JP2011222881A - Led package - Google Patents

Led package Download PDF

Info

Publication number
JP2011222881A
JP2011222881A JP2010092881A JP2010092881A JP2011222881A JP 2011222881 A JP2011222881 A JP 2011222881A JP 2010092881 A JP2010092881 A JP 2010092881A JP 2010092881 A JP2010092881 A JP 2010092881A JP 2011222881 A JP2011222881 A JP 2011222881A
Authority
JP
Japan
Prior art keywords
plating
indium
cobalt
silver
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010092881A
Other languages
Japanese (ja)
Other versions
JP5473738B2 (en
Inventor
Takemi Akimoto
武海 秋元
Fumio Oshita
文夫 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKAMATSU MEKKI KK
Original Assignee
TAKAMATSU MEKKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKAMATSU MEKKI KK filed Critical TAKAMATSU MEKKI KK
Priority to JP2010092881A priority Critical patent/JP5473738B2/en
Publication of JP2011222881A publication Critical patent/JP2011222881A/en
Application granted granted Critical
Publication of JP5473738B2 publication Critical patent/JP5473738B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

PROBLEM TO BE SOLVED: To provide an LED package in which light-reflecting silver plating is clearly conducted on a package base and indium plating or indium-cobalt alloy plating is conducted on the silver plating, whereby a light reflection surface of LED is kept to have high luminance irrespective of time lapse or application of heat.SOLUTION: In an LED package having a cavity wich contains an LED chip joined to the bottom surface thereof and is filled with a transparent sealing material, at least the bottom surface of the cavity serving as a silver-plated reflection surface, indium plating or indium-cobalt (In-Co) alloy plating is conducted on the silver plating as protection film. Light-reflecting silver plating is clearly conducted on a package base to solve a problem of tarnishable silver plating, and indium plating or indium-cobalt (In-Co) alloy plating is conducted on the silver plating to prevent change of color over time, whereby high-luminance and high-efficient reflection surface of LED can be stably maintained even at a high temperature applied to LED.

Description

この発明は、LED(発光ダイオード)のチップが装填されるキャビティの反射面を改善したLEDパッケージに関する。   The present invention relates to an LED package having an improved reflective surface of a cavity in which an LED (light emitting diode) chip is loaded.

発光ダイオードは、電流を流すことによって発光する半導体発光素子であって、GaAsやGaN等の半導体からなるPN接合ダイオードで、これに順方向の電圧(P型にプラス、N型にマイナス)を加えると、P型半導体の内部にプラスの荷電をもつホール(正孔)が、N型半導体の内部にはマイナスの電荷をもった電子がそれぞれ発生し、この二つが結合するときに光が発生する。この光の色はPN接合ダイオードを作る材料などにより、いろいろなものが出せるようになっている。   A light-emitting diode is a semiconductor light-emitting element that emits light when an electric current is applied, and is a PN junction diode made of a semiconductor such as GaAs or GaN. Then, positively charged holes (holes) are generated inside the P-type semiconductor, and negatively charged electrons are generated inside the N-type semiconductor, and light is generated when the two are combined. . Depending on the material used to make the PN junction diode, various colors can be emitted.

最近脚光を浴びている白色LEDは、様々な表示や照明に用いられているが、この発光原理には二つあり、その一つは光の三原色である赤、緑、青を合成して白色とするもので、もう一つは青色LEDを蛍光物質で覆い、これらが発する黄色と元々の青色とが合成されて白色を発光するものである。どちらも、青色LEDが必要であるが、これは発明に成功したメーカーの日亜化学工業株式会社が大きなシェアを占めている。   White LEDs, which have recently been in the limelight, are used for various displays and illuminations. There are two light emission principles, one of which is a combination of the three primary colors red, green, and blue. The other is to cover the blue LED with a fluorescent material, and the yellow and the original blue emitted from these are synthesized to emit white light. In both cases, a blue LED is required, but this is a major share of the manufacturer, Nichia Chemical Co., Ltd., which succeeded in the invention.

LEDの外観については、砲弾型、チップ型、多セグメント型などがある。これを形作るパッケージは、その部材をアノード(陽極)とカソード(陰極)に分け、少なくともその一方が底面となるように逆台形のキャビティ形成され、その底面にLED素子(チップ)が接着され、アノードとカソードとにワイヤーで接続され、そしてキャビティに透明樹脂が充填して封止される。したがって、LED素子から発する光はキャビティの内面に反射し、透明封入材から外部に放出される。   Regarding the appearance of the LED, there are a shell type, a chip type, a multi-segment type, and the like. In the package forming this, the member is divided into an anode (anode) and a cathode (cathode), an inverted trapezoidal cavity is formed so that at least one of them becomes the bottom surface, and an LED element (chip) is bonded to the bottom surface. And the cathode are connected by wires, and the cavity is filled with a transparent resin and sealed. Therefore, the light emitted from the LED element is reflected on the inner surface of the cavity and emitted from the transparent encapsulant to the outside.

キャビティの底面を反射面(リフレクター)とするために、アノードとカソードの基材を金または銀メッキされる。そのうち金は様々な化合物に対して不活性で変色を起こさない点で優れているが、青色光を吸収するため、銀メッキに比較し輝度が低下するというデメリットがある。一方、銀メッキ部分を湿気や化学物質による腐食から保護するため、銀メッキ上にアクリル系樹脂をプライマーとして塗布することにより、銀メッキが変色して光の取り出し効果が低下するのを防止する提案がなされる(特許文献1、特許文献2)。   In order to use the bottom surface of the cavity as a reflecting surface (reflector), the anode and cathode substrates are plated with gold or silver. Among them, gold is excellent in that it is inactive with respect to various compounds and does not cause discoloration. However, since it absorbs blue light, it has a demerit that luminance is lowered as compared with silver plating. On the other hand, in order to protect the silver-plated part from corrosion due to moisture and chemicals, a proposal to prevent the light extraction effect from deteriorating due to discoloration of the silver plating by applying acrylic resin as a primer on the silver plating (Patent Document 1, Patent Document 2).

また、従来の一般的に銀メッキに変色防止処理を施す場合、メッキ工程については、パッケージの基材は、アノードとカソードとに分けて成形され、その両方について、脱脂および酸活性処理の後、下地メッキ(Cu・Ni合金など)をなし、その上に銀メッキを施してから、変色防止処理を施す。これには有機系変色防止剤(2‐ヘプタデルイミダゾール、2‐メルカプトベンゾチアゾール、チオナリドなど)を使用し、浸漬または塗布により銀メッキに表面処理が施される。   In addition, when the conventional silver plating is generally subjected to a discoloration prevention treatment, the substrate of the package is formed separately into an anode and a cathode for the plating step, and both of them are subjected to degreasing and acid activation treatment, A base plating (Cu / Ni alloy or the like) is formed, and a silver plating is applied thereon, followed by a discoloration prevention treatment. For this, an organic discoloration inhibitor (2-heptadelimidazole, 2-mercaptobenzothiazole, thionalide, etc.) is used, and surface treatment is applied to the silver plating by dipping or coating.

2009−206124号公報2009-206124 2009−290180号公報2009-290180

しかしながら、上記のような従来の変色防止処理によれば、作業性がよくないばかりか、パッケージ基材の表面の銀メッキの変色を安定して防止することができなかった。特に、有機系の変色防止剤を使用したときには、それが熱に弱いため、LEDから発する熱を受けることにより機能を喪失し、銀の大気中の硫化物と反応する性質から、銀メッキが次第に変色するという事態は避けられなかった。また、反射効率の低下はLEDの熱がこもる原因となるため悪循環を招くという問題もあった。   However, according to the conventional discoloration preventing treatment as described above, workability is not good, and discoloration of the silver plating on the surface of the package substrate cannot be stably prevented. In particular, when an organic discoloration inhibitor is used, it is vulnerable to heat, so it loses its function by receiving heat generated from the LED, and silver plating gradually becomes a feature because it reacts with sulfides in the atmosphere of silver. The situation of discoloration was inevitable. Moreover, since the reduction | decrease in reflection efficiency causes the heat | fever of LED to accumulate, there also existed a problem of causing a vicious circle.

この発明は、上記のような実情に鑑みて、パッケージ基材に清浄に光を反射する銀メッキを施すもので、その銀メッキの上にインジウムメッキ又はインジウム・コバルト合金メッキ処理を施すことにより、経時的に又熱を受けてもLEDの光の反射面が高輝度を維持するLEDパッケージを提供することを課題とした。   In view of the above situation, the present invention is to apply a silver plating that reflects light cleanly on the package base material, and by applying an indium plating or indium / cobalt alloy plating treatment on the silver plating, An object of the present invention is to provide an LED package in which the light reflection surface of the LED maintains high luminance even when it receives heat over time.

上記の課題を解決するために、この発明は、LEDチップが底面に接合されて納められ透明封入材が充填されるキャビティを有し、キャビティの少なくとも底面が銀メッキによる反射面であるLEDパッケージにおいて、該銀メッキの上にインジウムメッキ又はインジウム・コバルト(In−Co)合金メッキが保護膜として施されていることを特徴とするLEDパッケージを提供する。   In order to solve the above-described problems, the present invention provides an LED package in which an LED chip is bonded to a bottom surface and is provided with a cavity filled with a transparent encapsulant, and at least the bottom surface of the cavity is a reflective surface by silver plating. The LED package is characterized in that an indium plating or an indium cobalt (In-Co) alloy plating is applied as a protective film on the silver plating.

LEDパッケージを上記のように構成したから、銀メッキはインジウムメッキ又はインジウム・コバルト(In−Co)合金メッキにより変色しないように保護されるが、インジウムメッキ又はインジウム・コバルト(In−Co)合金メッキは高温に耐えるために、この機能が確実に発揮される。   Since the LED package is configured as described above, the silver plating is protected from being discolored by indium plating or indium cobalt (In-Co) alloy plating, but indium plating or indium cobalt (In-Co) alloy plating. Since it withstands high temperatures, this function is reliably performed.

インジウム(In)は、原子番号49の元素で、第3族元素の一つである。インジウムの色調は銀白色の柔らかい金属で、常温、空気中で安定する金属である。現在、インジウムは透明導電皮膜、光デバイスや半導体などの用途向けに要求が高まっている。また、インジウム・コバルト合金皮膜は耐熱性が強く、熱に対して銀などの皮膜との熱拡散しにくいため、これからの工業向け電子部品に採用することにも最適である。   Indium (In) is an element having an atomic number of 49 and is one of Group 3 elements. Indium is a silver-white soft metal that is stable in air at room temperature. Currently, indium is in high demand for applications such as transparent conductive films, optical devices and semiconductors. Indium-cobalt alloy films have strong heat resistance and are difficult to thermally diffuse with films such as silver against heat, so they are ideal for use in industrial electronic components in the future.

インジウムメッキ又はインジウム・コバルト(In−Co)合金メッキの皮膜の特徴については、それが0.0001μmであっても次のような特徴を有する。
(1) 柔らかい銀白色の均一でピンホールのない皮膜が得られる。
(2) 下地メッキ金属の色調及び光沢度に影響しない。
(3) 皮膜の結晶は均一の微細粒子である。
(4) インジウム・コバルト合金メッキ皮膜の場合には、インジウム50〜98%及びコバルト50〜2%の合金比率が最適である。
(5) 皮膜の厚さがたとえ、わずか0.0001μmでも耐酸アルカリ性、耐硫化ガスなどに優れている。
About the characteristic of the film | membrane of an indium plating or an indium cobalt (In-Co) alloy plating, even if it is 0.0001 micrometer, it has the following characteristics.
(1) A soft silver-white uniform film without pinholes can be obtained.
(2) Does not affect the color and gloss of the base plating metal.
(3) The crystals of the film are uniform fine particles.
(4) In the case of an indium-cobalt alloy plating film, an alloy ratio of 50 to 98% indium and 50 to 2% cobalt is optimal.
(5) Even if the thickness of the film is only 0.0001 μm, it is excellent in acid / alkali resistance, sulfur gas resistance and the like.

今まで銀の表面に無機又は有機化合物を使用する銀変色防止剤が開発、使用されてきたが、LEDの環境下では効果が得られなかった。本発明は、上記のインジウムメッキ又はインジウム・コバルト合金メッキの特徴に着目し、特に安定した高度反射率を要求するLEDパッケージのキャビティの反射面において、銀メッキ皮膜上にインジウムメッキ又はインジウム・コバルト(In−Co)合金メッキをたとえ0.0001μmの僅少な厚みでメッキされていても銀の変色を確実に防止することができるという知見を得て所期の目的を達成し得たものである。   Until now, silver discoloration inhibitors using inorganic or organic compounds on the surface of silver have been developed and used, but no effect has been obtained under the environment of LEDs. The present invention pays attention to the characteristics of the above-mentioned indium plating or indium / cobalt alloy plating. In particular, in the reflective surface of the cavity of the LED package that requires stable high reflectance, indium plating or indium / cobalt ( Even if the In—Co) alloy plating is plated with a slight thickness of 0.0001 μm, the knowledge that silver discoloration can be surely prevented can be obtained and the intended purpose can be achieved.

以上説明したように、この発明のLEDパッケージによれば、パッケージ基材に清浄に光を反射する銀メッキを施すもので、変色しやすいという銀メッキの欠点を解決し、その銀メッキの上にインジウムメッキ又はインジウム・コバルト(In−Co)合金メッキを施すことにより、経時的に変色が防止され、LEDに係る高温でも高輝度且つ高効率な反射面を安定して維持することができるという優れた効果がある。   As described above, according to the LED package of the present invention, the package base material is subjected to silver plating that reflects light cleanly, and solves the disadvantage of silver plating that is easily discolored. By applying indium plating or indium-cobalt (In-Co) alloy plating, discoloration is prevented over time, and it is possible to stably maintain a high-brightness and high-efficiency reflective surface even at high temperatures related to LEDs. There is an effect.

この発明のLEDパッケージをLEDの概略の制作要領で示す一の手順の断面説明図である。It is sectional explanatory drawing of one procedure which shows the LED package of this invention in the outline production point of LED. 次の手順の説明図である。It is explanatory drawing of the following procedure. 次の手順の説明図である。It is explanatory drawing of the following procedure. 次の手順の説明図である。It is explanatory drawing of the following procedure. 次の手順の説明図である。It is explanatory drawing of the following procedure. LEDが完成した説明図である。It is explanatory drawing which LED completed. 他の実施例を示す図6に対応する断面説明図である。It is sectional explanatory drawing corresponding to FIG. 6 which shows another Example. 他の実施例を示す図6に対応する断面説明図である。It is sectional explanatory drawing corresponding to FIG. 6 which shows another Example.

本発明は、LEDパッケージを構成するアノード基材1aとカソード基材1bとの両方又は一方に銀メッキ5を施すとともにその上に変色防止を主目的とするインジウムメッキ又はインジウム・コバルト(In−Co)合金メッキ7を施すものである。インジウムメッキには、シアン化合物浴、スルファミン酸塩浴、ホウフッ化物浴などがある。インジウム・コバルト合金の場合には、スルファミン酸などの無機酸化合物又はクエン酸などの有機酸化合物より構成をしたメッキ浴である。   In the present invention, silver plating 5 is applied to one or both of the anode substrate 1a and the cathode substrate 1b constituting the LED package, and indium plating or indium cobalt (In-Co) mainly intended to prevent discoloration thereon. ) Alloy plating 7 is applied. Examples of indium plating include a cyanide bath, a sulfamate bath, and a borofluoride bath. In the case of an indium-cobalt alloy, it is a plating bath composed of an inorganic acid compound such as sulfamic acid or an organic acid compound such as citric acid.

(1) シアン化合物浴は、密着のよい光沢あるメッキが得られる。しかし、不溶性陽極を使用する必要があり、また、浴の管理が他の浴に比べて若干難しい。   (1) A cyanide bath provides a glossy plating with good adhesion. However, it is necessary to use an insoluble anode, and the management of the bath is somewhat difficult compared to other baths.

〔シアン化合物浴組成及びメッキ条件〕
インジウム濃度 35g/1
シアン化カリウム 100g/1
水酸化カリウム 60g/1
添加剤 適量
pH 13以上
浴温度 20〜30°C以上
陰極電流密度 1〜2A/dm
攪拌 カソードロッカー
[Cyanide bath composition and plating conditions]
Indium concentration 35g / 1
Potassium cyanide 100g / 1
Potassium hydroxide 60g / 1
Additive Appropriate amount pH 13 or more Bath temperature 20 to 30 ° C or more Cathode current density 1 to 2 A / dm 2
Agitation Cathode locker

(2) スルファミン酸塩浴は、インジウムを陽極とすることができ、色調の良いメッキが安定に得られる。
〔スルファミン酸塩浴組成及びメッキ条件〕
スルファミン酸インジウム 100g/1
スルファミン酸ナトリウム 150g/1
スルファミン酸 25g/1
添加剤 適量
pH 1.5〜2.5
浴温度 20〜30°C
陰極電流密度 1〜2A/dm
攪拌 空気
(2) In the sulfamate bath, indium can be used as an anode, and plating with good color tone can be obtained stably.
[Sulfamate bath composition and plating conditions]
Indium sulfamate 100g / 1
Sodium sulfamate 150g / 1
Sulfamic acid 25g / 1
Additive appropriate amount pH 1.5-2.5
Bath temperature 20-30 ° C
Cathode current density 1-2 A / dm 2
Stirring air

(3) ホウフッ化物浴は、インジウムを陽極に使用でき、浴組織も変動が少なく緻密なメッキができる。
また、高濃度、高電流密度でメッキすることもできる。
〔ホウフッ化物浴組成及び条件〕
ホウフッ化インジウム 230g/1
ホウ酸 20g/1
ホウフッ化アンモニウム 40g/1
添加剤 適量
pH(ホウフッ酸で) 1〜2
浴温度 20〜30°C
陰極電流密度 1〜2A/dm
攪拌 空気
(3) The borofluoride bath can use indium for the anode, and the bath structure can be finely plated with little fluctuation.
Also, plating can be performed at a high concentration and a high current density.
[Borofluoride bath composition and conditions]
Indium borofluoride 230g / 1
Boric acid 20g / 1
Ammonium borofluoride 40g / 1
Additives Appropriate amount pH (with borofluoric acid) 1-2
Bath temperature 20-30 ° C
Cathode current density 1-2 A / dm 2
Stirring air

インジウムメッキ液の特徴としては、浴温度は20〜30°Cであるから経済的であり、メッキ液の安定性に優れている。また、補充法で長時間使用でき、メッキ液の管理項目はpHおよびインジウムメタル濃度だけであるから作業中に液を管理しやすい。   A characteristic of the indium plating solution is that it is economical because the bath temperature is 20 to 30 ° C., and the stability of the plating solution is excellent. Moreover, since it can be used for a long time by the replenishment method and the management items of the plating solution are only pH and indium metal concentration, it is easy to manage the solution during work.

(4)スルファミン酸化合物のインジウム・コバルト合金メッキ浴は、浴温及びpHが低く、合金皮膜の結晶が緻密なので、耐硫化ガスなど良好である。
〔スルファミン酸化合物浴組成及びメッキ条件〕
スルファミン酸インジウム 100g/L
硫酸コバルト 20g/L
スルファミン酸カリウム 200g/L
リン酸二水素一カリウム 30g/L
添加剤 適量
pH 1.5〜3.0
浴温度 20〜30℃
陰極電流密度 0.5〜3.0A/dm
メッキ時間 5〜〜40秒
(4) An indium / cobalt alloy plating bath of a sulfamic acid compound has a low bath temperature and pH, and the crystal of the alloy film is dense.
[Sulfamic acid compound bath composition and plating conditions]
Indium sulfamate 100g / L
Cobalt sulfate 20g / L
Potassium sulfamate 200g / L
Monopotassium dihydrogen phosphate 30g / L
Additive appropriate amount pH 1.5-3.0
Bath temperature 20-30 ° C
Cathode current density 0.5 to 3.0 A / dm 2
Plating time 5 ~ 40 seconds

(5)有機酸化合物のインジウム・コバルト合金メッキ浴の特徴は、弱酸性、メッキの付き回りが良く、合金皮膜の比率が安定し、合金皮膜の結晶がもっとも緻密のため銀メッキ皮膜の耐硫化ガスなどが良好である。
〔有機酸化合物のインジウム・コバルト合金浴組成及びメッキ条件〕
インジウムメタル濃度 30g/L
コバルトメタル濃度 5g/L
酒石酸 120g/L
酒石酸カリウムナトリウム 50g/L
ポリエチレングリコール#1000 1〜2g/L
pH 3.6〜5.4
浴温度 30〜65℃
攪拌 機械・中攪拌
陰極電流密度 0.2〜5A/dm
メッキ時間 3〜60秒
(5) The characteristics of the indium-cobalt alloy plating bath of organic acid compound are weak acidity, good plating coverage, stable ratio of alloy film, and the highest density of alloy film crystals. Gas etc. are good.
[Indium / cobalt alloy bath composition of organic acid compound and plating conditions]
Indium metal concentration 30g / L
Cobalt metal concentration 5g / L
Tartaric acid 120g / L
Potassium sodium tartrate 50g / L
Polyethylene glycol # 1000 1-2g / L
pH 3.6-5.4
Bath temperature 30-65 ° C
Agitation Machine / medium agitation Cathode current density 0.2-5A / dm 2
Plating time 3-60 seconds

インジウム・コバルト合金メッキ皮膜の特徴としては、インジウム50〜98%及びコバルト50〜2%の合金比率で、合金皮膜の結晶がもっとも緻密のため、銀メッキ皮膜の耐硫化ガス、耐酸アルカリなどが良好である。そのためこれからの電子部品などの分野で広く使用される可能性が高い。   The characteristics of the indium-cobalt alloy plating film are the alloy ratio of indium 50 to 98% and cobalt 50 to 2%, and the crystal of the alloy film is the most dense, so the sulfur-resistant gas, acid-alkali resistance, etc. of the silver plating film are good It is. Therefore, it is highly likely to be widely used in fields such as electronic parts in the future.

図1ないし図6は、表面実装型LED(チップ型)の製造手順でパッケージを示したもので、メッキ厚は微小であるが、これらの図では分かりやすく説明の都合から断面においてメッキ厚を過度な厚みで示した。   FIG. 1 to FIG. 6 show the package in the manufacturing procedure of the surface mount type LED (chip type), and the plating thickness is very small. In these figures, however, the plating thickness is excessive in the cross section for convenience of explanation. The thickness was shown.

パッケージの基材は、アノード基材1aとカソード基材1bとからなり、板材をプレス3で加工することにより両方が得られる(図1)。その両方に脱脂、酸活性(アルカリ脱脂後に表面を清浄にする)処理を施した外面に、銅合金の下地メッキの後、銀メッキ5とインジウムメッキ又はインジウム・コバルト(In−Co)合金メッキ7とが順次施される(図2)。インジウムメッキは、前記(1)(又は(2)、(3))、及びインジウム・コバルト合金メッキの場合は、前記(4)又は(5)のメッキ浴及び条件で行う。   The base material of the package consists of an anode base material 1a and a cathode base material 1b, and both are obtained by processing a plate material with a press 3 (FIG. 1). Both of them are subjected to degreasing and acid activation (cleaning the surface after alkali degreasing), after the copper alloy base plating, silver plating 5 and indium plating or indium cobalt (In-Co) alloy plating 7 Are sequentially performed (FIG. 2). Indium plating is performed using the plating bath and conditions described in (1) (or (2), (3)) and in the case of indium-cobalt alloy plating (4) or (5).

次に、一種のインサート成形により、アノード基材1aとカソード基材1bとを樹脂成形部9により一体に結合するとともに、樹脂成形部9の中央部にキャビティ11を設ける(図3)。キャビティ11は、底面が両基材1a,1bの露出面であって、上面に銀メッキ5がインジウムメッキ又はインジウム・コバルト(In−Co)合金メッキ7に透かして清浄な反射面となっている。なお、その底面ではアノード基材1aとカソード基材1bとの間に樹脂が充填され間隔が保持されている。また、キャビティ11の内側面は外側への反射光が得られるように傾斜してある。   Next, the anode base material 1a and the cathode base material 1b are joined together by the resin molding part 9 by a kind of insert molding, and the cavity 11 is provided in the central part of the resin molding part 9 (FIG. 3). The cavity 11 has a bottom surface that is an exposed surface of the base materials 1a and 1b, and a silver plating 5 on the top surface that is a clean reflecting surface through an indium plating or indium cobalt (In-Co) alloy plating 7. . In addition, on the bottom surface, resin is filled between the anode base material 1a and the cathode base material 1b, and the interval is maintained. Further, the inner surface of the cavity 11 is inclined so that reflected light to the outside can be obtained.

カソード基材1bの上面にはLEDチップ13が銀ペーストを介して固定される(図4)。そして、LEDチップ13はアノード基材1aと、カソード基材1bとにそれぞれ金線のワイヤー15a,15bを介して接続(ボンディング)される(図5)。この状態でキャビティ11にアクリル樹脂の透明封入材17が充填される。   The LED chip 13 is fixed on the upper surface of the cathode substrate 1b with a silver paste (FIG. 4). The LED chip 13 is connected (bonded) to the anode substrate 1a and the cathode substrate 1b via gold wires 15a and 15b, respectively (FIG. 5). In this state, the cavity 11 is filled with a transparent encapsulant 17 made of acrylic resin.

図7は、上記実施例と類例の表面実装型LEDを示したものである(なお、図1〜図6とは違ってメッキ厚は断面では示さない。図8についても同じ)。   FIG. 7 shows a surface-mount type LED similar to the above-described embodiment (Note that, unlike FIGS. 1 to 6, the plating thickness is not shown in cross section. The same applies to FIG. 8).

この場合は、銅合金のメッキを下地として、銀メッキ5とインジウムメッキ又はインジウム・コバルト(In−Co)合金メッキ7とが施されたアノード基材1aとカソード基材1bとが互いに口合する断面コ字形であって、上部において、カソード基材1b側が長くアノード基材1a側が短く形成されている。こうすれば、LEDチップ13を出来るだけ中央部に位置してカソード基材1bに接着できる。   In this case, the anode base material 1a and the cathode base material 1b on which the silver plating 5 and the indium plating or the indium-cobalt (In-Co) alloy plating 7 have been applied with the copper alloy plating as a base joint with each other. In the upper part, the cathode base material 1b side is long and the anode base material 1a side is short. In this way, the LED chip 13 can be bonded to the cathode substrate 1b while being positioned as central as possible.

図8は、砲弾型LEDを示したもので、アノード基材1aとカソード基材1bとのうち、カソード基材1bの上端部に膨出部14を設け、そこに凹部を設けることによりキャビティ11が形成されているので、このカソード基材1b(全体)にだけ銅合金メッキを下地として銀メッキ5とインジウムメッキ又はインジウム・コバルト(In−Co)合金メッキ7とが施される。   FIG. 8 shows a bullet-type LED. Of the anode base material 1a and the cathode base material 1b, a bulging portion 14 is provided at the upper end portion of the cathode base material 1b, and a cavity 11 is formed by providing a recess there. Thus, the silver plating 5 and the indium plating or the indium-cobalt (In-Co) alloy plating 7 are applied only to the cathode base material 1b (whole) with the copper alloy plating as a base.

この場合も、LEDチップ13は、アノード基材1aとカソード基材1bとにワイヤー15a,15bを介して接続され、キャビティ11には透明封入材17が充填されるが、レンズ19をインサート成形することによりアノード基材1aとカソード基材1bとがインサートとして一体化される。   Also in this case, the LED chip 13 is connected to the anode substrate 1a and the cathode substrate 1b via wires 15a and 15b, and the cavity 11 is filled with the transparent encapsulant 17, but the lens 19 is insert-molded. Thus, the anode substrate 1a and the cathode substrate 1b are integrated as an insert.

LED用銀メッキについては次の品質が要求されるが、これらはインジウムメッキ7により有効に保持される結果となった。
(1) 光沢度(0.4〜0.8)
(2) 反射率維持
(3) 耐熱後(300°C)の耐硫化特性(経時変色について)
(4) ワイヤーボンデング性
これら特性について、次の試験を行ってこられの要求が確保されることを確認できた。
(イ)変色試験として二酸化硫黄ガス試験(SO225±5ppm 室温±1°C 湿度80±5%)
(ロ)硫化水素ガス試験(H2S10±2ppm 室温40±1°C 湿度80±5%)
なお、比較例としていえば、従来は、一般的に有機系の変色防止を施していたわけであるが、この皮膜は200°C程度で破壊された。インジウムメッキ又はインジウム・コバルト(In−Co)合金メッキ7は300°Cで耐えるので本発明が一段と優れていることが分かる。
The silver plating for LEDs is required to have the following qualities, but these were effectively retained by the indium plating 7.
(1) Glossiness (0.4 to 0.8)
(2) Reflectivity maintenance (3) Sulfur resistance after heat resistance (300 ° C) (discoloration over time)
(4) Wire bondability With respect to these characteristics, the following tests were conducted and it was confirmed that these requirements were secured.
(I) Sulfur dioxide gas test as discoloration test (SO225 ± 5ppm, room temperature ± 1 ° C, humidity 80 ± 5%)
(B) Hydrogen sulfide gas test (H2S10 ± 2ppm, room temperature 40 ± 1 ° C, humidity 80 ± 5%)
Incidentally, as a comparative example, conventionally, the organic color change was generally prevented, but this film was broken at about 200 ° C. Since indium plating or indium-cobalt (In—Co) alloy plating 7 can withstand 300 ° C., it can be seen that the present invention is more excellent.

1a アノード基材
1b カソード基材
5 銀メッキ
7 インジウムメッキ又はインジウム・コバルト(In−Co)合金メッキ
9 樹脂成形部
14 膨出部
DESCRIPTION OF SYMBOLS 1a Anode base material 1b Cathode base material 5 Silver plating 7 Indium plating or indium-cobalt (In-Co) alloy plating 9 Resin molding part 14 Swelling part

Claims (5)

LEDチップが底面に接合されて納められ透明封入材が充填されるキャビティを有し、キャビティの少なくとも底面が銀メッキによる反射面であるLEDパッケージにおいて、該銀メッキの上にインジウムメッキ又はインジウム・コバルト(In−Co)合金メッキが保護膜として施されていることを特徴とするLEDパッケージ。   An LED package having a cavity in which an LED chip is bonded to a bottom surface and filled with a transparent encapsulant, and at least the bottom surface of the cavity is a reflective surface by silver plating. Indium plating or indium cobalt on the silver plating An LED package, wherein (In—Co) alloy plating is applied as a protective film. アノード基材とカソード基材とを間隔を隔てて樹脂成形部の成形により一体化するとともに、樹脂成形部の中央部に凹部を設けることにより両基材が底面に露出するキャビティが形成され、両基材に銀メッキとインジウムメッキ又はインジウム・コバルト(In−Co)合金メッキを施すことにより、キャビティの底面が銀メッキの上にインジウムメッキ又はインジウム・コバルト(In−Co)合金メッキを保護膜として施されている反射面となっていることを特徴とする請求項1記載のLEDパッケージ。   The anode base material and the cathode base material are integrated by molding the resin molding part with a space therebetween, and a recess is formed in the central part of the resin molding part to form a cavity in which both base materials are exposed on the bottom surface. By applying silver plating and indium plating or indium-cobalt (In-Co) alloy plating to the base material, the bottom surface of the cavity is coated with indium plating or indium-cobalt (In-Co) alloy plating on the silver plating as a protective film The LED package according to claim 1, wherein the LED package is a reflective surface. レンズの樹脂成形により一体化されるアノード基材とカソード基材とが間隔を隔てて設けられ、カソード基材は、上端部にアノード基材に向かって突出する膨出部を設けるとともに、膨出部に凹部を設けることによりキャビティが形成され、カソード基材に銀メッキとインジウムメッキ又はインジウム・コバルト(In−Co)合金メッキとを施すことにより、キャビティの内面の全面が、銀メッキの上にインジウムメッキ又はインジウム・コバルト(In−Co)合金メッキを保護膜として施されている反射面となっていることを特徴とする請求項1記載のLEDパッケージ。   An anode base material and a cathode base material which are integrated by resin molding of the lens are provided at a distance, and the cathode base material is provided with a bulging portion which protrudes toward the anode base material at the upper end portion, and is bulged. A cavity is formed by providing a recess in the part, and by applying silver plating and indium plating or indium-cobalt (In-Co) alloy plating to the cathode base material, the entire inner surface of the cavity is placed on the silver plating. The LED package according to claim 1, wherein the LED package is a reflective surface applied with indium plating or indium cobalt (In—Co) alloy plating as a protective film. 銀メッキ皮膜の保護膜として、インジウム単体メッキの場合には、インジウム100%であることを特徴とする請求項1,2又は3記載のLEDパッケージ。   4. The LED package according to claim 1, wherein the protective film of the silver plating film is 100% indium in the case of indium single plating. 銀メッキ皮膜の保護膜として、インジウム・コバルト合金メッキ皮膜の場合には、インジウム50〜98%とコバルト50〜2%との合金比率であることを特徴とする請求項1,2又は3記載のLEDパッケージ。

4. In the case of an indium / cobalt alloy plating film as a protective film for the silver plating film, the alloy ratio is 50% to 98% indium and 50% to 2% cobalt. LED package.

JP2010092881A 2010-04-14 2010-04-14 LED package Active JP5473738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010092881A JP5473738B2 (en) 2010-04-14 2010-04-14 LED package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010092881A JP5473738B2 (en) 2010-04-14 2010-04-14 LED package

Publications (2)

Publication Number Publication Date
JP2011222881A true JP2011222881A (en) 2011-11-04
JP5473738B2 JP5473738B2 (en) 2014-04-16

Family

ID=45039437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010092881A Active JP5473738B2 (en) 2010-04-14 2010-04-14 LED package

Country Status (1)

Country Link
JP (1) JP5473738B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012039109A (en) * 2010-07-16 2012-02-23 Dainippon Printing Co Ltd Lead frame or substrate for led, semiconductor device, and method for manufacturing lead frame or substrate for led
US9263315B2 (en) 2010-03-30 2016-02-16 Dai Nippon Printing Co., Ltd. LED leadframe or LED substrate, semiconductor device, and method for manufacturing LED leadframe or LED substrate
US9773960B2 (en) 2010-11-02 2017-09-26 Dai Nippon Printing Co., Ltd. Lead frame for mounting LED elements, lead frame with resin, method for manufacturing semiconductor devices, and lead frame for mounting semiconductor elements

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947394A (en) * 1982-09-10 1984-03-17 Arakawa Kako Kk Method for preventing discoloration of silver
JP2007109887A (en) * 2005-10-13 2007-04-26 Toshiba Corp Semiconductor light emitting device
JP2007266349A (en) * 2006-03-29 2007-10-11 Matsushita Electric Ind Co Ltd Conductive member for semiconductor device, package for semiconductor device, and manufacturing method of them
JP2008192635A (en) * 2007-01-31 2008-08-21 Matsushita Electric Ind Co Ltd Semiconductor device, lead frame and process for fabricating optical semiconductor device
WO2010074184A1 (en) * 2008-12-26 2010-07-01 古河電気工業株式会社 Lead frame for optical semiconductor device, method for manufacturing same, and optical semiconductor device
JP2011122234A (en) * 2009-07-15 2011-06-23 Kyowa Densen Kk Plating structure and method for manufacturing electric material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947394A (en) * 1982-09-10 1984-03-17 Arakawa Kako Kk Method for preventing discoloration of silver
JP2007109887A (en) * 2005-10-13 2007-04-26 Toshiba Corp Semiconductor light emitting device
JP2007266349A (en) * 2006-03-29 2007-10-11 Matsushita Electric Ind Co Ltd Conductive member for semiconductor device, package for semiconductor device, and manufacturing method of them
JP2008192635A (en) * 2007-01-31 2008-08-21 Matsushita Electric Ind Co Ltd Semiconductor device, lead frame and process for fabricating optical semiconductor device
WO2010074184A1 (en) * 2008-12-26 2010-07-01 古河電気工業株式会社 Lead frame for optical semiconductor device, method for manufacturing same, and optical semiconductor device
JP2011122234A (en) * 2009-07-15 2011-06-23 Kyowa Densen Kk Plating structure and method for manufacturing electric material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9263315B2 (en) 2010-03-30 2016-02-16 Dai Nippon Printing Co., Ltd. LED leadframe or LED substrate, semiconductor device, and method for manufacturing LED leadframe or LED substrate
US9887331B2 (en) 2010-03-30 2018-02-06 Dai Nippon Printing Co., Ltd. LED leadframe or LED substrate, semiconductor device, and method for manufacturing LED leadframe or LED substrate
US9966517B2 (en) 2010-03-30 2018-05-08 Dai Nippon Printing Co., Ltd. LED leadframe or LED substrate, semiconductor device, and method for manufacturing LED leadframe or LED substrate
JP2012039109A (en) * 2010-07-16 2012-02-23 Dainippon Printing Co Ltd Lead frame or substrate for led, semiconductor device, and method for manufacturing lead frame or substrate for led
US9773960B2 (en) 2010-11-02 2017-09-26 Dai Nippon Printing Co., Ltd. Lead frame for mounting LED elements, lead frame with resin, method for manufacturing semiconductor devices, and lead frame for mounting semiconductor elements

Also Published As

Publication number Publication date
JP5473738B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5687413B2 (en) Light emitting diode and backlight unit having the same
JP2007266343A (en) Light emitting device
JP2012089830A (en) Light emitting device
WO2011122665A1 (en) Leadframe or substrate for led, semiconductor device, and method for manufacturing leadframe or substrate for led
JP2006344925A (en) Light emitting device and frame for loading the same
JP6481499B2 (en) Lead frame or substrate for optical semiconductor device, and optical semiconductor device using the same
JP2009055006A (en) Light emitting device, and method of manufacturing the same
JP7348567B2 (en) Metal material for optical semiconductor devices, method for manufacturing the same, and optical semiconductor devices using the same
JP3940124B2 (en) apparatus
JP5473738B2 (en) LED package
JP5110804B2 (en) LED manufacturing method
TWI828262B (en) Lead frame, package for light emitting device, light emitting device, and method for manufacturing light emitting device
JP2009272345A (en) Plating structure of lead frame for light-emitting element
JP6175822B2 (en) Lead frame or substrate for optical semiconductor devices
JP2011228687A (en) Led lead frame or substrate, semiconductor device, and method of manufacturing led lead frame or substrate
JP2015088541A (en) Light-emitting element lead frame substrate
KR20150026774A (en) A coating electronic component with sulfurization, thermal-resistance and the same method.
JP7116308B2 (en) METAL MATERIAL FOR OPTO-SEMICONDUCTOR DEVICE, MANUFACTURING METHOD THEREOF, AND OPTO-SEMICONDUCTOR DEVICE USING THE SAME
JP2013174865A (en) Lamination structure having indium-silver alloy layer on copper or copper alloy layer, and manufacturing method thereof
JP7339566B2 (en) METHOD FOR MANUFACTURING METAL STRUCTURE FOR OPTO-SEMICONDUCTOR DEVICE, PACKAGE, AND SOLUTION CONTAINING POLYALLYLAMINE POLYMER
JP7148793B2 (en) METAL MATERIAL FOR OPTO-SEMICONDUCTOR DEVICE, MANUFACTURING METHOD THEREOF, AND OPTO-SEMICONDUCTOR DEVICE USING THE SAME
JP6635152B2 (en) Lead frame, light emitting device package, light emitting device, and method of manufacturing light emitting device
JP2013173347A (en) Lamination structure having indium silver-cobalt alloy layer on copper or copper alloy layer, and method of manufacturing the lamination structure
KR20180011829A (en) Manufacturing method of led lead-frame using palladium plated substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140204

R150 Certificate of patent or registration of utility model

Ref document number: 5473738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250