioning is controlled by the proportional three-way valve 61 provided in the cold / hot water pipe 20, for example, FIG.
As shown in FIG. 4, the radiant air-conditioning water-to-water heat exchanger 33 and the radiant air-conditioning water-to-refrigerant heat exchanger 34 may be provided in series with the circulating water channel 20 without providing the circulating water three-way valve 38. Also in the system of FIG. 6, for example, by passing the entire amount of cold / hot water supplied to the cold / hot water pipe 20 by the proportional three-way valve 61 through the other bypass passage 60, the same operation state as the pattern 4 of the control table of FIG. It can be. In such a case, since the three-way valve is not required at all in the radiant air conditioning panel circuit portion C, the system can be simplified.

冷温水配管20に比例三方弁61を設ける場合、放射空調用水対水熱交換器33と放射空調用水対冷媒熱交換器34を循環水路20に対して直列に設けることに加え、例えば図7に示すように、ヒートポンプ用水対冷媒熱交換器12と、冷媒対空気熱交換器14と、放射空調用水対冷媒熱交換器34とを、冷媒配管15に対して直列に設けてもよい。かかる場合、冷媒配管15の供給制御弁16a、16b及びそれに付随する配管も不要となるので、空調機1の系統をさらに簡素化することができる。   When the proportional three-way valve 61 is provided in the cold / hot water pipe 20, in addition to providing the radiant air-conditioning water-to-water heat exchanger 33 and the radiant air-conditioning water-to-refrigerant heat exchanger 34 in series with the circulation channel 20, for example, FIG. As shown, a heat pump water-to-refrigerant heat exchanger 12, a refrigerant-to-air heat exchanger 14, and a radiant air-conditioning water-to-refrigerant heat exchanger 34 may be provided in series with respect to the refrigerant pipe 15. In this case, the supply control valves 16a and 16b of the refrigerant pipe 15 and the pipes associated therewith are not required, so that the system of the air conditioner 1 can be further simplified.

また、以上の実施の形態においては、循環水の温度を、比例三方弁36及び比例三方弁61を用いて制御したが、循環ポンプ32の回転数を、例えばインバータモータなどにより調整することで循環水の温度を制御してもよい。以下、循環水の温度制御に循環ポンプの回転数制御を用いる空調機100について、図8を参照して説明する。なお、図8において図1と同符号を付したものについては説明を省略する。   In the above embodiment, the temperature of the circulating water is controlled by using the proportional three-way valve 36 and the proportional three-way valve 61. However, the circulating water is circulated by adjusting the rotational speed of the circulation pump 32 by, for example, an inverter motor. You may control the temperature of water. Hereinafter, the air conditioner 100 which uses the rotation speed control of the circulation pump for the temperature control of the circulating water will be described with reference to FIG. 8 with the same reference numerals as those in FIG. 1 are not described here.

図1に示す空調機1においては、放射空調パネル30の入口側の温度の制御用として、循環水路20に比例三方弁36を設けたが、図8に示す空調機100においては比例三方弁36と循環ポンプ32に代えて、インバータモータにより回転数制御を行う循環ポンプ101を設けている。そして、当該循環ポンプ101の回転数を制御することにより循環水路31を流れる循環水の流量を制御し、空調用水対水熱交換器33又は放射空調用水対冷媒熱交換器34における循環水の熱交換量を調整する。   In the air conditioner 1 shown in FIG. 1, the proportional three-way valve 36 is provided in the circulation channel 20 for controlling the temperature on the inlet side of the radiant air-conditioning panel 30, but in the air conditioner 100 shown in FIG. 8, the proportional three-way valve 36 is provided. In place of the circulation pump 32, a circulation pump 101 for controlling the rotational speed by an inverter motor is provided. Then, the flow rate of the circulating water flowing through the circulating water channel 31 is controlled by controlling the rotation speed of the circulating pump 101, and the heat of the circulating water in the air-conditioning water-to-water heat exchanger 33 or the radiant air-conditioning water-to-refrigerant heat exchanger 34 is controlled. Adjust the exchange amount.

また、空調機100においても、水温センサ39における循環水の測定温度を循環ポンプ101により行う点を除いては、図2に示す制御テーブルに従って空調機100の各機器の運転が制御される。   In the air conditioner 100, the operation of each device of the air conditioner 100 is controlled according to the control table shown in FIG. 2 except that the circulating pump 101 measures the temperature of the circulating water measured by the water temperature sensor 39.

かかる場合においても空調機1と同様の運転を行うことができ、また、空調機100においては、比例三方弁を設ける必要がないので系統を簡素化できる。さらには、循環ポンプ101の回転数制御を行うことで、放射空調パネル回路部Cを中間負荷で運転する場合に循環ポンプ101での消費電力を削減できる。   Even in such a case, the same operation as that of the air conditioner 1 can be performed, and the air conditioner 100 can simplify the system because it is not necessary to provide a proportional three-way valve. Furthermore, by controlling the rotational speed of the circulation pump 101, the power consumption in the circulation pump 101 can be reduced when the radiation air-conditioning panel circuit unit C is operated with an intermediate load.

なお、空調機100のように、循環ポンプ101の回転数制御により放射空調用水対水熱交換器33における循環水の熱交換量を制御する場合においては、図6に示す他のバイパス路60及び比例三方弁61に代えて、例えば図9に示すように、冷温水配管20のバイパス路23を放射空調用水対水熱交換器33の出口側に合流するように設けるようにしてもよい。なお、この場合、放射空調用水対水熱交換器33と放射空調用水対冷媒熱交換器34とは循環水路31に対して直列に設けられる。かかる場合においても、放射空調用水対水熱交換器33における熱交換量を循環ポンプ101の回転数制御で、放射空調用水対冷媒熱交換器34における循環水の熱交換の有無を供給制御弁16aで夫々制御することができるので、空調機1と同様の運転を行うことができる。   In the case of controlling the heat exchange amount of the circulating water in the radiant air-conditioning water-to-water heat exchanger 33 by controlling the number of rotations of the circulation pump 101 as in the air conditioner 100, the other bypass passages 60 shown in FIG. Instead of the proportional three-way valve 61, for example, as shown in FIG. 9, the bypass path 23 of the cold / hot water pipe 20 may be provided so as to join the outlet side of the water-to-water heat exchanger 33 for radiant air conditioning. In this case, the radiant air-conditioning water-to-water heat exchanger 33 and the radiant air-conditioning water-to-refrigerant heat exchanger 34 are provided in series with the circulation water channel 31. Even in such a case, the amount of heat exchange in the water-to-water heat exchanger 33 for radiant air conditioning is controlled by the rotational speed control of the circulation pump 101, and the presence or absence of heat exchange in the water for the radiant air-conditioning water to the refrigerant heat exchanger 34 is controlled by the supply control valve 16a. Therefore, the same operation as the air conditioner 1 can be performed.

また、バイパス路23を放射空調用水対水熱交換器33の出口側に合流するように設ける場合は、図10に示すように、バイパス路23に、さらに他の冷温水三方弁62を設け、冷温水を放射空調用水対水熱交換器33の入口側あるいは出口側に供給するように切り替えを行うようにしてもよい。他の冷温水三方弁62を設けることで、冷温水がファンコイル22をバイパスしている場合においても、放射空調用水対水熱交換器33への冷温水の通水が可能となり、図9に示す場合より、さらに細かな空調機100の負荷制御が可能となる。   Moreover, when providing the bypass path 23 so that it may merge with the exit side of the water-to-water heat exchanger 33 for radiant air conditioning, as shown in FIG. 10, another cold / hot water three-way valve 62 is provided in the bypass path 23, You may make it switch so that cold / hot water may be supplied to the inlet side or outlet side of the water-to-water heat exchanger 33 for radiation air conditioning. By providing the other cold / hot water three-way valve 62, even when cold / hot water bypasses the fan coil 22, it is possible to pass cold / hot water to the radiant air conditioning water-to-water heat exchanger 33, as shown in FIG. The load control of the air conditioner 100 can be performed more finely than the case shown.

なお、空調機100のように、循環ポンプ101の回転数制御により放射空調用水対水熱交換器33における循環水の熱交換量を制御する場合においても、図11に示すように、ヒートポンプ用水対冷媒熱交換器12と、冷媒対空気熱交換器14と、放射空調用水対冷媒熱交換器34とを、冷媒配管15に対して直列に設けると共に、放射空調用水対水熱交換器33と放射空調用水対冷媒熱交換器34とを循環水路31に対して並列に設け、循環水三方弁38により放射空調用水対水熱交換器33と放射空調用水対冷媒熱交換器34への循環水の通水を切り替えるようにしてもよい。かかる場合においても、空調機100の機能を確保したうえで、系統を簡素化することができる。   In the case of controlling the heat exchange amount of the circulating water in the radiant air-conditioning water-to-water heat exchanger 33 by controlling the number of revolutions of the circulation pump 101 as in the air conditioner 100, as shown in FIG. The refrigerant heat exchanger 12, the refrigerant-to-air heat exchanger 14, and the radiant air conditioning water-to-refrigerant heat exchanger 34 are provided in series with respect to the refrigerant pipe 15, and the radiant air-conditioning water-to-water heat exchanger 33 and the radiation. An air-conditioning water-to-refrigerant heat exchanger 34 is provided in parallel with the circulating water channel 31, and the circulating water to the radiant air-conditioning water-to-water heat exchanger 33 and the radiant air-conditioning water-to-refrigerant heat exchanger 34 is provided by the circulating water three-way valve 38. You may make it switch water flow. Even in such a case, the system can be simplified while ensuring the function of the air conditioner 100.

図11に示す系統図においては、循環ポンプ101により循環水路31を流れる循環水の流量を調整することで、放射空調用水対水熱交換器33または放射空調用水対冷媒熱交換器34における熱交換量を制御したが、例えば図12に示すように循環ポンプ101を用いずに、循環ポンプ32を用いた場合においても、図1に示す系統と同様に循環水路31にバイパス路35と比例三方弁36とを設けることで、放射空調用水対水熱交換器33または放射空調用水対冷媒熱交換器34における熱交換量を制御するようにしてもよい。   In the system diagram shown in FIG. 11, the heat exchange in the radiant air conditioning water-to-water heat exchanger 33 or the radiant air-conditioning water-to-refrigerant heat exchanger 34 is achieved by adjusting the flow rate of the circulating water flowing through the circulation water channel 31 by the circulation pump 101. Although the amount is controlled, for example, when the circulation pump 32 is used without using the circulation pump 101 as shown in FIG. 12, the bypass passage 35 and the proportional three-way valve are connected to the circulation water passage 31 similarly to the system shown in FIG. 36, the amount of heat exchange in the water-to-water heat exchanger 33 for radiant air conditioning or the water-to-refrigerant heat exchanger 34 for radiant air conditioning may be controlled.

また、図12に示すように循環ポンプ101を用いずに、循環ポンプ32を用いた場合、バイパス路35と比例三方弁36とに代えて、例えば図13に示すように循環水路31と放射空調用水対冷媒熱交換器34の出口側の他の循環水路37とが合流する箇所に、比例三方弁64を設けるようにしてもよい。かかる場合、図12の系統と比較してバイパス路35を省略することができるので、系統が簡素化され、配管施工のコストを低減することができる。   When the circulation pump 32 is used instead of the circulation pump 101 as shown in FIG. 12, instead of the bypass passage 35 and the proportional three-way valve 36, for example, as shown in FIG. You may make it provide the proportional three-way valve 64 in the location where the other circulation water channel 37 of the exit side of the water-to-refrigerant heat exchanger 34 merges. In such a case, the bypass path 35 can be omitted as compared with the system shown in FIG. 12, so that the system is simplified and the cost of piping work can be reduced.

以上の実施の形態においては、膨張弁13は圧縮機10を冷房運転する場合における、放射空調用水対冷媒熱交換器34の冷媒の入口側にのみ設けられていたが、例えば図14に示すように、冷媒対空気熱交換器14及び放射空調用水対冷媒熱交換器34の冷媒の入口側に夫々膨張弁70を設け、さらに、放射空調用水対冷媒熱交換器34の冷媒の出口側に他の膨張弁71を設けてもよい。かかる場合、例えば空調機1を冷房モードで運転し、且つ四方弁11を切り換えることでヒートポンプ回路部Aを暖房運転して冷媒対空気熱交換器14により除湿再熱を行う場合においても、冷媒対空気熱交換器14で除湿再熱を行いながら、他の膨張弁で冷媒を減圧することで、放射空調用水対冷媒熱交換器34においては循環水の冷却を行うことができる。これにより、除湿再熱を行うにあたり、他の膨張弁71を有しない空調機1、100よりもさらに大きな冷房能力を得ることができる。   In the above embodiment, the expansion valve 13 is provided only on the refrigerant inlet side of the water-to-refrigerant heat exchanger 34 for radiant air conditioning when the compressor 10 is in a cooling operation. For example, as shown in FIG. In addition, an expansion valve 70 is provided on the refrigerant inlet side of the refrigerant-to-air heat exchanger 14 and the radiant air-conditioning water-to-refrigerant heat exchanger 34, respectively. An expansion valve 71 may be provided. In such a case, for example, even when the air conditioner 1 is operated in the cooling mode and the four-way valve 11 is switched to heat the heat pump circuit unit A and the refrigerant-to-air heat exchanger 14 performs dehumidification reheating, While dehumidifying and reheating with the air heat exchanger 14, the refrigerant is depressurized with another expansion valve, whereby the radiant air conditioning water-to-refrigerant heat exchanger 34 can cool the circulating water. Thereby, in performing dehumidification reheating, the cooling capacity larger than the air conditioners 1 and 100 which do not have the other expansion valve 71 can be acquired.

なお、図14においては、冷媒対空気熱交換器14と放射空調用水対冷媒熱交換器34とを冷媒配管15に並列に設けていたが、例えば、図15に示すように冷媒対空気熱交換器14と放射空調用水対冷媒熱交換器34とを冷媒配管15に直列に設ける場合、膨張弁70及び他の膨張弁71は、放射空調用水対冷媒熱交換器34の入口側及び出口側に夫々設ければよい。かかる場合においても、例えば冷媒対空気熱交換器14において除湿再熱を行った後の冷媒を他の膨張弁71により減圧することで、放射空調用水対冷媒熱交換器34において循環水の冷却を行うことができる。また、図11の場合と比較して膨張弁70も一つ不要となり、設備費用が低減できる。   In FIG. 14, the refrigerant-to-air heat exchanger 14 and the radiant air conditioning water-to-refrigerant heat exchanger 34 are provided in parallel with the refrigerant pipe 15. For example, as shown in FIG. 15, the refrigerant-to-air heat exchange is performed. When the condenser 14 and the radiant air conditioning water-to-refrigerant heat exchanger 34 are provided in series with the refrigerant pipe 15, the expansion valve 70 and the other expansion valve 71 are provided on the inlet side and the outlet side of the radiant air-conditioning water-to-refrigerant heat exchanger 34. Each should be provided. Even in such a case, for example, the refrigerant after dehumidifying and reheating in the refrigerant-to-air heat exchanger 14 is depressurized by the other expansion valve 71, thereby cooling the circulating water in the radiant air-conditioning water-to-refrigerant heat exchanger 34. It can be carried out. Further, as compared with the case of FIG. 11, one expansion valve 70 is not required, and the equipment cost can be reduced.

なお、以上の実施の形態では、空調機1、100に設けられた圧縮機10等の運転を制御テーブルに基づき制御したが、例えば制御部Dは空調機1の運転負荷に応じて圧縮機10の負荷を調整し、圧縮機10が所定の負荷を下回った状態が一定時間継続した場合に圧縮機10を停止させるような、いわゆるフィードバック制御により制御してもよい。当業者であれば、本実施の形態に係る空調機1、100の制御について様々な変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   In the above embodiment, the operation of the compressor 10 and the like provided in the air conditioners 1 and 100 is controlled based on the control table. For example, the control unit D controls the compressor 10 according to the operation load of the air conditioner 1. It is also possible to perform control by so-called feedback control in which the compressor 10 is stopped when the state in which the compressor 10 is below the predetermined load continues for a certain period of time. It is obvious for those skilled in the art that various changes or modifications can be conceived with respect to the control of the air conditioners 1 and 100 according to the present embodiment, and these naturally belong to the technical scope of the present invention. It is understood.

本発明は、空調機で放射冷暖房、空調冷暖房及び外気処理を行う際に有用である。   The present invention is useful when performing radiant cooling and heating, air conditioning cooling and heating, and outside air processing with an air conditioner.

1 空調機
10 圧縮機
11 四方弁
12 ヒートポンプ用水対冷媒熱交換器
13 膨張弁
14 冷媒対空気熱交換器
15 冷媒配管
16a、16b 供給制御弁
20 冷温水配管
21 送風機
22 ファンコイル
23 バイパス路
24 冷温水三方弁
25 冷温水温度センサ
30 放射空調パネル
31 循環水路
32 循環ポンプ
33 放射空調用水対水熱交換器
34 放射空調用水対冷媒熱交換器
35 バイパス路
36 比例三方弁
37 他の循環水路
38 循環水三方弁
39 水温センサ
50 室温センサ
51 湿度センサ
52 吹出温度センサ
60 他のバイパス路
61 比例三方弁
62 他の冷温水三方弁
63 バイパス路
64 比例三方弁
70 膨張弁
71 他の膨張弁
A ヒートポンプ回路部
B ファンコイル回路部
C 放射空調パネル回路部
D 制御部
R 室内
Ra 天井部分
DESCRIPTION OF SYMBOLS 1 Air conditioner 10 Compressor 11 Four-way valve 12 Water-to-refrigerant heat exchanger for heat pump 13 Expansion valve 14 Refrigerant-to-air heat exchanger 15 Refrigerant piping 16a, 16b Supply control valve 20 Cold / hot water piping 21 Blower 22 Fan coil 23 Bypass 24 Cooling temperature Water three-way valve 25 Cold / hot water temperature sensor 30 Radiation air conditioning panel 31 Circulating water channel 32 Circulation pump 33 Radiation air conditioning water-to-water heat exchanger 34 Radiation air conditioning water-to-refrigerant heat exchanger 35 Bypass channel 36 Proportional three-way valve 37 Other circulation water channel 38 Circulation Water three-way valve 39 Water temperature sensor 50 Room temperature sensor 51 Humidity sensor 52 Outlet temperature sensor 60 Other bypass passage 61 Proportional three-way valve 62 Other cold / hot water three-way valve 63 Bypass passage 64 Proportional three-way valve 70 Expansion valve 71 Other expansion valve A Heat pump circuit Part B Fan coil circuit part C Radiation air-conditioning panel circuit part D Control part R Indoor Ra Ceiling part

Claims (14)

放射冷暖房、空調冷暖房及び外気処理を行うヒートポンプ付ファンコイル式放射空調パネル用の空調機であって、
空調用の冷温水を通水する冷温水配管に設けられ、送風機から送風される空気と前記冷温水配管内の冷温水との間で熱交換を行うファンコイルと、
前記冷温水配管内の冷温水と圧縮機に接続された冷媒配管内の冷媒との間で熱交換を行うヒートポンプ用水対冷媒熱交換器と、
空調機の外部に設けられた放射空調パネルに接続された循環水路内の循環水と前記冷温水配管内の冷温水との間で熱交換を行う放射空調用水対水熱交換器と、
前記冷媒配管に設けられ、前記冷媒配管内の冷媒と前記循環水路内の循環水との間で熱交換を行う放射空調用水対冷媒熱交換器と、送風機から送風される空気と前記冷媒配管内の冷媒との間で熱交換を行う冷媒対空気熱交換器と、を有し、
前記放射空調用水対水熱交換器と前記放射空調用水対冷媒熱交換器とは、前記循環水路において並列に設けられ、
冷媒対空気熱交換器と前記放射空調用水対冷媒熱交換器とは、前記冷媒配管において並列に設けられ、
前記放射空調用水対水熱交換器は、前記冷温水配管において前記ファンコイルと前記ヒートポンプ用水対冷媒熱交換器の間に設けられ、
前記冷温水配管には、前記ファンコイルを迂回するバイパス路が形成されていることを特徴とする、ヒートポンプ付ファンコイル式放射空調パネル用空調機。
An air conditioner for a fan coil type radiant air conditioning panel with a heat pump that performs radiant cooling and heating, air conditioning heating and cooling, and outside air processing,
A fan coil that is provided in a cold / hot water pipe for passing cold / hot water for air conditioning, and performs heat exchange between the air blown from the blower and the cold / hot water in the cold / hot water pipe;
A water-to-refrigerant heat exchanger for heat pump that performs heat exchange between the cold / hot water in the cold / hot water pipe and the refrigerant in the refrigerant pipe connected to the compressor;
A water-to-water heat exchanger for radiant air conditioning that performs heat exchange between circulating water in a circulating water channel connected to a radiant air conditioning panel provided outside the air conditioner and cold / hot water in the cold / hot water pipe;
A water-to-refrigerant heat exchanger for radiant air conditioning that is provided in the refrigerant pipe and performs heat exchange between the refrigerant in the refrigerant pipe and the circulating water in the circulating water channel, air blown from a blower, and the refrigerant pipe A refrigerant-to-air heat exchanger that performs heat exchange with the other refrigerant,
The water-to-water heat exchanger for radiant air conditioning and the water-to-refrigerant heat exchanger for radiant air conditioning are provided in parallel in the circulation channel,
The refrigerant-to-air heat exchanger and the water-to-refrigerant heat exchanger for radiant air conditioning are provided in parallel in the refrigerant pipe,
The water-to-water heat exchanger for radiant air conditioning is provided between the fan coil and the water-to-refrigerant heat exchanger for the heat pump in the cold / hot water pipe,
An air conditioner for a fan coil type radiant air conditioning panel with a heat pump, wherein the cold / hot water pipe is formed with a bypass path that bypasses the fan coil.
前記循環水路には、当該循環水路内に循環水を循環させる循環ポンプと、前記放射空調用水対水熱交換器及び放射空調用水対冷媒熱交換器を迂回するバイパス路と、当該バイパス路を通過する前記循環水の量を制御する比例三方弁とが設けられていることを特徴とする、請求項1に記載のヒートポンプ付ファンコイル式放射空調パネル用空調機。 The circulation channel includes a circulation pump that circulates circulation water in the circulation channel, a bypass channel that bypasses the water-to-water heat exchanger for radiant air conditioning and the water-to-refrigerant heat exchanger for radiant air conditioning, and the bypass channel. The fan coil type radiant air-conditioning panel air conditioner with a heat pump according to claim 1, further comprising a proportional three-way valve for controlling the amount of the circulating water. 前記循環水路における、前記バイパス路の下流側には、前記放射空調用水対水熱交換器と放射空調用水対冷媒熱交換器とへ循環水の通水を切り替える循環水三方弁が設けられていることを特徴とする、請求項2に記載のヒートポンプ付ファンコイル式放射空調パネル用空調機。 A circulating water three-way valve is provided on the downstream side of the bypass channel in the circulating water channel to switch the circulating water to the radiant air conditioning water-to-water heat exchanger and the radiant air conditioning water-to-refrigerant heat exchanger. The fan coil type radiant air conditioning panel air conditioner with a heat pump according to claim 2, wherein 前記循環水路には、当該循環水路内に循環水を循環させる循環ポンプと、並列に設けられた前記放射空調用水対水熱交換器及び放射空調用水対冷媒熱交換器へ通水する循環水の分配量を制御する比例三方弁が設けられていることを特徴とする、請求項1に記載のヒートポンプ付ファンコイル式放射空調パネル用空調機。 The circulating water channel includes a circulating pump that circulates the circulating water in the circulating water channel, and circulating water that passes through the radiation air-conditioning water-to-water heat exchanger and the radiation air-conditioning water-to-refrigerant heat exchanger provided in parallel. The air conditioner for a fan coil type radiant air conditioning panel with a heat pump according to claim 1, wherein a proportional three-way valve for controlling a distribution amount is provided. 前記比例三方弁は、前記循環水路における前記放射用空調パネルの入口において、前記循環水の温度を冷房時に16℃、暖房時に34℃となるように前記放射空調用水対水熱交換器及び/又は放射空調用水対冷媒熱交換器を通過する循環水の量を制御することを特徴とする、請求項2〜4のいずれかに記載のヒートポンプ付ファンコイル式放射空調パネル用空調機。 The proportional three-way valve is configured such that the temperature of the circulating water is 16 ° C. during cooling and 34 ° C. during heating, and / or the water-to-water heat exchanger for radiant air conditioning and / or at the entrance of the radiation air conditioning panel in the circulation channel. The air-conditioner for a fan coil type radiant air-conditioning panel with a heat pump according to any one of claims 2 to 4, wherein the amount of circulating water passing through the water-to-refrigerant heat exchanger for radiant air-conditioning is controlled. 前記冷温水配管における当該冷温水配管と前記バイパス路との合流箇所の下流には、放射空調用水対水熱交換器をバイパスする他のバイパス路と、当該他のバイパス路を通過する前記冷温水の量を制御する他の比例三方弁とが設けられていることを特徴とする、請求項1に記載のヒートポンプ付ファンコイル式放射空調パネル用空調機。 In the cold / hot water pipe, downstream of the merging point of the cold / hot water pipe and the bypass path is another bypass path that bypasses the water-to-water heat exchanger for radiant air conditioning, and the cold / hot water that passes through the other bypass path. An air conditioner for a fan coil type radiant air conditioning panel with a heat pump according to claim 1, further comprising another proportional three-way valve that controls the amount of the heat pump. 前記他の比例三方弁は、前記循環水路における前記放射用空調パネルの入口において、前記循環水の温度を冷房時に16℃、暖房時に34℃となるように前記他のバイパス路を通過する冷温水の量を制御することを特徴とする、請求項6に記載のヒートポンプ付ファンコイル式放射空調パネル用空調機。 The other proportional three-way valve is a hot / cold water passing through the other bypass passage so that the temperature of the circulating water is 16 ° C. during cooling and 34 ° C. during heating at the entrance of the radiation air conditioning panel in the circulating water passage. The air conditioner for a fan coil type radiant air conditioning panel with a heat pump according to claim 6, wherein the amount of the air conditioner is controlled. 前記循環水路には、当該循環水路内に循環水を循環させる循環ポンプが設けられ、
前記ポンプの回転数を制御することで、前記循環水路における前記放射用空調パネルの入口において、前記循環水の温度を冷房時に16℃、暖房時に34℃となるように前記放射空調用水対水熱交換器を通過する循環水量を制御することを特徴とする、請求項1に記載のヒートポンプ付ファンコイル式放射空調パネル用空調機。
The circulation channel is provided with a circulation pump for circulating the circulation water in the circulation channel,
By controlling the number of rotations of the pump, at the entrance of the radiation air conditioning panel in the circulation channel, the temperature of the circulating water is 16 ° C. during cooling and 34 ° C. during heating, and the water-to-water heat for radiation air conditioning The air conditioner for a fan coil type radiant air conditioning panel with a heat pump according to claim 1, wherein the amount of circulating water passing through the exchanger is controlled.
放射冷暖房、空調冷暖房及び外気処理を行うヒートポンプ付ファンコイル式放射空調パネル用空調機であって、
空調用の冷温水を通水する冷温水配管に設けられ、送風機から送風される空気と冷温水配管内の冷温水との間で熱交換を行うファンコイルと、
前記冷温水配管内の冷温水と圧縮機に接続された冷媒配管内の冷媒との間で熱交換を行うヒートポンプ用水対冷媒熱交換器と、
空調機の外部に設けられた放射空調パネルに接続された循環水路内の循環水と前記冷温水配管内の冷温水との間で熱交換を行う放射空調用水対水熱交換器と、
前記冷媒配管に設けられ、前記冷媒配管内の冷媒と前記循環水路内の循環水との間で熱交換を行う放射空調用水対冷媒熱交換器と、送風機から送風される空気と前記冷媒配管内の冷媒との間で熱交換を行う冷媒対空気熱交換器と、を有し、
前記放射空調用水対水熱交換器と前記放射空調用水対冷媒熱交換器とは、前記循環水路において直列に設けられ、
前記放射空調用水対水熱交換器は、前記冷温水配管において前記ファンコイルと前記ヒートポンプ用水対冷媒熱交換器の間に設けられ、
冷媒対空気熱交換器と前記放射空調用水対冷媒熱交換器とは、前記冷媒配管において並列に設けられ、
前記冷温水配管には、前記ファンコイル及び前記放射空調用水対水熱交換器を迂回するバイパス路が形成されていることを特徴とする、ヒートポンプ付ファンコイル式放射空調パネル用空調機。
It is an air conditioner for a fan coil type radiant air conditioning panel with a heat pump that performs radiant cooling and heating, air conditioning heating and cooling, and outside air processing,
A fan coil that is provided in a cold / hot water pipe for passing cold / hot water for air conditioning and performs heat exchange between the air blown from the blower and the cold / hot water in the cold / hot water pipe;
A water-to-refrigerant heat exchanger for heat pump that performs heat exchange between the cold / hot water in the cold / hot water pipe and the refrigerant in the refrigerant pipe connected to the compressor;
A water-to-water heat exchanger for radiant air conditioning that performs heat exchange between circulating water in a circulating water channel connected to a radiant air conditioning panel provided outside the air conditioner and cold / hot water in the cold / hot water pipe;
A water-to-refrigerant heat exchanger for radiant air conditioning that is provided in the refrigerant pipe and performs heat exchange between the refrigerant in the refrigerant pipe and the circulating water in the circulating water channel, air blown from a blower, and the refrigerant pipe A refrigerant-to-air heat exchanger that performs heat exchange with the other refrigerant,
The water-to-water heat exchanger for radiant air conditioning and the water-to-refrigerant heat exchanger for radiant air conditioning are provided in series in the circulation channel,
The water-to-water heat exchanger for radiant air conditioning is provided between the fan coil and the water-to-refrigerant heat exchanger for the heat pump in the cold / hot water pipe,
The refrigerant-to-air heat exchanger and the water-to-refrigerant heat exchanger for radiant air conditioning are provided in parallel in the refrigerant pipe,
An air conditioner for a fan coil type radiant air conditioning panel with a heat pump, wherein the cold / hot water pipe is formed with a bypass path that bypasses the fan coil and the water-to-water heat exchanger for radiant air conditioning.
放射冷暖房、空調冷暖房及び外気処理を行うヒートポンプ付ファンコイル式放射空調パネル用空調機であって、
空調用の冷温水を通水する冷温水配管に設けられ、送風機から送風される空気と冷温水配管内の冷温水との間で熱交換を行うファンコイルと、
前記冷温水配管内の冷温水と圧縮機に接続された冷媒配管内の冷媒との間で熱交換を行うヒートポンプ用水対冷媒熱交換器と、
空調機の外部に設けられた放射空調パネルに接続された循環水路内の循環水と前記冷温水配管内の冷温水との間で熱交換を行う放射空調用水対水熱交換器と、
前記冷媒配管に設けられ、前記冷媒配管内の冷媒と前記循環水路内の循環水との間で熱交換を行う放射空調用水対冷媒熱交換器と、送風機から送風される空気と前記冷媒配管内の冷媒との間で熱交換を行う冷媒対空気熱交換器と、を有し、
前記放射空調用水対水熱交換器と前記放射空調用水対冷媒熱交換器とは、前記循環水路において並列に設けられ、
前記放射空調用水対水熱交換器は、前記冷温水配管において前記ファンコイルと前記ヒートポンプ用水対冷媒熱交換器の間に設けられ、
冷媒対空気熱交換器と前記放射空調用水対冷媒熱交換器とは、前記冷媒配管において並列に設けられ、
前記冷温水配管には、前記ファンコイル及び前記放射空調用水対水熱交換器を迂回するバイパス路が形成されていることを特徴とする、ヒートポンプ付ファンコイル式放射空調パネル用空調機。
It is an air conditioner for a fan coil type radiant air conditioning panel with a heat pump that performs radiant cooling and heating, air conditioning heating and cooling, and outside air processing,
A fan coil that is provided in a cold / hot water pipe for passing cold / hot water for air conditioning and performs heat exchange between the air blown from the blower and the cold / hot water in the cold / hot water pipe;
A water-to-refrigerant heat exchanger for heat pump that performs heat exchange between the cold / hot water in the cold / hot water pipe and the refrigerant in the refrigerant pipe connected to the compressor;
A water-to-water heat exchanger for radiant air conditioning that performs heat exchange between circulating water in a circulating water channel connected to a radiant air conditioning panel provided outside the air conditioner and cold / hot water in the cold / hot water pipe;
A water-to-refrigerant heat exchanger for radiant air conditioning that is provided in the refrigerant pipe and performs heat exchange between the refrigerant in the refrigerant pipe and the circulating water in the circulating water channel, air blown from a blower, and the refrigerant pipe A refrigerant-to-air heat exchanger that performs heat exchange with the other refrigerant,
The water-to-water heat exchanger for radiant air conditioning and the water-to-refrigerant heat exchanger for radiant air conditioning are provided in parallel in the circulation channel,
The water-to-water heat exchanger for radiant air conditioning is provided between the fan coil and the water-to-refrigerant heat exchanger for the heat pump in the cold / hot water pipe,
The refrigerant-to-air heat exchanger and the water-to-refrigerant heat exchanger for radiant air conditioning are provided in parallel in the refrigerant pipe,
An air conditioner for a fan coil type radiant air conditioning panel with a heat pump, wherein the cold / hot water pipe is formed with a bypass path that bypasses the fan coil and the water-to-water heat exchanger for radiant air conditioning.
前記冷温水配管における当該冷温水配管と前記バイパス路との合流箇所の上流には、放射空調用水対水熱交換器をバイパスする他のバイパス路と、当該他のバイパス路を通過する前記冷温水の量を制御する他の比例三方弁とが設けられていることを特徴とする、請求項10に記載のヒートポンプ付ファンコイル式放射空調パネル用空調機。 In the cold / hot water pipe, upstream of the junction of the cold / hot water pipe and the bypass path is another bypass path that bypasses the water-to-water heat exchanger for radiation air conditioning, and the cold / hot water that passes through the other bypass path. 11. The fan coil type radiant air-conditioning panel air conditioner with a heat pump according to claim 10, further comprising another proportional three-way valve for controlling the amount of the air-conditioning panel. 放射冷暖房、空調冷暖房及び外気処理を行うヒートポンプ付ファンコイル式放射空調パネル用の空調機であって、
空調用の冷温水を通水する冷温水配管に設けられ、送風機から送風される空気と前記冷温水配管内の冷温水との間で熱交換を行うファンコイルと、
前記冷温水配管内の冷温水と圧縮機に接続された冷媒配管内の冷媒との間で熱交換を行うヒートポンプ用水対冷媒熱交換器と、
空調機の外部に設けられた放射空調パネルに接続された循環水路内の循環水と前記冷温水配管内の冷温水との間で熱交換を行う放射空調用水対水熱交換器と、
前記冷媒配管に設けられ、前記冷媒配管内の冷媒と前記循環水路内の循環水との間で熱交換を行う放射空調用水対冷媒熱交換器と、送風機から送風される空気と前記冷媒配管内の冷媒との間で熱交換を行う冷媒対空気熱交換器と、を有し、
前記放射空調用水対水熱交換器と前記放射空調用水対冷媒熱交換器とは、前記循環水路において並列に設けられ、
冷媒対空気熱交換器と前記放射空調用水対冷媒熱交換器とは、前記冷媒配管において直列に設けられ、
前記放射空調用水対水熱交換器は、前記冷温水配管において前記ファンコイルと前記ヒートポンプ用水対冷媒熱交換器の間に設けられ、
前記冷温水配管には、前記ファンコイルを迂回するバイパス路が形成されていることを特徴とする、ヒートポンプ付ファンコイル式放射空調パネル用空調機。
An air conditioner for a fan coil type radiant air conditioning panel with a heat pump that performs radiant cooling and heating, air conditioning heating and cooling, and outside air processing,
A fan coil that is provided in a cold / hot water pipe for passing cold / hot water for air conditioning, and performs heat exchange between the air blown from the blower and the cold / hot water in the cold / hot water pipe;
A water-to-refrigerant heat exchanger for heat pump that performs heat exchange between the cold / hot water in the cold / hot water pipe and the refrigerant in the refrigerant pipe connected to the compressor;
A water-to-water heat exchanger for radiant air conditioning that performs heat exchange between circulating water in a circulating water channel connected to a radiant air conditioning panel provided outside the air conditioner and cold / hot water in the cold / hot water pipe;
A water-to-refrigerant heat exchanger for radiant air conditioning that is provided in the refrigerant pipe and performs heat exchange between the refrigerant in the refrigerant pipe and the circulating water in the circulating water channel, air blown from a blower, and the refrigerant pipe A refrigerant-to-air heat exchanger that performs heat exchange with the other refrigerant,
The water-to-water heat exchanger for radiant air conditioning and the water-to-refrigerant heat exchanger for radiant air conditioning are provided in parallel in the circulation channel,
The refrigerant-to-air heat exchanger and the water-to-refrigerant heat exchanger for radiant air conditioning are provided in series in the refrigerant pipe,
The water-to-water heat exchanger for radiant air conditioning is provided between the fan coil and the water-to-refrigerant heat exchanger for the heat pump in the cold / hot water pipe,
An air conditioner for a fan coil type radiant air conditioning panel with a heat pump, wherein the cold / hot water pipe is formed with a bypass path that bypasses the fan coil.
前記循環水路には、当該循環水路内に循環水を循環させる循環ポンプと、前記放射空調用水対水熱交換器及び放射空調用水対冷媒熱交換器を迂回するバイパス路と、当該バイパス路を通過する前記循環水の量を制御する比例三方弁とが設けられていることを特徴とする、請求項12に記載のヒートポンプ付ファンコイル式放射空調パネル用空調機。 The circulation channel includes a circulation pump that circulates circulation water in the circulation channel, a bypass channel that bypasses the water-to-water heat exchanger for radiant air conditioning and the water-to-refrigerant heat exchanger for radiant air conditioning, and the bypass channel. An air conditioner for a fan coil type radiant air conditioning panel with a heat pump according to claim 12, wherein a proportional three-way valve for controlling the amount of the circulating water is provided. 前記循環水路には、当該循環水路内に循環水を循環させる循環ポンプと、前記放射空調用水対水熱交換器又は/及び放射空調用水対冷媒熱交換器を通過する前記循環水の量を制御する比例三方弁とが設けられていることを特徴とする、請求項13に記載のヒートポンプ付ファンコイル式放射空調パネル用空調機。


In the circulation channel, a circulation pump that circulates the circulation water in the circulation channel and the amount of the circulating water that passes through the water-to-water heat exchanger for radiant air conditioning and / or the water-to-refrigerant heat exchanger for radiant air conditioning are controlled. An air conditioner for a fan coil type radiant air conditioning panel with a heat pump according to claim 13, wherein a proportional three-way valve is provided.


JP2010191397A 2010-03-31 2010-08-27 Fan coil type radiant air conditioning panel air conditioner with heat pump Active JP5524768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010191397A JP5524768B2 (en) 2010-03-31 2010-08-27 Fan coil type radiant air conditioning panel air conditioner with heat pump

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010081805 2010-03-31
JP2010081805 2010-03-31
JP2010191397A JP5524768B2 (en) 2010-03-31 2010-08-27 Fan coil type radiant air conditioning panel air conditioner with heat pump

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014081104A Division JP5827717B2 (en) 2010-03-31 2014-04-10 Fan coil type radiant air conditioning panel air conditioner with heat pump

Publications (2)

Publication Number Publication Date
JP2011226757A true JP2011226757A (en) 2011-11-10
JP5524768B2 JP5524768B2 (en) 2014-06-18

Family

ID=45042300

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010191397A Active JP5524768B2 (en) 2010-03-31 2010-08-27 Fan coil type radiant air conditioning panel air conditioner with heat pump
JP2014081104A Active JP5827717B2 (en) 2010-03-31 2014-04-10 Fan coil type radiant air conditioning panel air conditioner with heat pump

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014081104A Active JP5827717B2 (en) 2010-03-31 2014-04-10 Fan coil type radiant air conditioning panel air conditioner with heat pump

Country Status (1)

Country Link
JP (2) JP5524768B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024276A1 (en) * 2012-08-08 2014-02-13 三菱電機株式会社 Air conditioning device
CN108151351A (en) * 2017-12-30 2018-06-12 广东申菱环境系统股份有限公司 A kind of integrated water cooling and the Multifucntional outdoor unit of air-cooled heat exchange

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3311598B2 (en) * 1996-09-17 2002-08-05 株式会社日立製作所 Radiant cooling and heating equipment
JPH10141802A (en) * 1996-11-05 1998-05-29 Yazaki Corp Hot water heating absorption water cooler/hot water heater
JP2004218912A (en) * 2003-01-14 2004-08-05 Sanyo Electric Co Ltd Heat pump type hot water heating device
JP2004225952A (en) * 2003-01-21 2004-08-12 Toshiba Electric Appliance Co Ltd Heat pump hot-water supply heating device
JP4033788B2 (en) * 2003-02-25 2008-01-16 三洋電機株式会社 Heat pump equipment
JP4546067B2 (en) * 2003-11-19 2010-09-15 東芝キヤリア株式会社 Air conditioner
JP4474994B2 (en) * 2004-04-28 2010-06-09 ダイキン工業株式会社 Air conditioning system
JP4842654B2 (en) * 2006-02-10 2011-12-21 株式会社石本建築事務所 Control method for air conditioning system for radiant panel
JP2008051468A (en) * 2006-08-28 2008-03-06 Toyox Co Ltd Radiation type air-conditioning and heating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024276A1 (en) * 2012-08-08 2014-02-13 三菱電機株式会社 Air conditioning device
US9890976B2 (en) 2012-08-08 2018-02-13 Mitsubishi Electric Corporation Air-conditioning apparatus
CN108151351A (en) * 2017-12-30 2018-06-12 广东申菱环境系统股份有限公司 A kind of integrated water cooling and the Multifucntional outdoor unit of air-cooled heat exchange

Also Published As

Publication number Publication date
JP5524768B2 (en) 2014-06-18
JP5827717B2 (en) 2015-12-02
JP2014145588A (en) 2014-08-14

Similar Documents

Publication Publication Date Title
JP5328951B2 (en) Air conditioning system
JP4520370B2 (en) Water heat source heat pump type radiation panel air conditioner
JP6270997B2 (en) Outside air processing machine and air conditioner
JP3800210B2 (en) Water source heat pump unit
JP3997482B2 (en) Water source air conditioning system
JP5291396B2 (en) Control method of air conditioner and air conditioner
WO2010113420A1 (en) Dehumidifying system
JP2017150778A (en) Dehumidifying/reheating air-conditioning system utilizing ground thermal energy
CN108332449B (en) Heat pump dehumidification unit and control method thereof
JP6425750B2 (en) Air conditioning system
WO2017119137A1 (en) Air-conditioning device
KR20120026754A (en) Airconditioing circulation system
JP5312616B2 (en) Air conditioner
JP2018063090A (en) Heat pump water heater with cooling/heating function
JP6907653B2 (en) Air conditioning system
JP5827717B2 (en) Fan coil type radiant air conditioning panel air conditioner with heat pump
WO2018043454A1 (en) Air conditioning and hot water supplying system
JP2006336971A (en) Ventilating and air conditioning device
KR101958815B1 (en) Integrated heat pump
JP6906865B2 (en) Air conditioning system
JP4353859B2 (en) Air conditioner
JP2010243005A (en) Dehumidification system
JP2009103410A (en) Mix type air conditioner
JP7374633B2 (en) Air conditioners and air conditioning systems
KR20170074226A (en) Air conditioning system for vehicle

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140410

R150 Certificate of patent or registration of utility model

Ref document number: 5524768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350