JP2011214042A - Method for manufacturing hot-dip galvannealed steel sheet - Google Patents

Method for manufacturing hot-dip galvannealed steel sheet Download PDF

Info

Publication number
JP2011214042A
JP2011214042A JP2010081745A JP2010081745A JP2011214042A JP 2011214042 A JP2011214042 A JP 2011214042A JP 2010081745 A JP2010081745 A JP 2010081745A JP 2010081745 A JP2010081745 A JP 2010081745A JP 2011214042 A JP2011214042 A JP 2011214042A
Authority
JP
Japan
Prior art keywords
heating
steel sheet
less
oxide layer
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010081745A
Other languages
Japanese (ja)
Other versions
JP5513216B2 (en
Inventor
Shohei Nakakubo
昌平 中久保
Mikako Takeda
実佳子 武田
Fumio Yuse
文雄 湯瀬
Ryosuke Otomo
亮介 大友
Yoshihiro Miyake
義浩 三宅
Fumiaki Kobayashi
史明 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010081745A priority Critical patent/JP5513216B2/en
Publication of JP2011214042A publication Critical patent/JP2011214042A/en
Application granted granted Critical
Publication of JP5513216B2 publication Critical patent/JP5513216B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a hot-dip galvannealed steel sheet which reduces the cohesion of the plating film to a tool and the like, also has adequate appearance and has improved adhesiveness of the plating film.SOLUTION: The method for manufacturing the plated steel sheet includes: a first step (a) of forming an oxide layer on a surface of a base steel sheet by heating the base steel sheet in a heating furnace; a second step (b) of reducing the oxide layer by heating the base steel sheet on which the oxide layer has been formed, in a reducing furnace; and a third step (e) of hot-dip-galvanizing the steel sheet and alloying the plating film, in this order. The first step includes heating the base steel sheet to 750-850°C in a period of 45-120 seconds under an atmosphere in which the amount of oxygen is controlled to 0.3 vol.% or less and the amount of water vapor is controlled to 10-30 vol.% in the heating furnace. The first step also includes a pre-heating step of heating the steel sheet to 450-600°C at a temperature-raising rate (X) of 7.5-28°C/second and a post-heating step of further heating the steel sheet to 750-850°C at a temperature-raising rate of 0.30X-0.80X.

Description

本発明は、合金化溶融亜鉛めっき鋼板の製造方法に関し、特に、工具等へのめっきの凝着が抑制できると共に、外観性状(具体的には、不めっきおよび合金化不良発生の防止)が良好で、且つ、素地鋼板と合金化溶融亜鉛めっき層との密着性(以下、「めっき密着性」と呼ぶことがある。)を向上させる技術に関するものである。   The present invention relates to a method for producing an alloyed hot-dip galvanized steel sheet, and in particular, can suppress adhesion of plating to a tool or the like and has good appearance properties (specifically, prevention of unplating and alloying failure). In addition, the present invention relates to a technique for improving the adhesion between the base steel sheet and the galvannealed layer (hereinafter sometimes referred to as “plating adhesion”).

自動車や家電等の軽量化の目的で、強度、延性、加工性に優れた鋼板の需要が急増している。鋼板にSiやMnを添加すると、強度を損なうことなく延性や加工性を向上できることから、このような特性を満たす鋼板としてSiとMnを積極的に添加した鋼が使用されている。また、上記鋼板には耐食性も要求されることから、SiやMnを含有する鋼に耐食性を付与した合金化溶融亜鉛めっき鋼板(GA鋼板)のニーズが年々高まりつつある(以下、「めっき鋼板」と呼ぶことがある。)。   For the purpose of reducing the weight of automobiles and home appliances, the demand for steel sheets excellent in strength, ductility, and workability is increasing rapidly. When Si or Mn is added to the steel sheet, ductility and workability can be improved without impairing the strength. Therefore, steel with positive addition of Si and Mn is used as a steel sheet satisfying such characteristics. In addition, since the steel sheet is also required to have corrosion resistance, the need for an alloyed hot-dip galvanized steel sheet (GA steel sheet) that imparts corrosion resistance to steel containing Si or Mn is increasing year by year (hereinafter referred to as “plated steel sheet”). Sometimes called).

合金化溶融亜鉛めっき鋼板は、一般に以下の方法で製造される。まず、スラブを熱延、冷延の後、必要に応じて熱処理を行なった薄鋼板(母材鋼板)を用意する。母材鋼板の表面は、前処理工程にて脱脂および/または酸洗して洗浄してもよい。次に、予熱炉内で母材鋼板表面の油分を燃焼除去した後、非酸化性雰囲気または還元性雰囲気の焼鈍炉内で加熱して再結晶焼鈍を行う。その後、非酸化性雰囲気中または還元性雰囲気中で鋼板をめっきに適した温度まで冷却し、大気に触れることなく微量のAl(約0.1〜0.2質量%程度)を添加した溶融亜鉛めっき浴中に浸漬する。溶融亜鉛めっき浴面から垂直方向に取り出した素地鋼板の表面は溶融亜鉛で濡れているため、ワイピングノズルから圧縮空気を鋼板表面に対して垂直に吹き付けて余分な溶融亜鉛めっきを除去した後、合金化炉内で熱処理することによって合金化溶融亜鉛めっき鋼板が得られる。   An alloyed hot-dip galvanized steel sheet is generally produced by the following method. First, after the slab is hot-rolled and cold-rolled, a thin steel plate (base material steel plate) that is heat-treated as necessary is prepared. The surface of the base material steel plate may be cleaned by degreasing and / or pickling in the pretreatment step. Next, after the oil on the surface of the base steel plate is burned and removed in the preheating furnace, recrystallization annealing is performed by heating in an annealing furnace in a non-oxidizing atmosphere or a reducing atmosphere. Thereafter, the steel sheet is cooled to a temperature suitable for plating in a non-oxidizing atmosphere or a reducing atmosphere, and a small amount of Al (about 0.1 to 0.2% by mass) is added without being exposed to the air. Immerse in the plating bath. Since the surface of the base steel sheet taken out from the hot dip galvanizing bath surface in the vertical direction is wet with molten zinc, the compressed air is blown perpendicularly to the steel sheet surface from the wiping nozzle to remove excess hot dip galvanizing, and then the alloy An alloyed hot-dip galvanized steel sheet is obtained by heat treatment in the furnace.

しかしながら、SiやMnは易酸化性元素であり、鋼板表面に濃化し易い。すなわち、易酸化性元素を含有する鋼板を加熱処理すると、これらの元素が選択的に酸化され、鋼鈑表面(鋼板とめっき層との界面側)に濃化して酸化物(Si−Mn−Oなど)を形成する。これらの酸化物は、めっき処理時の溶融亜鉛との濡れ性を著しく低下させるため、不めっきや合金化不良が発生し、外観性状が悪くなるという問題が発生する。これらの易酸化性元素は、非酸化性雰囲気中または還元雰囲気中でも濃化を抑制することが困難なため、Si及びMn含有鋼板では、上記酸化物による問題の改善が求められている。   However, Si and Mn are easily oxidizable elements and are easily concentrated on the steel sheet surface. That is, when a steel sheet containing an easily oxidizable element is heat-treated, these elements are selectively oxidized and concentrated on the steel sheet surface (the interface side between the steel sheet and the plating layer) to form an oxide (Si-Mn-O). Etc.). Since these oxides remarkably reduce wettability with molten zinc at the time of plating, problems such as non-plating and poor alloying occur and appearance properties deteriorate. Since these easily oxidizable elements are difficult to suppress concentration even in a non-oxidizing atmosphere or a reducing atmosphere, the Si and Mn-containing steel sheets are required to improve the problems caused by the oxides.

そこで、SiやMnの易酸化性元素含有鋼板を用いて合金化溶融亜鉛めっきを行なうにあたり、所謂「酸化−還元法」が用いられている。この「酸化−還元法」は、熱延および冷延を行なった鋼板に対し、酸化性雰囲気下での酸化および還元性雰囲気下での還元を行なってから、所定の溶融亜鉛めっき処理を行った後に合金化処理を行なう方法である。詳細には、まず、焼鈍炉を酸化性雰囲気として加熱(酸化)することにより、鋼板の表面に、鋼板側から順に、Feと、Si、Mnなどの易酸化性元素の酸化物(Fe−Si−Mn−O)から主に構成される内方酸化層と;鉄酸化物(Fe−O)から主に構成される外方酸化層が形成される(図1(a)参照)。次に、還元炉を還元性雰囲気として加熱(還元)することにより、上記の鉄酸化物が還元されてめっき濡れ性に優れた還元鉄(Fe)の層が鋼板表層(外側)に形成される(図1(b)参照)。次いで、めっき処理した後、合金化処理が行なわれる。   Therefore, a so-called “oxidation-reduction method” is used in performing hot galvanizing alloying using a steel plate containing Si or Mn easily oxidizable elements. In this “oxidation-reduction method”, hot-rolled and cold-rolled steel sheets were subjected to oxidation in an oxidizing atmosphere and reduction in a reducing atmosphere, followed by a predetermined hot-dip galvanizing treatment. This is a method of performing an alloying process later. Specifically, first, by heating (oxidizing) an annealing furnace as an oxidizing atmosphere, Fe, Si, Mn, and other oxides of easily oxidizable elements (Fe—Si) are sequentially formed on the surface of the steel plate from the steel plate side. An inner oxide layer mainly composed of -Mn-O) and an outer oxide layer mainly composed of iron oxide (Fe-O) are formed (see FIG. 1A). Next, by heating (reducing) the reducing furnace as a reducing atmosphere, the iron oxide is reduced, and a reduced iron (Fe) layer having excellent plating wettability is formed on the surface layer (outside) of the steel sheet. (See FIG. 1 (b)). Next, after the plating process, an alloying process is performed.

しかしながら、この「酸化−還元法」によれば、めっき層と鋼鈑との界面にSiやMnなどの易酸化性元素の酸化物(Si−Mn−O)が不適切に濃化する場合があり、その結果、めっき鋼板が成形加工時等に応力を受けると素地鋼板から合金化溶融亜鉛めっき層が剥離するなどの問題(界面のめっき剥離)が発生する。更にめっき鋼板の加工時に工具等にめっきが凝着するという問題や不めっきやめっきムラが生じて外観性状が悪化するという問題も発生する。   However, according to this “oxidation-reduction method”, oxides of easily oxidizable elements such as Si and Mn (Si—Mn—O) may be inappropriately concentrated at the interface between the plating layer and the steel sheet. As a result, when the plated steel sheet is subjected to stress during forming or the like, problems such as peeling of the alloyed hot-dip galvanized layer from the base steel sheet occur (interfacial plating peeling). Furthermore, there is a problem that the plating adheres to the tool or the like during the processing of the plated steel sheet, and a problem that the appearance properties deteriorate due to non-plating or plating unevenness.

例えば合金化溶融亜鉛めっき鋼板は、自動車や建材、家電等の最終製品に用いられる場合、種々の成形加工が施されるが、加工時に工具へのめっき凝着量が多くなると、成形性が劣るという問題が生じるだけでなく、耐食性に悪影響を及ぼすと共に、場合によってはめっき層からの剥離粉がプレス形成時の表面欠陥を引き起こす原因になることが知られている。   For example, when alloyed hot-dip galvanized steel sheets are used in final products such as automobiles, building materials, and home appliances, various forming processes are performed, but if the amount of plating adhesion to the tool increases during processing, the formability is poor. In addition to the above problem, it is known that the corrosion resistance is adversely affected, and in some cases, the peeling powder from the plating layer causes surface defects during press formation.

こうした問題を解決する技術として、特許文献1には、高Si含有鋼板を母材とした場合に不めっきのない美麗な表面外観を有し、めっき密着性に優れた溶融亜鉛めっき鋼板を製造する技術が提案されている。具体的には、O2≧0.1%、H2O≧1%を含有する雰囲気中で、400〜750℃の温度で加熱(A帯加熱)し、次いで、O2<0.1%、H2O≧1%を含有する雰囲気中で、600〜850℃の温度で加熱(B帯加熱)し、次いで、H2=1〜50%を含み露点が0℃以下の雰囲気中で、加熱(C帯加熱)した後、溶融亜鉛めっき処理を施す酸化−還元法が開示されている。しかし本発明者らが検討したところ、特許文献1に開示されている技術では、めっきの凝着やめっき層からの剥離粉が生じる恐れがあることがわかった。 As a technique for solving such a problem, Patent Document 1 manufactures a hot dip galvanized steel sheet having a beautiful surface appearance without unplating and excellent plating adhesion when a high Si content steel sheet is used as a base material. Technology has been proposed. Specifically, in an atmosphere containing O 2 ≧ 0.1% and H 2 O ≧ 1%, heating is performed at a temperature of 400 to 750 ° C. (A-band heating), and then O 2 <0.1% In an atmosphere containing H 2 O ≧ 1%, heating at a temperature of 600 to 850 ° C. (B-band heating), and then in an atmosphere containing H 2 = 1 to 50% and having a dew point of 0 ° C. or less, An oxidation-reduction method in which hot galvanizing treatment is performed after heating (C-band heating) is disclosed. However, as a result of studies by the present inventors, it has been found that the technique disclosed in Patent Document 1 may cause adhesion of plating or peeling powder from the plating layer.

特開2007−291498号公報JP 2007-291498 A

本発明は上記事情に鑑みてなされたものであり、その目的は、工具等へのめっきの凝着を低減すると共に、外観性状が良好で、且つ、めっき密着性を向上させた合金化溶融亜鉛めっき鋼板の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and its object is to reduce the adhesion of plating to a tool or the like, to improve the appearance properties and to improve the plating adhesion, and to alloyed molten zinc. It is providing the manufacturing method of a plated steel plate.

上記課題を解決することのできた本発明のめっき鋼板の製造方法は、C:0.04〜0.20%(質量%の意味。以下化学成分について全て同じ。)、Si:0.1〜3.0%、Mn:0.1〜3.0%、を満足する素地鋼板の表面に、合金化溶融亜鉛めっき層が形成された合金化溶融亜鉛めっき鋼板の製造方法であって、上記化学成分組成を満足する素地鋼板を加熱炉で加熱して素地鋼板の表面に酸化層を形成する第一の工程、前記酸化層を形成した素地鋼板を還元炉で加熱して前記酸化層を還元する第二の工程、溶融亜鉛めっきを施した後、合金化する第三の工程、をこの順で含み、前記第一の工程は、前記加熱炉内の酸素量を0.3体積%以下、水蒸気量を10〜30体積%に制御した雰囲気下にて、前記素地鋼板を45〜120秒で750〜850℃の温度まで加熱するものであり、且つ、前記第一の工程は、7.5〜28℃/秒の昇温速度(X)で450〜600℃の温度まで加熱する加熱前段工程と、0.30X〜0.80Xの昇温速度でさらに750〜850℃の温度まで加熱する加熱後段工程と、を含むところに要旨を有する。   The manufacturing method of the plated steel sheet of the present invention that has solved the above-mentioned problems is as follows: C: 0.04 to 0.20% (meaning mass%, hereinafter all the same regarding chemical components), Si: 0.1 to 3 0.0%, Mn: 0.1 to 3.0%, a method for producing an alloyed hot-dip galvanized steel sheet, in which an alloyed hot-dip galvanized layer is formed on the surface of the base steel sheet, A first step of heating a base steel plate satisfying the composition in a heating furnace to form an oxide layer on the surface of the base steel plate, a first step of heating the base steel plate on which the oxide layer has been formed in a reduction furnace to reduce the oxide layer A second step, a third step of alloying after hot dip galvanization, and in this order, the first step includes an oxygen amount in the heating furnace of 0.3% by volume or less, a water vapor amount In an atmosphere controlled to 10 to 30% by volume in 45 to 120 seconds. Heating to a temperature of 50 to 850 ° C., and the first step is a pre-heating step of heating to a temperature of 450 to 600 ° C. at a temperature rising rate (X) of 7.5 to 28 ° C./sec. And a post-heating step for further heating to a temperature of 750 to 850 ° C. at a temperature rising rate of 0.30X to 0.80X.

好ましい実施形態において、前記素地鋼板は、更にNi:2%以下(0%を含まない)、Cu:2%以下(0%を含まない)、Mo:2%以下(0%を含まない)、およびB:0.01%以下(0%を含まない)よりなる群から選択される少なくとも1種を含有している。   In a preferred embodiment, the base steel sheet further includes Ni: 2% or less (not including 0%), Cu: 2% or less (not including 0%), Mo: 2% or less (not including 0%), And B: contains at least one selected from the group consisting of 0.01% or less (not including 0%).

好ましい実施形態において、前記素地鋼板は、更にCr:2%以下(0%を含まない)、Nb:1%以下(0%を含まない)、V:1%以下(0%を含まない)、およびW:0.3%以下(0%を含まない)よりなる群から選択される少なくとも1種を含有している。   In a preferred embodiment, the base steel sheet further includes Cr: 2% or less (not including 0%), Nb: 1% or less (not including 0%), V: 1% or less (not including 0%), And W: at least one selected from the group consisting of 0.3% or less (not including 0%).

好ましい実施形態において、前記素地鋼板は、更にAl:0.06%以下(0%は含まない)、および/またはTi:0.1%以下(0%は含まない)を含有するものである。   In a preferred embodiment, the base steel sheet further contains Al: 0.06% or less (not including 0%) and / or Ti: 0.1% or less (not including 0%).

好ましい実施形態において、前記素地鋼板は、更にCa、Mg、およびREM よりなる群から選ばれる少なくとも1種の元素:合計量で0.03%以下(0%を含まない)を含有している。   In a preferred embodiment, the base steel sheet further contains at least one element selected from the group consisting of Ca, Mg, and REM: 0.03% or less (excluding 0%) in a total amount.

本発明では、易酸化性元素であるSiとMnを含む素地鋼板の表面に、適切な加熱条件で酸化層を形成してから還元した後に、溶融亜鉛めっき処理および合金化処理を行っているため、めっき層に含まれる亜鉛量を適切に制御できると共に、素地鋼板と合金化溶融亜鉛めっき層との間に形成される酸化物含有層における合金元素の分布状態を適切に制御できる。その結果、工具等へのめっきの凝着を低減することができると共に、めっき鋼板の外観性状、及びめっき密着性を向上させることができる。   In the present invention, the hot dip galvanizing treatment and the alloying treatment are carried out after the reduction after forming an oxide layer on the surface of the base steel sheet containing Si and Mn, which are easily oxidizable elements, under appropriate heating conditions. The amount of zinc contained in the plating layer can be controlled appropriately, and the distribution state of the alloy elements in the oxide-containing layer formed between the base steel sheet and the galvannealed coating layer can be controlled appropriately. As a result, the adhesion of plating to a tool or the like can be reduced, and the appearance properties and plating adhesion of the plated steel sheet can be improved.

図1は、合金化溶融亜鉛めっき鋼板の製造過程を模式的に示した図である。FIG. 1 is a diagram schematically showing a manufacturing process of an alloyed hot-dip galvanized steel sheet. 図2は、酸化処理後の表面状態を模式的に示した図である。FIG. 2 is a diagram schematically showing the surface state after the oxidation treatment. 図3は、EPMAによる元素マッピング結果を示した図である。FIG. 3 is a diagram showing an element mapping result by EPMA.

本発明者らは、易酸化性元素を含有する素地鋼板(具体的には、Siを0.1〜3.0%とMnを0.1〜3.0%を含有する素地鋼板)に合金化溶融亜鉛めっき層を形成した合金化溶融亜鉛めっき鋼板について、工具等へのめっきの凝着を低減すると共に、不めっきや合金化不良の発生を防止することにより外観性状を良好にし、且つ素地鋼板に対するめっき層の密着性を高めるために鋭意検討を重ねてきた。その結果、(A)めっきの凝着はめっき鋼板のめっき層に含まれる亜鉛量が影響していること、(B)まためっき層に含まれる亜鉛量、めっき鋼板の外観性状、及びめっき密着性は、溶融亜鉛めっき浴に浸漬する前の素地鋼板の上に形成される酸化層に影響を受けること、(C)この酸化層は酸化処理工程で形成されるため、特に酸化処理工程における加熱条件を適切に制御すれば、工具等へのめっきの凝着、外観性状、及びめっき密着性を改善できることを見出し、本発明を完成した(以下、これらをまとめて単に「めっき性状」と呼ぶことがある)。   The inventors have alloyed a base steel sheet containing an easily oxidizable element (specifically, a base steel sheet containing 0.1 to 3.0% of Si and 0.1 to 3.0% of Mn). The alloyed hot-dip galvanized steel sheet with a hot-dip galvanized layer reduces the adhesion of plating to tools, etc., and prevents the occurrence of non-plating and alloying defects, improving the appearance and In order to improve the adhesion of the plating layer to the steel plate, extensive studies have been made. As a result, (A) the adhesion of plating is affected by the amount of zinc contained in the plated layer of the plated steel sheet, (B) the amount of zinc contained in the plated layer, the appearance properties of the plated steel sheet, and the plating adhesion Is affected by the oxide layer formed on the base steel plate before being immersed in the hot dip galvanizing bath. (C) Since this oxide layer is formed in the oxidation treatment step, the heating conditions in the oxidation treatment step are particularly important. The present inventors have found that the adhesion of plating to a tool, appearance characteristics, and plating adhesion can be improved by appropriately controlling the above, and the present invention has been completed (hereinafter, these may be simply referred to as “plating characteristics”). is there).

本明細書では、めっき鋼板を構成するめっき層と鋼板のうち、当該鋼板を特に「素地鋼板」と呼ぶ。上記「素地鋼板」は、めっき鋼板の製造過程では、熱延および冷延を行なった後であって、めっき前の鋼板に対応している。以下では、説明の便宜上、「素地鋼板」を、単に「鋼板」と略記する場合がある。   In the present specification, among the plating layers and steel plates constituting the plated steel plate, the steel plate is particularly referred to as a “base steel plate”. The “base steel plate” corresponds to the steel plate before plating after hot rolling and cold rolling in the manufacturing process of the plated steel plate. Hereinafter, for convenience of explanation, “base steel plate” may be simply abbreviated as “steel plate”.

まず、本発明を完成した経緯について説明する。   First, how the present invention was completed will be described.

[1]めっきの凝着について
本発明者らは、酸化、還元、溶融亜鉛めっき、合金化の各処理を施して合金化溶融亜鉛めっき鋼板を製造するにあたり、酸化処理工程で形成される酸化層に着目し、この酸化層とめっき層に含まれる亜鉛量との関係性について検討した。
[1] Adhesion of plating The present inventors performed oxidation, reduction, hot dip galvanizing, and alloying treatments to produce an alloyed hot dip galvanized steel sheet. The relationship between this oxide layer and the amount of zinc contained in the plating layer was examined.

図1は素地鋼板に対し、前述した「酸化−還元法」を施したときの、酸化処理後、還元処理後、溶融亜鉛浸漬処理後、合金化処理後の各段階における表面状態(めっき前の鋼板内部または鋼板表層の状態、及びめっき後の鋼板とめっき層界面近傍の状態)を模式的に示した図であり、図2は酸化処理後の表面状態(めっき前の鋼板内部または鋼板表層の状態)を模式的に示した図である。   FIG. 1 shows the surface condition (before plating) after oxidation treatment, reduction treatment, hot-dip zinc immersion treatment, and alloying treatment when the above-mentioned “oxidation-reduction method” is applied to the base steel sheet. It is the figure which showed typically the state of the inside of a steel plate or the surface layer of a steel plate, and the state of the steel plate after plating, and the state of the vicinity of a plating layer interface, and FIG. It is the figure which showed the state schematically.

まず、図1(a)、図2に示すように、素地鋼板を加熱炉で加熱すると(酸化処理)、素地鋼板の表面に酸化層が形成される。素地鋼板表面から外側(めっき層側)に向かってFeの酸化物(Fe−O)が生成し、内側(素地鋼板側)に向かってFeとSiとMnを含む酸化物層(Fe−Si−Mn−O)が生成する。素地鋼板表面から外側に向かって成長して生成する酸化物層は「外方酸化層」、内側に向かって成長して生成する酸化物層は「内方酸化層」と一般に呼ばれている。   First, as shown in FIGS. 1A and 2, when the base steel plate is heated in a heating furnace (oxidation treatment), an oxide layer is formed on the surface of the base steel plate. An oxide of Fe (Fe—O) is generated from the surface of the base steel plate toward the outside (plating layer side), and an oxide layer containing Fe, Si, and Mn (Fe—Si—) toward the inside (base steel plate side). Mn—O) is formed. The oxide layer formed by growing outward from the surface of the base steel sheet is generally called an “outer oxide layer”, and the oxide layer formed by growing inward is generally called an “inner oxide layer”.

次に、酸化層が形成された素地鋼板を還元炉で加熱して還元すると(還元処理)、図1(b)に示すように、外方酸化層(Fe−O)は還元されて純鉄層(Fe)となるが、内方酸化層(Fe−Si−Mn−O)や粒界酸化物(Si−O)中の酸化物(Si−Mn−OまたはSi−O)は還元されず、そのまま残留する。   Next, when the base steel sheet on which the oxide layer is formed is heated and reduced in a reduction furnace (reduction treatment), as shown in FIG. 1 (b), the outer oxide layer (Fe-O) is reduced to pure iron. Although it becomes a layer (Fe), the oxide (Si-Mn-O or Si-O) in the inner oxide layer (Fe-Si-Mn-O) or the grain boundary oxide (Si-O) is not reduced. It remains as it is.

めっき処理前に内方酸化層が素地鋼板から剥離すると、剥離した内方酸化層と素地鋼板との間に隙間が形成される(図1(c))。この状態で鋼板を溶融亜鉛めっき浴に浸漬すると、図1(d)に示すように、最表面に溶融亜鉛めっきが付着するだけでなく、この隙間部分にも溶融亜鉛めっきが侵入する。   When the inner oxide layer is peeled from the base steel plate before the plating treatment, a gap is formed between the peeled inner oxide layer and the base steel plate (FIG. 1 (c)). When the steel sheet is immersed in a hot dip galvanizing bath in this state, as shown in FIG. 1 (d), not only hot dip galvanizing adheres to the outermost surface, but also hot dip galvanizing penetrates into this gap.

このような状態で合金化処理を行うと、図1(e)に示すように、最表面に合金化めっき層(Fe−Zn合金)が形成されるだけでなく、隙間部分に侵入した溶融亜鉛めっきも合金化されるため、該隙間部分の単位体積当たりの亜鉛量が過多となることが判明した。   When alloying is performed in such a state, as shown in FIG. 1 (e), not only an alloyed plating layer (Fe—Zn alloy) is formed on the outermost surface, but also molten zinc that has entered the gap portion. Since plating is also alloyed, it has been found that the amount of zinc per unit volume in the gap is excessive.

本発明者らが亜鉛量過多となった部分についてEPMAによる元素マッピング分析を行った結果、図3に示すように、合金層と母材(素地鋼板)との間に、内方酸化層由来のSiまたはMnが濃化したSi/Mn濃化層が波打った状態で存在することが確認された。これに対し、亜鉛量正常部分ではこのようなSi/Mn濃化層は形成されなかった。   As a result of performing element mapping analysis by EPMA on the portion where the inventors have excessive zinc content, as shown in FIG. 3, the inner oxide layer-derived layer is between the alloy layer and the base material (base steel plate). It was confirmed that a Si / Mn enriched layer enriched with Si or Mn was present in a wavy state. On the other hand, such a Si / Mn concentrated layer was not formed in the part where the amount of zinc was normal.

そして亜鉛量正常部分と亜鉛量過多部分のめっきの凝着性を調べたところ、亜鉛量正常部分では加工時に工具へのめっきの凝着が生じなかった。一方、亜鉛量過多部分では、加工時に工具へのめっきの凝着が生じた。   Then, the adhesion property of the plating of the normal zinc content portion and the excessive zinc content portion was examined. In the normal zinc content portion, the adhesion of the plating to the tool did not occur during processing. On the other hand, in the excessive zinc amount portion, adhesion of plating to the tool occurred during processing.

こうした知見に基づいて、本発明者らは、めっき前に生じる内方酸化層や外方酸化層の剥離を防止できれば、亜鉛量過多を抑制できるのではないかと考え、酸化工程で形成される酸化層の性状について検討を重ねた。その結果、内方酸化層に含まれるSi濃度を高めれば素地鋼板と内方酸化層との密着性が向上し、溶融亜鉛めっき浴浸漬前に図1(c)に示すような素地鋼板と内方酸化層との剥離を防ぐことができるため、亜鉛量過多を解消できることを見出した。   Based on these findings, the present inventors consider that if the peeling of the inner oxide layer and the outer oxide layer that occurs before plating can be prevented, excessive zinc content can be suppressed, and the oxidation formed in the oxidation step The properties of the layers were studied repeatedly. As a result, if the Si concentration contained in the inner oxide layer is increased, the adhesion between the base steel plate and the inner oxide layer is improved, and the base steel plate and the inner steel plate as shown in FIG. It has been found that an excessive amount of zinc can be eliminated because it is possible to prevent separation from the oxidization layer.

すなわち、内方酸化層に含まれるSi濃度を高めると、素地鋼板の表面にSiとFeの複合酸化物(ファイアライト:Fe2SiO4)が緻密に形成され、この緻密なファイアライトが素地鋼板と内方酸化層の結晶粒の整合性を高めるため、素地鋼板と内方酸化層との密着性が向上するものと考えられる。 That is, when the concentration of Si contained in the inner oxide layer is increased, a complex oxide of Si and Fe (firelight: Fe 2 SiO 4 ) is densely formed on the surface of the base steel sheet, and this dense firelight is formed on the base steel sheet. It is considered that the adhesion between the base steel sheet and the inner oxide layer is improved in order to improve the consistency of the crystal grains of the inner oxide layer and the inner oxide layer.

そして本発明者らが検討した結果、Si濃度を高めてファイアライトによる素地鋼板と内方酸化層との密着性向上作用を有効に発揮させるためには、素地鋼板の酸化条件を制御することが重要であることを見出した。   And, as a result of the study by the present inventors, in order to increase the Si concentration and effectively exert the effect of improving the adhesion between the base steel plate and the inner oxide layer by firelight, it is possible to control the oxidation conditions of the base steel plate. I found it important.

すなわち、素地鋼板を酸化処理して素地鋼板の表面に酸化層を形成する際、素地鋼板が加熱初期段階で低温域に長く晒されると、ファイアライトではなく、ヘマタイト(Fe)主体の酸化物が生成する。ヘマタイトを多く含む酸化層が生成すると、素地鋼板からのFeの外方拡散や雰囲気からの酸素の内方拡散が阻害されるため、酸化層の成長速度は著しく遅延する。またファイアライトは高温域で生成するが、一旦、素地鋼板表面にヘマタイトを多く含む酸化層が形成されると、その後、加熱温度を高めてもファイアライトの生成が抑制されてしまうため、素地鋼板と内方酸化層との密着性を十分に高めることができないことが分かった。 That is, when forming an oxide layer on the surface of the base steel sheet by oxidizing the base steel sheet, if the base steel sheet is exposed to a low temperature region for a long time in the initial stage of heating, it is not a firelight but mainly hematite (Fe 2 0 3 ) An oxide is formed. When an oxide layer containing a large amount of hematite is formed, the outward diffusion of Fe from the base steel sheet and the inward diffusion of oxygen from the atmosphere are hindered, so that the growth rate of the oxide layer is significantly delayed. Firelight is generated in a high temperature range, but once an oxide layer containing a lot of hematite is formed on the surface of the base steel plate, the formation of firelite is suppressed even if the heating temperature is increased. It has been found that the adhesion between the inner oxide layer and the inner oxide layer cannot be sufficiently increased.

[2]外観性状について
上記酸化層と、めっき鋼板の外観性状との関係について検討したところ、めっき鋼板の外観性状は、酸化層のうち外方酸化層の厚みに影響を受けることが分かった。即ち、外方酸化層が薄くなると、この外方酸化層が還元炉で還元されて形成されるFe層(還元層)が薄くなるため、溶融亜鉛めっきとの濡れ性が悪くなり、不めっきが発生しやすくなる。また、外方酸化層が薄くなると、めっき層に含まれるFe量が不足するため、合金化処理したときに合金化不良が発生する傾向が認められる。そこでめっき鋼板の外観性状を改善するには、外方酸化層が薄くならないようにするのがよいと考えられる。一方、外方酸化層を厚くし過ぎると、還元炉で還元して形成されるFe層が厚くなり過ぎるため、この表面に溶融亜鉛めっき層を形成し、これを合金化するとFe層がめっき層に取り込まれる結果、めっき層が厚くなり過ぎ亜鉛量過多の場合と同じ問題が生じる。そこで本発明者等は外観性状が良好で、かつ亜鉛量過多を抑制するために検討を重ねた結果、加熱炉での酸素量、水蒸気量を適切に制御することによって外方酸化層を所望の厚さに調整できることを知見した。
[2] Appearance properties When the relationship between the oxide layer and the appearance properties of the plated steel sheet was examined, it was found that the appearance properties of the plated steel sheet were affected by the thickness of the outer oxide layer in the oxide layer. That is, when the outer oxide layer becomes thinner, the Fe layer (reduced layer) formed by reducing the outer oxide layer in the reducing furnace becomes thinner, so that the wettability with hot dip galvanizing becomes worse, and non-plating is not caused. It tends to occur. Further, when the outer oxide layer becomes thinner, the amount of Fe contained in the plating layer becomes insufficient, and thus a tendency to cause alloying failure when alloying is observed. Therefore, in order to improve the appearance properties of the plated steel sheet, it is considered that the outer oxide layer should not be thinned. On the other hand, if the outer oxide layer is made too thick, the Fe layer formed by reduction in the reduction furnace becomes too thick, so a hot dip galvanized layer is formed on this surface, and when this is alloyed, the Fe layer becomes the plated layer. As a result, the same problem as in the case where the plating layer becomes too thick and the amount of zinc is excessive occurs. Therefore, as a result of repeated investigations to suppress the excessive zinc content, the inventors of the present invention have good appearance properties, and as a result, by appropriately controlling the oxygen amount and the water vapor amount in the heating furnace, the outer oxide layer is desired. It was found that the thickness can be adjusted.

[3]めっき層の剥離について
一方、めっき密着性について検討したところ、めっき層が応力を受けたときに素地鋼板とめっき層の界面に応力が集中し、この界面から剥離する現象(界面のめっき剥離)は、素地鋼板として少なくともSiを含むSi添加鋼板を用いたときに見られるものであり、パウダリングが発生しない場合であっても、界面のめっき剥離が発生することがあることがわかった。
[3] Plating layer peeling On the other hand, when the plating adhesion was examined, when the plating layer was stressed, the stress was concentrated at the interface between the base steel sheet and the plating layer, and the phenomenon of peeling from this interface (interfacial plating) Peeling) is observed when a Si-added steel sheet containing at least Si is used as the base steel sheet, and it has been found that even when powdering does not occur, interfacial plating peeling may occur. .

そこで本発明者らは素地鋼板としてSi添加鋼板を用いたときに、界面のめっき剥離を防止するために更に検討を重ねた。その結果、内方酸化層の厚みを小さくしてやれば、界面のめっき剥離を防止できることが判明した。   Therefore, the present inventors have further studied in order to prevent plating peeling at the interface when a Si-added steel plate is used as the base steel plate. As a result, it has been found that if the thickness of the inner oxide layer is reduced, the plating peeling at the interface can be prevented.

内方酸化層は、還元炉で加熱した後や、溶融亜鉛めっき層や合金化溶融亜鉛めっき層を形成した後においても素地鋼板とめっき層の界面に酸化物の形態で残留する。そのため、素地鋼板としてSi添加鋼板を用いると、内方酸化層に含まれるSi量が多くなるため、素地鋼板とめっき層の界面にSiO2やFe2SiO4のようなSi酸化物が多く残留する。こうしたSi酸化物は、他の元素の酸化物に比べてもろいため、応力を受けたときにSi酸化物に応力が集中し易く、その結果、めっき層が素地鋼板から剥離することが分かった。そこで本発明者等はめっき密着性を改善するために検討を重ねた結果、内方酸化層に含まれるSi量が多くなりすぎないようにすれば界面のめっき剥離を防止できることを知見した。 The inner oxide layer remains in the form of an oxide at the interface between the base steel plate and the plating layer even after heating in a reduction furnace or after forming a hot dip galvanized layer or an alloyed hot dip galvanized layer. Therefore, when Si-added steel sheet is used as the base steel sheet, the amount of Si contained in the inner oxide layer increases, so that a large amount of Si oxide such as SiO 2 and Fe 2 SiO 4 remains at the interface between the base steel sheet and the plating layer. To do. Since such Si oxides are more fragile than oxides of other elements, it has been found that when stress is applied, the stress tends to concentrate on the Si oxide, and as a result, the plating layer peels from the base steel sheet. Therefore, as a result of repeated studies to improve plating adhesion, the present inventors have found that if the amount of Si contained in the inner oxide layer is not excessively increased, the peeling of the plating at the interface can be prevented.

この知見に基づき加熱炉内の酸素量、水蒸気量、加熱温度、及び加熱時間が内方酸化層に含まれるSi量に及ぼす影響について調べた。その結果、内方酸化層に含まれるSi量は素地鋼板に含まれるSi量に応じて増加すること、加熱時間が長くなるほど内方酸化層に含まれるSi量が増加すること、また加熱温度が高くなるほど内方酸化層に含まれるSi量が増加することが分かった。   Based on this knowledge, the influence of the amount of oxygen in the heating furnace, the amount of water vapor, the heating temperature, and the heating time on the amount of Si contained in the inner oxide layer was investigated. As a result, the amount of Si contained in the inner oxide layer increases according to the amount of Si contained in the base steel plate, the amount of Si contained in the inner oxide layer increases as the heating time increases, and the heating temperature It was found that the amount of Si contained in the inner oxide layer increases as the value increases.

[4]外観性状とめっき密着性の両立について
上述したようにめっき鋼板の外観性状を改善するには、外方酸化層を厚くする必要があるが、外方酸化層を厚くし過ぎるとパウダリングが発生する。また、界面のめっき剥離を防止してめっき密着性を改善するには、内方酸化層に含まれるSi量を抑える必要がある。しかし内方酸化層に含まれるSi量は、内方酸化層が厚くなるほど増加するため、内方酸化層に含まれるSi量を抑えるには、内方酸化層の厚みを薄くする必要がある。ところが外方酸化層と内方酸化層の厚みは相関しており、一方の厚みを増大させようとすると他方の厚みも増大する。そのため、外観性状とめっき密着性の両方を改善するには、酸化層全体の厚みに対する外方酸化層の厚みは大きく、内方酸化層の厚みは小さくする必要がある。
[4] Coexistence of appearance properties and plating adhesion As described above, to improve the appearance properties of the plated steel sheet, it is necessary to thicken the outer oxide layer, but if the outer oxide layer is made too thick, powdering will occur. Will occur. Moreover, in order to prevent plating peeling at the interface and improve plating adhesion, it is necessary to suppress the amount of Si contained in the inner oxide layer. However, since the amount of Si contained in the inner oxide layer increases as the inner oxide layer becomes thicker, it is necessary to reduce the thickness of the inner oxide layer in order to suppress the amount of Si contained in the inner oxide layer. However, the thicknesses of the outer oxide layer and the inner oxide layer are correlated, and when one thickness is increased, the other thickness also increases. Therefore, in order to improve both appearance properties and plating adhesion, it is necessary to increase the thickness of the outer oxide layer relative to the thickness of the entire oxide layer and to reduce the thickness of the inner oxide layer.

そこで本発明では、内方酸化層のみを薄くすることを目指して検討した。その結果、内方酸化層の厚みは、高温に加熱したときに、雰囲気中に含まれる酸素量に大きく影響を受けることが明らかとなった。即ち、550〜700℃程度の温度以上に加熱される加熱炉内の雰囲気中に含まれる酸素量が増加するに伴って外方酸化層と内方酸化層の厚みはいずれも大きくなる。しかし酸素量の増加量に対する内方酸化層の厚みの増加量は、酸素量の増加量に対する外方酸化層の厚みの増加量よりも小さいため、加熱炉内に含まれる酸素量を減らすほど、酸化層全体の厚みに対する内方酸化層の厚みを小さくできることが分かった。   Therefore, in the present invention, studies have been made with the aim of thinning only the inner oxide layer. As a result, it has been clarified that the thickness of the inner oxide layer is greatly affected by the amount of oxygen contained in the atmosphere when heated to a high temperature. That is, as the amount of oxygen contained in the atmosphere in the heating furnace heated to a temperature of about 550 to 700 ° C. increases, the thicknesses of the outer oxide layer and the inner oxide layer both increase. However, the amount of increase in the thickness of the inner oxide layer with respect to the amount of increase in the oxygen amount is smaller than the amount of increase in the thickness of the outer oxide layer with respect to the amount of increase in oxygen amount. It was found that the thickness of the inner oxide layer relative to the thickness of the entire oxide layer can be reduced.

[5]めっき密着性とめっきの凝着性の両立について
上述したようにめっきの凝着を抑制するには、内方酸化層に含まれるSi濃度を高める必要があるが、Si濃度を高め過ぎると、めっき密着性が劣化する。そこで本発明ではめっきの凝着を抑制するには単にSi濃度を高めればよいのではなく、上述したようにファイアライトを緻密に形成することが必要であるとの知見に基づき、加熱炉内における加熱条件を検討した。その結果、ヘマタイトの生成を抑えてファイアライトの生成を促進するには、加熱炉内での昇温速度を制御することが重要であり、詳細には加熱前段での昇温速度を上げる(前段高負荷)と共に、加熱後段の昇温速度を加熱前段の昇温速度よりも遅くする二段昇温パターンを採用すればよいことを見出した。このような昇温速度を採用することで、めっきの凝着を抑制しつつ、めっきの密着性も確保できることを見出した。
[5] Coexistence of plating adhesion and plating adhesion To suppress plating adhesion as described above, it is necessary to increase the Si concentration contained in the inner oxide layer, but the Si concentration is excessively increased. As a result, the plating adhesion deteriorates. Therefore, in the present invention, in order to suppress the adhesion of plating, it is not necessary to simply increase the Si concentration, but based on the knowledge that it is necessary to form the firelight densely as described above, The heating conditions were examined. As a result, in order to suppress the formation of hematite and promote the production of firelight, it is important to control the temperature rise rate in the heating furnace. It has been found that a two-stage temperature increase pattern in which the temperature increase rate at the latter stage of heating is slower than the temperature increase rate at the previous stage of heating may be adopted. It has been found that by adopting such a temperature rising rate, adhesion of plating can be secured while suppressing adhesion of plating.

以上、[1]〜[5]の知見に基づいて、導き出された本発明に係る合金化溶融亜鉛めっき鋼板の製造方法はC:0.04〜0.20%、Si:0.1〜3.0%、Mn:0.1〜3.0%、を満足する素地鋼板の表面に、合金化溶融亜鉛めっき層が形成された合金化溶融亜鉛めっき鋼板の製造方法は、上記化学成分組成を満足する素地鋼板を加熱炉で加熱して素地鋼板の表面に酸化層を形成する第一の工程、前記酸化層を形成した素地鋼板を還元炉で加熱して前記酸化層を還元する第二の工程、溶融亜鉛めっきを施した後、合金化する第三の工程、をこの順で含み、前記第一の工程は、前記加熱炉内の酸素量を0.3体積%以下、水蒸気量を10〜30体積%に制御した雰囲気下にて、前記素地鋼板を45〜120秒で750〜850℃の温度まで加熱するものであり、且つ、前記第一の工程は、7.5〜28℃/秒の昇温速度(X)で450〜600℃の温度まで加熱する加熱前段工程と、0.30X〜0.80Xの昇温速度でさらに750〜850℃の温度まで加熱する加熱後段工程と、を含むものである。   As mentioned above, based on the knowledge of [1]-[5], the manufacturing method of the galvannealed steel plate based on this invention derived | led-out is C: 0.04-0.20%, Si: 0.1-3 0.0%, Mn: 0.1 to 3.0%, the manufacturing method of the galvannealed steel sheet in which the galvannealed steel alloy layer is formed on the surface of the base steel sheet has the above chemical composition composition. A first step of heating a satisfactory base steel plate in a heating furnace to form an oxide layer on the surface of the base steel plate; a second step of heating the base steel plate on which the oxide layer has been formed in a reduction furnace to reduce the oxide layer A process, a third process of alloying after hot dip galvanization, and in this order, the first process has an oxygen content in the heating furnace of 0.3% by volume or less and a water vapor content of 10%. In the atmosphere controlled to -30 volume%, the said base steel plate is 750-850 degreeC in 45-120 second. And the first step includes a pre-heating step of heating to a temperature of 450 to 600 ° C. at a temperature rising rate (X) of 7.5 to 28 ° C./second, and 0.30X And a heating post-stage step of further heating to a temperature of 750 to 850 ° C. at a temperature rising rate of ˜0.80X.

以下、このような範囲を規定した理由について説明する。   The reason why such a range is specified will be described below.

まず、本発明の製造方法で用いる素地鋼板の成分組成について説明する。   First, the component composition of the base steel sheet used in the production method of the present invention will be described.

上記素地鋼板は、C:0.04〜0.20%、Si:0.1〜3.0%、Mn:0.1〜3.0%を含有している。   The base steel sheet contains C: 0.04 to 0.20%, Si: 0.1 to 3.0%, and Mn: 0.1 to 3.0%.

C:0.04〜0.20%
Cは、鋼板の強度向上に必要な元素であり、このような効果を発揮させるためには0.04%以上含有させる。好ましいC量は0.05%以上、より好ましくは0.06%以上である。しかし、Cを過剰に添加すると冷間加工性が低下するため、0.20%以下とする。好ましいC量は0.15%以下、より好ましくは0.12%以下である。
C: 0.04 to 0.20%
C is an element necessary for improving the strength of the steel sheet, and in order to exert such an effect, 0.04% or more is contained. A preferable amount of C is 0.05% or more, more preferably 0.06% or more. However, if C is added excessively, the cold workability deteriorates, so the content is made 0.20% or less. A preferable amount of C is 0.15% or less, more preferably 0.12% or less.

Si:0.1〜3.0%
Siは、延性や加工性を劣化させることなく強度を高めるのに有用な元素であり、このような作用を有効に発揮させるためには0.1%以上含有させる。Siは易酸化性元素であるため、従来では、Siを0.1%以上含有させると外観性状とめっき密着性が劣化するという問題があった。これに対し、本発明では、加熱炉内の雰囲気および加熱条件を適切に制御して酸化層を形成しているため、素地鋼板とめっき層との間に形成される酸化物含有層にSiを濃化させることができ、素地鋼板にSiを0.1%以上含有させても良好な外観性状とめっき密着性を確保できる。好ましいSi量は0.5%以上、より好ましくは0.8%以上である。しかしSiを過剰に添加すると延性が劣化するため、3.0%以下とする。好ましいSi量は2.5%以下、より好ましくは2.0%以下である。
Si: 0.1-3.0%
Si is an element useful for increasing the strength without deteriorating ductility and workability, and is contained in an amount of 0.1% or more in order to effectively exhibit such action. Since Si is an easily oxidizable element, conventionally, when Si is contained in an amount of 0.1% or more, there has been a problem that appearance properties and plating adhesion deteriorate. In contrast, in the present invention, since the oxide layer is formed by appropriately controlling the atmosphere and heating conditions in the heating furnace, Si is added to the oxide-containing layer formed between the base steel plate and the plating layer. Even if Si is contained in the base steel sheet in an amount of 0.1% or more, good appearance properties and plating adhesion can be ensured. A preferable Si amount is 0.5% or more, more preferably 0.8% or more. However, if Si is added excessively, ductility deteriorates, so the content is made 3.0% or less. A preferable amount of Si is 2.5% or less, more preferably 2.0% or less.

Mn:0.1〜3.0%
Mnは、強度と靭性を確保するために必要な元素であり、このような作用を有効に発揮させるためには0.1%以上含有させる。本発明によれば、後述するように加熱炉での酸化加熱条件を適切に制御しているため、Mnを0.1%以上添加してもめっき密着性の低下などを回避することができる。好ましいMn量は、0.2%以上、より好ましくは0.5%以上である。しかしMnを過剰に添加すると延性が劣化するため、3.0%以下とする。好ましいMn量は、2.5%以下であり、より好ましくは2.3%以下である。
Mn: 0.1 to 3.0%
Mn is an element necessary for securing strength and toughness, and is contained in an amount of 0.1% or more in order to effectively exhibit such action. According to the present invention, the oxidation heating conditions in the heating furnace are appropriately controlled as will be described later. Therefore, even if 0.1% or more of Mn is added, it is possible to avoid a decrease in plating adhesion. A preferable amount of Mn is 0.2% or more, more preferably 0.5% or more. However, if Mn is added excessively, ductility deteriorates, so the content is made 3.0% or less. A preferable amount of Mn is 2.5% or less, and more preferably 2.3% or less.

本発明に用いられる素地鋼板は、上記元素を基本元素として含有し、残部は鉄および不可避不純物である。不可避不純物のうち、例えばPは0.02%以下(0%は含まない)、Sは0.004%以下(0%は含まない)、Nは0.01%以下(0%は含まない)とすることが好ましい。   The base steel sheet used in the present invention contains the above elements as basic elements, and the balance is iron and inevitable impurities. Among inevitable impurities, for example, P is 0.02% or less (0% is not included), S is 0.004% or less (0% is not included), and N is 0.01% or less (0% is not included). It is preferable that

P:0.02%以下(0%は含まない)
Pは、セメンタイトの析出を遅延して変態を抑制する作用があるが、過剰に含まれると素地鋼板の延性やめっき密着性を低下させる原因となる。したがってPは0.02%以下、好ましくは0.01%以下、より好ましくは0.005%以下とする。
P: 0.02% or less (excluding 0%)
P has an effect of suppressing the transformation by delaying the precipitation of cementite, but if contained excessively, it causes a decrease in the ductility and plating adhesion of the base steel sheet. Therefore, P is 0.02% or less, preferably 0.01% or less, more preferably 0.005% or less.

S:0.004%以下(0%は含まない)
Sは、過剰に含まれるとMnSなどの硫化物系介在物(例えば、MnS)を多く形成し、この介在物が熱間圧延時に偏析して鋼板を脆化させる原因となる。したがってSは0.004%以下、好ましくはS0.003%以下、より好ましくは0.002%以下とする。
S: 0.004% or less (excluding 0%)
When S is excessively contained, a large amount of sulfide inclusions (for example, MnS) such as MnS are formed, and these inclusions segregate during hot rolling and cause embrittlement of the steel sheet. Therefore, S is 0.004% or less, preferably S 0.003% or less, more preferably 0.002% or less.

N:0.01%以下(0%は含まない)
Nは、過剰に含まれると粗大な窒化物を多く形成し、鋼板の曲げ性や穴拡げ性を劣化させ、また溶接時のブローホールの原因となる。したがってNは0.01%以下、好ましくは0.005%以下、より好ましくは0.002%以下とする。
N: 0.01% or less (excluding 0%)
When N is excessively contained, a large amount of coarse nitride is formed, which deteriorates the bendability and hole expandability of the steel sheet, and causes blowholes during welding. Therefore, N is 0.01% or less, preferably 0.005% or less, more preferably 0.002% or less.

本発明に用いられる素地鋼板は、更に他の元素として以下の元素を必要に応じて含有することができる。   The base steel sheet used in the present invention can further contain the following elements as other elements as required.

Ni、Cu、Mo、およびBは焼き入れ性向上に有用な元素であり、これらの元素を単独又は併用することができる。具体的には以下の通りである。   Ni, Cu, Mo, and B are elements useful for improving the hardenability, and these elements can be used alone or in combination. Specifically, it is as follows.

Ni:2%以下(0%を含まない)
Niは、焼入れ性向上に有用な元素である。Niを適量を添加するとCAL焼鈍、冷却時にマルテンサイト比率が増大し、またマルテンサイトのラス構造が微細化され、次工程のCGL焼鈍時における2相域再加熱・冷却処理時の焼入れ性が良好となる。また冷却後の最終的な複合組織が良好なものとなるため、各種成形加工性を向上させることができる。このような作用を有効に発揮させるためにはNiは好ましくは0.1%以上、より好ましくは0.2%以上含有させる。しかしNiは高価な元素であり、過剰に添加すると製造コストの上昇を招くため、好ましくは2%以下とする。より好ましいNi量は1.5%以下、更に好ましくは1.0%以下である。
Ni: 2% or less (excluding 0%)
Ni is an element useful for improving hardenability. When an appropriate amount of Ni is added, the martensite ratio increases during CAL annealing and cooling, the lath structure of martensite is refined, and the hardenability during the two-phase reheating / cooling process during CGL annealing in the next process is good. It becomes. Moreover, since the final composite structure after cooling becomes favorable, various molding processability can be improved. In order to effectively exhibit such an action, Ni is preferably contained in an amount of 0.1% or more, more preferably 0.2% or more. However, Ni is an expensive element, and if it is added excessively, the manufacturing cost increases, so it is preferably made 2% or less. A more preferable amount of Ni is 1.5% or less, and further preferably 1.0% or less.

Cu:2%以下(0%を含まない)
Cuは、Niと同様、焼入れ性向上に有用な元素である。CuもNiと同様の作用により各種成形加工性を向上させることができる。このような作用を有効に発揮させるためにはCuは好ましくは0.1%以上、より好ましくは0.2%以上含有させる。しかしCuは高価な元素であり、過剰に添加すると製造コストの上昇を招くため、好ましくは2%以下とする。より好ましいCu量は1.5%以下、更に好ましくは1.0%以下である。
Cu: 2% or less (excluding 0%)
Cu, like Ni, is an element useful for improving hardenability. Cu can improve various processability by the same action as Ni. In order to effectively exhibit such an action, Cu is preferably contained in an amount of 0.1% or more, more preferably 0.2% or more. However, Cu is an expensive element, and if added excessively, the manufacturing cost is increased, so the content is preferably 2% or less. A more preferable amount of Cu is 1.5% or less, still more preferably 1.0% or less.

Mo:2%以下(0%を含まない)
Moは、めっき性を損ねることなく、固溶強化を図る上で重要な元素である。またNiやCuと同様、焼入れ性向上に有用な元素である。MoもCuやNiと同様の作用により各種成形加工性を向上させることができる。このような作用を有効に発揮させるためにはMoは好ましくは0.1%以上、より好ましくは0.2%以上含有させる。しかしMoは高価な元素であり、過剰に添加すると製造コストの上昇を招くため、好ましくは2%以下とする。より好ましいMo量は1.5%以下、更に好ましくは1.0%以下である。
Mo: 2% or less (excluding 0%)
Mo is an important element in strengthening the solid solution without impairing the plating property. Moreover, like Ni and Cu, it is an element useful for improving hardenability. Mo can improve various moldability by the same action as Cu and Ni. In order to effectively exhibit such an action, Mo is preferably contained in an amount of 0.1% or more, more preferably 0.2% or more. However, Mo is an expensive element, and if added excessively, the manufacturing cost is increased, so the content is preferably 2% or less. A more preferable amount of Mo is 1.5% or less, and further preferably 1.0% or less.

B:0.01%以下(0%を含まない)
Bは、焼入れ性向上に有用な元素である。このような作用を有効に発揮させるためにはBは好ましくは0.0001%以上、より好ましくは0.0002%以上含有させる。しかしBを過剰に添加すると、めっき性が低下するため、好ましくは0.01%以下とする。より好ましいB量は0.005%以下、更に好ましくは0.001%以下である。
B: 0.01% or less (excluding 0%)
B is an element useful for improving hardenability. In order to effectively exhibit such an action, B is preferably contained in an amount of 0.0001% or more, more preferably 0.0002% or more. However, if B is added excessively, the plating property is lowered, so the content is preferably 0.01% or less. A more preferable amount of B is 0.005% or less, still more preferably 0.001% or less.

Cr、Nb、V、およびWは強度向上に有用な元素であり、これらの元素を単独又は併用することができる。具体的には以下の通りである。   Cr, Nb, V, and W are elements useful for improving the strength, and these elements can be used alone or in combination. Specifically, it is as follows.

Cr:2%以下(0%を含まない)
Crは、鋼板の強度向上に有効な元素である。このような作用を有効に発揮させるためにはCrは好ましくは0.01%以上、より好ましくは0.05%以上有させる。しかしCrを過剰に添加すると延性の低下を招くため、好ましくは2%以下、より好ましくは1.5%以下、更に好ましくは1.0%以下とする。
Cr: 2% or less (excluding 0%)
Cr is an element effective for improving the strength of the steel sheet. In order to effectively exhibit such an action, Cr is preferably contained in an amount of 0.01% or more, more preferably 0.05% or more. However, excessive addition of Cr causes a drop in ductility, so it is preferably 2% or less, more preferably 1.5% or less, and even more preferably 1.0% or less.

Nb:1%以下(0%を含まない)
Nbは、微量の添加で微細組織を得ることができ、靱性を劣化させることなく強度を高めるのに有用な元素である。このような作用を有効に発揮させるためにはNbは好ましくは0.001%以上、より好ましくは0.005%以上含有させる。しかしNbを過剰に添加すると、Nb炭化物が過剰に生成し、マルテンサイトの体積率減少やその析出強化によって強度と加工性のバランスを失わせる原因となる。したがってNbは好ましくは1%以下、より好ましくは0.5%以下、更に好ましくは0.1%以下とする。
Nb: 1% or less (excluding 0%)
Nb is an element useful for increasing the strength without degrading toughness because a fine structure can be obtained with a small amount of addition. In order to effectively exhibit such an action, Nb is preferably contained in an amount of 0.001% or more, more preferably 0.005% or more. However, when Nb is added excessively, Nb carbides are excessively generated, which causes a loss of the balance between strength and workability due to a decrease in the martensite volume fraction and precipitation strengthening. Therefore, Nb is preferably 1% or less, more preferably 0.5% or less, and still more preferably 0.1% or less.

V:1%以下(0%を含まない)
Vは、Nbと同様、強度を高めるのに有用な元素である。このような作用を有効に発揮させるためにはVは好ましくは0.001%以上、より好ましくは0.005%以上含有させる。しかしVを過剰に添加すると、製造コストの上昇を招くだけでなく、降伏点(降伏比)が上昇して加工性が低下する原因となる。したがってVは好ましくは1%以下、より好ましくは0.5%以下、更に好ましくは0.1%以下とする。
V: 1% or less (excluding 0%)
V, like Nb, is an element useful for increasing the strength. In order to effectively exhibit such an action, V is preferably contained in an amount of 0.001% or more, more preferably 0.005% or more. However, when V is excessively added, not only the manufacturing cost is increased, but also the yield point (yield ratio) is increased and the workability is decreased. Therefore, V is preferably 1% or less, more preferably 0.5% or less, and still more preferably 0.1% or less.

W:0.3%以下(0%を含まない)
Wは、析出物強化や、フェライト結晶粒の成長を抑制して細粒強化、および再結晶の抑制による転移強化によって、強度を高めるのに有用な元素である。このような作用を有効に発揮させるためにはWは好ましくは0.001%以上、より好ましくは0.005%以上とする。しかしWを過剰に添加すると、炭窒化物の析出が過剰となって成形性が低下する原因となる。したがってWは好ましくは0.3%以下、より好ましくは0.2%以下、更に好ましくは0.1%以下とする。
W: 0.3% or less (excluding 0%)
W is an element useful for increasing the strength by strengthening precipitates, strengthening fine grains by suppressing the growth of ferrite crystal grains, and transition strengthening by suppressing recrystallization. In order to effectively exhibit such an action, W is preferably 0.001% or more, more preferably 0.005% or more. However, if W is added excessively, the precipitation of carbonitrides becomes excessive, which causes a decrease in moldability. Therefore, W is preferably 0.3% or less, more preferably 0.2% or less, and still more preferably 0.1% or less.

Al、及びTiは脱酸剤として有用な元素である。具体的には以下の通りである。   Al and Ti are elements useful as deoxidizers. Specifically, it is as follows.

Al:0.06%以下(0%は含まない)
Alは、脱酸剤として作用する元素である。またAlは焼鈍の際にオーステナイト結晶粒が粗大化するのを防止し、材質改善作用を有する元素である。しかしAlを過剰に添加しても上記作用は飽和する。また、結晶粒が不安定になって材質にムラが生じ易くなる。したがってAlは好ましくは0.06%以下、より好ましくは0.05%以下、更に好ましくは0.04%以下とする。
Al: 0.06% or less (excluding 0%)
Al is an element that acts as a deoxidizer. In addition, Al is an element that prevents the austenite crystal grains from coarsening during annealing and has a material improving effect. However, even if Al is added excessively, the above action is saturated. In addition, the crystal grains become unstable and unevenness is likely to occur in the material. Therefore, Al is preferably 0.06% or less, more preferably 0.05% or less, and still more preferably 0.04% or less.

Ti0.1%以下(0%は含まない)
Tiは、脱酸剤として作用する元素である。このような作用を有効に発揮させるためにはTiは好ましくは0.01%以上、より好ましくは0.02%以上とする。しかしTiを過剰に添加すると靱性が低下する原因となる。したがってTiは好ましくは0.1%以下、より好ましくは0.008%以下、より好ましくは0.005%以下とする。
Ti 0.1% or less (excluding 0%)
Ti is an element that acts as a deoxidizer. In order to effectively exhibit such an action, Ti is preferably 0.01% or more, more preferably 0.02% or more. However, excessive addition of Ti causes a reduction in toughness. Therefore, Ti is preferably 0.1% or less, more preferably 0.008% or less, and more preferably 0.005% or less.

Ca、Mg、およびREMよりなる群から選ばれる少なくとも1種の元素:合計量で0.03%以下(0%を含まない)
Ca、Mg、およびREMは、脱酸剤として作用する元素である。これらの元素を単独又は併用することができる。このような作用を有効に発揮させるためにはCa、Mg、およびREMよりなる群から選ばれる1種以上の元素を合計量で好ましくは0.002%以上、より好ましくは0.003%以上とする。しかし、これら元素を過剰に添加すると成形性が低下する原因となる。したがってCa、Mg、およびREMよりなる群から選ばれる1種以上の元素の合計量は好ましくは0.03%以下、より好ましくは0.02%以下、更に好ましくは0.01%以下とする。
At least one element selected from the group consisting of Ca, Mg, and REM: 0.03% or less in total (not including 0%)
Ca, Mg, and REM are elements that act as deoxidizers. These elements can be used alone or in combination. In order to effectively exert such an action, the total amount of one or more elements selected from the group consisting of Ca, Mg, and REM is preferably 0.002% or more, more preferably 0.003% or more. To do. However, when these elements are added excessively, the moldability is lowered. Therefore, the total amount of one or more elements selected from the group consisting of Ca, Mg, and REM is preferably 0.03% or less, more preferably 0.02% or less, and still more preferably 0.01% or less.

なお、本発明において、REMとは、ランタノイド元素(LaからLuまでの15元素)およびSc(スカンジウム)とY(イットリウム)を含む意味である。これらの元素のなかでも、La、CeおよびYよりなる群から選ばれる少なくとも1種の元素を含有することが好ましく、より好ましくはLaおよび/またはCeを含有するのがよい。   In the present invention, REM means a lanthanoid element (15 elements from La to Lu), Sc (scandium) and Y (yttrium). Among these elements, it is preferable to contain at least one element selected from the group consisting of La, Ce and Y, more preferably La and / or Ce.

上記成分組成を満足する素地鋼板を用い、上記第一から第三の工程を経ることで合金化溶融亜鉛めっき鋼板を製造できるが、特に、本発明の製造方法を最も特徴付ける上記第一の工程(酸化工程)を行うときの条件は次の通りである。   An alloyed hot-dip galvanized steel sheet can be manufactured by going through the first to third steps using a base steel plate that satisfies the above component composition, but in particular, the first step (characterizing the manufacturing method of the present invention most particularly ( The conditions for performing the oxidation step are as follows.

第一の工程(酸化工程)
第一の工程は、素地鋼板の表面に酸化層を形成する酸化工程を規定したものであり、このとき
(a)加熱炉内の酸素量は0.3体積%以下、水蒸気量は10〜30体積%に制御した雰囲気下で、
(b)素地鋼板を45〜120秒で750〜850℃の温度まで加熱し、
(c)7.5〜28℃/秒の昇温速度(X)で450〜600℃まで加熱すると共に(加熱前段工程)、
(d)その後、0.30X〜0.80Xの昇温速度(℃/秒)でさらに750〜850℃の温度まで加熱する(加熱後段工程)ことが重要である。
First step (oxidation step)
The first step defines an oxidation step for forming an oxide layer on the surface of the base steel plate. At this time, (a) the amount of oxygen in the heating furnace is 0.3% by volume or less, and the amount of water vapor is 10-30. Under an atmosphere controlled to volume%,
(B) heating the base steel plate to a temperature of 750 to 850 ° C. in 45 to 120 seconds;
(C) While heating to 450-600 degreeC with the temperature increase rate (X) of 7.5-28 degreeC / second (heating pre-stage process),
(D) After that, it is important to further heat to a temperature of 750 to 850 ° C. at a heating rate (° C./second) of 0.30X to 0.80X (post-heating step).

[(a)加熱炉内の雰囲気]
酸素量:0.3体積%以下
上述のとおり、酸素量を多くし過ぎると、内方酸化層が厚くなり過ぎて内方酸化層に含まれるSi量が過剰になるため、界面のめっき剥離が発生する。したがって酸素量は0.3体積%と以下とする。好ましい酸素量は0.2体積%以下、より好ましくは0.15体積%以下である。一方、外観性状を向上させるには酸素量を0.00001体積%以上とすることが好ましい。酸素量が少ないと外方酸化層が十分生成されず、この外方酸化層が還元炉で還元されて形成されるFe層(還元層)が薄くなるため、不めっき等の問題が発生する。好ましい酸素量は0.001体積%以上、より好ましくは0.01体積%以上である。
[(A) Atmosphere in heating furnace]
Oxygen amount: 0.3 volume% or less As described above, if the oxygen amount is excessively increased, the inner oxide layer becomes too thick and the amount of Si contained in the inner oxide layer becomes excessive. appear. Therefore, the amount of oxygen is set to 0.3% by volume or less. A preferable oxygen amount is 0.2% by volume or less, more preferably 0.15% by volume or less. On the other hand, in order to improve the appearance properties, the oxygen content is preferably 0.00001% by volume or more. If the amount of oxygen is small, the outer oxide layer is not sufficiently formed, and the Fe layer (reduced layer) formed by reducing the outer oxide layer in the reducing furnace becomes thin, which causes problems such as non-plating. A preferable oxygen amount is 0.001% by volume or more, more preferably 0.01% by volume or more.

水蒸気量:10〜30体積%
水蒸気は、外方酸化層と内方酸化層の両方の成長を促進する作用を有している。水蒸気量が10体積%を下回ると、外方酸化層の厚さが不足するため、不めっきや合金化不良が発生して外観性状が悪くなる。水蒸気量は10体積%以上、好ましくは15体積%以上とする。しかし水蒸気量が過剰になると外方酸化層の成長が促進され過ぎる他、内方酸化層の成長も促進されるため、めっき層に含まれるSi量が多くなり、界面のめっき剥離が発生する。従って水蒸気量は30体積%以下、好ましくは25体積%以下とする。
Water vapor amount: 10-30% by volume
The water vapor has an action of promoting the growth of both the outer oxide layer and the inner oxide layer. When the amount of water vapor is less than 10% by volume, the thickness of the outer oxide layer is insufficient, so that non-plating and poor alloying occur and appearance properties deteriorate. The amount of water vapor is 10% by volume or more, preferably 15% by volume or more. However, when the amount of water vapor is excessive, the growth of the outer oxide layer is promoted too much and the growth of the inner oxide layer is also promoted, so that the amount of Si contained in the plating layer increases and plating peeling at the interface occurs. Therefore, the amount of water vapor is 30% by volume or less, preferably 25% by volume or less.

なお、加熱炉内の雰囲気に含まれる酸素量と水蒸気量は、加熱炉内を加熱するときに用いるバーナーに供給する燃焼ガスの流量や、燃焼ガスと空気の流量比(空燃比)を調整すれば制御できる。また加熱炉内の酸素量は、例えば、磁気式濃度計を用いれば測定でき、水蒸気量は、例えば、露点計を用いれば測定できる。   The amount of oxygen and water vapor contained in the atmosphere in the heating furnace can be adjusted by adjusting the flow rate of the combustion gas supplied to the burner used when heating the heating furnace and the flow rate ratio (air-fuel ratio) of the combustion gas and air. Can be controlled. The amount of oxygen in the heating furnace can be measured using, for example, a magnetic densitometer, and the amount of water vapor can be measured using, for example, a dew point meter.

[(b)加熱炉内での加熱時間]
加熱時間:45〜120秒
素地鋼板を45〜120秒で、750〜850℃まで加熱する。直火式の加熱炉の場合、加熱時間が短いと短時間のうちに酸化工程を完了させなければならず、設備への負担が大きくなり、メンテナンスコストが増大する。また加熱時間が短いと所望の材料特性が得られない。したがって加熱時間は45秒以上とする。好ましい加熱時間は55秒以上である。一方、加熱時間が長くなると生産性が低下する。また内方酸化層が厚くなりすぎて内方酸化層に含まれるSi量が多くなり、界面のめっき剥離が発生する。したがって加熱時間は120秒以下とする。好ましい加熱時間は110秒以下である。なお、この加熱時間は、加熱炉入口温度、すなわち、素地鋼板の温度が室温からスタートする場合の時間である。したがって素地鋼板の温度を室温よりも高くする場合は、それに伴って加熱時間を適宜調整すればよい。
[(B) Heating time in heating furnace]
Heating time: 45 to 120 seconds The base steel sheet is heated to 750 to 850 ° C in 45 to 120 seconds. In the case of a direct-fired heating furnace, if the heating time is short, the oxidation process must be completed within a short time, increasing the burden on the equipment and increasing the maintenance cost. If the heating time is short, desired material characteristics cannot be obtained. Accordingly, the heating time is 45 seconds or longer. A preferable heating time is 55 seconds or more. On the other hand, productivity decreases as the heating time increases. In addition, the inner oxide layer becomes too thick and the amount of Si contained in the inner oxide layer increases, resulting in peeling of the plating at the interface. Therefore, the heating time is 120 seconds or less. A preferred heating time is 110 seconds or less. This heating time is the time when the furnace inlet temperature, that is, the temperature of the base steel plate starts from room temperature. Therefore, when making the temperature of a base steel plate higher than room temperature, what is necessary is just to adjust a heating time suitably in connection with it.

[(c)加熱前段工程]
7.5〜28℃/秒の昇温速度(X)で、450〜600℃まで加熱する
加熱前段の温度:450〜600℃
本発明では加熱炉入口から450〜600℃までの範囲を加熱前段工程とし、加熱前段工程での昇温速度を7.5〜28℃/秒とする。加熱炉入口温度は室温が望ましいが、これに限定されない。450〜600℃を加熱前段の終了温度とし、その後、加熱後段工程に移行する。450℃よりも低い温度で加熱後段工程に移行すると、低温度域での処理時間がなくなるため、ヘマタイト主体の酸化物層が生成してしまい、上記のとおり素地鋼板と内方酸化層との密着性を十分に高めることができない。したがって加熱前段の終了温度は450℃以上とする。より好ましい加熱前段の終了温度は470℃以上である。一方、前段の終了温度が600℃を超えた場合は、後段の昇温速度の制約から高温度域(加熱後段工程)の在炉時間が短くなり、合金化不良が発生する原因となる。したがって加熱前段工程の終了温度は600℃以下とする。より好ましい加熱前段工程の終了温度は580℃以下である。
[(C) Pre-heating step]
Heat to 450 to 600 ° C. at a temperature rising rate (X) of 7.5 to 28 ° C./sec. Temperature before heating: 450 to 600 ° C.
In the present invention, the range from the heating furnace inlet to 450 to 600 ° C. is the pre-heating step, and the temperature increase rate in the pre-heating step is 7.5 to 28 ° C./second. The furnace inlet temperature is preferably room temperature, but is not limited thereto. 450-600 degreeC is made into the completion | finish temperature of a pre-heating stage, and it transfers to a post-heating post process after that. When the process proceeds to a post-heating step at a temperature lower than 450 ° C., the processing time in the low temperature range is eliminated, so that an oxide layer mainly composed of hematite is generated, and as described above, adhesion between the base steel sheet and the inner oxide layer The sex cannot be raised sufficiently. Therefore, the end temperature of the pre-heating stage is 450 ° C. or higher. A more preferable end temperature of the pre-heating stage is 470 ° C. or higher. On the other hand, when the end temperature of the former stage exceeds 600 ° C., the in-furnace time in the high temperature region (post-heating stage process) is shortened due to the restriction of the rate of temperature rise in the latter stage, which causes alloying failure. Therefore, the end temperature of the pre-heating step is 600 ° C. or lower. A more preferable end temperature of the pre-heating step is 580 ° C. or lower.

加熱前段工程の昇温速度:7.5〜28℃/秒
本発明では、7.5〜28℃/秒の昇温速度で、450〜600℃の温度まで加熱する。加熱前段での昇温速度が遅すぎると、生産性が低下するだけでなく、低温域で生成するヘマタイト主体の酸化物が多くなり、上述のようにめっきの凝着が発生する原因となる。したがって加熱前段の昇温速度は、7.5℃/秒以上、好ましくは10℃/秒以上とする。一方、加熱前段の昇温速度を速くし過ぎると、加熱前段を早く完了させなければならず、設備への負担が大きくなる。また加熱時間が短いと所望の材料特性が得られない。したがって加熱前段の昇温速度は28℃/秒以下、好ましくは25.5℃/秒以下とする。
Heating rate of pre-heating step: 7.5 to 28 ° C./second In the present invention, heating is performed to a temperature of 450 to 600 ° C. at a temperature rising rate of 7.5 to 28 ° C./second. If the heating rate in the pre-heating stage is too slow, not only the productivity is lowered, but also the hematite-based oxide generated in the low temperature region increases, which causes the occurrence of plating adhesion as described above. Therefore, the heating rate in the pre-heating stage is 7.5 ° C./second or more, preferably 10 ° C./second or more. On the other hand, if the heating rate of the pre-heating stage is too high, the pre-heating stage must be completed quickly, increasing the burden on the equipment. If the heating time is short, desired material characteristics cannot be obtained. Therefore, the heating rate in the pre-heating stage is 28 ° C./second or less, preferably 25.5 ° C./second or less.

[(d)加熱後段工程]
0.30X〜0.80Xの昇温速度(℃/秒)で、更に750〜850℃まで加熱する
本発明では、加熱前段工程終了温度から750〜850℃までの範囲を加熱後段工程とし、加熱後段工程での昇温速度を0.30X〜0.80X[Xは加熱前段工程での昇温速度(℃/秒)]とする。
[(D) Post-heating step]
Further heating to 750 to 850 ° C. at a temperature rising rate (° C./second) of 0.30X to 0.80X In the present invention, the range from the heating pre-stage process end temperature to 750 to 850 ° C. is defined as the heating post-stage process. The rate of temperature increase in the subsequent step is 0.30X to 0.80X [X is the rate of temperature increase in the pre-heating step (° C./second)].

加熱後段工程の終了温度が低すぎると素地鋼板に含まれるFeの拡散が十分でないため外方酸化層の厚み不足となり、合金化不良等が発生し、外観性状劣化の原因となる。したがって加熱後段工程の終了温度は750℃以上とする。好ましい終了温度は770℃以上である。一方、加熱後段工程の終了温度が高くなりすぎると、素地鋼板に含まれるSiが内方酸化層に濃化し過ぎて素地鋼板とめっき層との密着性を低下させる原因となる。したがって加熱後段の終了温度は850℃以下とする。好ましい終了温度は840℃以下である。   If the end temperature of the post-heating step is too low, the diffusion of Fe contained in the base steel plate is not sufficient, resulting in insufficient thickness of the outer oxide layer, resulting in poor alloying and the like, causing deterioration in appearance properties. Therefore, the end temperature of the post-heating step is 750 ° C. or higher. The preferred end temperature is 770 ° C. or higher. On the other hand, if the end temperature of the post-heating step becomes too high, Si contained in the base steel sheet is excessively concentrated in the inner oxide layer, which causes a decrease in adhesion between the base steel sheet and the plating layer. Therefore, the end temperature of the latter stage of heating is set to 850 ° C. or lower. The preferred end temperature is 840 ° C. or lower.

加熱後段工程の昇温速度:0.30X〜0.80X[Xは加熱前段工程の昇温速度(℃/秒)]
前述したように、外方酸化層は、素地鋼板内部のFeが表面側に拡散し、この拡散したFeが酸化することで形成されるため、素地鋼板の高温域滞在時間が長くなりすぎると、Feの拡散が過度に促進されて外方酸化層が厚くなりすぎる。その結果、後述する還元処理工程において、外方酸化層の還元により形成される純Fe層が厚くなり過ぎるため、溶融亜鉛めっき処理した際に、亜鉛と反応する還元鉄量が増大し、亜鉛付着量過多になる原因となる。また、素地鋼板の表面に拡散してきたSiの酸化も多くなり、内方酸化層の厚さも増加するため、上記のとおりこの界面からめっきが剥離する原因となる。したがって昇温速度は0.30X以上とする。好ましい昇温速度は0.35X以上である。一方、昇温速度が速すぎると、素地鋼板の表面に拡散してきたSiの酸化も十分でないため、ファイアライトの生成不足によって素地鋼板と内方酸化層の密着性が低下し、界面のめっき剥離が発生する。そのため図1(d)に示すように溶融亜鉛めっき浴浸漬時に該剥離によって生じた隙間部分に溶融亜鉛が侵入し、亜鉛付着量過多が生じる。またFeの拡散が十分でないため外方酸化層が薄くなる。その結果、還元工程において、外方酸化層の還元により形成される還元層の厚さが薄くなるため、不めっきや合金化不良が発生し、外観性状が悪くなる。また、アンモニア水溶液に浸漬させて合金化溶融亜鉛めっき層を除去した後の露出面に観察されるSi酸化物量が少なくなる。その結果、合金化不良の発生が一層促進されるようになる。したがって昇温速度は0.80X(℃/s)以下とする。より好ましい昇温速度は0.75X以下である。
Temperature increase rate in the latter heating process: 0.30X to 0.80X [X is the temperature increase speed in the heating earlier process (° C./second)]
As described above, the outer oxide layer is formed by diffusion of Fe inside the base steel sheet to the surface side, and this diffused Fe is oxidized, so when the high temperature region stay time of the base steel sheet becomes too long, The diffusion of Fe is promoted excessively and the outer oxide layer becomes too thick. As a result, in the reduction treatment step to be described later, the pure Fe layer formed by the reduction of the outer oxide layer becomes too thick, so that when the hot dip galvanizing treatment is performed, the amount of reduced iron that reacts with zinc increases and the zinc adheres. It becomes the cause which becomes overdose. Moreover, since the oxidation of Si diffused on the surface of the base steel sheet increases and the thickness of the inner oxide layer also increases, this causes the plating to peel from the interface as described above. Therefore, the temperature raising rate is set to 0.30X or more. A preferable temperature increase rate is 0.35X or more. On the other hand, if the rate of temperature rise is too high, the oxidation of Si diffused on the surface of the base steel sheet is not sufficient, and the adhesion between the base steel sheet and the inner oxide layer is reduced due to insufficient generation of firelight, and the plating peeling at the interface Will occur. Therefore, as shown in FIG. 1 (d), molten zinc penetrates into the gaps formed by the peeling during immersion in the hot dip galvanizing bath, resulting in excessive zinc adhesion. Further, since the diffusion of Fe is not sufficient, the outer oxide layer becomes thin. As a result, in the reduction process, the thickness of the reduced layer formed by the reduction of the outer oxide layer is reduced, so that non-plating and poor alloying occur, resulting in poor appearance properties. Further, the amount of Si oxide observed on the exposed surface after immersion in an aqueous ammonia solution and removal of the alloyed hot-dip galvanized layer is reduced. As a result, the occurrence of poor alloying is further promoted. Therefore, the rate of temperature rise is 0.80X (° C / s) or less. A more preferable temperature increase rate is 0.75X or less.

なお、加熱前段工程と加熱後段工程の境界は、素地鋼板の温度のヒートパターンを測定し、ヒートパターン中最大の変曲点の位置で加熱前段工程と加熱後段工程を分けることができる。   The boundary between the pre-heating step and the post-heating step can measure the heat pattern of the temperature of the base steel sheet, and the pre-heating step and the post-heating step can be separated at the position of the maximum inflection point in the heat pattern.

また加熱前段工程と加熱後段工程の昇温速度は、上記範囲内であれば、一定の昇温速度としてもよいし、途中で昇温速度を変化させてもよい。   Moreover, if the temperature increase rate of a pre-heating process and a post-heating process is in the said range, it may be a fixed temperature increase rate, and may change a temperature increase rate on the way.

上記第一の工程を行う加熱設備としては特に限定されず、例えば加熱炉入り口から加熱炉の中間位置までを加熱前段工程として上記処理を行い、その後、加熱炉の中間位置から加熱炉出口までを加熱炉後段工程として上記処理を行ってもよい。この場合、加熱炉前段工程と加熱炉後段工程の加熱時間を同じとし、その加熱時間内で上記処理を行うように制御することが望ましい。もちろん、加熱炉の構成によっては常に加熱炉の中間位置で加熱前段と加熱後段を分ける必要はなく、上記所定の温度範囲、昇温速度での処理を加熱前段工程、加熱後段工程としてもよい。この場合、加熱炉前段工程と加熱炉後段工程の加熱時間を同じとしてもよいし、変えてもよい。   The heating equipment for performing the first step is not particularly limited. For example, the above process is performed as a pre-heating step from the heating furnace inlet to the intermediate position of the heating furnace, and then from the intermediate position of the heating furnace to the heating furnace outlet. You may perform the said process as a heating furnace back | latter stage process. In this case, it is desirable to control so that the heating time is the same in the heating furnace pre-stage process and the heating furnace post-stage process, and the above processing is performed within the heating time. Of course, depending on the configuration of the heating furnace, it is not always necessary to separate the pre-heating stage and the post-heating stage at an intermediate position of the heating furnace, and the treatment at the predetermined temperature range and the heating rate may be the pre-heating process and the post-heating process. In this case, the heating time of the heating furnace pre-stage process and the heating furnace post-stage process may be the same or may be changed.

なお、上記加熱前段工程、加熱後段工程の温度は鋼板の温度であって、具体的には放射温度計で測った鋼板の表面温度である。   In addition, the temperature of the said pre-heating process and post-heating process is the temperature of a steel plate, specifically, the surface temperature of the steel plate measured with a radiation thermometer.

以上、本発明を特徴付ける第一の工程について説明した。   The first process characterizing the present invention has been described above.

第一の工程の後は、第二の工程(還元処理工程)と第三の工程(めっき・合金化処理工程)を行うが、この第二の工程と第三の工程は、合金化溶融亜鉛めっき鋼板を製造する際に通常用いられる方法を採用できる。   After the first step, the second step (reduction treatment step) and the third step (plating / alloying treatment step) are performed. The second step and the third step are alloyed molten zinc. A method usually used when producing a plated steel sheet can be employed.

《第二の工程(還元処理工程)》
第二の工程では、上記第一の工程で形成した酸化層(主に外方酸化層)を還元炉で還元することで、素地鋼板の表面に所望とする純Fe層(還元層)を形成する。このとき内方酸化層の一部も還元され、内方酸化層は、酸化物とFeが混合した層となる。
<< Second process (reduction treatment process) >>
In the second step, the desired pure Fe layer (reduced layer) is formed on the surface of the base steel sheet by reducing the oxidized layer (mainly the outer oxidized layer) formed in the first step with a reducing furnace. To do. At this time, a part of the inner oxide layer is also reduced, and the inner oxide layer becomes a layer in which oxide and Fe are mixed.

還元炉内の雰囲気は、還元性ガス雰囲気とすればよい。還元性ガス雰囲気としては、例えば、H2ガス含有N2ガス雰囲気である。還元炉内の温度は、800〜950℃程度、還元時間は30秒〜3分程度とすればよい。 The atmosphere in the reduction furnace may be a reducing gas atmosphere. The reducing gas atmosphere is, for example, an H 2 gas-containing N 2 gas atmosphere. The temperature in the reduction furnace may be about 800 to 950 ° C., and the reduction time may be about 30 seconds to 3 minutes.

《第三の工程(めっき・合金化処理工程)》
第三の工程では、上記純Fe層の表面に、溶融亜鉛めっきを施した後、これを合金化し、合金化溶融亜鉛めっき層を形成する。このとき上記酸化物とFeが混合した層に含まれるFeもZnと合金化され、Zn−Fe合金とSi−Mn酸化物が混合した酸化物含有層を形成する。
«Third step (plating / alloying step)»
In the third step, the surface of the pure Fe layer is hot dip galvanized and then alloyed to form an alloyed hot dip galvanized layer. At this time, Fe contained in the layer in which the oxide and Fe are mixed is also alloyed with Zn to form an oxide-containing layer in which the Zn—Fe alloy and Si—Mn oxide are mixed.

溶融亜鉛めっきの条件や合金化の条件は特に限定されず、公知の条件を採用できる。溶融亜鉛めっき浴の温度は、400〜600℃程度とすればよい。合金化温度は、500〜600℃程度とすればよい。合金化溶融亜鉛めっき層の付着量は、30〜70g/m2程度とすればよい。 The conditions for hot dip galvanizing and the conditions for alloying are not particularly limited, and known conditions can be adopted. The temperature of the hot dip galvanizing bath may be about 400 to 600 ° C. The alloying temperature may be about 500 to 600 ° C. Adhesion amount of the galvannealed layer may be a 30~70g / m 2 approximately.

本発明のめっき鋼板は、上記成分組成を満足する素地鋼板を、上述した第一の工程から第三の工程(酸化処理工程→還元処理工程→めっき・合金化処理工程)を経ることで製造できる。   The plated steel sheet of the present invention can be manufactured by performing a base steel sheet satisfying the above component composition from the first process to the third process (oxidation process → reduction process → plating / alloying process). .

このようにして得られためっき鋼板は、めっきの凝着性、外観性状、及びめっき密着性が良好に改善されている。   The plated steel sheet thus obtained has improved plating adhesion, appearance, and plating adhesion.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限されず、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. All of these are possible within the scope of the present invention.

まず、表1に示す化学成分を含有する鋼A〜W(残部は鉄およびP、S、N以外の不可避不純物)を溶製し、スラブを製造した。得られたスラブを1200℃に加熱し、熱間圧延して熱延鋼板を得た。得られた熱延鋼板を酸洗してスケールを除去し、冷間圧延して厚さ2.0mmの薄鋼板(素地鋼板)を作製した。   First, steels A to W containing the chemical components shown in Table 1 (the balance is inevitable impurities other than iron and P, S, and N) were melted to produce slabs. The obtained slab was heated to 1200 ° C. and hot-rolled to obtain a hot-rolled steel sheet. The obtained hot-rolled steel plate was pickled to remove the scale, and was cold-rolled to produce a thin steel plate (base steel plate) having a thickness of 2.0 mm.

次に、得られた薄鋼板を酸洗してスケールを除去し、加熱炉で表2に示す条件で加熱して酸化層を形成し、この酸化層を還元炉で還元した後、溶融亜鉛めっき浴に侵入させた後、ワイピングを施し、溶融亜鉛めっき鋼板を得た。その後、更に合金化炉で合金化処理を行ない、合金化溶融亜鉛めっき鋼板を得た。   Next, the obtained steel sheet is pickled to remove scales, heated in a heating furnace under the conditions shown in Table 2 to form an oxide layer, and after reducing this oxide layer in a reduction furnace, hot dip galvanizing After entering the bath, wiping was performed to obtain a hot dip galvanized steel sheet. Thereafter, alloying treatment was further performed in an alloying furnace to obtain an alloyed hot-dip galvanized steel sheet.

加熱炉、および還元炉における具体的な条件は次の通りである。なお、薄鋼板の表面温度は放射温度計を、酸素量は磁気式濃度計を、水蒸気量は露点計を、それぞれ用いて測定した。   Specific conditions in the heating furnace and the reduction furnace are as follows. The surface temperature of the thin steel plate was measured using a radiation thermometer, the oxygen content was measured using a magnetic densitometer, and the water vapor content was measured using a dew point meter.

加熱炉内では燃焼ガスと空気の混合ガスをバーナーで燃焼させて上記薄鋼板を加熱した。燃焼ガスとしてはCOGガスを用い、このCOGガスは、55体積%のHガスと6体積%のNガスを含み、残部は炭化水素ガスで構成されている。加熱炉内の雰囲気ガスに含まれる酸素分圧は0.1体積%、水蒸気分圧は20体積%とした。その他の加熱条件(加熱時間、昇温速度、終了温度)は表2に示したとおりである。 In the heating furnace, the thin steel plate was heated by burning a mixed gas of combustion gas and air with a burner. As the combustion gas, COG gas is used. This COG gas contains 55% by volume of H 2 gas and 6% by volume of N 2 gas, and the remainder is composed of hydrocarbon gas. The partial pressure of oxygen contained in the atmosphere gas in the heating furnace was 0.1% by volume, and the partial pressure of water vapor was 20% by volume. Other heating conditions (heating time, temperature increase rate, end temperature) are as shown in Table 2.

加熱前段工程では、加熱後段工程における加熱開始温度が下記表2に示す温度(加熱前段工程の終了温度)となるように加熱した。加熱前段工程における加熱条件は、加熱炉内の温度と通板速度を調整することによって制御した。なお、加熱炉入口温度は室温(20℃)とした。   In the pre-heating step, heating was performed such that the heating start temperature in the post-heating step became the temperature shown in Table 2 below (end temperature of the pre-heating step). The heating conditions in the pre-heating step were controlled by adjusting the temperature in the heating furnace and the plate passing speed. The heating furnace inlet temperature was room temperature (20 ° C.).

加熱後段工程では、上記加熱前段工程と同様に、上記薄鋼板を加熱して薄鋼板の表面に酸化層を形成した。また加熱後段工程における加熱終了温度が下記表2に示す温度となるように加熱した。加熱後段工程における加熱条件は、加熱炉内の温度と通板速度を調整することによって制御した。   In the post-heating step, the thin steel plate was heated to form an oxide layer on the surface of the thin steel plate, as in the pre-heating step. Moreover, it heated so that the heating completion temperature in a post-heating process may turn into the temperature shown in Table 2 below. The heating conditions in the post-heating step were controlled by adjusting the temperature in the heating furnace and the plate passing speed.

次に、上記薄鋼板を還元炉に供給し、酸化層を還元した。ここでは、ラジアントチューブを備えた還元炉を用い、上記薄鋼板の温度を間接的に上げる方式で、還元炉出口における鋼板温度が950℃となるように加熱した。還元炉内の雰囲気は、Hを20体積%含有するNガス雰囲気とした。 Next, the said thin steel plate was supplied to the reduction furnace, and the oxide layer was reduced. Here, the reduction furnace provided with the radiant tube was used, and it heated so that the steel plate temperature in a reduction furnace exit might be set to 950 degreeC by the method of raising the temperature of the said thin steel plate indirectly. The atmosphere in the reduction furnace was an N 2 gas atmosphere containing 20% by volume of H 2 .

次に、上記の還元性雰囲気を維持したまま冷却し、大気と接触させることなく上記薄鋼板を溶融亜鉛めっき浴(450℃)に浸漬した後、溶融亜鉛めっき浴面から垂直方向に薄鋼板を取り出し、ワイピングノズルから圧縮空気を薄鋼板表面に対して垂直に吹き付けた。ワイピングはオンラインで測定する薄鋼板のめっき付着量が40g/mとなるように適宜ワイピングノズルと薄鋼板との間隔、およびノズル空気圧を調整した。 Next, the steel sheet is cooled while maintaining the reducing atmosphere, and the steel sheet is immersed in a hot dip galvanizing bath (450 ° C.) without contacting with the air. It took out and compressed air was sprayed perpendicularly | vertically with respect to the thin steel plate surface from the wiping nozzle. In the wiping, the interval between the wiping nozzle and the thin steel plate and the nozzle air pressure were appropriately adjusted so that the coating amount of the thin steel plate measured online was 40 g / m 2 .

溶融亜鉛めっき後、合金化炉で更に500℃で加熱して合金化処理を施し、合金化溶融亜鉛めっき鋼板を製造した。   After hot dip galvanization, it was further heated at 500 ° C. in an alloying furnace for alloying treatment to produce an alloyed hot dip galvanized steel sheet.

得られた各合金化溶融亜鉛めっき鋼板について、めっきの凝着性、めっき密着性、及び外観性状を次の手順で評価した。   About each obtained galvannealed steel plate, the adhesiveness of plating, plating adhesiveness, and external appearance property were evaluated in the following procedure.

(めっき凝着性)
溶融亜鉛めっきを施した際に、素地鋼板に付着する亜鉛量を適切に制御できない場合は、素地鋼板と酸化層との剥離が生じており、該剥離箇所に生じた隙間に溶融亜鉛めっきが入り込み、その後の合金化処理によって上述しためっきの凝着が生じることから、めっきの凝着の発生を予測する方法として以下の試験方法を採用した。
(Plating adhesion)
If the amount of zinc adhering to the base steel sheet cannot be controlled properly when hot dip galvanizing is performed, peeling between the base steel sheet and the oxide layer has occurred, and hot dip galvanization has entered the gaps formed at the peeling locations. Since the plating adhesion described above is caused by the subsequent alloying treatment, the following test method was adopted as a method for predicting the occurrence of plating adhesion.

上記薄鋼板に溶融亜鉛めっきを施した後のめっき付着量の制御が適切に行うことができたかで評価した。具体的には溶融亜鉛めっきを施した後のめっき付着量を蛍光X線を用いて測定し、得られた測定値に基づいてワイピングノズルと薄鋼板との間隔や、ノズルから吹き付ける空気圧を変動させ、めっき付着量を40g/mに制御する処理を行った。処理後、再度蛍光X線を用いてめっき付着量を測定した。本実施例では、めっき付着量が40±10g/mに制御できたものを合格(○)と評価した。 Evaluation was made based on whether or not the amount of plating adhesion after the hot dip galvanizing on the thin steel sheet could be properly controlled. Specifically, the amount of plating adhered after hot dip galvanization is measured using fluorescent X-rays, and the interval between the wiping nozzle and the thin steel plate and the air pressure sprayed from the nozzle are varied based on the measured values obtained. The process which controls the plating adhesion amount to 40 g / m 2 was performed. After the treatment, the amount of plating adhesion was measured again using fluorescent X-rays. In the present Example, what was able to control the plating adhesion amount to 40 +/- 10g / m < 2 > was evaluated as the pass ((circle)).

(めっき密着性の評価)
上記めっき鋼板を縦100mm×横200mm×厚2mmの板形状試験片に加工し、V曲げ曲げ戻し試験を行ってめっき密着性を評価した。このV曲げ曲げ戻し試験は、実際のプレス成形よりも厳しい条件を模擬したものであって、テープ剥離幅が5mm以下の場合は、実際のプレス加工(曲げ角度90°)でもめっき層の剥離が発生しないことを確認している。試験として具体的には、V曲げ試験用の金型(曲げ角度60°)を用いて上記試験片をV曲げ加工した後、更にプレスで上記試験片を平坦に戻す曲げ戻し加工を行った。曲げ戻し加工を行ったときの内側の面(変形部)にセロハンテープ(ニチバン社製「セロテープ(登録商標)CT405AP−24」)を貼り付け、手で剥がした後、テープに付着しためっき層の剥離幅を測定した。本実施例では、剥離幅が5mm以下のものを合格(めっき密着性に優れる)と評価した(表中の単位は全てmm)。
(Evaluation of plating adhesion)
The plated steel sheet was processed into a plate-shaped specimen having a length of 100 mm, a width of 200 mm, and a thickness of 2 mm, and a V-bending / returning test was performed to evaluate the plating adhesion. This V-bending / bending test simulates conditions more severe than actual press forming. When the tape peeling width is 5 mm or less, the plating layer can be peeled off even in actual pressing (bending angle 90 °). It has been confirmed that it does not occur. Specifically, the test piece was subjected to V-bending using a V-bending test die (bending angle of 60 °), and then bent back to return the test piece to a flat shape with a press. A cellophane tape (“Cello Tape (registered trademark) CT405AP-24” manufactured by Nichiban Co., Ltd.) is applied to the inner surface (deformed portion) when the bending back process is performed, and the plating layer adhered to the tape is peeled off by hand. The peel width was measured. In this example, a strip width of 5 mm or less was evaluated as acceptable (excellent in plating adhesion) (units in the table are all mm).

なお、実施例においてめっきが剥離した例を全て調べた結果、めっき剥離原因は薄鋼板からめっき層が剥離(界面のめっき剥離)したものであった。   In addition, as a result of investigating all the examples in which plating peeled in the examples, the cause of plating peeling was that the plating layer was peeled from the thin steel plate (plating peeling at the interface).

(外観性状)
外観性状は、合金化溶融亜鉛めっき層の外観を目視で観察し、合金化不良、不めっきの有無を調べた。本実施例では、合金化不良、不めっきのいずれも発生していないものを合格(○)と評価し、不めっきおよび/または合金化不良が発生しているものを不合格(×)とした。
(Appearance properties)
Appearance properties were determined by visually observing the appearance of the alloyed hot-dip galvanized layer, and checking for alloying defects and non-plating. In this example, a case where neither alloying failure nor non-plating occurred was evaluated as pass (◯), and a case where non-plating and / or alloying failure occurred was determined as failure (x). .

試験結果を表3に示す。   The test results are shown in Table 3.

表3より、以下のように考察できる。   From Table 3, it can be considered as follows.

まず、No.1〜3は特に加熱後段工程の終了温度を変化させた例である。これらのうち、No.1は加熱後段工程の終了温度が低い例であり、外方酸化層の厚さが不足し、その結果、合金化不良や不めっきが発生して外観性状が悪い。No.2は、本発明で規定する要件を満足する例であり、合金化不良や不めっきの発生を防止でき外観性状が良好である。まためっき密着性や亜鉛量も改善できている。No.3は、加熱後段工程の終了温度が高い例であり、Siが濃化し過ぎてSi酸化物が多く生成し、めっき密着性が劣化している。   First, no. 1-3 are examples in which the end temperature of the post-heating step is changed. Of these, No. No. 1 is an example in which the end temperature of the post-heating step is low, and the thickness of the outer oxide layer is insufficient, resulting in poor alloying and non-plating, resulting in poor appearance properties. No. No. 2 is an example that satisfies the requirements defined in the present invention, and can prevent the occurrence of alloying failure and non-plating and has good appearance properties. In addition, plating adhesion and zinc content can be improved. No. No. 3 is an example in which the end temperature of the post-heating step is high, Si is excessively concentrated, a large amount of Si oxide is generated, and plating adhesion is deteriorated.

次に、No.4〜7、37〜40は特に加熱前段工程の終了温度を変化させた例である。これらのうち、No.4、37は、加熱前段工程の終了温度が低い例であり、素地鋼板表面にヘマタイトが生成し、その結果、めっきの付着量が多く、めっきの凝着性が悪くなった。   Next, no. Examples 4 to 7 and 37 to 40 are examples in which the end temperature of the pre-heating step is changed. Of these, No. Nos. 4 and 37 are examples in which the end temperature of the pre-heating step is low, and hematite is generated on the surface of the base steel plate. As a result, the amount of plating is large and the adhesion of plating is deteriorated.

No.5、6、38、39は本発明で規定する要件を満足する例であり、合金化不良や不めっきの発生を防止でき外観性状が良好である。まためっき密着性や亜鉛量も改善できている。No.7、40は、加熱前段工程の終了温度が高い例であり、加熱前段工程の終了温度が600℃を超えたため、加熱後段の昇温速度が制約されて高温度域(加熱後段工程)の在炉時間が短くなり、合金化不良が発生して外観性状が劣化している。   No. Nos. 5, 6, 38 and 39 are examples satisfying the requirements defined in the present invention, and it is possible to prevent the occurrence of alloying defects and non-plating and have good appearance properties. In addition, plating adhesion and zinc content can be improved. No. Nos. 7 and 40 are examples in which the end temperature of the pre-heating step is high. Since the end temperature of the pre-heating step exceeds 600 ° C., the rate of temperature increase in the post-heating step is restricted and there is a high temperature region (post-heating step). Furnace time is shortened, poor alloying occurs, and appearance properties are degraded.

次に、No.8〜12、32〜36は特に加熱前段工程の昇温速度(X)に対する加熱後段工程の昇温速度を変化させた例である。これらのうち、No.8、32は、加熱前段工程の昇温速度に対する加熱後段昇温の昇温速度が0.30Xを下回る例であり、加熱後段工程の滞在時間が長くなりすぎて外方酸化層が厚くなり過ぎたため、還元処理で形成される純Fe層も厚くなり過ぎ、溶融亜鉛めっき浴中で反応する還元鉄量が増大して溶融亜鉛めっきの付着量が多く、めっきの凝着性が悪くなった。また内方酸化層の厚さも増大し、その結果、めっきの凝着性が不良であり、まためっき密着性も劣化している。   Next, no. Nos. 8 to 12 and 32 to 36 are examples in which the heating rate of the post-heating step is changed with respect to the heating rate (X) of the pre-heating step. Of these, No. 8 and 32 are examples in which the heating rate of the heating post-stage heating is lower than 0.30X with respect to the heating speed of the heating pre-stage process, and the residence time in the post-heating stage process becomes too long and the outer oxide layer becomes too thick. Therefore, the pure Fe layer formed by the reduction treatment is too thick, the amount of reduced iron that reacts in the hot dip galvanizing bath is increased, the amount of hot dip galvanizing is increased, and the adhesion of the plating is deteriorated. In addition, the thickness of the inner oxide layer increases, and as a result, the adhesion of the plating is poor and the plating adhesion is also deteriorated.

No.9〜11、33〜35は本発明で規定する要件を満足する例であり、めっき凝着性、めっき密着性、及び外観性状共に良好である。   No. Reference numerals 9 to 11 and 33 to 35 are examples satisfying the requirements defined in the present invention, and the plating adhesion, plating adhesion, and appearance are good.

No.12、36は、加熱前段工程の昇温速度(X)に対する加熱後段工程の昇温速度が0.80Xを上回る例であり、ファイアライトの生成が不足するため、めっきの凝着性が悪くなると共に、外方酸化層の厚さが不足し、その結果、合金化不良や不めっきが発生して外観性状が悪い。   No. Nos. 12 and 36 are examples in which the heating rate of the post-heating step exceeds 0.80X with respect to the heating rate (X) of the pre-heating step, and since the formation of firelight is insufficient, the adhesion of the plating deteriorates. At the same time, the thickness of the outer oxide layer is insufficient, resulting in poor alloying and non-plating, resulting in poor appearance.

次にNo.13〜31は様々な鋼材成分の鋼板を用いた例である。No.13〜31は本発明で規定する要件を満足する例であり、めっき凝着性、めっき密着性、及び外観性状共に良好である。   Next, no. 13 to 31 are examples using steel plates having various steel components. No. Nos. 13 to 31 are examples satisfying the requirements defined in the present invention, and are good in plating adhesion, plating adhesion, and appearance properties.

Claims (5)

C:0.04〜0.20%(質量%の意味。以下化学成分について全て同じ。)、
Si:0.1〜3.0%、
Mn:0.1〜3.0%、
を満足する素地鋼板の表面に、合金化溶融亜鉛めっき層が形成された合金化溶融亜鉛めっき鋼板の製造方法であって、
上記化学成分組成を満足する素地鋼板を加熱炉で加熱して素地鋼板の表面に酸化層を形成する第一の工程、
前記酸化層を形成した素地鋼板を還元炉で加熱して前記酸化層を還元する第二の工程、
溶融亜鉛めっきを施した後、合金化する第三の工程、をこの順で含み、
前記第一の工程は、前記加熱炉内の酸素量を0.3体積%以下、水蒸気量を10〜30体積%に制御した雰囲気下にて、前記素地鋼板を45〜120秒で750〜850℃の温度まで加熱するものであり、且つ、
前記第一の工程は、7.5〜28℃/秒の昇温速度(X)で450〜600℃の温度まで加熱する加熱前段工程と、
0.30X〜0.80Xの昇温速度でさらに750〜850℃の温度まで加熱する加熱後段工程と、を含むことを特徴とするめっき鋼板の製造方法。
C: 0.04 to 0.20% (meaning mass%. The same applies to chemical components below),
Si: 0.1 to 3.0%,
Mn: 0.1 to 3.0%
A method for producing an alloyed hot-dip galvanized steel sheet in which an alloyed hot-dip galvanized layer is formed on the surface of the base steel sheet satisfying
A first step of forming an oxide layer on the surface of the base steel sheet by heating the base steel sheet satisfying the chemical component composition in a heating furnace;
A second step of heating the base steel sheet on which the oxide layer is formed in a reduction furnace to reduce the oxide layer;
A third step of alloying after galvanizing, in this order,
In the first step, the base steel plate is placed in a range of 750 to 850 in 45 to 120 seconds in an atmosphere in which the oxygen amount in the heating furnace is controlled to 0.3% by volume or less and the amount of water vapor is controlled to 10 to 30% by volume. Heating to a temperature of 0 ° C., and
The first step is a pre-heating step for heating to a temperature of 450 to 600 ° C. at a temperature rising rate (X) of 7.5 to 28 ° C./second,
And a heating post-stage step of further heating to a temperature of 750 to 850 ° C. at a temperature rising rate of 0.30X to 0.80X.
前記素地鋼板は、更にNi:2%以下(0%を含まない)、Cu:2%以下(0%を含まない)、Mo:2%以下(0%を含まない)、およびB:0.01%以下(0%を含まない)よりなる群から選択される少なくとも1種を含有する請求項1に記載のめっき鋼板の製造方法。   The base steel sheet further includes Ni: 2% or less (not including 0%), Cu: 2% or less (not including 0%), Mo: 2% or less (not including 0%), and B: 0.0. The manufacturing method of the plated steel plate of Claim 1 containing at least 1 sort (s) selected from the group which consists of 01% or less (0% is not included). 前記素地鋼板は、更にCr:2%以下(0%を含まない)、Nb:1%以下(0%を含まない)、V:1%以下(0%を含まない)、およびW:0.3%以下(0%を含まない)よりなる群から選択される少なくとも1種を含有する請求項1または2に記載のめっき鋼板の製造方法。   The base steel sheet further includes Cr: 2% or less (not including 0%), Nb: 1% or less (not including 0%), V: 1% or less (not including 0%), and W: 0.0. The manufacturing method of the plated steel plate of Claim 1 or 2 containing at least 1 sort (s) selected from the group which consists of 3% or less (0% is not included). 前記素地鋼板は、更にAl:0.06%以下(0%は含まない)、および/またはTi:0.1%以下(0%は含まない)を含有する請求項1〜3のいずれかに記載のめっき鋼板の製造方法。   The base steel sheet further contains Al: 0.06% or less (not including 0%) and / or Ti: 0.1% or less (not including 0%). The manufacturing method of the plated steel plate of description. 前記素地鋼板は、更にCa、Mg、およびREM よりなる群から選ばれる少なくとも1種の元素:合計量で0.03%以下(0%を含まない)を含有する請求項1〜4のいずれかに記載のめっき鋼板の製造方法。   The base steel sheet further contains at least one element selected from the group consisting of Ca, Mg, and REM: 0.03% or less (excluding 0%) in a total amount. The manufacturing method of the plated steel plate as described in any one of.
JP2010081745A 2010-03-31 2010-03-31 Method for producing galvannealed steel sheet Active JP5513216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010081745A JP5513216B2 (en) 2010-03-31 2010-03-31 Method for producing galvannealed steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010081745A JP5513216B2 (en) 2010-03-31 2010-03-31 Method for producing galvannealed steel sheet

Publications (2)

Publication Number Publication Date
JP2011214042A true JP2011214042A (en) 2011-10-27
JP5513216B2 JP5513216B2 (en) 2014-06-04

Family

ID=44944094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010081745A Active JP5513216B2 (en) 2010-03-31 2010-03-31 Method for producing galvannealed steel sheet

Country Status (1)

Country Link
JP (1) JP5513216B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017034A1 (en) * 2012-07-23 2014-01-30 Jfeスチール株式会社 Method for producing high-strength hot-dip galvanized steel sheets
WO2014136417A1 (en) * 2013-03-05 2014-09-12 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and process for manufacturing same
JP2014185395A (en) * 2012-04-23 2014-10-02 Kobe Steel Ltd Manufacturing method of galvanized steel sheet for hot stamp
WO2014188697A1 (en) * 2013-05-21 2014-11-27 Jfeスチール株式会社 Method for manufacturing high-strength alloyed hot-dip galvanized steel plate
WO2015037241A1 (en) * 2013-09-12 2015-03-19 Jfeスチール株式会社 Hot-dip galvanized steel sheet and galvannealed steel sheet of excellent appearance and plating adhesiveness, and manufacturing method therefor
WO2015037242A1 (en) * 2013-09-12 2015-03-19 Jfeスチール株式会社 Hot-dip galvanized steel sheet and galvannealed steel sheet of excellent appearance and plating adhesiveness, and manufacturing method therefor
KR20150079981A (en) * 2012-12-11 2015-07-08 제이에프이 스틸 가부시키가이샤 Production method for hot-dip galvanized steel sheet
EP3428303A4 (en) * 2016-03-11 2019-08-14 JFE Steel Corporation Production method for high-strength hot-dip galvanized steel sheet
KR20210144804A (en) * 2019-04-01 2021-11-30 잘쯔기터 플래시슈탈 게엠베하 Method for manufacturing steel strip with improved bonding in hot dip plating
CN114072296A (en) * 2019-07-08 2022-02-18 日本发条株式会社 Stabilizer and method for manufacturing stabilizer

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185395A (en) * 2012-04-23 2014-10-02 Kobe Steel Ltd Manufacturing method of galvanized steel sheet for hot stamp
WO2014017034A1 (en) * 2012-07-23 2014-01-30 Jfeスチール株式会社 Method for producing high-strength hot-dip galvanized steel sheets
KR101707981B1 (en) 2012-12-11 2017-02-17 제이에프이 스틸 가부시키가이샤 Method for manufacturing galvanized steel sheet
US9677148B2 (en) 2012-12-11 2017-06-13 Jfe Steel Corporation Method for manufacturing galvanized steel sheet
KR20150079981A (en) * 2012-12-11 2015-07-08 제이에프이 스틸 가부시키가이샤 Production method for hot-dip galvanized steel sheet
CN105026599B (en) * 2013-03-05 2017-10-10 杰富意钢铁株式会社 High strength hot dip galvanized steel sheet and its manufacture method
WO2014136417A1 (en) * 2013-03-05 2014-09-12 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and process for manufacturing same
JP2014169489A (en) * 2013-03-05 2014-09-18 Jfe Steel Corp High-density hot-dip galvanized steel sheet excellent in plating adhesion, and manufacturing method thereof
CN105026599A (en) * 2013-03-05 2015-11-04 杰富意钢铁株式会社 High-strength hot-dip galvanized steel sheet and process for manufacturing same
WO2014188697A1 (en) * 2013-05-21 2014-11-27 Jfeスチール株式会社 Method for manufacturing high-strength alloyed hot-dip galvanized steel plate
CN105229193B (en) * 2013-05-21 2017-10-13 杰富意钢铁株式会社 The manufacture method of high-strength and high-ductility galvannealed steel sheet
US10087500B2 (en) 2013-05-21 2018-10-02 Jfe Steel Corporation Method for manufacturing high-strength galvannealed steel sheet
KR20150136113A (en) * 2013-05-21 2015-12-04 제이에프이 스틸 가부시키가이샤 Method for manufacturing high-strength alloyed hot-dip galvanized steel plate
CN105229193A (en) * 2013-05-21 2016-01-06 杰富意钢铁株式会社 The manufacture method of high-strength and high-ductility galvannealed steel sheet
JP2014227562A (en) * 2013-05-21 2014-12-08 Jfeスチール株式会社 Method for manufacturing high strength hot-dip galvanized steel sheet
KR101719947B1 (en) * 2013-05-21 2017-03-24 제이에프이 스틸 가부시키가이샤 Method for manufacturing high-strength galvannealed steel sheet
EP3000908A4 (en) * 2013-05-21 2016-06-22 Jfe Steel Corp Method for manufacturing high-strength alloyed hot-dip galvanized steel plate
JP2015054989A (en) * 2013-09-12 2015-03-23 Jfeスチール株式会社 Galvanized steel plate and alloyed galvanized steel plate with superior appearance and plating adhesion, and methods of manufacturing the same
US9932659B2 (en) 2013-09-12 2018-04-03 Jfe Steel Corporation Hot-dip galvanized steel sheets and galvannealed steel sheets that have good appearance and adhesion to coating and methods for producing the same (as amended)
CN105531390A (en) * 2013-09-12 2016-04-27 杰富意钢铁株式会社 Hot-dip galvanized steel sheet and galvannealed steel sheet of excellent appearance and plating adhesiveness, and manufacturing method therefor
JP2015054990A (en) * 2013-09-12 2015-03-23 Jfeスチール株式会社 Galvanized steel plate and alloyed galvanized steel plate with superior appearance and plating adhesion, and methods of manufacturing the same
WO2015037242A1 (en) * 2013-09-12 2015-03-19 Jfeスチール株式会社 Hot-dip galvanized steel sheet and galvannealed steel sheet of excellent appearance and plating adhesiveness, and manufacturing method therefor
CN105531389B (en) * 2013-09-12 2017-12-08 杰富意钢铁株式会社 Aesthetic appearance and the excellent hot-dip galvanizing sheet steel of coating adaptation and alloyed hot-dip galvanized steel sheet and their manufacture method
US9873934B2 (en) 2013-09-12 2018-01-23 Jfe Steel Corporation Hot-dip galvanized steel sheets and galvannealed steel sheets that have good appearance and adhesion to coating and methods for producing the same
CN105531389A (en) * 2013-09-12 2016-04-27 杰富意钢铁株式会社 Hot-dip galvanized steel sheet and galvannealed steel sheet of excellent appearance and plating adhesiveness, and manufacturing method therefor
WO2015037241A1 (en) * 2013-09-12 2015-03-19 Jfeスチール株式会社 Hot-dip galvanized steel sheet and galvannealed steel sheet of excellent appearance and plating adhesiveness, and manufacturing method therefor
EP3428303A4 (en) * 2016-03-11 2019-08-14 JFE Steel Corporation Production method for high-strength hot-dip galvanized steel sheet
US10988836B2 (en) 2016-03-11 2021-04-27 Jfe Steel Corporation Method for producing high-strength galvanized steel sheet
KR20210144804A (en) * 2019-04-01 2021-11-30 잘쯔기터 플래시슈탈 게엠베하 Method for manufacturing steel strip with improved bonding in hot dip plating
KR102602054B1 (en) 2019-04-01 2023-11-13 잘쯔기터 플래시슈탈 게엠베하 Method for manufacturing steel strip with improved bonding of hot dip galvanizing
CN114072296A (en) * 2019-07-08 2022-02-18 日本发条株式会社 Stabilizer and method for manufacturing stabilizer
CN114072296B (en) * 2019-07-08 2023-10-31 日本发条株式会社 Stabilizer and method for manufacturing stabilizer

Also Published As

Publication number Publication date
JP5513216B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5513216B2 (en) Method for producing galvannealed steel sheet
JP5206705B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP4972775B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent appearance and plating adhesion
JP5982905B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5417797B2 (en) High strength hot dip galvanized steel sheet and method for producing the same
JP5799819B2 (en) Method for producing hot-dip galvanized steel sheet with excellent plating wettability and pick-up resistance
JP2010126758A (en) High-strength hot-dip galvanized steel sheet, and method for producing the same
JP5966528B2 (en) High strength hot-dip galvanized steel sheet with excellent plating adhesion and method for producing the same
JP2015038245A (en) Steel plate including alloyed galvanized plating layer with excellent plating wettability and plating adhesion and manufacturing method of the same
JP6673461B2 (en) Steel sheet manufacturing method and steel sheet continuous annealing apparatus
JP5888267B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet
JP5552863B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
KR101789958B1 (en) Galvannealed steel sheet and method for producing the same
JP5552859B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP2004263271A (en) Method for manufacturing high-tensile galvanized steel plate
JP5552864B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5593771B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5552862B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5444752B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet
JP5667363B2 (en) Hot-dip galvanized steel sheet and method for producing galvannealed steel sheet
JP5715344B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP5315795B2 (en) High-strength hot-dip galvanized steel sheet, high-strength alloyed hot-dip galvanized steel sheet, and a method for producing the same
JP5555992B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent surface appearance and plating adhesion
WO2017110054A1 (en) Mn-CONTAINING HOT-DIP GALVANNEALED STEEL SHEET AND MANUFACTURING METHOD THEREFOR
JP5593770B2 (en) Method for producing high-strength hot-dip galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140327

R150 Certificate of patent or registration of utility model

Ref document number: 5513216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150