JP2011224555A - Catalyst for decomposing ammonia and method for producing the catalyst, and method for producing hydrogen using the catalyst - Google Patents

Catalyst for decomposing ammonia and method for producing the catalyst, and method for producing hydrogen using the catalyst Download PDF

Info

Publication number
JP2011224555A
JP2011224555A JP2011073603A JP2011073603A JP2011224555A JP 2011224555 A JP2011224555 A JP 2011224555A JP 2011073603 A JP2011073603 A JP 2011073603A JP 2011073603 A JP2011073603 A JP 2011073603A JP 2011224555 A JP2011224555 A JP 2011224555A
Authority
JP
Japan
Prior art keywords
catalyst
nickel
precipitate
aqueous solution
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011073603A
Other languages
Japanese (ja)
Inventor
Masanori Yoshimune
壮基 吉宗
Atsushi Okamura
淳志 岡村
Toshitaka Horiuchi
俊孝 堀内
Hideaki Tsuneki
英昭 常木
Masami Ichinose
麻沙美 一瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2011073603A priority Critical patent/JP2011224555A/en
Publication of JP2011224555A publication Critical patent/JP2011224555A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst which contains as an active component a non-noble metal having high practicality in terms of cost, and which has high activity.SOLUTION: The catalyst for decomposing ammonia contains nickel and additives being a metal oxide and/or a compound oxide of at least one metal element selected from the group comprising the metal elements of groups 2-5 and groups 12-15 of the long-form periodic table. The ratio (S2/S1) of the calculated specific surface area (S2) of nickel to the specific surface area (S1) of the catalyst is 0.50-0.85.

Description

本発明は、アンモニア分解用触媒及びその製造方法、並びに、当該触媒を用いた水素製造方法に関する発明である。   The present invention relates to an ammonia decomposition catalyst, a method for producing the same, and a method for producing hydrogen using the catalyst.

アンモニア分解による水素製造技術は古くから提案されているが、本格的に実用されることは少ないのが現状である。例えば、コークス炉から生じるアンモニアを分解し水素を得る技術が提案されている(特許文献1)。当該触媒は白金族を必須とするものであり、コストが高くなることが実用上の問題点である。一方、白金族を必須成分とする貴金属系触媒の問題点を克服するために、非貴金属系触媒が提案されている。非貴金属系の触媒として、銅族元素、クロム族元素及び鉄族元素のうちから選ばれる少なくとも1種の金属又は化合物とニッケルを触媒成分として用いる触媒が提案されている(特許文献2)。当該触媒は、ニッケルにコバルト、銅、クロム等各成分を組み合わせることにより、ニッケル単独成分からなる触媒に比べて、触媒性能を向上させたものである。また希土類とニッケルを組み合わせた触媒も提案されている(特許文献3)。   Hydrogen production technology by ammonia decomposition has been proposed for a long time, but it is rarely put into practical use. For example, a technique for decomposing ammonia generated from a coke oven to obtain hydrogen has been proposed (Patent Document 1). The catalyst essentially requires a platinum group, and its high cost is a practical problem. On the other hand, non-noble metal catalysts have been proposed in order to overcome the problems of noble metal catalysts containing a platinum group as an essential component. As a non-noble metal catalyst, a catalyst using at least one metal or compound selected from a copper group element, a chromium group element and an iron group element and nickel as a catalyst component has been proposed (Patent Document 2). The catalyst is obtained by improving the catalyst performance by combining nickel, cobalt, copper, chromium, and other components, compared to a catalyst composed of nickel alone. A catalyst combining rare earth and nickel has also been proposed (Patent Document 3).

これらの触媒は比表面積の高い担体に各触媒成分の溶液を含浸して調製したものであり、比表面積の高い酸化物表面を利用して当該表面に触媒成分を分散して担持することで触媒活性点を物理的に増加させて触媒全体として活性を向上させようとするものである。   These catalysts are prepared by impregnating a support having a high specific surface area with a solution of each catalyst component, and by using an oxide surface having a high specific surface area, the catalyst component is dispersed and supported on the surface. The active point is physically increased to improve the activity of the catalyst as a whole.

特開平05−329372号公報JP 05-329372 A 特開平02−198638号公報Japanese Patent Laid-Open No. 02-198638 特開平02−198639号公報Japanese Patent Laid-Open No. 02-198639

比表面積の高い担体を用いることで触媒活性点の数を増加させた形態の触媒系では、熱劣下による担体材料の比表面積低下に伴い、触媒活性点も減少し、触媒活性が低下することとなる。また、触媒活性点を増加させるために担体成分に対して多量の触媒成分を含浸担持しても触媒成分からなる粒子が凝集しやすくなるため、結果として触媒活性比表面積が増加しない。そのため、担体成分に含浸する触媒成分の含有量を増加させても含有量増加に見合った活性向上が得られず、含有量増加によりかえって触媒活性が低下し、十分な触媒活性を有する触媒を製造することが困難となっていた。このような従来触媒にみられる問題点を克服し、かつ、コスト面でも実用性に優れる高活性な触媒を開発することが求められている。   In a catalyst system in which the number of catalytic active points is increased by using a support having a high specific surface area, the catalytic active point is reduced and the catalytic activity is reduced as the specific surface area of the support material is reduced due to thermal deterioration. It becomes. Further, even if a large amount of the catalyst component is impregnated and supported on the carrier component in order to increase the catalyst active point, the particles composed of the catalyst component are likely to aggregate, and as a result, the catalyst active specific surface area does not increase. Therefore, even if the content of the catalyst component impregnated in the carrier component is increased, the activity improvement corresponding to the increase in the content cannot be obtained, and the catalyst activity is lowered due to the increase in content, and a catalyst having sufficient catalytic activity is produced. It was difficult to do. There is a need to develop a highly active catalyst that overcomes the problems found in such conventional catalysts and that is also practical in terms of cost.

上記課題を解決することができた本発明のアンモニア分解用触媒は、ニッケルと、長周期型周期律表2〜5及び12〜15族の金属元素からなる群から選ばれる少なくとも1種の金属酸化物及び/又は複合酸化物である添加物質とを含む触媒であって、ニッケルの算出比表面積(S2)と当該触媒の比表面積(S1)との比(S2/S1)が、0.50〜0.85であることを特徴とする。前記添加物質はアルミナ、シリカ、ジルコニア、アルカリ土類金属酸化物及びランタノイド系金属酸化物からなる群から選ばれる少なくとも一種の金属酸化物及び/又は複合酸化物が好ましい。前記触媒は、ニッケルを触媒全量に対して55〜95質量%含有することが好ましい。   The catalyst for decomposing ammonia of the present invention that has solved the above problems is at least one metal oxide selected from the group consisting of nickel and metal elements of groups 2 to 5 and 12 to 15 of the long-period periodic table And / or an additive substance which is a composite oxide, and the ratio (S2 / S1) of the calculated specific surface area (S2) of nickel to the specific surface area (S1) of the catalyst is 0.50 to It is characterized by 0.85. The additive is preferably at least one metal oxide and / or composite oxide selected from the group consisting of alumina, silica, zirconia, alkaline earth metal oxides, and lanthanoid metal oxides. The catalyst preferably contains 55 to 95% by mass of nickel with respect to the total amount of the catalyst.

本発明のアンモニア分解用触媒の製造方法の態様は、ニッケルの水溶性塩と添加物質前駆体の水溶性塩とを水に溶解し、アルカリ性化合物によりニッケル及び添加物質前駆体の沈殿物を生成させた後、ろ過、水洗、乾燥、熱処理する態様;ニッケル塩を水に加え水溶液を調製し、この水溶液にアルカリ性化合物を加えてニッケルを含有する微粒子を析出させて微粒子分散液を調製し、当該微粒子分散液を撹拌しながら前記添加物質の微粒子分散ゾル溶液を添加して、ニッケルを含有する微粒子と添加物質微粒子からなる沈殿物を生成させた後、この沈殿物をろ過、水洗、乾燥、熱処理する態様;が好ましい。本発明には、上記アンモニア分解用触媒を用いて、アンモニアを分解し水素を得る水素製造方法も含まれる。   The embodiment of the method for producing an ammonia decomposition catalyst according to the present invention comprises dissolving a water-soluble salt of nickel and a water-soluble salt of an additive substance precursor in water, and generating a precipitate of nickel and the additive substance precursor with an alkaline compound. Then, filtration, washing, drying, and heat treatment: an aqueous solution is prepared by adding a nickel salt to water, an alkaline compound is added to the aqueous solution to precipitate fine particles containing nickel, and a fine particle dispersion is prepared. The fine particle-dispersed sol solution of the additive substance is added while stirring the dispersion to produce a precipitate composed of nickel-containing fine particles and additive substance fine particles, and then the precipitate is filtered, washed, dried, and heat-treated. Embodiments are preferred. The present invention also includes a hydrogen production method in which ammonia is decomposed to obtain hydrogen using the ammonia decomposition catalyst.

本発明のアンモニア分解用触媒は、活性成分であるニッケルの含有量を高めた場合であっても、ニッケルの算出比表面積(S2)が当該触媒の比表面積(S1)に対して0.50〜0.85(S2/S1)とニッケルの算出比表面積(S2)が高く保持できる。そのため、コスト面で実用上の問題を抱える貴金属系触媒を用いることなく、アンモニア分解反応に対して高活性を示し、効率良くアンモニアを水素と窒素に分解することができる。   In the ammonia decomposition catalyst of the present invention, even when the content of nickel as an active component is increased, the calculated specific surface area (S2) of nickel is 0.50 to the specific surface area (S1) of the catalyst. 0.85 (S2 / S1) and the calculated specific surface area (S2) of nickel can be kept high. Therefore, without using a noble metal catalyst that has practical problems in terms of cost, it exhibits high activity for the ammonia decomposition reaction and can efficiently decompose ammonia into hydrogen and nitrogen.

本発明にかかる触媒はアンモニアを分解し水素を製造するために用いる触媒である。当該触媒はニッケルと、長周期型周期律表2〜5及び12〜15族の金属元素からなる群から選ばれる少なくとも1種の金属酸化物及び/又は複合酸化物である添加物質とを含む。   The catalyst according to the present invention is a catalyst used for producing hydrogen by decomposing ammonia. The catalyst contains nickel and an additive substance that is at least one metal oxide and / or composite oxide selected from the group consisting of metal elements of groups 2 to 5 and 12 to 15 of the long-period periodic table.

ニッケルの状態は、金属、酸化物、それらの混合物の何れであってもよく、好ましくは金属状態である。触媒中のニッケルの含有率は、ニッケル(金属換算)と添加物質(酸化物換算)との合計質量(合計100質量%)に対して55〜95質量%が好ましく、より好ましくは60〜90質量%、さらに好ましくは67〜85質量%である。ニッケルの含有率が、55質量%未満では十分なアンモニア分解活性が得られないことがあり、95質量%を超えるとニッケル量に対して添加物質が不足し、ニッケルの凝集が進み耐熱性が低下する恐れがある。   The nickel state may be any of a metal, an oxide, and a mixture thereof, and is preferably a metal state. The content of nickel in the catalyst is preferably 55 to 95 mass%, more preferably 60 to 90 mass% with respect to the total mass (total 100 mass%) of nickel (metal conversion) and additive substances (oxide conversion). %, More preferably 67 to 85% by mass. If the nickel content is less than 55% by mass, sufficient ammonia decomposition activity may not be obtained. If the nickel content exceeds 95% by mass, the amount of nickel is insufficient with respect to the amount of nickel, and the agglomeration of nickel proceeds and heat resistance decreases There is a fear.

前記添加物質は、長周期型周期律表2〜5及び12〜15族の金属元素からなる群から選ばれる少なくとも1種の金属酸化物及び/又は複合酸化物であり、好ましくはアルミナ、シリカ、ジルコニア、アルカリ土類金属酸化物及びランタノイド系金属酸化物からなる群から選ばれる少なくとも1種の金属酸化物及び/又は複合酸化物である。当該複合酸化物とは、個々の金属酸化物の単純な物理混合物でなく、セリア・ジルコニア固溶体、シリカ・アルミナ等に例示されるように各構成金属元素が原子レベルで複合化し、個々の金属酸化物の単純物理混合物と比較して構造及び物性面で異なる特性を示す状態にあるものを指す。   The additive substance is at least one metal oxide and / or composite oxide selected from the group consisting of long-period periodic table 2-5 and group 12-15 metal elements, preferably alumina, silica, It is at least one metal oxide and / or composite oxide selected from the group consisting of zirconia, alkaline earth metal oxides, and lanthanoid metal oxides. The complex oxide is not a simple physical mixture of individual metal oxides, but each constituent metal element is complexed at the atomic level as exemplified by ceria / zirconia solid solution, silica / alumina, etc. It refers to a material that exhibits different characteristics in terms of structure and physical properties compared to a simple physical mixture of materials.

本発明のアンモニア分解用触媒は、前記ニッケルの算出比表面積(S2)の触媒の比表面積(S1)に対する比(S2/S1)は0.50以上、好ましくは0.55以上、より好ましくは0.60以上であり、0.85以下、好ましくは0.80以下、より好ましくは0.75以下である。前記比(S2/S1)が0.50未満では、触媒におけるニッケルの算出比表面積が少なく十分な活性が得られないことがあり、0.85を超えると耐熱性が低下し、耐久性が低下する場合がある。   In the ammonia decomposition catalyst of the present invention, the ratio (S2 / S1) of the calculated specific surface area (S2) of nickel to the specific surface area (S1) of the catalyst is 0.50 or more, preferably 0.55 or more, more preferably 0. .60 or more, 0.85 or less, preferably 0.80 or less, more preferably 0.75 or less. When the ratio (S2 / S1) is less than 0.50, the calculated specific surface area of nickel in the catalyst is small and sufficient activity may not be obtained, and when it exceeds 0.85, the heat resistance decreases and the durability decreases. There is a case.

前記ニッケルの算出比表面積(S2)は、当該触媒の比表面積から添加物質由来の比表面積分を減じることにより算出される。添加物質のみからなる粉体は、添加物質前駆体から当該触媒調製手順と同様に作製する。得られた添加物質のみからなる粉体について、窒素ガスを用いたBET法により比表面積(S(b))を測定する。当該触媒の比表面積(S1)から当該触媒に含まれる添加物質由来の比表面積分(S(b)×当該触媒中の添加物質の質量含有率)を減じて当該ニッケルの算出比表面積(S2)を得ることができる。   The calculated specific surface area (S2) of nickel is calculated by subtracting the specific surface integral derived from the additive substance from the specific surface area of the catalyst. The powder consisting only of the additive substance is prepared in the same manner as the catalyst preparation procedure from the additive substance precursor. The specific surface area (S (b)) is measured by the BET method using nitrogen gas for the obtained powder consisting only of the additive substance. Calculated specific surface area (S2) of the nickel by subtracting the specific surface integral (S (b) × mass content of the additive substance in the catalyst) derived from the additive substance contained in the catalyst from the specific surface area (S1) of the catalyst Can be obtained.

本発明のアンモニア分解用触媒は、前記ニッケルの算出比表面積(S2)が、20m2/g以上であることが好ましく、より好ましくは25m2/g以上、さらに好ましくは30m2/g以上である。前記ニッケルの算出比表面積が20m2/g以上であれば、アンモニア分解用触媒の触媒活性がより向上する。ニッケルの算出比表面積(S2)は大きいほど好ましいが、触媒調製法の改良等によって増加できる値にも限界があり、実際的には250m2/g以下が好ましく、より好ましくは200m2/g以下、さらに好ましくは150m2/g以下である。 In the ammonia decomposition catalyst of the present invention, the calculated specific surface area (S2) of nickel is preferably 20 m 2 / g or more, more preferably 25 m 2 / g or more, and further preferably 30 m 2 / g or more. . When the calculated specific surface area of nickel is 20 m 2 / g or more, the catalytic activity of the ammonia decomposition catalyst is further improved. The calculated specific surface area (S2) of nickel is preferably as large as possible. However, there is a limit to the value that can be increased by improving the catalyst preparation method and the like. In practice, it is preferably 250 m 2 / g or less, more preferably 200 m 2 / g or less. More preferably, it is 150 m 2 / g or less.

本発明のアンモニア分解用触媒の比表面積(S1)は、10〜500m2/gが好ましく、より好ましくは20〜450m2/g、さらに好ましくは、25〜400m2/g、さらに好ましくは、30〜350m2/gである。触媒の比表面積(S1)が10m2/g以上であれば、触媒性能がより向上し、500m2/g以下であれば、触媒の強度が良好となる。アンモニア分解用触媒の比表面積は、窒素ガスを用いたBET法により測定する。 The specific surface area of the ammonia decomposition catalyst of the present invention (S1) is preferably from 10 to 500 m 2 / g, more preferably 20~450m 2 / g, more preferably, 25~400m 2 / g, more preferably, 30 -350 m < 2 > / g. When the specific surface area (S1) of the catalyst is 10 m 2 / g or more, the catalyst performance is further improved, and when it is 500 m 2 / g or less, the strength of the catalyst is good. The specific surface area of the ammonia decomposition catalyst is measured by the BET method using nitrogen gas.

本発明のアンモニア分解用触媒の形状は、粉体、球状、ペレット、サドル型、円筒型、板状、ハニカム状等、種々の形状のものを用いることができる。   The shape of the catalyst for decomposing ammonia according to the present invention may be various shapes such as powder, sphere, pellet, saddle type, cylindrical type, plate shape, honeycomb shape and the like.

本発明にかかる触媒の製造方法(共沈法)の一例を示す。なお、本発明の効果を奏するものであれば以下の触媒製造方法に限定されるものではない。本発明の触媒の製造方法としては、例えば、(1)ニッケル塩を水に加え水溶液を調製し、この水溶液にアルカリ性化合物を加えてニッケルを含有する微粒子(例えば、ニッケル水酸化物微粒子)を析出させ微粒子分散液を調製する。この微粒子分散液を撹拌しながら、添加物質の微粒子分散ゾル溶液を添加して、ニッケルを含有する微粒子(例えば、ニッケル水酸化物微粒子)と添加物質微粒子からなる沈殿物を生成させる。その後、この沈殿物を、ろ過により取り出し、水洗、乾燥、熱処理(例えば、還元性雰囲気下での熱処理)して触媒を得る方法;(2)添加物質前駆体の水溶性塩とニッケルの水溶性塩とを水に加え十分に混合した後、アルカリ性化合物を加えニッケルと添加物質前駆体とを含有する微粒子(例えば、水酸化物微粒子)の沈殿物を生成させる。その後、この沈殿物をろ過により取り出し、ろ過、水洗、乾燥、熱処理(例えば、還元性雰囲気下での熱処理)して触媒を得る方法;(3)アルカリ性化合物を加えたアルカリ性水溶液を調製する。撹拌したアルカリ性水溶液中に添加物質前駆体の水溶性塩とニッケルの水溶性塩を含む混合水溶液を追加して、ニッケルを含む微粒子(例えば、ニッケル水酸化物微粒子)と添加物質前駆体の微粒子からなる沈殿物を生成させる。その後、この沈殿物をろ過により取り出し、水洗、乾燥、熱処理(例えば、還元性雰囲気下での熱処理)して触媒を得る方法;が挙げられる。   1 shows an example of a catalyst production method (coprecipitation method) according to the present invention. In addition, as long as there exists an effect of this invention, it is not limited to the following catalyst manufacturing methods. As a method for producing the catalyst of the present invention, for example, (1) an aqueous solution is prepared by adding a nickel salt to water, and an alkaline compound is added to the aqueous solution to precipitate nickel-containing fine particles (for example, nickel hydroxide fine particles). To prepare a fine particle dispersion. While stirring this fine particle dispersion, a fine particle-dispersed sol solution of the additive substance is added to generate a precipitate composed of nickel-containing fine particles (for example, nickel hydroxide fine particles) and additive substance fine particles. Thereafter, the precipitate is removed by filtration, washed with water, dried, and heat-treated (for example, heat-treated in a reducing atmosphere) to obtain a catalyst; (2) Water-soluble salt of additive precursor and water-soluble nickel After the salt is added to water and mixed well, an alkaline compound is added to form a precipitate of fine particles (eg, hydroxide fine particles) containing nickel and an additive precursor. Thereafter, the precipitate is taken out by filtration, filtered, washed with water, dried, and heat-treated (for example, heat-treated in a reducing atmosphere) to obtain a catalyst; (3) An alkaline aqueous solution to which an alkaline compound is added is prepared. A mixed aqueous solution containing a water-soluble salt of an additive precursor and a water-soluble salt of nickel is added to an agitated alkaline aqueous solution, and fine particles containing nickel (for example, nickel hydroxide fine particles) and fine particles of an additive precursor are added. A precipitate is formed. Thereafter, the precipitate is taken out by filtration, washed with water, dried, and heat-treated (for example, heat-treated in a reducing atmosphere) to obtain a catalyst.

上記製造方法において、熱処理は、空気雰囲気下での焼成;窒素、アルゴン等の不活性ガス雰囲気下での熱処理;水素等の還元性ガスを含む還元性ガス雰囲気下での還元を含む。また、触媒は使用に際して還元処理をすることが好ましい。還元方法としては、水素ガス等の還元性ガスと接触させる通常の方法を採用することができる。水素ガスを用いた還元処理を行う場合、還元条件は300〜750℃、好ましくは400〜650℃で、30分〜2時間処理するものである。なお、水素製造時、原料ガスが酸素ガスを含む場合、アンモニア分解反応とともにアンモニア燃焼反応が進行するが、このアンモニア燃焼反応によって触媒温度が直ちに上昇し、アンモニア分解により生成した水素によって触媒が還元される。そのため、原料ガスが酸素ガスを含む場合には、アンモニア分解用触媒について、使用前の還元処理を施さなくとも使用できる場合がある。   In the above manufacturing method, the heat treatment includes firing in an air atmosphere; heat treatment in an inert gas atmosphere such as nitrogen or argon; and reduction in a reducing gas atmosphere containing a reducing gas such as hydrogen. The catalyst is preferably subjected to a reduction treatment when used. As a reduction method, a normal method of contacting with a reducing gas such as hydrogen gas can be employed. When the reduction treatment using hydrogen gas is performed, the reduction is performed at 300 to 750 ° C., preferably 400 to 650 ° C., for 30 minutes to 2 hours. During hydrogen production, if the source gas contains oxygen gas, the ammonia combustion reaction proceeds along with the ammonia decomposition reaction. The catalyst temperature immediately rises due to the ammonia combustion reaction, and the catalyst is reduced by the hydrogen generated by the ammonia decomposition. The Therefore, when the source gas contains oxygen gas, the ammonia decomposition catalyst may be used without being subjected to reduction treatment before use.

ニッケルの原料は、最終的に還元処理により金属ニッケルを生成するものであれば何れの化合物でも使用することが可能であるが、好ましくは水溶性の化合物である硝酸ニッケル六水和物、酢酸ニッケル四水和物、塩化ニッケル六水和物である。   As the nickel raw material, any compound can be used as long as it finally produces metallic nickel by reduction treatment. Preferably, nickel nitrate hexahydrate and nickel acetate, which are water-soluble compounds, are used. Tetrahydrate, nickel chloride hexahydrate.

添加物質の原料は最終的に熱処理により金属酸化物及び/又は複合酸化物を生成するものであれば何れの化合物でも使用することが可能であり、好ましくは水溶性の化合物である各種金属の硝酸塩、酢酸塩、塩化物、硫酸塩を使用することができる。   As the additive material, any compound can be used as long as it finally generates a metal oxide and / or composite oxide by heat treatment, and various metal nitrates, preferably water-soluble compounds. , Acetates, chlorides, sulfates can be used.

前記アルカリ性化合物としては、例えば、アンモニア、炭酸アンモニウム、水酸化テトラメチルアンモニウム等のアンモニア系化合物;水酸化カリウム等のアルカリ金属水酸化物;等が挙げられる。   Examples of the alkaline compound include ammonia compounds such as ammonia, ammonium carbonate, and tetramethylammonium hydroxide; alkali metal hydroxides such as potassium hydroxide; and the like.

本発明にかかるアンモニア分解用触媒を用いた水素製造方法は、当該触媒を用いてアンモニアガスを分解し水素を製造するものである。原料ガスは、アンモニアガスであるが、本発明の効果を阻害しないものであれば、他のガスを加えることができ、例えば窒素、アルゴン、ヘリウム、一酸化炭素、酸素である。特に、原料ガスが酸素を含む場合、アンモニアガスやアンモニア分解反応で生成した水素の一部を燃焼し、その燃焼熱をアンモニア分解反応の反応熱として使用するオートサーマルリフォーマーによるアンモニア分解を行うことができる。この場合、アンモニアに対する酸素のモル比(酸素/アンモニア)は、0.75未満とする必要がある。また、アンモニア分解により得られる水素量と、燃焼反応による燃焼熱とを両立させる観点から、モル比(酸素/アンモニア)は0.05以上が好ましく、より好ましくは0.1以上、さらに好ましくは0.12以上であり、0.5以下が好ましく、より好ましくは0.3以下である。   The hydrogen production method using the catalyst for ammonia decomposition according to the present invention produces hydrogen by decomposing ammonia gas using the catalyst. The source gas is ammonia gas, but other gases can be added as long as they do not hinder the effects of the present invention, such as nitrogen, argon, helium, carbon monoxide, and oxygen. In particular, when the source gas contains oxygen, ammonia decomposition can be performed by an autothermal reformer that burns part of the ammonia gas or hydrogen produced by the ammonia decomposition reaction and uses the combustion heat as the reaction heat of the ammonia decomposition reaction. it can. In this case, the molar ratio of oxygen to ammonia (oxygen / ammonia) needs to be less than 0.75. Further, from the viewpoint of achieving both the amount of hydrogen obtained by ammonia decomposition and the combustion heat by the combustion reaction, the molar ratio (oxygen / ammonia) is preferably 0.05 or more, more preferably 0.1 or more, and even more preferably 0. .12 or more, preferably 0.5 or less, more preferably 0.3 or less.

アンモニアの分解反応は、反応温度が300〜900℃、好ましくは400〜700℃であり、反応圧力は0.002〜2MPa、好ましくは0.004〜1MPaである。反応ガス(原料ガス)導入時の空間速度は1,000〜500,000hr-1、好ましくは1,000〜200,000hr-1である。 The ammonia decomposition reaction has a reaction temperature of 300 to 900 ° C., preferably 400 to 700 ° C., and a reaction pressure of 0.002 to 2 MPa, preferably 0.004 to 1 MPa. The space velocity at the time of introduction of the reaction gas (source gas) is 1,000 to 500,000 hr −1 , preferably 1,000 to 200,000 hr −1 .

また、触媒を使用するに際して、事前に前処理することもできる。適した処理条件で前処理することにより触媒の状態を反応中の状態に近いものとすることができ、本前処理を施すことにより当初から定常的な反応状態での運転が可能になる。前処理としては、例えば、窒素ガスを反応条件で一定時間触媒に流通させることである。   Moreover, when using a catalyst, it can also pre-process in advance. By performing pretreatment under suitable treatment conditions, the state of the catalyst can be made close to that during the reaction, and by performing this pretreatment, operation in a steady reaction state can be performed from the beginning. As pretreatment, for example, nitrogen gas is allowed to flow through the catalyst for a certain period of time under reaction conditions.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented within a range that can meet the purpose described above and below. All of which are within the scope of the present invention.

製造例1
34.9gの硝酸ニッケル六水和物と25.7gの硝酸アルミニウム九水和物を500mLの純水に溶解させ、硝酸ニッケルと硝酸アルミニウムの混合水溶液を調製した(水溶液A1)。別途、42.7gの炭酸アンモニウムを1.0Lの純水に溶解させた水溶液B1を調製した。常温下で激しく撹拌した水溶液B1に水溶液A1を滴下し、沈殿物を生成させた。その後、当該沈殿物をろ過回収し、水洗後、150℃で一晩乾燥させた。乾燥後の沈殿物を粉砕し、管状炉に充填して10体積%水素ガス(窒素希釈)を用いて650℃で一時間還元して、ニッケルとアルミナからなる触媒1を得た。得られた触媒1のニッケル含有率は67質量%、アルミナの含有量は33質量%であった。
Production Example 1
34.9 g of nickel nitrate hexahydrate and 25.7 g of aluminum nitrate nonahydrate were dissolved in 500 mL of pure water to prepare a mixed aqueous solution of nickel nitrate and aluminum nitrate (aqueous solution A1). Separately, an aqueous solution B1 in which 42.7 g of ammonium carbonate was dissolved in 1.0 L of pure water was prepared. The aqueous solution A1 was dropped into the aqueous solution B1 that was vigorously stirred at room temperature to form a precipitate. Thereafter, the precipitate was collected by filtration, washed with water, and dried at 150 ° C. overnight. The dried precipitate was pulverized, filled into a tube furnace, and reduced at 650 ° C. for 1 hour using 10 vol% hydrogen gas (diluted with nitrogen) to obtain catalyst 1 composed of nickel and alumina. The obtained catalyst 1 had a nickel content of 67% by mass and an alumina content of 33% by mass.

製造例2
81.4gの硝酸ニッケル六水和物と23.4gの硝酸アルミニウム九水和物を500mLの純水に溶解させ、硝酸ニッケルと硝酸アルミニウムの混合水溶液を調製した(水溶液A2)。別途、327gの25質量%水酸化テトラメチルアンモニウム水溶液を1.5Lの純水に溶解させた水溶液B2を調製した。常温下で激しく撹拌した水溶液B2に水溶液A2を滴下し、沈殿物を生成させた。その後、当該沈殿物をろ過回収し、水洗後、150℃で一晩乾燥させた。乾燥後の沈殿物を粉砕し、管状炉に充填して10体積%水素ガス(窒素希釈)を用いて450℃で一時間還元して、ニッケルとアルミナからなる触媒2を得た。得られた触媒2のニッケル含有率は84質量%、アルミナの含有率は16質量%であった。
Production Example 2
81.4 g of nickel nitrate hexahydrate and 23.4 g of aluminum nitrate nonahydrate were dissolved in 500 mL of pure water to prepare a mixed aqueous solution of nickel nitrate and aluminum nitrate (aqueous solution A2). Separately, an aqueous solution B2 in which 327 g of a 25 mass% tetramethylammonium hydroxide aqueous solution was dissolved in 1.5 L of pure water was prepared. The aqueous solution A2 was added dropwise to the aqueous solution B2 vigorously stirred at room temperature to generate a precipitate. Thereafter, the precipitate was collected by filtration, washed with water, and dried at 150 ° C. overnight. The dried precipitate was pulverized, filled into a tubular furnace, and reduced at 450 ° C. for 1 hour using 10 vol% hydrogen gas (diluted with nitrogen) to obtain catalyst 2 composed of nickel and alumina. The obtained catalyst 2 had a nickel content of 84 mass% and an alumina content of 16 mass%.

製造例3
34.9gの硝酸ニッケル六水和物と21.8gの硝酸マグネシウム六水和物を500mLの純水に溶解させ、硝酸ニッケルと硝酸マグネシウムの混合水溶液を調製した(水溶液A3)。別途、57.6gの水酸化カリウムを1.0Lの純水に溶解させた水溶液B3を調製した。常温下で激しく撹拌した水溶液B3に水溶液A3を滴下し、沈殿物を生成させた。当該沈殿物をろ過し、十分に水洗した後、150℃で一晩乾燥させた。乾燥後の沈殿物をさらに焼成炉にて650℃で3時間焼成した。焼成後の固体を粉砕し、管状炉に充填して10体積%水素ガス(窒素希釈)を用いて650℃で一時間還元して、ニッケルとマグネシアからなる触媒3を得た。得られた触媒3のニッケル含有率は67質量%、マグネシアの含有率は33質量%であった。
Production Example 3
34.9 g of nickel nitrate hexahydrate and 21.8 g of magnesium nitrate hexahydrate were dissolved in 500 mL of pure water to prepare a mixed aqueous solution of nickel nitrate and magnesium nitrate (aqueous solution A3). Separately, an aqueous solution B3 in which 57.6 g of potassium hydroxide was dissolved in 1.0 L of pure water was prepared. The aqueous solution A3 was dropped into the aqueous solution B3 that was vigorously stirred at room temperature to form a precipitate. The precipitate was filtered, washed thoroughly with water, and dried overnight at 150 ° C. The dried precipitate was further baked at 650 ° C. for 3 hours in a baking furnace. The fired solid was pulverized, filled into a tube furnace, and reduced at 650 ° C. for 1 hour using 10 vol% hydrogen gas (diluted with nitrogen) to obtain catalyst 3 composed of nickel and magnesia. The obtained catalyst 3 had a nickel content of 67% by mass and a magnesia content of 33% by mass.

製造例4
150℃で一晩乾燥させたγ−アルミナ(Strem Chemicals Inc.製)粉体を粉砕し、当該粉体20gに、24.8gの硝酸ニッケル六水和物を50mLの純水に溶解させた水溶液を加え、撹拌しながら加熱して水分を蒸発させて乾燥物を得た。得られた乾燥物を、さらに150℃で一晩乾燥後、粉砕して管状炉に充填し、10体積%水素ガス(窒素希釈)を用いて450℃で一時間還元してニッケルとγ−アルミナからなる触媒4を得た。得られた触媒4のニッケル含有量は、20質量%であった。
Production Example 4
An aqueous solution in which γ-alumina (manufactured by Strem Chemicals Inc.) powder dried overnight at 150 ° C. is pulverized, and 24.8 g of nickel nitrate hexahydrate is dissolved in 50 mL of pure water in 20 g of the powder. And heated with stirring to evaporate the water to obtain a dried product. The obtained dried product was further dried at 150 ° C. overnight, then pulverized and filled into a tubular furnace, and reduced at 450 ° C. for 1 hour using 10% by volume hydrogen gas (diluted with nitrogen) to obtain nickel and γ-alumina. A catalyst 4 consisting of The resulting catalyst 4 had a nickel content of 20% by mass.

製造例5
23.3gの硝酸ニッケル六水和物、25.0gの硝酸アルミニウム九水和物、及び7.6gの硝酸ランタン六水和物を500mLの純水に溶解させ、硝酸ニッケル、硝酸アルミニウム、及び硝酸ランタンの混合水溶液を調製した(水溶液A4)。別途、39.6gの炭酸アンモニウムを1.0Lの純水に溶解させた水溶液B4を調製した。常温下で激しく撹拌した水溶液B4に水溶液A4を滴下し、沈殿物を生成させた。その後、当該沈殿物をろ過回収し、水洗後、150℃で一晩乾燥させた。乾燥後の沈殿物を粉砕し、管状炉に充填して10体積%水素ガス(窒素希釈)を用いて650℃で一時間還元して、ニッケル、アルミナ、及び酸化ランタンからなる触媒5を得た。得られた触媒5のニッケル、アルミナ、及び酸化ランタンの含有率は、それぞれ43質量%、31質量%、及び26質量%であった。
Production Example 5
23.3 g of nickel nitrate hexahydrate, 25.0 g of aluminum nitrate nonahydrate, and 7.6 g of lanthanum nitrate hexahydrate are dissolved in 500 mL of pure water, and nickel nitrate, aluminum nitrate, and nitric acid are dissolved. A mixed aqueous solution of lanthanum was prepared (aqueous solution A4). Separately, an aqueous solution B4 in which 39.6 g of ammonium carbonate was dissolved in 1.0 L of pure water was prepared. The aqueous solution A4 was dropped into the aqueous solution B4 that was vigorously stirred at room temperature to form a precipitate. Thereafter, the precipitate was collected by filtration, washed with water, and dried at 150 ° C. overnight. The dried precipitate was pulverized, filled into a tube furnace, and reduced at 650 ° C. for 1 hour using 10 vol% hydrogen gas (diluted with nitrogen) to obtain catalyst 5 composed of nickel, alumina, and lanthanum oxide. . The contents of nickel, alumina, and lanthanum oxide in the obtained catalyst 5 were 43% by mass, 31% by mass, and 26% by mass, respectively.

製造例6
105.0gの硝酸アルミニウム九水和物を500mLの純水に溶解させた(水溶液A5)。別途、80.6gの炭酸アンモニウムを1.5Lの純水に溶解させた水溶液B5を調製した。常温下で激しく撹拌した水溶液B5に水溶液A5を滴下し、沈殿物を生成させた。その後、当該沈殿物をろ過回収し、水洗後、150℃で一晩乾燥させた。乾燥後の沈殿物を粉砕し、管状炉に充填して10体積%水素ガス(窒素希釈)を用いて650℃で一時間還元処理してアルミナからなる粉体1を得た。
Production Example 6
105.0 g of aluminum nitrate nonahydrate was dissolved in 500 mL of pure water (aqueous solution A5). Separately, an aqueous solution B5 in which 80.6 g of ammonium carbonate was dissolved in 1.5 L of pure water was prepared. The aqueous solution A5 was dropped into the aqueous solution B5 that was vigorously stirred at room temperature to form a precipitate. Thereafter, the precipitate was collected by filtration, washed with water, and dried at 150 ° C. overnight. The dried precipitate was pulverized, filled into a tubular furnace, and reduced at 650 ° C. for 1 hour using 10 vol% hydrogen gas (diluted with nitrogen) to obtain powder 1 made of alumina.

製造例7
93.8gの硝酸アルミニウム九水和物を500mLの純水に溶解させた(水溶液A6)。別途、684gの25質量%水酸化テトラメチルアンモニウム水溶液を1.5Lの純水に溶解させた水溶液B6を調製した。常温下で激しく撹拌した水溶液B6に水溶液A6を滴下し、沈殿物を生成させた。その後、当該沈殿物をろ過回収し、水洗後、150℃で一晩乾燥させた。乾燥後の沈殿物を粉砕し、管状炉に充填して10体積%水素ガス(窒素希釈)を用いて450℃で一時間還元してアルミナからなる粉体2を得た。
Production Example 7
93.8 g of aluminum nitrate nonahydrate was dissolved in 500 mL of pure water (aqueous solution A6). Separately, an aqueous solution B6 in which 684 g of a 25 mass% tetramethylammonium hydroxide aqueous solution was dissolved in 1.5 L of pure water was prepared. The aqueous solution A6 was added dropwise to the aqueous solution B6 vigorously stirred at room temperature to generate a precipitate. Thereafter, the precipitate was collected by filtration, washed with water, and dried at 150 ° C. overnight. The dried precipitate was pulverized, filled into a tube furnace, and reduced at 450 ° C. for 1 hour using 10 vol% hydrogen gas (diluted with nitrogen) to obtain powder 2 made of alumina.

製造例8
102.6gの硝酸マグネシウム六水和物を500mLの純水に溶解させた(水溶液A7)。別途、112.2gの水酸化カリウムを2Lの純水に溶解させた水溶液B7を調製した。常温下で激しく撹拌した水溶液B7に水溶液A7を滴下し、沈殿物を生成させた。当該沈殿物をろ過し、十分に水洗した後、150℃で一晩乾燥させた。乾燥後の沈殿物をさらに焼成炉にて650℃で3時間焼成した。焼成後の固体を粉砕し、管状炉に充填して10体積%水素ガス(窒素希釈)を用いて650℃で一時間還元処理してマグネシアからなる粉体3を得た。
Production Example 8
102.6 g of magnesium nitrate hexahydrate was dissolved in 500 mL of pure water (aqueous solution A7). Separately, an aqueous solution B7 in which 112.2 g of potassium hydroxide was dissolved in 2 L of pure water was prepared. The aqueous solution A7 was added dropwise to the aqueous solution B7 that was vigorously stirred at room temperature to form a precipitate. The precipitate was filtered, washed thoroughly with water, and dried overnight at 150 ° C. The dried precipitate was further baked at 650 ° C. for 3 hours in a baking furnace. The fired solid was pulverized, filled into a tube furnace, and reduced at 650 ° C. for 1 hour using 10 vol% hydrogen gas (diluted with nitrogen) to obtain a powder 3 made of magnesia.

製造例9
製造例4で使用したγ−アルミナ(Strem Chemicals Inc.製)を粉砕後、当該粉体を管状炉に充填し、10体積%水素ガス(窒素希釈)を用いて450℃で一時間還元処理してγ−アルミナからなる粉体4を得た。
Production Example 9
After γ-alumina (manufactured by Strem Chemicals Inc.) used in Production Example 4 was pulverized, the powder was filled into a tube furnace and reduced at 450 ° C. for 1 hour using 10 vol% hydrogen gas (diluted with nitrogen). Thus, powder 4 made of γ-alumina was obtained.

製造例10
25.0gの硝酸アルミニウム九水和物と7.6gの硝酸ランタン六水和物を500mLの純水に溶解させ、硝酸アルミニウムと硝酸ランタンの混合水溶液を調製した(水溶液A8)。別途、24.3gの炭酸アンモニウムを1.0Lの純水に溶解させた水溶液B8を調製した。常温下で激しく撹拌した水溶液B8に水溶液A8を滴下し、沈殿物を生成させた。その後、当該沈殿物をろ過回収し、水洗後、150℃で一晩乾燥させた。乾燥後の沈殿物を粉砕し、管状炉に充填して10体積%水素ガス(窒素希釈)を用いて650℃で一時間還元して、アルミナと酸化ランタンからなる粉体5を得た。
Production Example 10
25.0 g of aluminum nitrate nonahydrate and 7.6 g of lanthanum nitrate hexahydrate were dissolved in 500 mL of pure water to prepare a mixed aqueous solution of aluminum nitrate and lanthanum nitrate (aqueous solution A8). Separately, an aqueous solution B8 in which 24.3 g of ammonium carbonate was dissolved in 1.0 L of pure water was prepared. The aqueous solution A8 was dropped into the aqueous solution B8 that was vigorously stirred at room temperature to form a precipitate. Thereafter, the precipitate was collected by filtration, washed with water, and dried at 150 ° C. overnight. The dried precipitate was pulverized, filled into a tube furnace, and reduced at 650 ° C. for 1 hour using 10 vol% hydrogen gas (diluted with nitrogen) to obtain a powder 5 made of alumina and lanthanum oxide.

製造例11
52.5gの硝酸ニッケル六水和物、3.1gの硝酸ランタン六水和物、及び14.19gのジルコゾール(登録商標)ZN(第一稀元素化学工業株式会社製、オキシ硝酸ジルコニウム水溶液:酸化ジルコニウムとして25質量%含有)を720mLの純水に溶解させ、硝酸ニッケル、硝酸ランタン、及びオキシ硝酸ジルコニウムの混合水溶液を調製した(水溶液A9)。別途、63.0gの炭酸カリウムを360mLの純水に溶解させた水溶液B9を調製した。常温下で激しく撹拌した水溶液B9に水溶液A9を滴下し、沈殿物を生成させた。その後、当該沈殿物をろ過回収し、水洗後、110℃で乾燥させた。乾燥後の沈殿物を粉砕し、窒素雰囲気中、600℃で3時間焼成してニッケル、ランタン及びジルコニアの酸化物を得た。さらに管状炉に充填し、10体積%水素ガス(窒素希釈)を用いて600℃で一時間還元して触媒6を得た。窒素ガスを用いたBET法で測定した触媒6の比表面積(S1)は、84.5m2/gであった。得られた触媒6のニッケル含有率は74質量%であった。
Production Example 11
52.5 g of nickel nitrate hexahydrate, 3.1 g of lanthanum nitrate hexahydrate, and 14.19 g of Zircosol (registered trademark) ZN (manufactured by Daiichi Rare Element Chemical Co., Ltd., zirconium oxynitrate aqueous solution: oxidation) 25 wt% as zirconium) was dissolved in 720 mL of pure water to prepare a mixed aqueous solution of nickel nitrate, lanthanum nitrate, and zirconium oxynitrate (aqueous solution A9). Separately, an aqueous solution B9 in which 63.0 g of potassium carbonate was dissolved in 360 mL of pure water was prepared. The aqueous solution A9 was dropped into the aqueous solution B9 that was vigorously stirred at room temperature to form a precipitate. Thereafter, the precipitate was collected by filtration, washed with water, and dried at 110 ° C. The precipitate after drying was pulverized and calcined at 600 ° C. for 3 hours in a nitrogen atmosphere to obtain oxides of nickel, lanthanum and zirconia. Further, it was filled in a tubular furnace and reduced at 600 ° C. for 1 hour using 10 vol% hydrogen gas (diluted with nitrogen) to obtain a catalyst 6. The specific surface area (S1) of the catalyst 6 measured by the BET method using nitrogen gas was 84.5 m 2 / g. The resulting catalyst 6 had a nickel content of 74% by mass.

また、触媒6のニッケルの算出比表面積(S2)を算出するために、添加物質であるランタン・ジルコニアのみからなる粉体6を調製した。具体的には、まず4.3gの硝酸ランタン六水和物と19.7gのジルコゾールZNを240mLの純水に溶解させ、硝酸ランタンとオキシ硝酸ジルコニウムの混合水溶液を調製した(水溶液a9)。別途、21.5gの炭酸カリウムを120mLの純水に溶解させた水溶液b9を調製した。常温下で激しく撹拌した水溶液b9に水溶液a9を滴下し、沈殿物を生成させた。その後、当該沈殿物をろ過回収し、水洗後、110℃で乾燥させた。乾燥後の沈殿物を粉砕し、窒素雰囲気中、600℃で3時間焼成してランタンとジルコニアの酸化物を得た。さらに管状炉に充填し、10体積%水素ガス(窒素希釈)を用いて600℃で一時間還元して粉体6を得た。窒素ガスを用いたBET法で測定した粉体6の比表面積は108.8m2/gであった。 In addition, in order to calculate the calculated specific surface area (S2) of nickel of the catalyst 6, a powder 6 made only of lanthanum zirconia as an additive substance was prepared. Specifically, first, 4.3 g of lanthanum nitrate hexahydrate and 19.7 g of zircozole ZN were dissolved in 240 mL of pure water to prepare a mixed aqueous solution of lanthanum nitrate and zirconium oxynitrate (aqueous solution a9). Separately, an aqueous solution b9 in which 21.5 g of potassium carbonate was dissolved in 120 mL of pure water was prepared. The aqueous solution a9 was dropped into the aqueous solution b9 that was vigorously stirred at room temperature to form a precipitate. Thereafter, the precipitate was collected by filtration, washed with water, and dried at 110 ° C. The precipitate after drying was pulverized and calcined at 600 ° C. for 3 hours in a nitrogen atmosphere to obtain an oxide of lanthanum and zirconia. Further, it was filled in a tubular furnace and reduced at 600 ° C. for 1 hour using 10 vol% hydrogen gas (diluted with nitrogen) to obtain a powder 6. The specific surface area of the powder 6 measured by the BET method using nitrogen gas was 108.8 m 2 / g.

<触媒の比表面積測定法>
触媒の比表面積は、窒素ガスを用いたBET法により測定した。
<Method for measuring specific surface area of catalyst>
The specific surface area of the catalyst was measured by the BET method using nitrogen gas.

<ニッケルの比表面積算出法>
ニッケルの算出比表面積は、触媒の比表面積から添加物質由来の比表面積分を減じることにより算出した。触媒中の添加物質由来の比表面積は、以下のようにして求めた。具体的には、各製造例で使用した添加物質前駆体のみを用いて、その製造例における触媒調製手順と同様に、添加物質のみからなる粉体を調製した。得られた添加物質のみからなる粉体について、窒素ガスを用いたBET法により比表面積(S(b))を測定した。下記式により触媒中の添加物質由来の比表面積を算出した。
触媒中の添加物質由来の比表面積=(S(b)×当該触媒中の添加物質の質量含有率)
<Calculation method of specific surface area of nickel>
The calculated specific surface area of nickel was calculated by subtracting the specific surface integral derived from the additive substance from the specific surface area of the catalyst. The specific surface area derived from the additive substance in the catalyst was determined as follows. Specifically, using only the additive precursor used in each production example, a powder consisting only of the additive substance was prepared in the same manner as the catalyst preparation procedure in the production example. The specific surface area (S (b)) was measured by the BET method using nitrogen gas for the obtained powder consisting only of the additive substance. The specific surface area derived from the additive substance in the catalyst was calculated from the following formula.
Specific surface area derived from additive substance in catalyst = (S (b) × mass content of additive substance in catalyst)

Figure 2011224555
Figure 2011224555

<アンモニア分解反応>
10mmφのSUS316製反応管を用い、製造例で調製した触媒1〜6を0.8mL充填して水蒸気共存下でのアンモニア分解反応を行った。常圧下、SV=21,000hr-1とし、電気炉で反応管を加熱し、各電気炉設定温度でのアンモニア分解率を測定した。アンモニア分解反応は、触媒に供給する入口ガス組成をアンモニア48.3体積%、水蒸気17.3体積%及び残部窒素として実施した。
アンモニア分解率は、入口に供給しているアンモニア流速V1、窒素流速V2及び触媒層出口ガス中に含まれる水蒸気及び未反応アンモニアをトラップした後のガス流速V3から下記式により算出した。なお、触媒の前処理として窒素で希釈した10%水素を毎分100mlで流通しながら450℃で1時間還元を行ってから水蒸気共存下でのアンモニア分解反応を実施した。反応結果を表2に示す。
アンモニア分解率(%)=100×(V3−V2)×0.5/V1
<Ammonia decomposition reaction>
Using a 10 mmφ SUS316 reaction tube, 0.8 mL of the catalyst 1 to 6 prepared in the production example was charged, and ammonia decomposition reaction was performed in the presence of water vapor. Under normal pressure, SV = 21,000 hr −1 , the reaction tube was heated in an electric furnace, and the ammonia decomposition rate at each electric furnace set temperature was measured. The ammonia decomposition reaction was carried out with the composition of the inlet gas supplied to the catalyst being 48.3% by volume of ammonia, 17.3% by volume of steam and the balance nitrogen.
The ammonia decomposition rate was calculated from the ammonia flow rate V1 and nitrogen flow rate V2 supplied to the inlet and the gas flow rate V3 after trapping water vapor and unreacted ammonia contained in the catalyst layer outlet gas by the following formula. In addition, as a pretreatment of the catalyst, 10% hydrogen diluted with nitrogen was reduced at 450 ° C. for 1 hour while flowing at 100 ml per minute, and then an ammonia decomposition reaction was carried out in the presence of water vapor. The reaction results are shown in Table 2.
Ammonia decomposition rate (%) = 100 × (V3−V2) × 0.5 / V1

Figure 2011224555
Figure 2011224555

表2から分かるように触媒調製が共沈法であってもニッケルが表面に多く存在する本発明にかかる触媒ができるとは限らない。また単に触媒自体の比表面積が大きいものを使用したとしてもニッケルが触媒表面広く分散するとは限らないものである。即ち、S2/S1が少し異なるだけであってもアンモニア分解率に著しい差異を生じさせることも容易に理解でき、S2/S1の要素は触媒に与える影響は大きいものである。   As can be seen from Table 2, even if the catalyst preparation is a coprecipitation method, the catalyst according to the present invention in which a large amount of nickel is present on the surface is not necessarily produced. Further, even if a catalyst having a large specific surface area is used, nickel is not necessarily dispersed widely over the catalyst surface. That is, it can be easily understood that even if S2 / S1 is slightly different, a significant difference is caused in the ammonia decomposition rate, and the element of S2 / S1 has a great influence on the catalyst.

<酸素共存下でのアンモニア分解反応>
10mmφのSUS316製反応管を用い、製造例3、4で調製した触媒3、4を0.8mL充填して酸素共存下でのアンモニア分解反応を行った。常圧下、SV=36,000hr-1とし、電気炉で反応管を加熱し、電気炉設定温度350℃でのアンモニア分解率を測定した。アンモニア分解反応は、触媒に供給する入口ガス組成をアンモニア29体積%、酸素4.9体積%及び残部窒素として実施した。
アンモニア分解率は、入口に供給しているアンモニア流速F1、触媒出口ガス中の未反応アンモニアをホウ酸水溶液で一定時間捕集し、当該捕集液に含まれるアンモニア濃度を陽イオンクロマトグラフで定量分析して出口ガス中のアンモニア流速F2を求め、下記式により算出した。なお、触媒の前処理として窒素で希釈した10%水素を毎分100mlで流通しながら450℃で1時間還元を行ってから水蒸気共存下でのアンモニア分解反応を実施した。反応結果を表3に示す。
アンモニア分解率(%)=100−{100×(F2/F1)}
<Ammonia decomposition reaction in the presence of oxygen>
Using a 10 mmφ SUS316 reaction tube, 0.8 mL of Catalysts 3 and 4 prepared in Production Examples 3 and 4 were charged, and ammonia decomposition reaction was performed in the presence of oxygen. Under normal pressure, SV = 36,000 hr −1 , the reaction tube was heated in an electric furnace, and the ammonia decomposition rate at an electric furnace set temperature of 350 ° C. was measured. The ammonia decomposition reaction was carried out with the composition of the inlet gas supplied to the catalyst being 29 volume% ammonia, 4.9 volume% oxygen, and the balance nitrogen.
The ammonia decomposition rate is determined by collecting the ammonia flow rate F1 supplied to the inlet, unreacted ammonia in the catalyst outlet gas with an aqueous boric acid solution for a certain period of time, and quantifying the ammonia concentration contained in the collected liquid with a cation chromatograph. The ammonia flow rate F2 in the outlet gas was determined by analysis and calculated by the following formula. In addition, as a pretreatment of the catalyst, 10% hydrogen diluted with nitrogen was reduced at 450 ° C. for 1 hour while flowing at 100 ml per minute, and then an ammonia decomposition reaction was carried out in the presence of water vapor. The reaction results are shown in Table 3.
Ammonia decomposition rate (%) = 100− {100 × (F2 / F1)}

Figure 2011224555
Figure 2011224555

本発明は、アンモニアの分解に関するものであり、本発明を用いることでアンモニアから水素を効率よく得ることができる。本発明は、水素製造技術に関して広く応用することができるものである。   The present invention relates to the decomposition of ammonia, and hydrogen can be efficiently obtained from ammonia by using the present invention. The present invention can be widely applied to hydrogen production technology.

Claims (6)

ニッケルと、長周期型周期律表2〜5及び12〜15族の金属元素からなる群から選ばれる少なくとも1種の金属酸化物及び/又は複合酸化物である添加物質とを含む触媒であって、
ニッケルの算出比表面積(S2)と当該触媒の比表面積(S1)との比(S2/S1)が、0.50〜0.85であることを特徴とするアンモニア分解用触媒。
A catalyst comprising nickel and an additive substance which is at least one metal oxide and / or composite oxide selected from the group consisting of metal elements of groups 2 to 5 and 12 to 15 of the long periodic table ,
A catalyst for ammonia decomposition, wherein the ratio (S2 / S1) of the calculated specific surface area (S2) of nickel and the specific surface area (S1) of the catalyst is 0.50 to 0.85.
前記添加物質がアルミナ、シリカ、ジルコニア、アルカリ土類金属酸化物及びランタノイド系金属酸化物からなる群から選ばれる少なくとも一種の金属酸化物及び/又は複合酸化物である請求項1記載のアンモニア分解用触媒。   The ammonia-decomposing material according to claim 1, wherein the additive substance is at least one metal oxide and / or composite oxide selected from the group consisting of alumina, silica, zirconia, alkaline earth metal oxides, and lanthanoid metal oxides. catalyst. ニッケルを触媒全量に対して55〜95質量%含有する請求項1又は2記載のアンモニア分解用触媒。   The catalyst for ammonia decomposition according to claim 1 or 2, wherein nickel is contained in an amount of 55 to 95 mass% with respect to the total amount of the catalyst. 請求項1〜3のいずれか1項に記載のアンモニア分解用触媒の製造方法であって、
ニッケルの水溶性塩と添加物質前駆体の水溶性塩とを水に溶解し、アルカリ性化合物によりニッケル及び添加物質前駆体の沈殿物を生成させた後、ろ過、水洗、乾燥、熱処理することを特徴とするアンモニア分解用触媒の製造方法。
It is a manufacturing method of the catalyst for ammonia decomposition | disassembly of any one of Claims 1-3,
A water-soluble salt of nickel and a water-soluble salt of an additive precursor are dissolved in water, and a precipitate of nickel and the additive precursor is generated by an alkaline compound, followed by filtration, washing, drying, and heat treatment. A process for producing an ammonia decomposition catalyst.
請求項1〜3のいずれか1項に記載のアンモニア分解用触媒の製造方法であって、
ニッケル塩を水に加え水溶液を調製し、この水溶液にアルカリ性化合物を加えてニッケルを含有する微粒子を析出させて微粒子分散液を調製し、当該微粒子分散液を撹拌しながら前記添加物質の微粒子分散ゾル溶液を添加して、ニッケルを含有する微粒子と添加物質微粒子からなる沈殿物を生成させた後、この沈殿物をろ過、水洗、乾燥、熱処理することを特徴とするアンモニア分解用触媒の製造方法。
It is a manufacturing method of the catalyst for ammonia decomposition | disassembly of any one of Claims 1-3,
A nickel salt is added to water to prepare an aqueous solution, an alkaline compound is added to the aqueous solution to precipitate fine particles containing nickel to prepare a fine particle dispersion, and the fine particle dispersion sol of the additive substance is stirred while stirring the fine particle dispersion. A method for producing an ammonia decomposition catalyst, comprising: adding a solution to form a precipitate comprising nickel-containing fine particles and additive substance fine particles; and filtering, washing, drying, and heat-treating the precipitate.
請求項1〜3のいずれか1項に記載の触媒を用いて、アンモニアを分解し水素を得ることを特徴とする水素製造方法。   A method for producing hydrogen, comprising decomposing ammonia by using the catalyst according to claim 1 to obtain hydrogen.
JP2011073603A 2010-03-31 2011-03-29 Catalyst for decomposing ammonia and method for producing the catalyst, and method for producing hydrogen using the catalyst Pending JP2011224555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011073603A JP2011224555A (en) 2010-03-31 2011-03-29 Catalyst for decomposing ammonia and method for producing the catalyst, and method for producing hydrogen using the catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010080136 2010-03-31
JP2010080136 2010-03-31
JP2011073603A JP2011224555A (en) 2010-03-31 2011-03-29 Catalyst for decomposing ammonia and method for producing the catalyst, and method for producing hydrogen using the catalyst

Publications (1)

Publication Number Publication Date
JP2011224555A true JP2011224555A (en) 2011-11-10

Family

ID=45040602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011073603A Pending JP2011224555A (en) 2010-03-31 2011-03-29 Catalyst for decomposing ammonia and method for producing the catalyst, and method for producing hydrogen using the catalyst

Country Status (1)

Country Link
JP (1) JP2011224555A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114160150A (en) * 2021-12-31 2022-03-11 西南化工研究设计院有限公司 Large-scale high-pressure ammonia decomposition catalyst and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032790A1 (en) * 2008-09-17 2010-03-25 株式会社日本触媒 Catalyst for ammonia decomposition, process for producing same, and method of treating ammonia

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032790A1 (en) * 2008-09-17 2010-03-25 株式会社日本触媒 Catalyst for ammonia decomposition, process for producing same, and method of treating ammonia

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114160150A (en) * 2021-12-31 2022-03-11 西南化工研究设计院有限公司 Large-scale high-pressure ammonia decomposition catalyst and preparation method thereof
CN114160150B (en) * 2021-12-31 2023-01-10 西南化工研究设计院有限公司 Large-scale high-pressure ammonia decomposition catalyst and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6381131B2 (en) Ammonia decomposition catalyst, method for producing the catalyst, and method for decomposing ammonia using the catalyst
JP5737699B2 (en) Catalyst using PdRu solid solution type alloy fine particles
JP3473898B2 (en) Hydrogen purification equipment
JP5483705B2 (en) Hydrogen production catalyst and hydrogen production method using the same
JP7352487B2 (en) Ammonia decomposition catalyst
WO2011125653A1 (en) Catalyst for decomposing ammonia, method for producing the catalyst and method for producing hydrogen using the catalyst
JP5127672B2 (en) Ammonia decomposition catalyst
JP2002282689A (en) Catalyst carrier and catalyst, and method for producing them
Kim et al. Chemical hydrogen storage and release properties using redox reaction over the Cu-added Fe/Ce/Zr mixed oxide medium
JP2019011212A (en) Method for producing hydrogen and hydrogen production catalyst
JP2011045840A (en) Catalyst composition
JP2019155227A (en) Co2 methanation catalyst and carbon dioxide reduction method using the same
JP6684669B2 (en) Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst
JP5691119B2 (en) Method for producing hydrogenation catalyst and method for producing methane gas using the same
JP5624343B2 (en) Hydrogen production method
JP5761710B2 (en) Ammonia decomposition method and method for regenerating catalyst for ammonia decomposition
JP5746539B2 (en) Ammonia decomposition catalyst, method for producing the catalyst, ammonia decomposition method and hydrogen production method using the catalyst
JPH11179204A (en) Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
JP2004209408A (en) Catalyst for reforming hydrocarbon and method for reforming hydrocarbon
JP2011224554A (en) Catalyst for decomposing ammonia, method for producing the catalyst, and method for producing hydrogen using the catalyst
JP5105709B2 (en) Water gas shift reaction catalyst
JP4525909B2 (en) Water gas shift reaction catalyst, method for producing the same, and method for producing water gas
Nikolić et al. Influences of synthesis methods and modifier addition on the properties of Ni-based catalysts supported on reticulated ceramic foams
JP2013017913A (en) Steam-reforming catalyst and hydrogen production process using the same
JP4016100B2 (en) Catalyst for water gas shift reaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150120