JP2011225856A - Adhesive composition for electronic device and adhesive sheet for electronic device using the same - Google Patents

Adhesive composition for electronic device and adhesive sheet for electronic device using the same Download PDF

Info

Publication number
JP2011225856A
JP2011225856A JP2011074644A JP2011074644A JP2011225856A JP 2011225856 A JP2011225856 A JP 2011225856A JP 2011074644 A JP2011074644 A JP 2011074644A JP 2011074644 A JP2011074644 A JP 2011074644A JP 2011225856 A JP2011225856 A JP 2011225856A
Authority
JP
Japan
Prior art keywords
adhesive
boron nitride
particle size
particles
nitride particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011074644A
Other languages
Japanese (ja)
Other versions
JP5742375B2 (en
Inventor
Hiroshi Tsuchiya
浩史 土谷
Michio Shimizu
宙夫 清水
Taiji Sawamura
泰司 澤村
Yukitsuna Konishi
幸綱 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2011074644A priority Critical patent/JP5742375B2/en
Publication of JP2011225856A publication Critical patent/JP2011225856A/en
Application granted granted Critical
Publication of JP5742375B2 publication Critical patent/JP5742375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an adhesive sheet with excellent thermal conductivity, insulation property, reflow resistance, and adhesion with an adherend and used for bonding a heat generation component in an electronic device with a heat discharging component such as a heat sink and a radiator plate, for electronic devices.SOLUTION: An adhesive composition for electronic devices comprises: (a) a thermoplastic resin; (b) an epoxy resin; (c) a curing agent, (d) boron nitride particles; and (e) inorganic spherical particles. An average primary particle diameter of the inorganic spherical particles (e) is 10 vol% particle diameter or less of a primary particle diameter distribution on a volume basis of the boron nitride particles (d).

Description

本発明は、電子機器用接着剤組成物に関する。より詳しくは、補強板(スティフナー)、放熱板(ヒートスプレッダー)、半導体素子や配線基板(インターポーザー)用半導体集積回路を実装する際に用いられるテープオートメーテッドボンディング(TAB)方式のパターン加工テープ、ボールグリッドアレイ(BGA)パッケージ用インターポーザー等の半導体接続用基板、フレキシブルプリント基板(FPC)におけるカバーレイや銅張り積層板およびその補強板、多層基板における層間接着剤、およびそれらを用いた基板部品、電子デバイスの封止材、LED、パワーモジュール用層間接着剤、ソルダーレジスト、リードフレーム固定テープ、LOC固定テープ、半導体素子等の電子部品とリードフレームや絶縁性支持基板等の支持部材との接着剤すなわちダイボンディング材、シールド材等に好適に用いられる電子機器用接着剤組成物、電子機器用接着剤シートに関する。   The present invention relates to an adhesive composition for electronic devices. More specifically, a reinforcing plate (stiffener), a heat radiating plate (heat spreader), a tape automated bonding (TAB) pattern processing tape used when mounting a semiconductor integrated circuit for a semiconductor element or a wiring board (interposer), Semiconductor connection substrates such as ball grid array (BGA) package interposers, coverlays and copper-clad laminates in flexible printed boards (FPCs) and their reinforcing plates, interlayer adhesives in multilayer boards, and board components using them Adhesion between electronic components such as electronic device sealing materials, LEDs, power module interlayer adhesives, solder resists, lead frame fixing tapes, LOC fixing tapes, semiconductor elements, and support members such as lead frames and insulating support substrates Agent, ie die bonding material, Rudo material such as suitably an adhesive composition for electronic equipment used in the adhesive sheets for electronic devices.

近年、電子機器の高性能化に伴い、その用途は増加の一途をたどっている。その中で、機器の小型化、薄型化が進んでいる。電子機器を小型化、薄型化する場合、機器から発生する熱の密度が高まるために、熱の発生を抑えるとともに、使用する半導体集積回路(IC)パッケージやトランジスタ、ダイオード、電源などの電子部品から発生する熱を効率的に外部に放出することが重要となってくる。また、パソコン等で使用されるマイクロチッププロセッサ(MPU)の動作周波数が上昇するとともにMPUチップより発生する熱量は非常に大きくなっている。また、プラズマパネルディスプレイ、液晶ディスプレイに代表されるフラットパネルディスプレイ(FPD)はディスプレイパネルが発熱するため、この熱を外部に放出することが重要となってきている。   In recent years, the use of electronic devices has been increasing as the performance of electronic devices has increased. In the midst of this, devices are becoming smaller and thinner. When downsizing and thinning electronic equipment, the density of heat generated from the equipment increases, so the generation of heat is suppressed, and the use of electronic components such as semiconductor integrated circuit (IC) packages, transistors, diodes, and power supplies It is important to efficiently release the generated heat to the outside. In addition, as the operating frequency of a microchip processor (MPU) used in a personal computer or the like increases, the amount of heat generated from the MPU chip becomes very large. Further, since flat panel displays (FPD) represented by plasma panel displays and liquid crystal displays generate heat in the display panels, it is important to release this heat to the outside.

一般に上記のような電子部品から発生した熱を外部に放出するには、熱源となる電子部品にヒートシンクや金属板、電子機器筐体等のより放熱面積の大きい部品を取り付けることで放熱効率を向上させている。このとき電子部品と放熱部品とが接する界面が熱の移動の上で抵抗となっている。このため、電子部品と放熱部品の間に熱伝導性に優れるグリースを充填したり(例えば特許文献1参照)、熱可塑性樹脂に熱伝導性のフィラーを充填した熱伝導シート(例えば特許文献2参照)を挟むことで熱の移動を補助する方法が提案されていた。しかし前者のグリースを使用する方法はその取扱い方法が難しく、場合によってはグリースが周辺を汚染したりする恐れがあり、またグリース自体には電子部品と放熱部品を固定する効果はなく、別途放熱部品のねじ止め等による固定が必要であった。熱伝導シートは熱可塑性樹脂が使用されているため、樹脂の構造や分子量を制御しても粘着しているにすぎず、別途放熱部品のねじ止め等による固定が必要であった。   Generally, in order to release the heat generated from the electronic components as described above, heat dissipation efficiency is improved by attaching components that have a larger heat dissipation area, such as heat sinks, metal plates, and electronic equipment casings, to the electronic components that serve as heat sources. I am letting. At this time, the interface where the electronic component and the heat radiating component are in contact with each other is a resistance in terms of heat transfer. For this reason, a grease having excellent thermal conductivity is filled between the electronic component and the heat radiating component (see, for example, Patent Document 1), or a thermal conductive sheet in which a thermoplastic resin is filled with a thermally conductive filler (see, for example, Patent Document 2). ) Has been proposed to assist heat transfer. However, the former method using grease is difficult to handle, and in some cases the grease may contaminate the surroundings. In addition, the grease itself does not have the effect of fixing electronic components and heat dissipation components. It was necessary to fix by screwing. Since a thermoplastic resin is used for the heat conductive sheet, it is only adhered even if the structure and molecular weight of the resin are controlled, and it is necessary to separately fix the heat radiating component by screwing or the like.

このため、電子部品と放熱部品の接する界面に使用される熱伝導性に優れ、なおかつ取り扱い性に優れ、電子部品と放熱部品を固定する効果のある材料が要求されるようになってきた。このような要求に対応できる材料として、熱硬化性樹脂に熱伝導性の高いフィラーを含有させた接着剤組成物をシート状に加工した接着剤シートが挙げられる。   For this reason, there has been a demand for a material that is excellent in thermal conductivity used at the interface between the electronic component and the heat dissipation component, has excellent handling properties, and has an effect of fixing the electronic component and the heat dissipation component. As a material that can meet such a requirement, an adhesive sheet obtained by processing an adhesive composition in which a thermosetting resin contains a filler having high thermal conductivity into a sheet shape can be given.

この中で特許文献3では熱伝導性接着剤組成物を基材上に塗布し、その硬化度をDSCを用いて測定した場合の全硬化発熱量の10〜40%の発熱を終えた状態にした熱伝導性接着フィルムを提案しているが、熱伝導率は充分ではなく、また接着性は十分とはいえないものであった。このように従来の熱伝導性接着剤シートではその接着性が不十分であり、使用時に電子部品と放熱部品の固定が不十分となる問題があった。   Among these, in Patent Document 3, the heat conductive adhesive composition is applied on a substrate, and the heat generation of 10 to 40% of the total curing heat generation amount when the degree of curing is measured using DSC is finished. However, the thermal conductivity is not sufficient, and the adhesiveness is not sufficient. As described above, the conventional heat conductive adhesive sheet has insufficient adhesion, and there is a problem that the electronic component and the heat dissipation component are not sufficiently fixed during use.

また高耐圧で使用される高性能機器の開発が進み絶縁性の要求が近年高くなってきており、また本来電子機器実装に用いられる半田リフロ−に対する耐熱性や長期信頼性が必要とされており、これらの諸特性を両立できることが課題であった。   In addition, the development of high-performance equipment used at high withstand voltage has progressed, and the demand for insulation has increased in recent years, and heat resistance and long-term reliability for solder reflow originally used for mounting electronic equipment is required. Therefore, it was a problem to be able to achieve both of these characteristics.

特許3142800号公報 (第2〜12段落)Japanese Patent No. 3142800 (paragraphs 2 to 12) 特許3092699号公報 (第2〜11段落)Japanese Patent No. 3092699 (paragraphs 2 to 11) 特許3559137号公報 (請求項1)Japanese Patent No. 3559137 (Claim 1)

上記のように、従来の熱伝導性接着剤シートは熱伝導性、絶縁性、耐熱性および接着性の両立が不十分であった。本発明は、かかる従来技術の課題に鑑み、上記諸特性バランスに優れた電子機器用接着剤シートを提供することを目的とする。   As described above, conventional heat conductive adhesive sheets have insufficient heat conductivity, insulating properties, heat resistance and adhesiveness. An object of this invention is to provide the adhesive sheet for electronic devices excellent in the said various property balance in view of the subject of this prior art.

上記課題を解決するため、本発明は主として以下の構成を有する。すなわち、(a)熱可塑性樹脂、(b)エポキシ樹脂、(c)硬化剤、(d)窒化硼素粒子および(e)無機球状粒子を含有とする電子機器用接着剤組成物であって、(e)無機球状粒子の一次平均粒径が(d)窒化硼素粒子の体積基準における一次粒径分布の10体積%粒径以下であることを特徴とする電子機器用接着剤組成物である。   In order to solve the above problems, the present invention mainly has the following configuration. That is, an adhesive composition for electronic equipment comprising (a) a thermoplastic resin, (b) an epoxy resin, (c) a curing agent, (d) boron nitride particles, and (e) inorganic spherical particles, e) The adhesive composition for electronic equipment, wherein the primary average particle size of the inorganic spherical particles is 10% by volume or less of the primary particle size distribution on the volume basis of the (d) boron nitride particles.

本発明の電子機器用接着剤組成物は、熱伝導性、絶縁性および耐リフロー性に優れる上、被着体との接着力に優れるため、電子機器内の発熱部品とヒートシンクや放熱板等の放熱部品を接着するための電子機器用接着剤シートを得ることができる。さらに、この接着剤シートを用いて発熱部品と放熱部品を接着したり、プリント基板を積層することにより放熱特性に優れた電子機器を得ることができる。   The adhesive composition for electronic equipment of the present invention is excellent in heat conductivity, insulation and reflow resistance, and also has excellent adhesion to the adherend. An adhesive sheet for electronic equipment for adhering heat dissipation components can be obtained. Furthermore, an electronic device having excellent heat dissipation characteristics can be obtained by bonding the heat-generating component and the heat-dissipating component using this adhesive sheet or by stacking the printed circuit boards.

本発明の電子機器用接着剤シートの一態様の断面図である。It is sectional drawing of the one aspect | mode of the adhesive agent sheet for electronic devices of this invention.

以下、本発明の構成を詳述する。本発明の接着剤組成物は(a)熱可塑性樹脂、(b)エポキシ樹脂、(c)硬化剤、(d)窒化硼素粒子および(e)無機球状粒子を含有する電子機器用接着剤組成物であって、(e)無機球状粒子の一次平均粒径が(d)窒化硼素粒子の体積基準における一次粒径分布の10体積%粒径以下であることを特徴とする。   Hereinafter, the configuration of the present invention will be described in detail. The adhesive composition of the present invention is an adhesive composition for electronic equipment containing (a) a thermoplastic resin, (b) an epoxy resin, (c) a curing agent, (d) boron nitride particles, and (e) inorganic spherical particles. And (e) the primary average particle size of the inorganic spherical particles is (d) 10% by volume or less of the primary particle size distribution on the volume basis of the boron nitride particles.

本発明の電子部品用接着剤組成物は、(a)熱可塑性樹脂を少なくとも1種類含有するが、その種類は特に限定されない。熱可塑性樹脂は、可撓性、熱応力の緩和、接着性等の機能を有する。熱可塑性樹脂としては、アクリロニトリル−ブタジエン共重合体(NBR)、アクリロニトリル−ブタジエン−スチレン樹脂(ABS)、ポリブタジエン、スチレン−ブタジエン−エチレン樹脂(SEBS)、炭素数1〜8の側鎖を有するアクリル酸および/またはメタクリル酸エステル樹脂(アクリルゴム)、ポリビニルブチラール、ポリアミド、ポリエステル、ポリイミド、ポリアミドイミド、ポリウレタン等が例示される。また、これらの熱可塑性樹脂は後述の(b)エポキシ樹脂あるいは(c)硬化剤との反応が可能な官能基を有していることが好ましい。具体的には、エポキシ基、水酸基、カルボキシル基、アミノ基、ヒドロキシアルキル基、ビニル基、イソシアネート基等である。これらの官能基により熱硬化性樹脂との結合が強固になり、耐熱性、絶縁性が向上するので好ましい。可撓性、熱応力の緩和効果の点から、炭素数1〜8の側鎖を有するアクリル酸および/またはメタクリル酸エステルを必須重合成分とする共重合体は特に好ましく使用できる。上述した官能基含有量は、(a)熱可塑性樹脂中0.07〜2.0eq/kgが好ましく、より好ましくは0.1〜1.8eq/kgである。また、接着性、長期高温条件下での可撓性の観点から、(a)熱可塑性樹脂の重量平均分子量(Mw)は1万以上が好ましい。特に好ましくは40万以下であり、無機粒子を高充填しても接着剤貼り合わせ加工制御が容易にある。熱可塑性樹脂を2種以上用いる場合、その内少なくとも1種がこの範囲を満たしていればよい。重量平均分子量については、GPC(ゲルパーミエーションクロマトグラフィー)法により測定し、ポリスチレン換算で算出する。   The adhesive composition for electronic parts of the present invention contains (a) at least one thermoplastic resin, but the type is not particularly limited. The thermoplastic resin has functions such as flexibility, relaxation of thermal stress, and adhesiveness. Examples of the thermoplastic resin include acrylonitrile-butadiene copolymer (NBR), acrylonitrile-butadiene-styrene resin (ABS), polybutadiene, styrene-butadiene-ethylene resin (SEBS), and acrylic acid having 1 to 8 carbon side chains. And / or methacrylic acid ester resin (acrylic rubber), polyvinyl butyral, polyamide, polyester, polyimide, polyamideimide, polyurethane and the like. In addition, these thermoplastic resins preferably have a functional group capable of reacting with (b) an epoxy resin or (c) a curing agent described later. Specific examples include an epoxy group, a hydroxyl group, a carboxyl group, an amino group, a hydroxyalkyl group, a vinyl group, and an isocyanate group. These functional groups are preferable because the bond with the thermosetting resin becomes strong and the heat resistance and insulation are improved. From the viewpoint of flexibility and thermal stress relaxation effect, a copolymer having acrylic acid and / or methacrylic acid ester having a side chain having 1 to 8 carbon atoms as an essential polymerization component can be particularly preferably used. The functional group content described above is preferably 0.07 to 2.0 eq / kg, more preferably 0.1 to 1.8 eq / kg in the thermoplastic resin (a). Further, from the viewpoint of adhesiveness and flexibility under long-term high temperature conditions, the weight average molecular weight (Mw) of the (a) thermoplastic resin is preferably 10,000 or more. Particularly preferably, it is 400,000 or less, and even when the inorganic particles are highly filled, the adhesive bonding process can be easily controlled. When using 2 or more types of thermoplastic resins, it is sufficient that at least one of them satisfies this range. The weight average molecular weight is measured by a GPC (gel permeation chromatography) method and calculated in terms of polystyrene.

本発明の電子部品用接着剤組成物は、(b)エポキシ樹脂を少なくとも1種類含有するが、その種類は特に限定されない。(b)エポキシ樹脂を含むことにより、耐熱性、高温での絶縁性、耐薬品性、接着剤層にしたときの強度等の物性バランスを実現することができる。エポキシ樹脂は1分子内に2個以上のエポキシ基を有するものであれば特に制限されないが、ビスフェノールF、ビスフェノールA、ビスフェノールS、ビフェニル、レゾルシノール、ジヒドロキシナフタレン、ジシクロペンタジエンジフェノール、ジシクロペンタジエンジキシレノール等のジグリシジルエーテル、エポキシ化フェノールノボラック、エポキシ化クレゾールノボラック、エポキシ化トリスフェニロールメタン、エポキシ化テトラフェニロールエタン、エポキシ化メタキシレンジアミン、シクロヘキサンエポキサイド等の脂環式エポキシ、フェノキシ樹脂等が挙げられる。難燃性の観点からハロゲン化エポキシ樹脂も挙げられるが、環境影響の観点からバロゲンを含まない難燃タイプのエポキシ樹脂、具体的にはリン含有エポキシ樹脂、窒素含有エポキシ樹脂も用いてもよい。これらを単独または2種以上用いても良い。   Although the adhesive composition for electronic components of this invention contains at least 1 type of (b) epoxy resin, the kind is not specifically limited. (B) By including an epoxy resin, it is possible to achieve a balance of physical properties such as heat resistance, insulation at high temperature, chemical resistance, and strength when formed into an adhesive layer. The epoxy resin is not particularly limited as long as it has two or more epoxy groups in one molecule, but bisphenol F, bisphenol A, bisphenol S, biphenyl, resorcinol, dihydroxynaphthalene, dicyclopentadiene diphenol, dicyclopentadiene diene. Diglycidyl ethers such as xylenol, epoxidized phenol novolac, epoxidized cresol novolac, epoxidized trisphenylol methane, epoxidized tetraphenylol ethane, epoxidized metaxylene diamine, cyclohexane epoxide and other cycloaliphatic epoxies, phenoxy resins, etc. Can be mentioned. Halogenated epoxy resins are also mentioned from the viewpoint of flame retardancy, but flame retardant type epoxy resins that do not contain barogen from the viewpoint of environmental impact, specifically phosphorus-containing epoxy resins and nitrogen-containing epoxy resins may also be used. These may be used alone or in combination of two or more.

これらの(b)エポキシ樹脂の中で、本発明において好ましく使用されるのは、接着性、接着剤組成物をシート化する際の製膜性に優れる点で、ビスフェノールF型エポキシ樹脂、ビスフェノールA型エポキシ樹脂などであり、この中でも分子量が低く、常温で液状のビスフェノールA型エポキシ樹脂が特に好ましい。   Among these (b) epoxy resins, those that are preferably used in the present invention are excellent in adhesiveness and film-forming properties when forming an adhesive composition, and are bisphenol F type epoxy resin and bisphenol A. Among them, bisphenol A type epoxy resins having a low molecular weight and liquid at room temperature are particularly preferable.

本発明の接着剤物質中に含有される(b)エポキシ樹脂の量は(d)窒化硼素粒子(e)無機球状粒子の総量100重量部に対し3〜20重量部が好ましい。3重量部以上であることにより充分な接着性が得られ、20重量部以下であることにより熱伝導率が向上する。
その中でも、接着剤組成物の架橋密度を高めるために、1分子内に3個以上のエポキシ基を有する多官能エポキシ樹脂が好ましく用いられる。このような基を用いて架橋密度を高くすることにより、耐熱性、耐リフロー性、膜強度、耐溶剤性に優れた接着剤組成物を得ることができる。
The amount of (b) epoxy resin contained in the adhesive substance of the present invention is preferably 3 to 20 parts by weight with respect to (d) boron nitride particles (e) 100 parts by weight of inorganic spherical particles. Adequate adhesiveness is obtained when the amount is 3 parts by weight or more, and thermal conductivity is improved when the amount is 20 parts by weight or less.
Among these, in order to increase the crosslinking density of the adhesive composition, a polyfunctional epoxy resin having three or more epoxy groups in one molecule is preferably used. By increasing the crosslinking density using such a group, an adhesive composition having excellent heat resistance, reflow resistance, film strength, and solvent resistance can be obtained.

本発明の接着剤組成物は、(c)硬化剤を含有する。(a)熱可塑性樹脂の官能基や(b)エポキシ樹脂と架橋反応する硬化剤を含有することで硬化後の接着力、耐熱性等が向上する。硬化剤の例としては、3,3’,5,5’−テトラメチル−4,4’−ジアミノジフェニルメタン、3,3’,5,5’−テトラエチル−4,4’−ジアミノジフェニルメタン、3,3’−ジメチル−5,5’−ジエチル−4,4’−ジアミノジフェニルメタン、3,3’−ジクロロ−4,4’−ジアミノジフェニルメタン、2,2’,3,3’−テトラクロロ−4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノベンゾフェノン、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノベンゾフェノン、3,4,4’−トリアミノジフェニルスルホン等の芳香族ポリアミン、三フッ化ホウ素トリエチルアミン錯体等の三フッ化ホウ素のアミン錯体、ジシアンジアミド、フェノール、クレゾールフェノール、p−tBuフェノール、p−フェニルフェノール等のアルキル置換フェノール、テルペン、ジシクロペンタジエン等の環状アルキル変性フェノール、ニトロ基、ハロゲン基、シアノ基、アミノ基等のヘテロ原子を含む官能基を有するもの、ナフタレン、アントラセン等の骨格を有するもの、ビスフェノールF、ビスフェノールA、ビスフェノールS、レゾルシノール、ピロガロール等の多官能性フェノールからなる樹脂が挙げられる。またこれら種々のフェノールにメチロール基が付加したレゾール樹脂や、高分子化したノボラック樹脂を用いることができる。他には尿素樹脂、マレイミド樹脂、シアナート樹脂、アセタール樹脂等が挙げられる。これらを単独または2種以上用いても良い。(c)硬化剤の添加量は、(a)熱可塑性樹脂および(b)エポキシ樹脂の総量100重量部に対して10〜200重量部、好ましくは20〜180重量部である。   The adhesive composition of the present invention contains (c) a curing agent. By containing a functional group of (a) a thermoplastic resin and (b) a curing agent that undergoes a crosslinking reaction with an epoxy resin, the adhesive strength after curing, heat resistance, and the like are improved. Examples of curing agents include 3,3 ′, 5,5′-tetramethyl-4,4′-diaminodiphenylmethane, 3,3 ′, 5,5′-tetraethyl-4,4′-diaminodiphenylmethane, 3, 3′-dimethyl-5,5′-diethyl-4,4′-diaminodiphenylmethane, 3,3′-dichloro-4,4′-diaminodiphenylmethane, 2,2 ′, 3,3′-tetrachloro-4, 4'-diaminodiphenyl methane, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminobenzophenone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, Aromatic polyamines such as 4,4′-diaminobenzophenone and 3,4,4′-triaminodiphenylsulfone, boron trifluoride tri Boron trifluoride amine complexes such as tilamine complex, dicyandiamide, phenol, cresol phenol, alkyl-substituted phenols such as p-tBu phenol, p-phenylphenol, cyclic alkyl-modified phenols such as terpene and dicyclopentadiene, nitro groups, halogens Resins comprising polyfunctional phenols such as those having functional groups containing hetero atoms such as cyano groups, cyano groups and amino groups, those having skeletons such as naphthalene and anthracene, bisphenol F, bisphenol A, bisphenol S, resorcinol and pyrogallol Is mentioned. Further, a resol resin in which a methylol group is added to these various phenols or a polymerized novolak resin can be used. Other examples include urea resin, maleimide resin, cyanate resin, and acetal resin. These may be used alone or in combination of two or more. (C) The addition amount of a hardening | curing agent is 10-200 weight part with respect to 100 weight part of total amounts of (a) thermoplastic resin and (b) epoxy resin, Preferably it is 20-180 weight part.

(d)窒化硼素粒子は熱伝導性を有する無機充填剤の一つであり、ダイヤモンド類似の等方的構造を有する立方晶および黒煙類似の層状構造を有する六方晶の2タイプがある。窒化硼素粒子は鱗片形状をしており、鱗片の面方向は厚さ方向よりも熱伝導率が二桁高く、熱伝導異方性を有している。そのため窒化硼素粒子の面方向を接着剤層の厚さ方向に配向させることにより接着剤層に接着している電子部品同士の熱伝導性を高めることができる。   (D) Boron nitride particles are one of inorganic fillers having thermal conductivity, and there are two types, cubic crystals having an isotropic structure similar to diamond and hexagonal crystals having a layered structure similar to black smoke. The boron nitride particles have a scaly shape, and the surface direction of the scaly has two orders of magnitude higher thermal conductivity than the thickness direction, and has thermal conductivity anisotropy. Therefore, by orienting the surface direction of the boron nitride particles in the thickness direction of the adhesive layer, the thermal conductivity between the electronic components bonded to the adhesive layer can be enhanced.

(d)窒化硼素粒子の一次平均粒径が3〜20μmであることが好ましい。なお本発明において一次平均粒径とは、一次粒径分布における累積体積50%に相当する一次粒径(d50)を示す。また窒化硼素粒子の粒径分布は鱗片形状の面方向(以下、粒子面方向という)の粒径分布をとる。   (D) The primary average particle diameter of boron nitride particles is preferably 3 to 20 μm. In the present invention, the primary average particle diameter means a primary particle diameter (d50) corresponding to a cumulative volume of 50% in the primary particle diameter distribution. The particle size distribution of the boron nitride particles is a particle size distribution in the scale-shaped surface direction (hereinafter referred to as the particle surface direction).

窒化硼素20μm以下であると耐熱性が向上するため耐リフロー性に優れ、3μm以上であると熱伝導性が向上する。更に好ましくは15μm以下である。またアスペクト比が6〜19の範囲であることが好ましく、8〜15がより好ましい。(d)窒化硼素粒子は鱗片形状を有しており、アスペクト比とは粒子面方向の長さ/粒子厚さを示す。アスペクト比が19以下であると(d)窒化硼素粒子が接着剤層の厚さ方向に配向しやすくなるため熱伝導性が向上する。一方でアスペクト比が6以上であると粒子表面積における面の割合が多くなるため、熱伝導性に有利に働く。また(d)窒化硼素粒子が窒化硼素粒子の凝集体を含有することが好ましい。窒化硼素粒子の凝集体とは、窒化硼素粒子の一次粒子が少なくとも100個以上高次凝集し、配向することなく規則的に円球状(真円球、楕円球、半円球、円柱状を含む)若しくは多角形状を形成しており、凝集体の長軸方向の長さが窒化硼素粒子の一次平均粒径(d50)の3倍以上のものをいう。全(d)窒化硼素粒子中、窒化硼素粒子の凝集体が50体積%以上であることが好ましい。凝集体を用いることで樹脂、溶剤等に混合溶解し、物理的撹拌あるいは分散してもある程度の凝集性が保持されるため、高い熱伝導性を得ることができる。   When the boron nitride is 20 μm or less, the heat resistance is improved, so that the reflow resistance is excellent. More preferably, it is 15 μm or less. Moreover, it is preferable that an aspect ratio is the range of 6-19, and 8-15 are more preferable. (D) The boron nitride particles have a scale shape, and the aspect ratio indicates the length / particle thickness in the particle plane direction. When the aspect ratio is 19 or less, (d) the boron nitride particles are easily oriented in the thickness direction of the adhesive layer, so that the thermal conductivity is improved. On the other hand, when the aspect ratio is 6 or more, the ratio of the surface in the particle surface area is increased, which is advantageous for thermal conductivity. Further, (d) the boron nitride particles preferably contain an aggregate of boron nitride particles. The aggregate of boron nitride particles is a high-order aggregation of at least 100 primary particles of boron nitride particles, and includes regular spherical shapes (perfect spheres, ellipsoids, hemispheres, and cylinders) without orientation. ) Or a polygonal shape in which the length of the agglomerates in the major axis direction is 3 times or more of the primary average particle diameter (d50) of boron nitride particles. It is preferable that the aggregate of boron nitride particles is 50% by volume or more in all (d) boron nitride particles. By using the agglomerate, a certain degree of agglomeration is maintained even after physical agitation or dispersion by mixing and dissolving in a resin, a solvent, etc., so that high thermal conductivity can be obtained.

凝集体の平均粒径は30μm以上であることが好ましく、また凝集体の体積基準における粒径分布の90体積%粒径が接着剤層の単層厚さ以下であることが好ましい。粒径分布とは粒子の粒径とその含有率との関係を示したものであり、凝集体の平均粒径とは粒径分布における累積体積50%に相当する粒径(凝集体d50)を、凝集体の粒径分布の90体積%粒径とは累積体積90%に相当する粒径(凝集体d90)を示す。凝集体の平均粒径が30μm以上であることによって、前述の高い熱伝導性が得られる。また凝集体の体積基準における粒径分布の90体積%粒径が接着剤層の単層厚さ以下であることによって、製膜後の接着剤層の単層厚さが安定し、高い絶縁破壊電圧が得られる。   The average particle size of the aggregate is preferably 30 μm or more, and 90% by volume of the particle size distribution on the volume basis of the aggregate is preferably equal to or less than the single layer thickness of the adhesive layer. The particle size distribution indicates the relationship between the particle size of the particles and the content thereof, and the average particle size of the aggregate is a particle size (aggregate d50) corresponding to a cumulative volume of 50% in the particle size distribution. The 90 volume% particle diameter of the particle size distribution of the aggregate indicates a particle diameter (aggregate d90) corresponding to a cumulative volume of 90%. When the average particle size of the aggregate is 30 μm or more, the above-described high thermal conductivity is obtained. In addition, since the 90 volume% particle size of the particle size distribution on the volume basis of the aggregate is less than the single layer thickness of the adhesive layer, the single layer thickness of the adhesive layer after film formation is stabilized, and high dielectric breakdown A voltage is obtained.

(d)窒化硼素粒子の添加量は、(a)熱可塑性樹脂(b)エポキシ樹脂(c)硬化剤との総量100重量部に対して40〜1900重量部であることが好ましい。40重量部以上あれば熱伝導性が向上し、1900重量部以下であれば絶縁破壊電圧に優れる。さらに好ましくは60〜1100重量部であり、100〜900重量部が最も好ましい。   (D) The amount of boron nitride particles added is preferably 40 to 1900 parts by weight with respect to 100 parts by weight as a total of (a) thermoplastic resin (b) epoxy resin (c) curing agent. If it is 40 parts by weight or more, the thermal conductivity is improved, and if it is 1900 parts by weight or less, the dielectric breakdown voltage is excellent. More preferably, it is 60-1100 weight part, and 100-900 weight part is the most preferable.

次に(e)無機球状粒子を併用することが重要である。つまり(d)窒化硼素粒子の面方向は接着剤層と同方向に配向することで安定性を有しているが、(e)無機球状粒子が窒化硼素粒子間に介在することにより窒化硼素粒子が接着剤層の厚さ方向に配向するため熱伝導性が向上する。しかし一方で窒化硼素粒子面と樹脂同士の密着性が小さいために厚さ方向に配向すると接着剤厚さ方向の絶縁破壊電圧が低下し、熱伝導性とのトレードオフが生じる。ここで(e)球状無機粒子とは、熱伝導率が5W/mK以上を有する球状粒子であり、具体的にはシリカ、アルミナ、酸化マグネシウム、窒化アルミニウム、酸化亜鉛、銀、金、窒化珪素、炭化珪素、酸化ベリリウム、酸化チタン、炭化硼素、炭化チタン、カーボンブラック、ダイヤモンド粉末等が挙げられ、これらの中から選択される少なくとも1種類以上であることが必要である。球状であることが重要であり、(d)窒化硼素粒子の配向性を制御しやすい。   Next, it is important to use (e) inorganic spherical particles in combination. That is, (d) the surface direction of the boron nitride particles is stable by being oriented in the same direction as the adhesive layer. (E) The boron nitride particles are obtained by interposing the inorganic spherical particles between the boron nitride particles. Is oriented in the thickness direction of the adhesive layer, so that the thermal conductivity is improved. However, on the other hand, since the adhesion between the boron nitride particle surface and the resin is small, the dielectric breakdown voltage in the adhesive thickness direction is lowered when oriented in the thickness direction, resulting in a trade-off with thermal conductivity. Here, (e) spherical inorganic particles are spherical particles having a thermal conductivity of 5 W / mK or more, specifically, silica, alumina, magnesium oxide, aluminum nitride, zinc oxide, silver, gold, silicon nitride, Examples thereof include silicon carbide, beryllium oxide, titanium oxide, boron carbide, titanium carbide, carbon black, diamond powder, etc., and at least one selected from these is required. It is important to have a spherical shape, and (d) the orientation of boron nitride particles can be easily controlled.

そこで用いる(e)無機球状粒子を選定する上で重要なのが、(d)窒化硼素の体積基準における一次粒径分布の10体積%粒径以下に一次平均粒径を有することである。   Therefore, what is important in selecting the inorganic spherical particles (e) to be used is (d) having a primary average particle size of 10% by volume or less of the primary particle size distribution on the volume basis of boron nitride.

一次粒径分布とは一次粒子の粒径とその含有率との関係を示したものであり、一次粒径分布の10体積%粒径とは累積体積10%に相当する一次粒径(d10)を、一次平均粒径とは一次粒径分布における累積体積50%に相当する一次粒径(d50)を示す。   The primary particle size distribution indicates the relationship between the particle size of the primary particles and the content thereof, and the 10% by volume particle size of the primary particle size distribution is the primary particle size (d10) corresponding to a cumulative volume of 10%. Is the primary particle size (d50) corresponding to a cumulative volume of 50% in the primary particle size distribution.

(e)無機球状粒子の一次平均粒径が窒化硼素の一次粒径分布の10体積%粒径以下であると熱伝導性および絶縁性バランスに優れる。好ましくは5体積%粒径以下、更に好ましくは0体積%粒径以下、つまり粒径分布同士が重ならないことが更に好ましい。またその中でも一次平均粒径が0.1μm〜10μmの範囲であることが好ましい。0.1μmより大きいと応力緩和効果を有するため接着性および冷熱衝撃耐性に優れ、10μm以下であれば絶縁性に優れる。より好ましくは1μm〜5μmである。   (E) When the primary average particle size of the inorganic spherical particles is 10% by volume or less of the primary particle size distribution of boron nitride, the thermal conductivity and insulating balance are excellent. Preferably it is 5 vol% or less, more preferably 0 vol% or less, that is, it is more preferred that the particle size distributions do not overlap. Among them, the primary average particle diameter is preferably in the range of 0.1 μm to 10 μm. If it is larger than 0.1 μm, it has a stress relaxation effect, so that it has excellent adhesion and thermal shock resistance, and if it is 10 μm or less, it has excellent insulation. More preferably, it is 1 micrometer-5 micrometers.

(e)無機球状粒子の添加量は、(d)窒化硼素粒子と粒子と(e)無機球状粒子の総量に対して5〜50重量%であることが好ましい。5重量%以上では絶縁破壊電圧に優れ、50重量%以下であれば(d)窒化硼素粒子同士の接点阻害が軽減されるため、熱伝導性が向上する。更に好ましくは15〜35重量%であり、熱伝導性と絶縁破壊電圧とのバランスが向上する。   The amount of (e) inorganic spherical particles added is preferably 5 to 50% by weight based on the total amount of (d) boron nitride particles and particles and (e) inorganic spherical particles. If it is 5% by weight or more, the dielectric breakdown voltage is excellent, and if it is 50% by weight or less, (d) contact inhibition between the boron nitride particles is reduced, so that the thermal conductivity is improved. More preferably, it is 15 to 35% by weight, and the balance between thermal conductivity and dielectric breakdown voltage is improved.

本発明の接着剤組成物は、硬化促進作用の向上の点で、触媒を用いることが可能である。例えば(b)エポキシ樹脂や(c)硬化剤としてフェノール樹脂を用いた時には、三フッ化ホウ素トリエチルアミン錯体等の三フッ化ホウ素のアミン錯体、2−アルキル−4−メチルイミダゾール、2−フェニル−4−アルキルイミダゾール等のイミダゾール誘導体、無水フタル酸、無水トリメリット酸、無水ピロメリット酸等の有機酸、トリフェニルフォスフィン、ジシアンジアミド、トリエチルアミン、ベンジルジメチルアミン、α−メチルベンジルメチルアミン、2−(ジメチルアミノメチル)フェノール、2,4,6−トリス(ジメチルアミノメチル)フェノール、1,8−ジアザビシクロ(5,4,0)ウンデセン−7などの3級アミン化合物、ジルコニウムテトラメトキシド、ジルコニウムテトラプロポキシド、テトラキス(アセチルアセトナト)ジルコニウム、トリ(アセチルアセトナト)アルミニウムなどの有機金属化合物ヘキサミン等を用いることが可能である。   In the adhesive composition of the present invention, a catalyst can be used from the viewpoint of improving the curing promoting action. For example, when (b) an epoxy resin or (c) a phenol resin is used as a curing agent, an amine complex of boron trifluoride such as boron trifluoride triethylamine complex, 2-alkyl-4-methylimidazole, 2-phenyl-4 -Imidazole derivatives such as alkylimidazole, organic acids such as phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, triphenylphosphine, dicyandiamide, triethylamine, benzyldimethylamine, α-methylbenzylmethylamine, 2- (dimethyl Aminomethyl) phenol, 2,4,6-tris (dimethylaminomethyl) phenol, tertiary amine compounds such as 1,8-diazabicyclo (5,4,0) undecene-7, zirconium tetramethoxide, zirconium tetrapropoxide , Tetrakis (A Chiruasetonato) zirconium, tri (acetylacetonato) can be used an organometallic compound such as aluminum hexamine and the like.

硬化触媒の添加量は(b)エポキシ樹脂100重量部に対して0.3〜5.0重量部の範囲にあることが好ましい。0.3重量部以上とすることで硬化促進作用が得られ、5.0重量部以下とすることで保存安定性が向上する。   The addition amount of the curing catalyst is preferably in the range of 0.3 to 5.0 parts by weight with respect to 100 parts by weight of the (b) epoxy resin. By setting it to 0.3 parts by weight or more, a curing accelerating action is obtained, and by setting it to 5.0 parts by weight or less, storage stability is improved.

以上の成分以外に、接着剤の特性を損なわない範囲で、微粒子状の有機成分、回路腐食やマイグレーション現象を抑制する腐食抑制剤、酸化防止剤、イオン捕捉剤などを含有することは何ら制限されるものではない。   In addition to the above components, the inclusion of fine organic components, corrosion inhibitors that suppress circuit corrosion and migration phenomena, antioxidants, ion scavengers, etc. is not limited as long as the properties of the adhesive are not impaired. It is not something.

また(d)窒化硼素粒子(e)無機球状粒子以外に他の無機充填剤を併用することが可能である。例えば、グラファイト、炭素繊維等の非球状粒子、アルミノケイ酸塩(天然ゼオライト、合成ゼオライト等)、水酸化物または含水酸化物(含水酸化チタン、含水酸化ビスマス等)、酸性塩(リン酸ジルコニウム、リン酸チタン等)、塩基性塩、複合含水酸化物(ハイドロタルサイト類等)、ヘテロポリ酸類(モリブドリン酸アンモニウム等)、ヘキサシアノ鉄(III)塩等(ヘキサシアノ亜鉛等)、その他、等に分類できる。商品名としては、東亜合成(株)のIXE−100、IXE−300、IXE−500、IXE−530、IXE−550、IXE−600、IXE−633、IXE−700、IXE−700F、IXE−800等の無機イオン交換体等が挙げられる。   In addition to (d) boron nitride particles (e) inorganic spherical particles, other inorganic fillers can be used in combination. For example, non-spherical particles such as graphite and carbon fiber, aluminosilicate (natural zeolite, synthetic zeolite, etc.), hydroxide or hydrous oxide (hydrous titanium oxide, hydrous bismuth oxide, etc.), acid salt (zirconium phosphate, phosphorus Titanium oxide, etc.), basic salts, complex hydrous oxides (hydrotalcite, etc.), heteropolyacids (ammonium molybdate, etc.), hexacyanoiron (III) salts, etc. (hexacyanozinc, etc.), etc. Product names include IXE-100, IXE-300, IXE-500, IXE-530, IXE-550, IXE-600, IXE-633, IXE-700, IXE-700F, IXE-800 from Toa Gosei Co., Ltd. Inorganic ion exchangers such as

(d)窒化硼素粒子(e)無機球状粒子等と樹脂組成物により良く分散するための(f)高分子分散剤を使用することが可能である。例えば、アジスパ−PB−821、822、881、PN―411,PA−111(以上味の素ファインテクノ社製)、ヒノアクトKF−1500、T−6000、T−8000、T−8000Eプレンアクト AL−M(以上 川研ファインケミカル社製)、DISPERBYK−2001、ANTI−TERRA203、BYK−P104、DISPERBYK−111、DISPERBYK−180、DISPERBYK−182(以上ビックケミー社製)、ホモゲノールL−18、L−1820、L−95、L−100(以上花王ケミカル社製)等の高分子系分散剤が挙げられ、これらを単独または2種以上用いても良い。特にアミノ基を官能基として有するものが好ましく、(d)窒化硼素粒子、(e)無機球状粒子等とに作用するため(d)窒化硼素粒子(e)無機球状粒子等の分散性が向上する。また(b)エポキシ樹脂とも作用し樹脂マトリックスと3次元的に化学結合を形成するため、添加剤単体が接着剤組成物中を遊離することが抑制できる。これらの結果として絶縁破壊電圧が向上する。(f)高分子分散剤のアミン価10以上が好ましく、アミン価30以上がより好ましい。ここでアミン価とは、試料1gを中和するのに必要な塩酸量に相当する等量の水酸化カリウムのmg数を示す。添加量は(d)窒化硼素粒子(e)無機球状粒子の総量100重量部に対して0.3〜5重量部以上が好ましく、0.5〜3重量部以上がより好ましい。   (D) Boron nitride particles (e) Inorganic spherical particles and the like and (f) a polymer dispersant for better dispersion in the resin composition can be used. For example, Ajispa-PB-821, 822, 881, PN-411, PA-111 (manufactured by Ajinomoto Fine Techno Co., Ltd.), Hinoact KF-1500, T-6000, T-8000, T-8000E Planact AL-M (and above) Kawaken Fine Chemical Co., Ltd.), DISPERBYK-2001, ANTI-TERRA203, BYK-P104, DISPERBYK-111, DISPERBYK-180, DISPERBYK-182 (manufactured by Big Chemie), homogenol L-18, L-1820, L-95, Examples thereof include polymer dispersants such as L-100 (manufactured by Kao Chemical Co., Ltd.), and these may be used alone or in combination of two or more. In particular, those having an amino group as a functional group are preferable and act on (d) boron nitride particles, (e) inorganic spherical particles and the like, and (d) boron nitride particles (e) inorganic spherical particles and the like are improved in dispersibility. . In addition, (b) it also acts with an epoxy resin to form a three-dimensional chemical bond with the resin matrix, so that the additive alone can be prevented from being released from the adhesive composition. As a result, the dielectric breakdown voltage is improved. (F) The amine value of the polymer dispersant is preferably 10 or more, and more preferably 30 or more. Here, the amine value indicates the number of mg of an equivalent amount of potassium hydroxide corresponding to the amount of hydrochloric acid necessary to neutralize 1 g of the sample. The addition amount is preferably 0.3 to 5 parts by weight or more, more preferably 0.5 to 3 parts by weight or more with respect to 100 parts by weight of the total amount of (d) boron nitride particles (e) inorganic spherical particles.

上記の(d)窒化硼素粒子(e)無機球状粒子の表面酸化、加水分解等の変質防止の目的や、充填材と樹脂組成物のぬれ性を向上、接着剤シートの物性向上のために表面処理を施しても良い、具体的には、シリカ、リン酸等でのコーティングや、酸化膜付与処理、シランカップリング剤、チタネート系カップリング剤、アルミネート系カップリング剤、ジルコネート系カップリング剤、シラン化合物等での表面処理などが挙げられる。シランカップリング剤の具体例としては3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2−(3、4エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、N−2(アミノエチル)3−アミノプロピルメチルジメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1、3−ジメチル−ブチリデン)プロピルアミン、3−ウレイドプロピルトリエトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−イソシアネートプロピルトリエトキシシランなどがある。これらの表面処理剤は単独でも2種類以上併用しても良く、処理に使用する量は(d)窒化硼素粒子と(e)無機球状粒子の総量100重量部に対して0.3〜2重量部程度が好ましい。   (D) Boron nitride particles (e) Surface of inorganic spherical particles for the purpose of preventing alteration such as surface oxidation and hydrolysis, improving the wettability of the filler and the resin composition, and improving the physical properties of the adhesive sheet Specifically, coating with silica, phosphoric acid, etc., oxide film application treatment, silane coupling agent, titanate coupling agent, aluminate coupling agent, zirconate coupling agent And surface treatment with a silane compound or the like. Specific examples of the silane coupling agent include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and vinyltrimethoxy. Silane, vinyltriethoxysilane, 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3 -Methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltri Toxisilane, N-2 (aminoethyl) 3-aminopropylmethyldimethoxysilane, N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, N-2 (aminoethyl) 3-aminopropyltriethoxysilane, 3-tri Ethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 3-ureidopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, etc. is there. These surface treatment agents may be used alone or in combination of two or more kinds, and the amount used for the treatment is 0.3 to 2 weights with respect to 100 parts by weight of the total amount of (d) boron nitride particles and (e) inorganic spherical particles. Part is preferred.

本発明の電子機器用接着剤シート(以下接着剤シートという)とは、本発明の接着剤組成物からなる接着剤層と、1層以上の剥離可能な保護フィルム層とを有する構成のものをいう。たとえば、保護フィルム層/接着剤層の2層構成、あるいは、図1に示す保護フィルム層1/接着剤層2/保護フィルム層1の3層構成がこれに該当する。また、接着剤層と保護フィルム層以外に別の層を有していても良い。例えば金属箔または金属板/接着剤層/保護フィルム層の構成体、接着剤層の内部に炭素繊維のクロス、セラミック板等の熱伝導性材料を積層した複合構造、接着剤層の内部にポリイミド等の絶縁性フィルムが積層された複合構造等がこれにあたる。   The adhesive sheet for electronic equipment of the present invention (hereinafter referred to as an adhesive sheet) is a composition having an adhesive layer made of the adhesive composition of the present invention and one or more peelable protective film layers. Say. For example, a two-layer structure of protective film layer / adhesive layer or a three-layer structure of protective film layer 1 / adhesive layer 2 / protective film layer 1 shown in FIG. Moreover, you may have another layer other than an adhesive bond layer and a protective film layer. For example, a metal foil or a metal plate / adhesive layer / protective film layer structure, a composite structure in which a heat-conductive material such as a carbon fiber cloth and a ceramic plate is laminated inside the adhesive layer, and a polyimide inside the adhesive layer A composite structure in which insulating films such as the above are laminated corresponds to this.

また、接着剤自体の粘着性を下げ、銅箔や補強板等の被着体への貼り合わせ時における気泡の噛み込みを防止するため、接着剤層の片面もしくは両面を粗面化してもよい。接着剤層自体の粘着性が高くとも、粗面化することで貼り合わせる対象物への接点が分散されることにより、粘着性が低減される。接着剤の粗面化の方法としては、特に限定されるものではないが、接着剤組成物を溶剤に溶解した塗液を、エンボス加工やサンドマット加工等により表面に凹凸を有するフィルム上に塗布、乾燥し、半硬化状態の接着剤シートを作製し、フィルムの凹凸を接着剤シート表面に転写する方法、接着剤シートの保護フィルムとして、凹凸のあるフィルムを用いてラミネートし凹凸を接着剤シート表面に転写する方法が挙げられる。ただし、フィルム表面の凹凸に接着剤が埋まり込むことより、実際の使用の際、フィルムを剥がしにくくなり得るため、使用するフィルムとして特に本発明で好ましく用いられるものは、離型性の調節に優れる、シリコーンあるいは含フッ素化合物等の離型処理を施したフィルムである。その他にも、接着剤シートを凹凸のあるゴムロール等で表面粗化することもできる。また、通常の接着剤層に、低粘着な接着剤層を薄く積層して粘着性を下げる手法と表面粗化を組み合わせることで、より低粘着な接着剤シートにすることもできる。低粘着な接着剤層の具体的な例としては、無機粒子を増量した組成からなる接着剤、もしくは薄厚の接着剤シートを加熱エージングすることで粘着性をコントロールしたもの等が挙げられる。   Also, one or both sides of the adhesive layer may be roughened in order to reduce the adhesiveness of the adhesive itself and to prevent the entrapment of bubbles when adhering to an adherend such as a copper foil or a reinforcing plate. . Even if the adhesive layer itself has high adhesiveness, the adhesiveness is reduced by dispersing the contacts to the object to be bonded by roughening the surface. The surface roughening method of the adhesive is not particularly limited, but a coating solution obtained by dissolving the adhesive composition in a solvent is applied onto a film having irregularities on the surface by embossing or sand mat processing. Drying, producing a semi-cured adhesive sheet, transferring film irregularities to the surface of the adhesive sheet, as a protective film for the adhesive sheet, laminating using uneven film, and then uneven the adhesive sheet A method of transferring to the surface is mentioned. However, since the adhesive is embedded in the unevenness of the film surface, it may be difficult to peel off the film during actual use. Therefore, what is particularly preferably used in the present invention as a film to be used is excellent in controlling releasability. , A film which has been subjected to mold release treatment of silicone or a fluorine-containing compound. In addition, the surface of the adhesive sheet can be roughened with an uneven rubber roll or the like. Moreover, it is also possible to obtain a lower adhesive sheet by combining a method of reducing the adhesiveness by thinly laminating a low adhesive layer on a normal adhesive layer and surface roughening. Specific examples of the low-adhesive adhesive layer include an adhesive having a composition in which the amount of inorganic particles is increased, or an adhesive whose thickness is controlled by heat aging a thin adhesive sheet.

接着剤層の厚みは、弾性率および線膨張係数との関係で適宜選択できるが、10〜500μmが好ましく、より好ましくは20〜300μmである。   Although the thickness of an adhesive bond layer can be suitably selected by the relationship with an elastic modulus and a linear expansion coefficient, 10-500 micrometers is preferable, More preferably, it is 20-300 micrometers.

また接着剤層の単層厚さ(t;単位 μm)に対する(d)窒化硼素粒子の体積基準における一次粒径分布の90体積%粒径(d90;単位 μm)の比率(d90/t) が0.7以下であることが絶縁信頼性向上の点から好ましい。一次粒径分布の90体積%粒径(d90)とは累積体積90%に相当する一次粒径(d90)を示す。また接着剤層の単層厚さとは、複数の接着剤層を積層する場合においては積層前の接着剤厚さのことであり、未積層の場合はそのまま接着剤層の厚さをいう。長期高温高湿下で接着剤層の厚さ方向に電位をかけた場合、劣化により生じた(d)窒化硼素粒子と樹脂組成物との界面欠陥部分に漏れ電流が発生する。しかし、前記のとおり0.7以下であると(d)窒化硼素粒子の面方向が接着剤層の厚さ方向に垂直に配向しても接着剤樹脂層が漏れ電流を抑制するため、絶縁信頼性の低下は抑制することが可能となる。好ましくは0.5以下であり、より好ましくは0.4以下である。   The ratio (d90 / t) of 90 volume% particle size (d90; unit μm) of the primary particle size distribution on the volume basis of (d) boron nitride particles to the single layer thickness (t; unit μm) of the adhesive layer is It is preferable from the point of an insulation reliability improvement that it is 0.7 or less. The 90% by volume particle size (d90) of the primary particle size distribution indicates a primary particle size (d90) corresponding to a cumulative volume of 90%. The single-layer thickness of the adhesive layer refers to the thickness of the adhesive before lamination when laminating a plurality of adhesive layers, and refers to the thickness of the adhesive layer as it is when not laminated. When a potential is applied in the thickness direction of the adhesive layer under high temperature and high humidity for a long time, a leakage current is generated at the interface defect portion between (d) boron nitride particles and the resin composition caused by deterioration. However, if it is 0.7 or less as described above, (d) the adhesive resin layer suppresses leakage current even if the plane direction of the boron nitride particles is oriented perpendicularly to the thickness direction of the adhesive layer. It is possible to suppress the deterioration of the property. Preferably it is 0.5 or less, More preferably, it is 0.4 or less.

上記保護フィルム層は、絶縁体層および導体パターンからなる配線基板層(TABテープ等)あるいは導体パターンが形成されていない層(スティフナー等)に接着剤層を貼り合わせる前に、接着剤層の形態および機能を損なうことなく剥離できれば特に限定されない。たとえばポリエステル、ポリオレフィン、ポリフェニレンスルフィド、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、ポリビニルブチラール、ポリ酢酸ビニル、ポリビニルアルコール、ポリカーボネート、ポリアミド、ポリイミド、ポリメチルメタクリレート等のプラスチックフィルム、これらにシリコーンあるいはフッ素化合物等の離型剤のコーティング処理を施したフィルムおよびこれらのフィルムをラミネートした紙、離型性のある樹脂を含浸あるいはコーティングした紙等が挙げられる。保護フィルム層は、加工時に視認性が良いように顔料による着色が施されていても良い。これにより、先に剥離する側の保護フィルムが簡便に認識できるため、誤使用を避けることができる。   The protective film layer is formed in the form of an adhesive layer before the adhesive layer is bonded to a wiring board layer (TAB tape or the like) composed of an insulator layer and a conductor pattern or a layer (stiffener or the like) where no conductor pattern is formed. And if it can peel without impairing a function, it will not specifically limit. For example, plastic films such as polyester, polyolefin, polyphenylene sulfide, polyvinyl chloride, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, polyvinyl butyral, polyvinyl acetate, polyvinyl alcohol, polycarbonate, polyamide, polyimide, polymethyl methacrylate, etc. Examples thereof include films coated with a release agent such as silicone or fluorine compound, paper laminated with these films, and paper impregnated or coated with a releasable resin. The protective film layer may be colored with a pigment so as to have good visibility during processing. Thereby, since the protective film of the side which peels previously can be recognized easily, misuse can be avoided.

接着剤層の両面に保護フィルム層を有する場合、それぞれの保護フィルム層の接着剤層に対する剥離力をF、F(F>F)としたとき、F−Fは好ましくは5Nm−1以上、さらに好ましくは15Nm−1以上である。F−Fを5Nm−1以上とすることで、目的の保護フィルム層を安定して剥離することができるため作業性が良い。また、剥離力F、Fはいずれも好ましくは1〜200Nm−1、さらに好ましくは3〜100Nm−1である。この範囲であれば、保護フィルム層の脱落や、接着剤層の損傷等のトラブルを防ぐことができる。 When the protective film layers are provided on both surfaces of the adhesive layer, when the peeling force of each protective film layer to the adhesive layer is F 1 and F 2 (F 1 > F 2 ), F 1 -F 2 is preferably It is 5 Nm −1 or more, more preferably 15 Nm −1 or more. By setting F 1 -F 2 to 5 Nm −1 or more, the target protective film layer can be stably peeled off, so that workability is good. Further, the peeling forces F 1 and F 2 are preferably 1 to 200 Nm −1 , more preferably 3 to 100 Nm −1 . If it is this range, troubles, such as omission of a protective film layer and damage to an adhesive bond layer, can be prevented.

ここで本発明の接着剤組成物の製造方法の例について説明する。   Here, the example of the manufacturing method of the adhesive composition of this invention is demonstrated.

(a)熱可塑性樹脂、(b)エポキシ樹脂、(c)硬化剤、(d)窒化硼素粒子、(e)無機球状粒子、硬化触媒および添加剤等を配合し、固型分濃度30〜60重量%となるように混合溶剤を加え、40℃で攪拌、溶解して塗料を作製する。溶剤は特に限定されないが、トルエン、キシレン、クロルベンゼン等の芳香族系、メチルエチルケトン、メチルイソブチルケトン等のケトン系、ジメチルホルムアミド、ジメチルアセトアミド、Nメチルピロリドン等の非プロトン系極性溶剤あるいはこれらの混合物が好適である。   (A) a thermoplastic resin, (b) an epoxy resin, (c) a curing agent, (d) boron nitride particles, (e) inorganic spherical particles, a curing catalyst, an additive, and the like, and a solid content concentration of 30 to 60 A mixed solvent is added so that it may become weight%, and it stirs and melt | dissolves at 40 degreeC, and produces a coating material. Solvents are not particularly limited, but aromatic solvents such as toluene, xylene and chlorobenzene, ketones such as methyl ethyl ketone and methyl isobutyl ketone, aprotic polar solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone or mixtures thereof may be used. Is preferred.

次に本発明の接着剤組成物を用いた接着剤シートの製造方法の例について説明する。   Next, the example of the manufacturing method of the adhesive sheet using the adhesive composition of this invention is demonstrated.

(I)前記で得た本発明の接着剤組成物を溶剤に溶解した塗料を、離型性を有するポリエステルフィルム上に塗布、乾燥し、接着剤層とポリエステルフィルムの積層体を得る。接着剤層の膜厚は10〜300μmとなるように塗布することが好ましい。乾燥条件は、100〜200℃、1〜5分が好ましい。   (I) The coating material which melt | dissolved the adhesive composition of this invention obtained above in a solvent is apply | coated and dried on the polyester film which has mold release property, and the laminated body of an adhesive bond layer and a polyester film is obtained. It is preferable to apply so that the thickness of the adhesive layer is 10 to 300 μm. The drying conditions are preferably 100 to 200 ° C. and 1 to 5 minutes.

(II)前記(I)で得られた積層体に上記よりさらに剥離強度の弱い離型性を有するポリエステルあるいはポリオレフィン系の保護フィルム層を30〜200℃、0.1〜1MPaで接着剤層側に加熱低圧ラミネートして本発明の電子機器用接着剤シートを得る。さらに接着剤層厚みを増す場合は、前記で加熱加圧ラミネートした該接着剤層を複数回積層すればよい。具体的には片面の保護フィルム層を剥離し、露出した接着剤面同士を40〜200℃、0.1〜1MPaで加熱低圧ラミネートすることで積層数分だけの厚膜を得ることが可能となる。ここで得た厚膜の電子機器用接着シートを40〜200℃、1〜10MPaで加熱高圧ラミネートすることにより積層界面の密着性が向上する。ここで重要なのは複数ステップのラミネート工程を組み合わせることであり、第1ステップでは低圧ラミネートを行うためシワなく保護フィルム層あるいは保護フィルム層付き接着剤層の積層することが可能となり、次ステップでは高圧で行うため積層界面密着性を向上することができる。その結果として接着性、絶縁性等が向上する。加熱低圧ラミネートにおいて一方の接着剤層の幅に対して0.1〜1%接着剤層がしみ出す程度の温度、圧力条件で加工を行い、また加熱高圧ラミネートにおいては1〜10%接着剤層がしみ出す程度の温度、圧力条件を指標に加工を行うことが好ましい。ラミネート方法は金属ロールあるいは/およびゴムロールを用いてのインライン加工法や加熱プレス機を用いてのオフライン加工法等があり、いずれを用いても良い。   (II) A polyester or polyolefin-based protective film layer having a releasability with a weaker peel strength than that described above is applied to the laminate obtained in (I) at 30 to 200 ° C. and 0.1 to 1 MPa. To obtain an adhesive sheet for electronic equipment of the present invention. In order to further increase the thickness of the adhesive layer, the adhesive layer laminated by heating and pressing may be laminated a plurality of times. Specifically, it is possible to obtain a thick film as many as the number of layers by peeling off the protective film layer on one side and laminating the exposed adhesive surfaces at 40 to 200 ° C. and 0.1 to 1 MPa. Become. The adhesion at the laminated interface is improved by laminating the thick adhesive sheet for electronic equipment obtained here at 40 to 200 ° C. and 1 to 10 MPa. What is important here is to combine a multi-step laminating process. In the first step, low-pressure lamination is performed, so that it is possible to laminate a protective film layer or an adhesive layer with a protective film layer without wrinkles. As a result, adhesion at the laminated interface can be improved. As a result, adhesion, insulation, etc. are improved. Processing is performed at a temperature and pressure conditions such that 0.1 to 1% of the adhesive layer exudes to the width of one adhesive layer in the heat and low pressure laminate, and 1 to 10% adhesive layer in the heat and high pressure laminate. It is preferable to perform the processing using as an index the temperature and pressure conditions at which the oozing occurs. The laminating method includes an in-line processing method using a metal roll and / or a rubber roll, an off-line processing method using a heating press machine, and the like, and any of them may be used.

前記接着剤シートは、例えば半導体集積回路接続用基板に適用することができる。   The adhesive sheet can be applied to, for example, a substrate for connecting a semiconductor integrated circuit.

半導体集積回路接続用基板は、シリコン等の半導体基板上に素子が形成された後、切り分けられた半導体集積回路(ベアチップ)を接続するものであり、(A)絶縁体層および導体パターンからなる配線基板層、(B)導体パターンが形成されていない層および(C)接着剤層をそれぞれ1層以上有するものであれば、形状、材料および製造方法は特に限定されない。したがって、最も基本的なものは、A/C/Bの構成であるが、A/C/B/C/B等の多層構造もこれに含まれる。   The substrate for connecting a semiconductor integrated circuit is for connecting an isolated semiconductor integrated circuit (bare chip) after an element is formed on a semiconductor substrate such as silicon. (A) A wiring composed of an insulator layer and a conductor pattern The shape, material, and manufacturing method are not particularly limited as long as each of the substrate layer, (B) the layer on which the conductor pattern is not formed, and (C) one or more adhesive layers. Therefore, the most basic one is an A / C / B configuration, but a multilayer structure such as A / C / B / C / B is also included.

(A)絶縁体層および導体パターンからなる配線基板層は、半導体素子の電極パッドとパッケージの外部(プリント基板等)を接続するための導体パターンを有する層であり、絶縁体層の片面または両面に導体パターンが形成されているものである。   (A) A wiring board layer composed of an insulator layer and a conductor pattern is a layer having a conductor pattern for connecting an electrode pad of a semiconductor element and the outside of a package (printed board, etc.), and one or both sides of the insulator layer A conductor pattern is formed on the substrate.

ここでいう絶縁体層は、ポリイミド、ポリエステル、ポリフェニレンスルフィド、ポリエーテルスルホン、ポリエーテルエーテルケトン、アラミド、ポリカーボネート、ポリアリレート等のプラスチックあるいはエポキシ樹脂含浸ガラスクロス等の複合材料からなる、厚さ10〜125μmの可撓性を有する絶縁性フィルム、あるいはアルミナ、ジルコニア、ソーダガラス、石英ガラス等のセラミック基板が好適であり、これらから選ばれる複数の層を積層して用いてもよい。また、必要に応じて、絶縁体層に加水分解、コロナ放電、低温プラズマ、物理的粗面化、易接着コーティング処理等の表面処理を施すことができる。   The insulator layer here is made of a composite material such as polyimide, polyester, polyphenylene sulfide, polyethersulfone, polyetheretherketone, aramid, polycarbonate, polyarylate, or a plastic or epoxy resin-impregnated glass cloth. A 125 μm flexible insulating film or a ceramic substrate such as alumina, zirconia, soda glass, or quartz glass is suitable, and a plurality of layers selected from these may be laminated. If necessary, the insulator layer can be subjected to surface treatment such as hydrolysis, corona discharge, low temperature plasma, physical roughening, and easy adhesion coating treatment.

導体パターンの形成は、一般にサブトラクティブ法あるいはアディティブ法のいずれかで行われるが、いずれを用いてもよい。   The formation of the conductor pattern is generally performed by either the subtractive method or the additive method, but either method may be used.

サブトラクティブ法では、絶縁体層に銅箔等の金属板を絶縁性接着剤で接着するか、あるいは金属板に絶縁体層の前駆体を積層し、加熱処理等により絶縁体層を形成する方法で作製した材料を、薬剤処理でエッチングすることによりパターン形成する。材料の具体例としては、リジッドあるいはフレキシブルプリント基板用銅張り材料やTABテープ等が挙げられる。中でも、少なくとも1層以上のポリイミドフィルムを絶縁体層とし、銅箔を導体パターンとするフレキシブルプリント基板用銅張り材料やTABテープが好ましく用いられる。   In the subtractive method, a metal plate such as copper foil is bonded to the insulator layer with an insulating adhesive, or a precursor of the insulator layer is laminated on the metal plate, and the insulator layer is formed by heat treatment or the like. A pattern is formed by etching the material produced in (1) by chemical treatment. Specific examples of the material include rigid or copper-clad material for flexible printed circuit boards, TAB tape, and the like. Among them, a copper-clad material for a flexible printed board and a TAB tape are preferably used in which at least one polyimide film is an insulator layer and a copper foil is a conductor pattern.

アディティブ法では、絶縁体層に無電解メッキ、電解メッキ、スパッタリング等により直接導体パターンを形成する。いずれの場合も、形成された導体に腐食防止のため耐食性の高い金属がメッキされていてもよい。また、配線基板層には必要に応じてビアホールが形成され、両面に形成された導体パターンがメッキにより接続されていてもよい。   In the additive method, a conductor pattern is directly formed on the insulator layer by electroless plating, electrolytic plating, sputtering, or the like. In either case, the formed conductor may be plated with a metal having high corrosion resistance to prevent corrosion. Further, via holes may be formed in the wiring board layer as necessary, and conductor patterns formed on both surfaces may be connected by plating.

(B)導体パターンが形成されていない層は、実質的に(A)絶縁体層および導体パターンからなる配線基板層または(C)接着剤層とは独立した均一な層であり、半導体集積回路接続用基板の補強および寸法安定化(補強板あるいはスティフナーと称される)、外部とICの電磁的なシールド、ICの放熱(ヒートスプレッター、ヒートシンクと称される)、半導体集積回路接続基板への難燃性の付与、半導体集積回路接続用基板の形状的による識別性の付与等の機能を担持するものである。したがって、形状は層状だけでなく、たとえば放熱用としてはフィン構造を有するものでもよい。上記の機能を有するものであれば絶縁体、導電体のいずれであってもよく、材料も特に限定されない。金属としては、銅、鉄、アルミニウム、金、銀、ニッケル、チタン、ステンレス等、無機材料としてはアルミナ、ジルコニア、ソーダガラス、石英ガラス、カーボン等、有機材料としてはポリイミド系、ポリアミド系、ポリエステル系、ビニル系、フェノール系、エポキシ系等のポリマー材料が挙げられる。また、これらの組み合わせによる複合材料も使用できる。例えば、ポリイミドフィルム上に薄い金属メッキをした形状のもの、ポリマーにカーボンを練り込んで導電性をもたせたもの、金属板に有機絶縁性ポリマーをコーティングしたもの等が挙げられる。また、上記(A)配線基板層に含まれる絶縁体層と同様に種々の表面処理を行うことは制限されない。   (B) The layer in which the conductor pattern is not formed is a uniform layer substantially independent of the wiring substrate layer (C) or the adhesive layer (C) composed of the (A) insulator layer and the conductor pattern. Reinforcing and dimensional stabilization of connection substrates (referred to as reinforcement plates or stiffeners), external and IC electromagnetic shielding, IC heat dissipation (referred to as heat spreaders, heat sinks), semiconductor integrated circuit connection substrates It carries functions such as imparting flame retardancy and imparting distinctiveness due to the shape of the substrate for connecting a semiconductor integrated circuit. Therefore, the shape is not limited to the layer shape, and may have a fin structure for heat dissipation, for example. Any material may be used as long as it has the above functions, and the material is not particularly limited. Metals include copper, iron, aluminum, gold, silver, nickel, titanium, and stainless steel, inorganic materials include alumina, zirconia, soda glass, quartz glass, and carbon, and organic materials include polyimide, polyamide, and polyester. , Vinyl-based, phenol-based, and epoxy-based polymer materials. Moreover, the composite material by these combination can also be used. Examples thereof include a thin metal plated shape on a polyimide film, a polymer kneaded with carbon to give conductivity, and a metal plate coated with an organic insulating polymer. In addition, various surface treatments are not limited as in the case of the insulator layer included in the (A) wiring board layer.

(C)接着剤層は本発明の電子機器用接着剤シートの保護フィルム層を剥離したものであり、一方の接着剤層面は(B)導体パターンが形成されていない層と、他面の接着剤層面は(A)絶縁体層および導体パターンからなる配線基板層と加熱ラミネートを行った後に(C)接着剤層の加熱硬化を行い、半導体接続用基板が得られる。また必要に応じて加熱プレス機等で加圧しながら(C)接着剤層の加熱硬化することもできる。   (C) The adhesive layer is obtained by peeling off the protective film layer of the adhesive sheet for electronic devices of the present invention. One adhesive layer surface is (B) a layer on which no conductor pattern is formed and the other surface is bonded. On the surface of the agent layer, (A) a wiring substrate layer composed of an insulator layer and a conductor pattern is heated and laminated, and then (C) the adhesive layer is heat-cured to obtain a semiconductor connection substrate. In addition, the adhesive layer (C) can be heated and cured while applying pressure with a hot press machine or the like as necessary.

半導体集積回路接続用基板とICの接続方法は、TAB方式のギャングボンディングおよびシングルポイントボンディング、リードフレームに用いられるワイヤーボンディング、フリップチップ実装での樹脂封止、異方性導電フィルム接続等のいずれでもよい。また、CSPと称されるパッケージも本発明の電子部品に含まれる。   The semiconductor integrated circuit connecting substrate and IC can be connected by any of TAB gang bonding and single point bonding, wire bonding used for lead frames, resin sealing in flip chip mounting, anisotropic conductive film connection, etc. Good. A package called CSP is also included in the electronic component of the present invention.

以下に実施例を挙げて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。まず、実施例1〜27および比較例1〜5で行った評価方法について述べる。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. First, the evaluation methods performed in Examples 1 to 27 and Comparative Examples 1 to 5 will be described.

(1)接着力:
0.5mm厚の5mm×20mm角の銅板上に3mm×3mm角、80μm厚の接着剤層を有する接着剤シートの一方の保護フィルムを剥がし130℃、1MPaの条件でラミネートした。その後、同一サイズの銅板を先の銅板上にラミネートした接着剤シートのもう一方の保護フィルム層を剥がし130℃、1MPaの条件でさらにラミネートした後、3MPa加圧下、150〜180℃、1時間の加熱処理を行い、評価用サンプルを作製した。該サンプルをテンシロンにセットし、180°方向に50mm/分の速度で剪断荷重を測定し、その際の接着面積より接着力を測定した。
(1) Adhesive strength:
One protective film of an adhesive sheet having an adhesive layer of 3 mm × 3 mm square and 80 μm thickness on a 5 mm × 20 mm square copper plate of 0.5 mm thickness was peeled off and laminated under the conditions of 130 ° C. and 1 MPa. Thereafter, the other protective film layer of the adhesive sheet obtained by laminating the copper plate of the same size on the previous copper plate is peeled off and further laminated under the conditions of 130 ° C. and 1 MPa, and then under a pressure of 3 MPa, 150 to 180 ° C. for 1 hour. A heat treatment was performed to prepare a sample for evaluation. The sample was set in Tensilon, the shear load was measured at a speed of 50 mm / min in the 180 ° direction, and the adhesive force was measured from the adhesive area at that time.

(2)耐リフロー性:
30mm角、80μm厚の接着剤層を有する接着剤シートの一方の保護フィルムを剥がし、次に30mm角の0.25mm厚SUS304の上に該接着剤層を置いた。130℃、0.4MPa、1m/分の条件でロールラミネートした後、続いて接着剤シートのもう一方の保護フィルムを剥がし導体幅100μm、導体間距離100μmの模擬パターンを形成した30mm角の半導体接続用基板を130℃、2MPa、1m/分の条件でロールラミネートした。その後、3MPa加圧下、180℃、1時間の加熱処理を行い、評価用サンプルを作製した。30mm角サンプル20個を30℃/70%RHの条件下、168時間吸湿させた後、すみやかに温度設定のされた赤外線リフロー炉を通過させて膨れが発生したか否かを超音波探傷機により観察した。赤外線リフロー炉の最高温度は260℃で行い、保持時間は各10秒である。評価用サンプル20個片中で膨れが発生したサンプル数をカウントした。
(2) Reflow resistance:
One protective film of the adhesive sheet having a 30 mm square and 80 μm thick adhesive layer was peeled off, and then the adhesive layer was placed on a 30 mm square 0.25 mm thick SUS304. A 30 mm square semiconductor connection in which a dummy pattern with a conductor width of 100 μm and a distance between conductors of 100 μm was formed by roll laminating under conditions of 130 ° C., 0.4 MPa, 1 m / min, and then peeling off the other protective film of the adhesive sheet The substrate for use was roll-laminated under conditions of 130 ° C., 2 MPa, and 1 m / min. Thereafter, a heat treatment was performed at 180 ° C. for 1 hour under a pressure of 3 MPa to prepare an evaluation sample. An ultrasonic flaw detector was used to determine whether or not swell occurred after 20 samples of 30 mm square were absorbed by moisture for 168 hours under conditions of 30 ° C / 70% RH and then immediately passed through an infrared reflow oven whose temperature was set. Observed. The maximum temperature of the infrared reflow furnace is 260 ° C., and the holding time is 10 seconds each. The number of samples in which swelling occurred in 20 evaluation samples was counted.

(3)熱伝導率:
30mm角、80μm厚の接着剤層を有する接着剤シート一方の保護フィルムを剥がし130℃、0.4MPaの条件で接着剤層同士をラミネートし、積層した。これを繰り返し1mm厚さの接着剤層を形成後、3MPa加圧下、180℃、1時間の加熱を行い、φ10mmの円筒に切り出したものを評価用サンプルとした。アルバック理工(株)製 熱定数測定装置TC−7000により、照射光:ルビーレーザー光、真空雰囲気中にて熱拡散率を測定した。またアルキメデス法により接着剤組成物の密度を測定し、DSC法により比熱を測定し、これらのパラメータから熱伝導率を算出した。
(3) Thermal conductivity:
The protective film on one side of the adhesive sheet having a 30 mm square and 80 μm thick adhesive layer was peeled off, and the adhesive layers were laminated and laminated under the conditions of 130 ° C. and 0.4 MPa. After repeating this to form an adhesive layer having a thickness of 1 mm, heating was performed at 180 ° C. for 1 hour under a pressure of 3 MPa, and a sample cut into a φ10 mm cylinder was used as an evaluation sample. The thermal diffusivity was measured in irradiation light: ruby laser light and in a vacuum atmosphere with a thermal constant measuring device TC-7000 manufactured by ULVAC-RIKO. Moreover, the density of the adhesive composition was measured by Archimedes method, the specific heat was measured by DSC method, and the thermal conductivity was calculated from these parameters.

(4)絶縁破壊電圧:
70mm×100mm角、80μm厚の接着剤層を有する接着剤シートの両方の保護フィルムを剥がし、3MPa加圧下、180℃、1時間の加熱処理を行い、評価用サンプルを作製した。一方の面にアルミ箔を、他面にφ25mmの電極を置き、AC昇圧速度0.5kV/秒にて室温にて交流耐電圧測定装置を用いて測定した。ここで得た耐電圧を加熱処理後の接着剤層の厚さにて除したものを絶縁破壊電圧とした。
(4) Dielectric breakdown voltage:
Both protective films of the adhesive sheet having an adhesive layer of 70 mm × 100 mm square and 80 μm thickness were peeled off, and subjected to heat treatment at 180 ° C. for 1 hour under 3 MPa pressure to prepare a sample for evaluation. An aluminum foil was placed on one surface and a φ25 mm electrode was placed on the other surface, and measurement was performed using an AC withstand voltage measuring device at room temperature at an AC boosting rate of 0.5 kV / sec. The dielectric breakdown voltage was obtained by dividing the withstand voltage obtained here by the thickness of the adhesive layer after the heat treatment.

(5)サーマルサイクル(冷熱衝撃)性:
3mm×3mm角、80μm厚の接着剤層を有する接着剤シートの一方の保護フィルムを剥がし、該接着剤層を0.5mm厚の40mm×40mm角のアルミ(A6061A)上に130℃、0.4MPaの条件でラミネートした。その後、0.5mm厚さの20mm×20mm角の銅板を先のアルミ板上にラミネートした接着剤シートのもう一方の保護フィルム層を剥がし130℃、1MPaの条件でさらにラミネートした後、3MPa加圧下、180℃、1時間の加熱処理を行い、評価用サンプルを作製した。熱サイクル試験器(タバイエスペック(株)製、PL−3型)中で、−40℃〜150℃、最低および最高温度で各30分保持の条件で処理し、剥がれの発生を評価した。50サイクル周期でサンプルを取り出し、超音波短傷装置により剥がれが発生するまでのサイクル数をサーマルサイクル性とした。
(6)(d)窒化硼素粒子、(e)無機球状粒子の一次平均粒径、体積%粒径
(d)窒化硼素粒子、(e)無機球状粒子を走査型電子顕微鏡(SEM、日立ハイテクノロジーズ社製S−3000N)にて800倍で観察を行い、それぞれ一次粒子100個をランダムにサンプリングし、粒径の小さい順にナンバリングした。なお粒子の断面が楕円である場合は長軸と短軸の平均値を粒径とした。ナンバリングした各粒子について粒径から各粒子の体積を求め、さらに一次粒子100個の合計の体積の50%の体積を求めた。ナンバリングした各粒子について、粒径の小さい順からの各粒子の体積の和を求め、その値が一次粒子100個の合計の体積の50%の体積を超えた際の、該粒子の粒径を一次平均粒径(d50)とした。
(5) Thermal cycle (cold shock) properties:
One protective film of the adhesive sheet having an adhesive layer of 3 mm × 3 mm square and 80 μm thickness is peeled off, and the adhesive layer is placed on aluminum (A6061A) of 0.5 mm thickness at 130 ° C. Lamination was performed at 4 MPa. Thereafter, the other protective film layer of the adhesive sheet obtained by laminating a 20 mm × 20 mm square copper plate having a thickness of 0.5 mm on the previous aluminum plate is peeled off and further laminated under conditions of 130 ° C. and 1 MPa. At 180 ° C. for 1 hour, a heat treatment was performed to prepare an evaluation sample. In a heat cycle tester (Tabba Espec Co., Ltd., PL-3 type), treatment was performed at −40 ° C. to 150 ° C. at the minimum and maximum temperatures for 30 minutes each, and the occurrence of peeling was evaluated. A sample was taken out at a cycle of 50 cycles, and the number of cycles until peeling occurred by an ultrasonic short-scratch device was defined as thermal cycle property.
(6) (d) Boron nitride particles, (e) Primary average particle size and volume% particle size of inorganic spherical particles (d) Boron nitride particles, (e) Scanning electron microscope (SEM, Hitachi High-Technologies) Observation was carried out at a magnification of 800 times with S-3000N (manufactured by Sangyo Co., Ltd.), and 100 primary particles were randomly sampled and numbered in ascending order of particle diameter. When the cross section of the particle is an ellipse, the average value of the major axis and the minor axis was taken as the particle size. For each numbered particle, the volume of each particle was determined from the particle diameter, and 50% of the total volume of 100 primary particles was determined. For each numbered particle, the sum of the volume of each particle from the smallest particle size is obtained, and the particle size of the particle when the value exceeds 50% of the total volume of 100 primary particles is calculated. The primary average particle diameter (d50) was used.

また(d)窒化硼素粒子については、同様にしてナンバリングした中で、一次粒子100個の合計の体積の5%、10%、90%の体積を超えた際の、該粒子の粒径をそれぞれd05、d10、d90とした。   In addition, (d) boron nitride particles were numbered in the same manner, and the particle sizes of the particles when the volume exceeded 5%, 10%, and 90% of the total volume of 100 primary particles were respectively determined. d05, d10, and d90 were set.

(7)凝集性:
(d)窒化硼素粒子を走査型電子顕微鏡(SEM、日立ハイテクノロジーズ社製S−3000N)にて800倍で観察を行い、高次凝集体10個、をランダムにサンプリングし、凝集体の長軸方向の長さと窒化硼素粒子の一次平均粒径(d50)を比較し、1個当たりの高次凝集体単位を平均化して凝集体の長軸方向の平均長さが窒化硼素粒子の一次平均粒径(d50)の3倍以上のものを凝集性あり、3倍未満のものを凝集性なしとした。
(7) Cohesiveness:
(D) Boron nitride particles were observed with a scanning electron microscope (SEM, S-3000N manufactured by Hitachi High-Technologies Corporation) at a magnification of 800 times, 10 higher-order aggregates were randomly sampled, and the long axis of the aggregates The length of the direction and the primary average particle diameter (d50) of the boron nitride particles are compared, the higher-order aggregate units per one are averaged, and the average length in the major axis direction of the aggregate is the primary average particle of the boron nitride particles Those having a diameter (d50) of 3 times or more were regarded as cohesive, and those less than 3 times were regarded as non-aggregating.

(8)凝集体の平均粒径、粒径分布の90体積%粒径:
接着剤層を固型分濃度40重量%となるようにDMF/モノクロルベンゼン/MIBK=1/1/3(重量比)の混合溶媒に40℃で撹拌して溶解させ、粒度分布測定装置(日機装株式会社製マイクロトラックHRA)にて粒度分布を測定した。
(8) Average particle diameter of aggregate, 90 volume% particle diameter of particle size distribution:
The adhesive layer was stirred and dissolved at 40 ° C. in a mixed solvent of DMF / monochlorobenzene / MIBK = 1/1/3 (weight ratio) so that the solid component concentration would be 40% by weight. The particle size distribution was measured with Microtrac HRA).

(9)絶縁信頼性:
0.5mm厚の30mm×30mm角の銅板上に30mm×30mm角、80μm厚の接着剤層を有する接着剤シートの一方の保護フィルムを剥がし130℃、1MPaの条件でラミネートした。次に同一サイズの35μm厚さの電解銅箔を接着剤の他面の保護フィルム層を剥がしラミネートした後に3MPa加圧下、150〜180℃、1時間の加熱処理を行い、評価用サンプルを作製した。次にφ10mmになるように電解銅箔側をエッチングし、評価用サンプルを作製した。本評価サンプルを85℃、85%RH、100V条件下で上下電極から電圧印加し、初期抵抗値を測定した。次いで500時間まで100時間ごとに抵抗値を測定し、これらの中で最も低い抵抗値を最少抵抗値とした。ここで初期抵抗値に対する最小抵抗値の保持率を抵抗保持率(%)とした。
(9) Insulation reliability:
One protective film of the adhesive sheet having an adhesive layer of 30 mm × 30 mm square and 80 μm thickness was peeled off on a 0.5 mm thick 30 mm × 30 mm square copper plate and laminated under the conditions of 130 ° C. and 1 MPa. Next, a 35 μm-thick electrolytic copper foil of the same size was peeled off from the protective film layer on the other side of the adhesive and laminated, and then heat-treated at 150 to 180 ° C. for 1 hour under 3 MPa pressure to prepare a sample for evaluation. . Next, the electrolytic copper foil side was etched so as to have a diameter of 10 mm to prepare a sample for evaluation. A voltage was applied to the evaluation sample from the upper and lower electrodes under the conditions of 85 ° C., 85% RH and 100 V, and the initial resistance value was measured. Subsequently, the resistance value was measured every 100 hours up to 500 hours, and the lowest resistance value among them was taken as the minimum resistance value. Here, the retention rate of the minimum resistance value with respect to the initial resistance value was defined as the resistance retention rate (%).

(10)接着剤層の単層厚さ:
厚みゲージ(ニコン社製MFC−101)を用いて測定を行った。
(10) Single layer thickness of the adhesive layer:
Measurement was performed using a thickness gauge (Nikon MFC-101).

(11)アスペクト比:
(d)窒化硼素粒子を走査型電子顕微鏡(SEM、日立ハイテクノロジーズ社製S−3000N)にて3000倍で観察を行い、一次粒子をランダムに20個サンプリングし、粒子面方向の最大長さ/粒子厚さを実測してアスペクト比を算出した。
(11) Aspect ratio:
(D) Boron nitride particles are observed with a scanning electron microscope (SEM, S-3000N manufactured by Hitachi High-Technologies Corporation) at a magnification of 3000 times, 20 primary particles are randomly sampled, and the maximum length in the particle plane direction / The aspect ratio was calculated by measuring the particle thickness.

実施例に使用した各原材料は次の通りである。   The raw materials used in the examples are as follows.

<熱可塑性樹脂>
熱可塑性樹脂1:AS−7EK20(ナガセケムテックス(株)製):ブチルアクリレートを主成分とするカルボキシル基、水酸基含有アクリルゴム、分子量35万
熱可塑性樹脂2:SGP−3(ナガセケムテックス(株)製):ブチルアクリレートを主成分とするエポキシ基含有アクリルゴム、分子量85万
<エポキシ樹脂>
ビスフェノールA型エポキシ樹脂(エピコート828、エポキシ当量190、ジャパンエポキシレジン(株)製)
<硬化剤>
フェノールノボラック樹脂(PSM4326、水酸基当量105、群栄化学工業(株)製)
<硬化触媒>
2−エチル−4−メチルイミダゾール(EMI24、ジャパンエポキシレジン(株)製)
参考例1.アルミナ(e−7)作製
日本軽金属社製のアルミナ粒子A34(一次平均粒径φ4μm)を篩いにかけて一次平均粒径φ1.7μmに分級したものを用いた。
<Thermoplastic resin>
Thermoplastic resin 1: AS-7EK20 (manufactured by Nagase ChemteX Corp.): carboxyl group mainly composed of butyl acrylate, hydroxyl group-containing acrylic rubber, 350,000 molecular weight thermoplastic resin 2: SGP-3 (Nagase ChemteX Corp. ) Made): Epoxy group-containing acrylic rubber mainly composed of butyl acrylate, molecular weight 850,000 <epoxy resin>
Bisphenol A type epoxy resin (Epicoat 828, epoxy equivalent 190, manufactured by Japan Epoxy Resins Co., Ltd.)
<Curing agent>
Phenol novolac resin (PSM4326, hydroxyl group equivalent 105, manufactured by Gunei Chemical Industry Co., Ltd.)
<Curing catalyst>
2-Ethyl-4-methylimidazole (EMI24, manufactured by Japan Epoxy Resin Co., Ltd.)
Reference Example 1 Preparation of Alumina (e-7) Alumina particles A34 (primary average particle diameter φ4 μm) manufactured by Nippon Light Metal Co., Ltd. were sieved to obtain a primary average particle diameter φ1.7 μm.

実施例1〜22、比較例1〜5
表1に示した窒化硼素粒子、表2に示した無機球状粒子、上記(a)熱可塑性樹脂、(b)エポキシ樹脂、(c)硬化剤、(d)窒化硼素粒子、(e)無機球状粒子、硬化触媒および表3に示した(f)高分子分散剤等を、それぞれ表4〜8に示した組成となるように配合し、固型分濃度40重量%となるようにDMF/モノクロルベンゼン/MIBK=1/1/3(重量比)の混合溶媒に40℃で撹拌、溶解して接着剤溶液を作製した。
Examples 1-22, Comparative Examples 1-5
Boron nitride particles shown in Table 1, inorganic spherical particles shown in Table 2, (a) thermoplastic resin, (b) epoxy resin, (c) curing agent, (d) boron nitride particles, (e) inorganic spherical particles Particles, curing catalyst, and (f) polymer dispersant shown in Table 3 are blended so as to have the compositions shown in Tables 4 to 8, respectively, so that the solid content concentration is 40% by weight. The mixture was stirred and dissolved in a mixed solvent of benzene / MIBK = 1/1/3 (weight ratio) at 40 ° C. to prepare an adhesive solution.

次にビーズミルにて分散後、接着剤溶液をバーコータで、シリコーン離型剤付きの厚さ38μmのポリエチレンテレフタレートフィルム(藤森工業(株)製“フィルムバイナ”GT)に80μmの乾燥厚さとなるように塗布した(以下、接着剤塗膜という)。120℃で5分間乾燥し、保護フィルムを50℃、0.3MPaで貼り合わせて、本発明の接着剤シートを作製した。次いで接着力、熱伝導率、絶縁破壊電圧、絶縁信頼性、耐リフロー性、サーマルサイクル性試験を実施した。結果を表4〜8に示す。また実施例6については、得られた接着剤シートを用いてd−3(窒化硼素粒子)の凝集状態を観察したところ、凝集体の平均粒径は40μm、凝集体の粒径分布の90体積%粒径は75μmであった。結果を表10に示す。   Next, after dispersion with a bead mill, the adhesive solution is applied to a 38 μm thick polyethylene terephthalate film (“Film Vina” GT manufactured by Fujimori Kogyo Co., Ltd.) with a silicone release agent with a bar coater so that the dry thickness is 80 μm. It applied (henceforth an adhesive coating film). It dried at 120 degreeC for 5 minute (s), the protective film was bonded together at 50 degreeC and 0.3 MPa, and the adhesive agent sheet of this invention was produced. Next, adhesion strength, thermal conductivity, dielectric breakdown voltage, insulation reliability, reflow resistance, and thermal cycle performance tests were performed. The results are shown in Tables 4-8. In Example 6, when the aggregate state of d-3 (boron nitride particles) was observed using the obtained adhesive sheet, the average particle size of the aggregate was 40 μm, and the volume distribution of the aggregate was 90 volumes. The% particle size was 75 μm. The results are shown in Table 10.

実施例23
実施例10と同様にして得られた接着剤塗膜を、50℃、0.4MPaで2枚積層したものを作製し、実施例10と同様に接着力、耐電圧、絶縁破壊電圧、絶縁信頼性、耐リフロー性、サーマルサイクル性評価を行った。なお積層した接着剤層の厚さは160μmであった。
Example 23
An adhesive coating film obtained in the same manner as in Example 10 was prepared by laminating two sheets at 50 ° C. and 0.4 MPa, and the adhesive strength, withstand voltage, dielectric breakdown voltage, insulation reliability were the same as in Example 10. , Reflow resistance, and thermal cycle performance were evaluated. The thickness of the laminated adhesive layer was 160 μm.

また熱伝導率測定は、評価用サンプルの作製を130℃、0.4MPaの条件で接着剤層同士をラミネートする代わりに、50℃、0.4MPaの条件で接着剤層同士をラミネートした以外は、上記(3)熱伝導率で記載した方法と同様の方法で測定を行った。これらの結果を表9に示す。   In addition, the thermal conductivity measurement was performed except that the adhesive layers were laminated at 50 ° C. and 0.4 MPa instead of laminating the adhesive layers at 130 ° C. and 0.4 MPa. The measurement was performed in the same manner as described in (3) Thermal conductivity. These results are shown in Table 9.

実施例24
実施例10と同様にして得られた接着剤塗膜を、130℃、0.4MPaで2枚積層したものを作製し、実施例10と同様に接着力、耐電圧、絶縁破壊電圧、絶縁信頼性、耐リフロー性、サーマルサイクル性評価を行った。なお積層した接着剤層の厚さは160μmであった。
Example 24
An adhesive coating film obtained in the same manner as in Example 10 was prepared by laminating two sheets at 130 ° C. and 0.4 MPa, and the adhesive strength, withstand voltage, dielectric breakdown voltage, insulation reliability were the same as in Example 10. , Reflow resistance, and thermal cycle performance were evaluated. The thickness of the laminated adhesive layer was 160 μm.

また熱伝導率測定は、実施例23と同様の方法で行った。これらの結果を表9に示す。   The thermal conductivity was measured in the same manner as in Example 23. These results are shown in Table 9.

実施例25
実施例10と同様にして得られた接着剤塗膜を、130℃、0.4MPaで2枚積層した後に150℃、2MPaで再度加熱加圧ラミネートしたものを作製し、実施例10と同様に接着力、耐電圧、絶縁破壊電圧、絶縁信頼性、耐リフロー性、サーマルサイクル性評価を行った。なお積層した接着剤層の厚さは160μmであった。
Example 25
An adhesive coating film obtained in the same manner as in Example 10 was laminated at 130 ° C. and 0.4 MPa, and then laminated again by heating and pressing at 150 ° C. and 2 MPa, as in Example 10. Adhesion strength, withstand voltage, dielectric breakdown voltage, insulation reliability, reflow resistance, and thermal cycle performance were evaluated. The thickness of the laminated adhesive layer was 160 μm.

また熱伝導率測定は、実施例23と同様の方法で行った。これらの結果を表9に示す。   The thermal conductivity was measured in the same manner as in Example 23. These results are shown in Table 9.

実施例26
接着剤の乾燥厚さを40μmとし、130℃、0.4MPaで2枚積層した(接着剤層の厚さ80μm)以外は実施例10と同様にして評価用サンプルを作製した。結果を表9に示す。
Example 26
An evaluation sample was prepared in the same manner as in Example 10 except that the dry thickness of the adhesive was 40 μm and two sheets were laminated at 130 ° C. and 0.4 MPa (adhesive layer thickness 80 μm). The results are shown in Table 9.

実施例27
表1に示した窒化硼素d−6をアスペクト比4になるように粉砕したものを使用した以外は実施例17と同様にして評価用サンプルを作製した。熱伝導率を評価したところ、2.8W/m・Kであった。
Example 27
An evaluation sample was prepared in the same manner as in Example 17 except that boron nitride d-6 shown in Table 1 was ground to have an aspect ratio of 4 was used. When the thermal conductivity was evaluated, it was 2.8 W / m · K.

実施例28
ビスフェノールA型エポキシ樹脂、フェノールノボラック樹脂、表1に示したd−3(窒化硼素粒子)、表2に示したe−5(無機球状粒子)および硬化触媒を表10に示した組成となるように配合し、固型分濃度40重量%となるようにDMF/モノクロルベンゼン/MIBK=1/1/3(重量比)の混合溶媒に40℃で撹拌、溶解して分散処理を行った。次に熱可塑性樹脂2を表10に示した組成となるように添加して撹拌し、接着剤溶液を作製した。
Example 28
The composition of bisphenol A type epoxy resin, phenol novolac resin, d-3 (boron nitride particles) shown in Table 1, e-5 (inorganic spherical particles) shown in Table 2, and the curing catalyst are as shown in Table 10. Then, the mixture was stirred and dissolved at 40 ° C. in a mixed solvent of DMF / monochlorobenzene / MIBK = 1/1/3 (weight ratio) so as to obtain a solid concentration of 40% by weight. Next, the thermoplastic resin 2 was added so that it might become the composition shown in Table 10, and it stirred, and produced the adhesive solution.

次にビーズミルにてさらに分散後、接着剤溶液をバーコータで、シリコーン離型剤付きの厚さ38μmのポリエチレンテレフタレートフィルム(藤森工業(株)製“フィルムバイナ”GT)に80μmの乾燥厚さとなるように塗布した。120℃で5分間乾燥し、保護フィルムを50℃、0.3MPaで貼り合わせて、本発明の接着剤シートを作製した。次いで接着力、熱伝導率、絶縁破壊電圧、絶縁信頼性、耐リフロー性、サーマルサイクル性試験を実施した。また得られた接着剤シートを用いてd−3(窒化硼素粒子)の凝集状態を観察したところ、凝集体の平均粒径は20μm、凝集体の粒径分布の90体積%粒径は75μmであった。結果を表10に示す。   Next, after further dispersion in a bead mill, the adhesive solution is dried with a bar coater to a thickness of 80 μm on a 38 μm-thick polyethylene terephthalate film with a silicone release agent (“Film Vina” GT manufactured by Fujimori Kogyo Co., Ltd.). It was applied to. It dried at 120 degreeC for 5 minute (s), the protective film was bonded together at 50 degreeC and 0.3 MPa, and the adhesive agent sheet of this invention was produced. Next, adhesion strength, thermal conductivity, dielectric breakdown voltage, insulation reliability, reflow resistance, and thermal cycle performance tests were performed. Moreover, when the aggregation state of d-3 (boron nitride particles) was observed using the obtained adhesive sheet, the average particle size of the aggregates was 20 μm, and the 90% by volume particle size distribution of the aggregates was 75 μm. there were. The results are shown in Table 10.

実施例29
ビーズミルにて分散させる代わりに、ホモジナイザーで周速度60m/s,10分間にて分散させた以外は実施例6と同様にして本発明の接着剤シートを作製した。また得られた接着剤シートを用いてd−3(窒化硼素粒子)の凝集状態を観察したところ、凝集体の平均粒径は40μm、凝集体の粒径分布の90体積%粒径は120μmであった。結果を表10に示す。
Example 29
An adhesive sheet of the present invention was produced in the same manner as in Example 6 except that the dispersion was performed with a homogenizer at a peripheral speed of 60 m / s for 10 minutes instead of using a bead mill. Moreover, when the aggregation state of d-3 (boron nitride particles) was observed using the obtained adhesive sheet, the average particle size of the aggregates was 40 μm, and the 90% by volume particle size distribution of the aggregates was 120 μm. there were. The results are shown in Table 10.

Figure 2011225856
Figure 2011225856

Figure 2011225856
Figure 2011225856

Figure 2011225856
Figure 2011225856

Figure 2011225856
Figure 2011225856

Figure 2011225856
Figure 2011225856

Figure 2011225856
Figure 2011225856

Figure 2011225856
Figure 2011225856

Figure 2011225856
Figure 2011225856

Figure 2011225856
Figure 2011225856

Figure 2011225856
Figure 2011225856

表4〜10から明らかなように、本発明により得られた接着剤シートは接着力、熱伝導率、絶縁破壊電圧、絶縁信頼性、耐リフロー性に優れる。   As is clear from Tables 4 to 10, the adhesive sheet obtained by the present invention is excellent in adhesive strength, thermal conductivity, dielectric breakdown voltage, insulation reliability, and reflow resistance.

本発明は、補強板(スティフナー)、放熱板(ヒートスプレッダー)、半導体素子や配線基板(インターポーザー)用半導体集積回路を実装する際に用いられるテープオートメーテッドボンディング(TAB)方式のパターン加工テープ、ボールグリッドアレイ(BGA)パッケージ用インターポーザー等の半導体接続用基板、フレキシブルプリント基板(FPC)におけるカバーレイや銅張り積層板およびその補強板、多層基板における層間接着剤、およびそれらを用いた基板部品、電子デバイスの封止材、LED、パワーモジュール用層間接着剤、ソルダーレジスト、リードフレーム固定テープ、LOC固定テープ、半導体素子等の電子部品とリードフレームや絶縁性支持基板等の支持部材との接着剤すなわちダイボンディング材、シールド材等に好適に用いられる電子機器用接着剤組成物、電子機器用接着剤シートおよびそれを用いた電子機器分野に有効に応用することができる。   The present invention relates to a pattern processing tape of a tape automated bonding (TAB) method used when mounting a semiconductor integrated circuit for a reinforcing plate (stiffener), a heat radiating plate (heat spreader), a semiconductor element or a wiring board (interposer), Semiconductor connection substrates such as ball grid array (BGA) package interposers, coverlays and copper-clad laminates in flexible printed boards (FPCs) and their reinforcing plates, interlayer adhesives in multilayer boards, and board components using them Adhesion between electronic components such as electronic device sealing materials, LEDs, power module interlayer adhesives, solder resists, lead frame fixing tapes, LOC fixing tapes, semiconductor elements, and support members such as lead frames and insulating support substrates Agent, die bonding material, sheet Electronics adhesive composition suitable for use in de material or the like, can be effectively applied to an electronic equipment field using the same adhesive sheet and electronics.

1 保護フィルム層
2 接着剤層
1 Protective film layer 2 Adhesive layer

Claims (8)

(a)熱可塑性樹脂、(b)エポキシ樹脂、(c)硬化剤、(d)窒化硼素粒子および(e)無機球状粒子を含有する電子機器用接着剤組成物であって、(e)無機球状粒子の一次平均粒径が(d)窒化硼素粒子の体積基準における一次粒径分布の10体積%粒径以下であることを特徴とする電子機器用接着剤組成物。 An adhesive composition for electronic equipment comprising (a) a thermoplastic resin, (b) an epoxy resin, (c) a curing agent, (d) boron nitride particles, and (e) inorganic spherical particles, wherein (e) inorganic An adhesive composition for electronic equipment, wherein the primary average particle size of the spherical particles is (d) 10% by volume or less of the primary particle size distribution on the volume basis of the boron nitride particles. 前記(d)窒化硼素粒子の体積基準における一次平均粒径が3〜20μmであることを特徴とする請求項1記載の電子機器用接着剤組成物。 2. The adhesive composition for electronic equipment according to claim 1, wherein the (d) boron nitride particles have a primary average particle size based on volume of 3 to 20 [mu] m. 前記(e)無機球状粒子の体積基準における一次平均粒径が0.1μm〜10μmであることを特徴とする請求項1記載の電子機器用接着剤組成物。 2. The adhesive composition for electronic equipment according to claim 1, wherein the (e) inorganic spherical particles have a primary average particle size based on volume of 0.1 μm to 10 μm. 前記(e)無機球状粒子が(d)窒化硼素粒子と(e)無機球状粒子の総量に対して5〜50重量%であることを特徴とする請求項1〜3のいずれか記載の電子機器用接着剤組成物。 The electronic device according to any one of claims 1 to 3, wherein the (e) inorganic spherical particles are 5 to 50% by weight based on the total amount of (d) boron nitride particles and (e) inorganic spherical particles. Adhesive composition. 前記(d)窒化硼素粒子のアスペクト比が6〜19であることを特徴とする請求項1〜4のいずれか記載の電子機器用接着剤組成物。 The aspect ratio of said (d) boron nitride particle is 6-19, The adhesive composition for electronic devices in any one of Claims 1-4 characterized by the above-mentioned. 前記(d)窒化硼素粒子が窒化硼素粒子の凝集体を含有することを特徴とする請求項1〜5のいずれか記載の電子機器用接着剤組成物。 The adhesive composition for electronic equipment according to any one of claims 1 to 5, wherein the (d) boron nitride particles contain an aggregate of boron nitride particles. 請求項1〜6いずれか記載の電子機器用接着剤組成物からなる接着剤層と、1層以上の剥離可能な保護フィルム層とを有する電子機器用接着剤シート。 The adhesive agent sheet for electronic devices which has an adhesive bond layer which consists of an adhesive composition for electronic devices in any one of Claims 1-6, and one or more peelable protective film layers. 接着剤層の単層厚さ(t)に対する(d)窒化硼素粒子の体積基準における一次粒径分布の90体積%粒径(d90)の比率(d90/t)が0.7以下であることを特徴とする請求項7記載の電子機器用接着剤シート。 The ratio (d90 / t) of 90 volume% particle size (d90) of the primary particle size distribution on the volume basis of (d) boron nitride particles to the single layer thickness (t) of the adhesive layer is 0.7 or less. The adhesive sheet for electronic devices according to claim 7.
JP2011074644A 2010-03-31 2011-03-30 Adhesive composition for electronic equipment and adhesive sheet for electronic equipment using the same Active JP5742375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011074644A JP5742375B2 (en) 2010-03-31 2011-03-30 Adhesive composition for electronic equipment and adhesive sheet for electronic equipment using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010080693 2010-03-31
JP2010080693 2010-03-31
JP2011074644A JP5742375B2 (en) 2010-03-31 2011-03-30 Adhesive composition for electronic equipment and adhesive sheet for electronic equipment using the same

Publications (2)

Publication Number Publication Date
JP2011225856A true JP2011225856A (en) 2011-11-10
JP5742375B2 JP5742375B2 (en) 2015-07-01

Family

ID=45041598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011074644A Active JP5742375B2 (en) 2010-03-31 2011-03-30 Adhesive composition for electronic equipment and adhesive sheet for electronic equipment using the same

Country Status (1)

Country Link
JP (1) JP5742375B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133240A1 (en) * 2012-03-07 2013-09-12 住友電気工業株式会社 Printable adhesive and method for manufacturing joined body using same
JP2013185124A (en) * 2012-03-09 2013-09-19 Mitsubishi Chemicals Corp Interlayer filler composition for three-dimensional integrated circuit, coating liquid, and method for producing the three-dimensional integrated circuit
JP2013227546A (en) * 2012-03-30 2013-11-07 Dic Corp Self-adhesive composition and self-adhesive tape
WO2013183389A1 (en) * 2012-06-04 2013-12-12 日本ゼオン株式会社 Thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet-like molded body, method for producing thermally conductive pressure-sensitive adhesive composition, method for producing thermally conductive pressure-sensitive adhesive sheet-like molded body, and electronic device
JP2013249390A (en) * 2012-05-31 2013-12-12 Sumitomo Bakelite Co Ltd Thermosetting resin composition and semiconductor device
WO2014136484A1 (en) * 2013-03-07 2014-09-12 住友ベークライト株式会社 Apparatus, composition for adhesive, and adhesive sheet
JP2016009814A (en) * 2014-06-26 2016-01-18 京セラケミカル株式会社 Resin sheet for sealing semiconductor, and resin seal-type semiconductor device
TWI600738B (en) * 2012-03-07 2017-10-01 Lintec Corp Wafer resin film formation sheet
JP2017179057A (en) * 2016-03-29 2017-10-05 東洋インキScホールディングス株式会社 Thermally conductive sheet
WO2018235918A1 (en) * 2017-06-23 2018-12-27 積水化学工業株式会社 Resin material, method for producing resin material, and laminate
US10351728B2 (en) 2013-06-14 2019-07-16 Mitsubishi Electric Corporation Thermosetting resin composition, method of producing thermal conductive sheet, and power module
WO2019150995A1 (en) * 2018-01-30 2019-08-08 日立化成株式会社 Thermosetting resin composition, film-form adhesive, adhesive sheet, and method for producing semiconductor device
JP2019167435A (en) * 2018-03-23 2019-10-03 三菱ケミカル株式会社 Resin composition, semiconductor device and method for producing semiconductor device
CN110922907A (en) * 2018-09-19 2020-03-27 琳得科株式会社 Adhesive sheet for battery and lithium ion battery
JP6858315B1 (en) * 2019-08-22 2021-04-14 古河電気工業株式会社 Adhesive compositions, film-like adhesives and methods for manufacturing them, and semiconductor packages using film-like adhesives and methods for manufacturing them.
JP2021093300A (en) * 2019-12-11 2021-06-17 エルジー ディスプレイ カンパニー リミテッド Sealing material and display device
WO2022203031A1 (en) * 2021-03-25 2022-09-29 三菱ケミカル株式会社 Thermally conductive resin composition, thermally conductive resin sheet, multilayer heat dissipation sheet, heat-dissipating circuit board, and power semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310824A (en) * 1993-04-20 1994-11-04 Sumitomo Bakelite Co Ltd Board for metal-base printed circuit
JP2002069392A (en) * 2000-08-31 2002-03-08 Polymatech Co Ltd Heat-conductive adhesive film, method for producing the same and electronic part
JP2002322372A (en) * 2001-04-26 2002-11-08 Denki Kagaku Kogyo Kk Resin composition and metal-based circuit board using the same
JP2007246861A (en) * 2006-03-20 2007-09-27 Nippon Steel Chem Co Ltd Resin composition, and varnish obtained using the resin composition, film adhesive, and copper foil attached with film adhesive
JP2008106231A (en) * 2006-09-29 2008-05-08 Toray Ind Inc Adhesive sheet for electronic equipment
JP2008297429A (en) * 2007-05-31 2008-12-11 Kyocera Chemical Corp Adhesive composition, adhesive sheet and copper foil with adhesive agent
JP2009144072A (en) * 2007-12-14 2009-07-02 Sekisui Chem Co Ltd Insulation sheet and laminated structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310824A (en) * 1993-04-20 1994-11-04 Sumitomo Bakelite Co Ltd Board for metal-base printed circuit
JP2002069392A (en) * 2000-08-31 2002-03-08 Polymatech Co Ltd Heat-conductive adhesive film, method for producing the same and electronic part
JP2002322372A (en) * 2001-04-26 2002-11-08 Denki Kagaku Kogyo Kk Resin composition and metal-based circuit board using the same
JP2007246861A (en) * 2006-03-20 2007-09-27 Nippon Steel Chem Co Ltd Resin composition, and varnish obtained using the resin composition, film adhesive, and copper foil attached with film adhesive
JP2008106231A (en) * 2006-09-29 2008-05-08 Toray Ind Inc Adhesive sheet for electronic equipment
JP2008297429A (en) * 2007-05-31 2008-12-11 Kyocera Chemical Corp Adhesive composition, adhesive sheet and copper foil with adhesive agent
JP2009144072A (en) * 2007-12-14 2009-07-02 Sekisui Chem Co Ltd Insulation sheet and laminated structure

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI600738B (en) * 2012-03-07 2017-10-01 Lintec Corp Wafer resin film formation sheet
JPWO2013133240A1 (en) * 2012-03-07 2015-07-30 住友電気工業株式会社 PRINTING ADHESIVE AND METHOD FOR PRODUCING CONNECTED BODY USING THE SAME
WO2013133240A1 (en) * 2012-03-07 2013-09-12 住友電気工業株式会社 Printable adhesive and method for manufacturing joined body using same
JP2013185124A (en) * 2012-03-09 2013-09-19 Mitsubishi Chemicals Corp Interlayer filler composition for three-dimensional integrated circuit, coating liquid, and method for producing the three-dimensional integrated circuit
JP2013227546A (en) * 2012-03-30 2013-11-07 Dic Corp Self-adhesive composition and self-adhesive tape
JP2013249390A (en) * 2012-05-31 2013-12-12 Sumitomo Bakelite Co Ltd Thermosetting resin composition and semiconductor device
WO2013183389A1 (en) * 2012-06-04 2013-12-12 日本ゼオン株式会社 Thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet-like molded body, method for producing thermally conductive pressure-sensitive adhesive composition, method for producing thermally conductive pressure-sensitive adhesive sheet-like molded body, and electronic device
CN104321400A (en) * 2012-06-04 2015-01-28 日本瑞翁株式会社 Thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet-like molded body, method for producing thermally conductive pressure-sensitive adhesive composition, method for producing thermally conductive pressure-sensitive adhesive sheet-like molded body, and electronic device
WO2014136484A1 (en) * 2013-03-07 2014-09-12 住友ベークライト株式会社 Apparatus, composition for adhesive, and adhesive sheet
US10351728B2 (en) 2013-06-14 2019-07-16 Mitsubishi Electric Corporation Thermosetting resin composition, method of producing thermal conductive sheet, and power module
JP2016009814A (en) * 2014-06-26 2016-01-18 京セラケミカル株式会社 Resin sheet for sealing semiconductor, and resin seal-type semiconductor device
JP2017179057A (en) * 2016-03-29 2017-10-05 東洋インキScホールディングス株式会社 Thermally conductive sheet
WO2018235918A1 (en) * 2017-06-23 2018-12-27 積水化学工業株式会社 Resin material, method for producing resin material, and laminate
JPWO2019150995A1 (en) * 2018-01-30 2021-02-25 昭和電工マテリアルズ株式会社 Methods for manufacturing thermosetting resin compositions, film-like adhesives, adhesive sheets, and semiconductor devices
WO2019150995A1 (en) * 2018-01-30 2019-08-08 日立化成株式会社 Thermosetting resin composition, film-form adhesive, adhesive sheet, and method for producing semiconductor device
TWI785196B (en) * 2018-01-30 2022-12-01 日商昭和電工材料股份有限公司 Thermosetting resin composition, film adhesive, adhesive sheet and method for manufacturing semiconductor device
JP7283399B2 (en) 2018-01-30 2023-05-30 株式会社レゾナック Thermosetting resin composition, film adhesive, adhesive sheet, and method for manufacturing semiconductor device
JP2019167435A (en) * 2018-03-23 2019-10-03 三菱ケミカル株式会社 Resin composition, semiconductor device and method for producing semiconductor device
JP7119477B2 (en) 2018-03-23 2022-08-17 三菱ケミカル株式会社 RESIN COMPOSITION, SEMICONDUCTOR DEVICE, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
CN110922907A (en) * 2018-09-19 2020-03-27 琳得科株式会社 Adhesive sheet for battery and lithium ion battery
CN110922907B (en) * 2018-09-19 2023-01-03 琳得科株式会社 Adhesive sheet for battery and lithium ion battery
JP6858315B1 (en) * 2019-08-22 2021-04-14 古河電気工業株式会社 Adhesive compositions, film-like adhesives and methods for manufacturing them, and semiconductor packages using film-like adhesives and methods for manufacturing them.
US11952513B2 (en) 2019-08-22 2024-04-09 Furukawa Electric Co., Ltd. Adhesive composition, film-like adhesive and production method thereof, and semiconductor package using film-like adhesive and production method thereof
JP2021093300A (en) * 2019-12-11 2021-06-17 エルジー ディスプレイ カンパニー リミテッド Sealing material and display device
WO2022203031A1 (en) * 2021-03-25 2022-09-29 三菱ケミカル株式会社 Thermally conductive resin composition, thermally conductive resin sheet, multilayer heat dissipation sheet, heat-dissipating circuit board, and power semiconductor device

Also Published As

Publication number Publication date
JP5742375B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
JP5742375B2 (en) Adhesive composition for electronic equipment and adhesive sheet for electronic equipment using the same
JP4893046B2 (en) Adhesive composition for electronic equipment and adhesive sheet for electronic equipment using the same
JP5343335B2 (en) Adhesive sheet for electronic equipment
JP6402763B2 (en) Multilayer resin sheet, resin sheet laminate, cured multilayer resin sheet and method for producing the same, multilayer resin sheet with metal foil, and semiconductor device
JP5109411B2 (en) Adhesive composition for electronic device, adhesive sheet for electronic device using the same, and electronic component
JP6023474B2 (en) Thermally conductive insulating sheet, metal base substrate and circuit board, and manufacturing method thereof
JP7271176B2 (en) RESIN MATERIAL, RESIN MATERIAL MANUFACTURING METHOD AND LAMINATED PRODUCT
JP5286682B2 (en) Manufacturing method of adhesive sheet for electronic device
JP6809220B2 (en) Adhesive composition sheet and its manufacturing method and semiconductor device
JP5870934B2 (en) Method for manufacturing metal-based circuit board
JP5200386B2 (en) Adhesive sheet for electronic materials
JP2008120065A (en) Heat radiating film
TW201904765A (en) Heat dissipation sheet, method for manufacturing heat dissipation sheet, and laminated body
JP5760702B2 (en) Adhesive composition for electronic device and adhesive sheet for electronic device
JP7352173B2 (en) Compositions, cured products, multilayer sheets, heat dissipation parts, and electronic parts
EP2641736A1 (en) Multilayer resin sheet and resin-sheet laminate
TW201905055A (en) Resin material, manufacturing method of resin material, and laminated body
JP4876317B2 (en) Adhesive composition for semiconductor device, adhesive sheet for semiconductor device using the same, substrate for semiconductor connection, and semiconductor device
JP2009091566A (en) Adhesive composition and adhesive sheet using it
WO2011122232A1 (en) Metal support flexible board, metal support carrier tape for tape automated bonding using same, metal support flexible circuit board for mounting led, and copper foil-laminated metal support flexible circuit board for forming circuit
JP2003206452A (en) Adhesive composition for semiconductor device, adhesive sheet for semiconductor device using the same, substrates for connecting semiconductors and semiconductor device
JP2005277135A (en) Adhesive composition for semiconductor, and adhesive sheet for semiconductor using the same, substrate for connecting semiconductor integrated circuit, and semiconductor device
JP2005247953A (en) Adhesive composition for semiconductor and adhesive sheet for semiconductor using the same
JP2007266394A (en) Adhesive sheet for semiconductor, substrate for connecting semiconductor using the same, and semiconductor device
TW202248317A (en) Resin sheet, laminate, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150420

R151 Written notification of patent or utility model registration

Ref document number: 5742375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151