JP2011211243A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2011211243A
JP2011211243A JP2011164159A JP2011164159A JP2011211243A JP 2011211243 A JP2011211243 A JP 2011211243A JP 2011164159 A JP2011164159 A JP 2011164159A JP 2011164159 A JP2011164159 A JP 2011164159A JP 2011211243 A JP2011211243 A JP 2011211243A
Authority
JP
Japan
Prior art keywords
wiring
semiconductor chip
solder
semiconductor device
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011164159A
Other languages
Japanese (ja)
Inventor
Kazuyuki Nakagawa
和之 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2011164159A priority Critical patent/JP2011211243A/en
Publication of JP2011211243A publication Critical patent/JP2011211243A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor device, capable of preventing open failure of a solder bump.SOLUTION: On a wiring board, a wiring is formed and covered with a solder resist and then an opening is formed in the solder resist so as to expose the wiring. The wiring of the wiring board and an electrode of a semiconductor chip are connected through a solder bump to make a flip-chip connection between the wiring board and the semiconductor chip on the wiring board. An amount of the solder for the solder bump is made smaller than a volume of a sphere inscribing on edges of the opening of the solder resist and on the electrode.

Description

本発明は、配線基板上に半導体チップをフリップチップ接続させた半導体装置の製造方法に関するものである。   The present invention relates to a method for manufacturing a semiconductor device in which a semiconductor chip is flip-chip connected to a wiring board.

配線基板上に半導体チップをフリップチップ接続させた半導体装置が提案されている(例えば、特許文献1参照)。このフリップチップ接続の際に、半導体チップにスクラブをかけることで、フラックスレスでフリップチップ接合させる技術が提案されている(例えば、特許文献2参照)。   A semiconductor device in which a semiconductor chip is flip-chip connected to a wiring board has been proposed (see, for example, Patent Document 1). At the time of this flip chip connection, a technique has been proposed in which a semiconductor chip is scrubbed to perform flip chip bonding without flux (see, for example, Patent Document 2).

また、配線基板上には配線が形成され、配線上はソルダレジストで覆われている(例えば、特許文献3参照)。しかし、半導体チップと配線基板は線膨張係数に差があるため、内部応力によって配線基板上の配線の断線が発生するという問題があった。これを解消するために様々な方法が提案されている(例えば、特許文献4〜6参照)。   In addition, wiring is formed on the wiring board, and the wiring is covered with a solder resist (see, for example, Patent Document 3). However, since there is a difference in linear expansion coefficient between the semiconductor chip and the wiring board, there is a problem that the wiring on the wiring board is disconnected due to internal stress. Various methods have been proposed to solve this problem (see, for example, Patent Documents 4 to 6).

図23は、従来の半導体装置を示す平面図である。配線基板11上に半導体チップ12がフリップチップ接続されている。配線基板11と半導体チップ12との隙間にアンダーフィル樹脂13が充填されている。配線基板11上であって半導体チップ12の外周に半導体チップ12とは離間して補強リング14が設けられている。この半導体チップ12及び補強リング14上に、半導体チップ12において発生した熱を外部に放散させるためのヒートスプレッダー(不図示)が接着されている。   FIG. 23 is a plan view showing a conventional semiconductor device. A semiconductor chip 12 is flip-chip connected on the wiring substrate 11. An underfill resin 13 is filled in a gap between the wiring substrate 11 and the semiconductor chip 12. A reinforcing ring 14 is provided on the wiring substrate 11 on the outer periphery of the semiconductor chip 12 so as to be separated from the semiconductor chip 12. A heat spreader (not shown) for dissipating the heat generated in the semiconductor chip 12 to the outside is bonded onto the semiconductor chip 12 and the reinforcing ring 14.

図24は、図23の点線で囲った部分Dを拡大した平面図である。配線基板11上に配線31と配線層ビアランド32が設けられている。配線31は配線層ビアランド32と半導体チップ12とを接続している。配線層ビアランド32は、半導体チップ12と補強リング14との間であって、半導体チップ12の対角線の延長線から1mm以内の領域に設けられている。   24 is an enlarged plan view of a portion D surrounded by a dotted line in FIG. A wiring 31 and a wiring layer via land 32 are provided on the wiring substrate 11. The wiring 31 connects the wiring layer via land 32 and the semiconductor chip 12. The wiring layer via land 32 is provided between the semiconductor chip 12 and the reinforcing ring 14 in a region within 1 mm from the diagonal extension of the semiconductor chip 12.

図25は、従来の配線層ビアランド及び配線を示す断面図である。配線基板11上に電源パターン33及び配線層下面ビアランド34が設けられ、両者はクリアランス領域35により互いに離間されている。また、電源パターン33及び配線層下面ビアランド34は絶縁膜36により覆われている。配線層ビアランド32は絶縁膜36上に設けられている。配線層下面ビアランド34と配線層ビアランド32とは、絶縁膜36を貫通するビア37により接続されている。配線層ビアランド32から引き出された配線31はクリアランス領域35の上方を通っている。また、従来の半導体装置において、配線31は配線層ビアランド32から半導体チップ12の対角線の延長線方向とほぼ同様の方向に引き出されていた。   FIG. 25 is a cross-sectional view showing a conventional wiring layer via land and wiring. A power supply pattern 33 and a wiring layer lower surface via land 34 are provided on the wiring substrate 11, and both are separated from each other by a clearance region 35. The power supply pattern 33 and the wiring layer lower surface via land 34 are covered with an insulating film 36. The wiring layer via land 32 is provided on the insulating film 36. The wiring layer lower surface via land 34 and the wiring layer via land 32 are connected by a via 37 penetrating the insulating film 36. The wiring 31 drawn from the wiring layer via land 32 passes above the clearance region 35. Further, in the conventional semiconductor device, the wiring 31 is led out from the wiring layer via land 32 in a direction substantially the same as the extension direction of the diagonal line of the semiconductor chip 12.

また、図26は、従来の方法により配線基板へ半導体チップをフリップチップ接続させた状態を示す断面図である。配線基板11上に配線31が形成され、配線基板11上はソルダレジスト41で覆われ、配線31を露出させるようにソルダレジスト41に開口42が形成されている。配線基板11の配線31と半導体チップ12の電極43は半田バンプ24により接続されている。   FIG. 26 is a cross-sectional view showing a state in which a semiconductor chip is flip-chip connected to a wiring board by a conventional method. A wiring 31 is formed on the wiring substrate 11, the wiring substrate 11 is covered with a solder resist 41, and an opening 42 is formed in the solder resist 41 so as to expose the wiring 31. The wiring 31 of the wiring substrate 11 and the electrode 43 of the semiconductor chip 12 are connected by solder bumps 24.

特開2006−128712号公報JP 2006-128712 A 特開2000−349123号公報JP 2000-349123 A 特開平7−307363号公報JP 7-307363 A 特開平11−163201号公報JP-A-11-163201 特開2000−183469号公報JP 2000-183469 A 特開2001−60600号公報JP 2001-60600 A

従来の半導体装置において、配線層ビアランド32から引き出された配線31が、クリアランス領域35の上方において断線するという問題があった。この問題の要因としては以下のものが考えられる。
1.半導体チップ12と配線基板11との線膨張係数の差などによる内部応力は、半導体チップ12の対角線の延長線から1mm以内の領域に集中する。
2.半導体チップ12と補強リング14との間では、配線基板11上に補強材が無いため、当該内部応力による配線基板11の変形が大きくなる。
3. 当該内部応力は、半導体チップ12の対角線の延長線の方向において最も強くなる。
4.配線31と配線層ビアランド32の境界近傍では、配線の太さが急に変わるため当該内部応力が集中する。
5.電源パターン33と配線層下面ビアランド34を離間するクリアランス領域35の上方において当該内部応力が集中する。
In the conventional semiconductor device, there is a problem that the wiring 31 drawn from the wiring layer via land 32 is disconnected above the clearance region 35. Possible causes of this problem are as follows.
1. Internal stress due to a difference in coefficient of linear expansion between the semiconductor chip 12 and the wiring substrate 11 is concentrated in a region within 1 mm from the diagonal extension of the semiconductor chip 12.
2. Since there is no reinforcing material on the wiring board 11 between the semiconductor chip 12 and the reinforcing ring 14, the deformation of the wiring board 11 due to the internal stress increases.
3. The internal stress is strongest in the direction of the diagonal extension of the semiconductor chip 12.
4). In the vicinity of the boundary between the wiring 31 and the wiring layer via land 32, the thickness of the wiring changes suddenly, so that the internal stress is concentrated.
5. The internal stress concentrates above the clearance region 35 that separates the power supply pattern 33 and the wiring layer lower surface via land 34.

また、従来の方法によりフリップチップ接続を行った半導体装置において、図26の右側に示すように半田バンプ24のオープン不良が発生するという問題があった。これは、表面張力によって球状になろうとする半田バンプ24がソルダレジスト41の開口42の角から応力を受けたためと考えられる。特に、フリップチップ接続させる工程において半導体チップにスクラブをかける場合は半田バンプのオープン不良が生じ易い。   Further, in the semiconductor device to which the flip chip connection is performed by the conventional method, there is a problem that an open defect of the solder bump 24 occurs as shown on the right side of FIG. This is presumably because the solder bumps 24, which are to become spherical due to surface tension, received stress from the corners of the openings 42 of the solder resist 41. In particular, when scrubbing a semiconductor chip in the flip-chip connection process, solder bump open defects are likely to occur.

本発明は、上述のような課題を解決するためになされたもので、本発明の第1の目的は、配線層ビアランドから引き出された配線の断線を防止することができる半導体装置を得るものである。   The present invention has been made to solve the above-described problems, and a first object of the present invention is to obtain a semiconductor device capable of preventing disconnection of wiring drawn from a wiring layer via land. is there.

本発明の第2の目的は、半田バンプのオープン不良を防止することができる半導体装置の製造方法を得るものである。   The second object of the present invention is to obtain a method of manufacturing a semiconductor device that can prevent open defects of solder bumps.

本発明の一実施例に係る半導体装置の製造方法は、前記配線基板上に配線を形成し、前記配線基板上をソルダレジストで覆い、前記配線を露出させるように前記ソルダレジストに開口を形成する工程と、前記配線基板の配線と半導体チップの電極とを半田バンプを介して接続させることで、前記配線基板上に前記半導体チップをフリップチップ接続させる工程とを有し、前記半田バンプの半田の量を、前記ソルダレジストの開口の角と前記電極に内接する球の体積よりも小さくすることを特徴とする。   A method of manufacturing a semiconductor device according to an embodiment of the present invention includes forming a wiring on the wiring substrate, covering the wiring substrate with a solder resist, and forming an opening in the solder resist so as to expose the wiring. And connecting the wiring of the wiring board and the electrode of the semiconductor chip via a solder bump, thereby flip chip connecting the semiconductor chip on the wiring board, and soldering the solder bump The amount is smaller than the corner of the opening of the solder resist and the volume of a sphere inscribed in the electrode.

この実施例によれば、半田バンプのオープン不良を防止することができる。   According to this embodiment, open defects of solder bumps can be prevented.

本発明の実施の形態1に係る半導体装置を示す一部切欠斜視図である。1 is a partially cutaway perspective view showing a semiconductor device according to a first embodiment of the present invention. 図1中のA−A線断面による断面構造説明図である。It is sectional structure explanatory drawing by the AA line cross section in FIG. 本発明の実施の形態1に係る半導体装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る半導体装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る半導体装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る半導体装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る半導体装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る半導体装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る半導体装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る半導体装置の他の例を示す断面図である。It is sectional drawing which shows the other example of the semiconductor device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る半導体装置の更に他の例を示す断面図である。It is sectional drawing which shows the other example of the semiconductor device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る半導体装置を示す平面図である。1 is a plan view showing a semiconductor device according to a first embodiment of the present invention. 図12の点線で囲った部分Bを拡大した平面図である。It is the top view to which the part B enclosed with the dotted line of FIG. 12 was expanded. 本発明の実施の形態1に係る配線層ビアランドから引き出された配線を示す拡大平面図である。FIG. 5 is an enlarged plan view showing wiring drawn from a wiring layer via land according to the first embodiment of the present invention. 図14のC−C´における断面図である。It is sectional drawing in CC 'of FIG. 本発明の実施の形態2に係る配線層ビアランド及び配線の一例を示す拡大平面図である。It is an enlarged plan view which shows an example of the wiring layer via land and wiring which concern on Embodiment 2 of this invention. 本発明の実施の形態2に係る配線層ビアランド及び配線の他の例を示す拡大平面図である。It is an enlarged plan view showing another example of a wiring layer via land and wiring according to the second embodiment of the present invention. 本発明の実施の形態3に係る配線層ビアランド及び配線の一例を示す拡大平面図である。It is an enlarged plan view which shows an example of the wiring layer via land and wiring which concern on Embodiment 3 of this invention. 本発明の実施の形態4に係る半導体装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る半導体装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る半導体装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る半導体装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on Embodiment 4 of this invention. 従来の半導体装置を示す平面図である。It is a top view which shows the conventional semiconductor device. 図23の点線で囲った部分Dを拡大した平面図である。It is the top view to which the part D enclosed with the dotted line of FIG. 23 was expanded. 従来の配線層ビアランド及び配線を示す断面図である。It is sectional drawing which shows the conventional wiring layer via land and wiring. 従来の方法により配線基板へ半導体チップをフリップチップ接続させた状態を示す断面図である。It is sectional drawing which shows the state which made the semiconductor chip flip-chip connection to the wiring board by the conventional method.

実施の形態1.
図1は、本発明の実施の形態1に係る半導体装置を示す一部切欠斜視図である。配線基板11上に半導体チップ12がフリップチップ接続されている。配線基板11と半導体チップ12との隙間にアンダーフィル樹脂13が充填されている。配線基板11上であって半導体チップ12の外周に半導体チップ12とは離間して補強リング14が設けられている。この補強リング14は、板状の部材の中央に開口部が設けられたものである。開口部の形状は半導体チップ12の形状に応じて定められている。
Embodiment 1 FIG.
FIG. 1 is a partially cutaway perspective view showing a semiconductor device according to Embodiment 1 of the present invention. A semiconductor chip 12 is flip-chip connected on the wiring substrate 11. An underfill resin 13 is filled in a gap between the wiring substrate 11 and the semiconductor chip 12. A reinforcing ring 14 is provided on the wiring substrate 11 on the outer periphery of the semiconductor chip 12 so as to be separated from the semiconductor chip 12. The reinforcing ring 14 is provided with an opening at the center of a plate-like member. The shape of the opening is determined according to the shape of the semiconductor chip 12.

半導体チップ12及び補強リング14上にヒートスプレッダー15が接着されている。ヒートスプレッダー15の形状は配線基板11の外形とほぼ同じ大きさの薄板状である。このヒートスプレッダー15により、半導体チップ12において発生した熱が外部に放散される。   A heat spreader 15 is bonded onto the semiconductor chip 12 and the reinforcing ring 14. The shape of the heat spreader 15 is a thin plate having the same size as the outer shape of the wiring board 11. The heat spreader 15 dissipates heat generated in the semiconductor chip 12 to the outside.

また、配線基板11の裏面には半田ボール16が設けられている。この半田ボール16により、配線基板11の裏面側の外部電極と実装基板(不図示)とが接合される。そして、配線基板11及び半田ボール16を介して、半導体チップ12と実装基板との間で電源の入力や信号の入出力が行われる。   A solder ball 16 is provided on the back surface of the wiring board 11. The solder ball 16 joins the external electrode on the back side of the wiring board 11 and a mounting board (not shown). Then, power supply input and signal input / output are performed between the semiconductor chip 12 and the mounting substrate via the wiring substrate 11 and the solder balls 16.

図2は、図1中のA−A線断面による断面構造説明図である。配線基板11は複数の絶縁層21が重ねられた多層構造である。各絶縁層21には複数の配線23及びビアホール22が設けられている。異なる絶縁層21の配線23がビアホール22を介して互いに接続されるため、半導体装置の小型化を実現することができる。特に本実施の形態においては、配線基板11の基材となる厚いコア絶縁層の両面に、薄いビルドアップ絶縁層を3層ずつ積層した構造を有している。コア絶縁層は、ガラスクロスにエポキシ系樹脂を含浸させたプリプレグを用いており、ビルドアップ絶縁層は、エポキシ系樹脂にシリカフィラーが混合された物を用いている。ビルドアップ絶縁層に、ガラスクロスを有する物を用いることもできる。それぞれの絶縁層21には、上下の配線23を電気的に接続するためのビアホール22が形成されている。本実施の形態においては、厚いコア絶縁層については、直径の大きなビアホールが形成され、薄いビルドアップ絶縁層には、直径の小さいビアホールが形成される。   FIG. 2 is an explanatory diagram of a cross-sectional structure taken along line AA in FIG. The wiring board 11 has a multilayer structure in which a plurality of insulating layers 21 are stacked. Each insulating layer 21 is provided with a plurality of wirings 23 and via holes 22. Since the wirings 23 of the different insulating layers 21 are connected to each other through the via holes 22, the semiconductor device can be reduced in size. In particular, the present embodiment has a structure in which three thin build-up insulating layers are laminated on both sides of a thick core insulating layer serving as a base material of the wiring board 11. The core insulating layer uses a prepreg in which a glass cloth is impregnated with an epoxy resin, and the build-up insulating layer uses an epoxy resin mixed with a silica filler. A thing having glass cloth can also be used for a buildup insulating layer. Each insulating layer 21 is provided with a via hole 22 for electrically connecting the upper and lower wirings 23. In the present embodiment, a via hole having a large diameter is formed in the thick core insulating layer, and a via hole having a small diameter is formed in the thin build-up insulating layer.

半導体チップ12の複数の電極(図示せず)は、半田バンプ24を介してそれぞれ配線基板11の所定の配線に電気的に接続される。また、半導体チップ12とヒートスプレッダー15を接着する接着材25は、半導体チップ12へのストレスを和らげるヤング率(E)の小さいシリコーン系接着材である。一方、配線基板11と補強リング14、及びヒートスプレッダー15と補強リング14を接着する接着材26は、耐熱性がよく、コスト的にメリットのあるエポキシ系接着材である。   A plurality of electrodes (not shown) of the semiconductor chip 12 are electrically connected to predetermined wirings of the wiring board 11 via solder bumps 24, respectively. The adhesive 25 that bonds the semiconductor chip 12 and the heat spreader 15 is a silicone-based adhesive having a small Young's modulus (E) that relieves stress on the semiconductor chip 12. On the other hand, the adhesive 26 for bonding the wiring substrate 11 and the reinforcing ring 14 and the heat spreader 15 and the reinforcing ring 14 is an epoxy adhesive having good heat resistance and cost merit.

なお、配線基板11の材料には、エポキシ系樹脂及び(又は)テトラフルオロエチレン系樹脂を用いる。ここで、エポキシ系樹脂とは、エポキシ系樹脂にガラス繊維またはアクリル樹脂などを混入させたものをいう。テトラフルオロエチレン系樹脂とは、テトラフルオロエチレン樹脂にアクリル樹脂などを混入させたものをいう。   In addition, as a material of the wiring board 11, an epoxy resin and / or a tetrafluoroethylene resin are used. Here, the epoxy resin refers to an epoxy resin in which glass fiber or acrylic resin is mixed. The tetrafluoroethylene-based resin refers to a resin obtained by mixing an acrylic resin or the like with a tetrafluoroethylene resin.

本発明の実施の形態1に係る半導体装置の製法について説明する。まず、図3に示すように、半導体チップ12の電極上にチップ側半田バンプ24aを設け、配線基板11の配線上に基板側半田バンプ24bを設ける。   A method for manufacturing the semiconductor device according to the first embodiment of the present invention will be described. First, as shown in FIG. 3, chip-side solder bumps 24 a are provided on the electrodes of the semiconductor chip 12, and substrate-side solder bumps 24 b are provided on the wiring of the wiring board 11.

次に、図4に示すように、配線基板11上に半導体チップ12を載置し、チップ側半田バンプ24aと基板側半田バンプ24bを接触させた状態でスクラブをかけながら加熱する。その結果、チップ側半田バンプ24a及び基板側半田バンプ24bが溶け、両者は半田バンプ24として一体となる。半田バンプ24により、半導体チップ12に含まれる電極と配線基板11の複数の配線とが電気的に接続される。半田バンプ24の材料は、例えばPbの含有量が0.1wt%以下と、非常に少ないPbフリー半田が用いられ、本実施の形態においては、Sn−1wt%Ag−0.5wt%Cu組成の半田が用いられる。ただし、半田バンプ24の組成については、前述の物に限らない。特に、Pbフリー半田においては、半田の弾性率が高くなる傾向にあるため、配線基板に生じる内部応力が大きくなる傾向がある。従って、後述の配線基板の断線対策が重要となる。   Next, as shown in FIG. 4, the semiconductor chip 12 is placed on the wiring substrate 11, and heated while scrubbing in a state where the chip-side solder bumps 24a and the substrate-side solder bumps 24b are in contact with each other. As a result, the chip-side solder bump 24 a and the substrate-side solder bump 24 b are melted, and both are integrated as the solder bump 24. The solder bumps 24 electrically connect the electrodes included in the semiconductor chip 12 and the plurality of wirings of the wiring board 11. As the material of the solder bump 24, for example, Pb-free solder having a Pb content of 0.1 wt% or less is used, and in the present embodiment, the Sn-1 wt% Ag-0.5 wt% Cu composition is used. Solder is used. However, the composition of the solder bumps 24 is not limited to that described above. In particular, in the Pb-free solder, since the elastic modulus of the solder tends to increase, the internal stress generated in the wiring board tends to increase. Therefore, measures against disconnection of the wiring board described later are important.

次に、図5に示すように、配線基板11と半導体チップ12との隙間にアンダーフィル樹脂13を充填して固め、半導体チップ12を配線基板11に密着させた状態で固定する。そして、図6に示すように、接着材26により配線基板11に補強リング14を接着する。   Next, as shown in FIG. 5, the gap between the wiring substrate 11 and the semiconductor chip 12 is filled with an underfill resin 13 and hardened, and the semiconductor chip 12 is fixed in a state of being in close contact with the wiring substrate 11. Then, as shown in FIG. 6, the reinforcing ring 14 is bonded to the wiring board 11 with the adhesive 26.

次に、図7に示すように、半導体チップ12上に接着材25を塗布する。そして、図8に示すように、補強リング14上にフィルム状の接着材26を貼り付けて、半導体チップ12及び補強リング14上にヒートスプレッダー15を接着させる。補強リング14について、あらかじめ両面に接着材26が貼り付けられている物を、配線基板11上に搭載するようにしても良い。   Next, as shown in FIG. 7, an adhesive 25 is applied on the semiconductor chip 12. Then, as shown in FIG. 8, a film-like adhesive 26 is attached on the reinforcing ring 14, and the heat spreader 15 is bonded on the semiconductor chip 12 and the reinforcing ring 14. The reinforcing ring 14 may be mounted on the wiring substrate 11 with the adhesive material 26 attached to both surfaces in advance.

最後に、図9に示すように、配線基板11の裏面に形成された外部電極上に半田ボール16を設ける。以上の工程により、図1,2に示す半導体装置が製造される。半田ボール16の組成は、これに限る物ではないが、Pbフリー半田で構成される。本実施の形態においては、その組成はSn−3wt%Ag−0.5wt%Cuとなっている。   Finally, as shown in FIG. 9, solder balls 16 are provided on the external electrodes formed on the back surface of the wiring board 11. The semiconductor device shown in FIGS. 1 and 2 is manufactured through the above steps. The composition of the solder ball 16 is not limited to this, but is composed of Pb-free solder. In the present embodiment, the composition is Sn-3 wt% Ag-0.5 wt% Cu.

また、図10に示すように、補強リング14とヒートスプレッダー15が接着材26を介さずに金属板で一体に成型されたものを用いても良い。図11に示すように、補強リング14、および接着材26を用いない構成にすることも可能である。補強リング14を有する構成において、補強リング14と半導体チップ12との間の領域で、配線基板11にかかる内部応力が大きくなる傾向にある。すなわち、配線基板11に比較して、熱膨張係数の小さい半導体チップ12が、アンダーフィル樹脂13で配線基板11上に固定されており、かつ、半導体チップ12の周囲で、補強リング14が配線基板11上に固定されており、かつ、半導体チップ12と、補強リング14との間で、配線基板11表面に対する固定が弱くなる領域が生じる場合に、この部分に応力が集中する傾向にある。また、こうした応力は、半導体チップ12の対角線の延長線とその近傍の領域で大きくなる傾向にある。このような場合に、この領域での配線の断線対策が特に重要となる。   In addition, as shown in FIG. 10, a reinforcing ring 14 and a heat spreader 15 that are integrally formed with a metal plate without using an adhesive 26 may be used. As shown in FIG. 11, a configuration in which the reinforcing ring 14 and the adhesive 26 are not used is also possible. In the configuration having the reinforcing ring 14, the internal stress applied to the wiring board 11 tends to increase in the region between the reinforcing ring 14 and the semiconductor chip 12. That is, the semiconductor chip 12 having a smaller thermal expansion coefficient than the wiring substrate 11 is fixed on the wiring substrate 11 with the underfill resin 13, and the reinforcing ring 14 is disposed around the semiconductor chip 12. 11 and a region where the fixing to the surface of the wiring substrate 11 is weakened between the semiconductor chip 12 and the reinforcing ring 14, stress tends to concentrate on this portion. Further, such stress tends to increase in the extension of the diagonal line of the semiconductor chip 12 and a region in the vicinity thereof. In such a case, measures against disconnection of wiring in this region are particularly important.

図12は、本発明の実施の形態1に係る半導体装置を示す平面図であり、図13は、図12の点線で囲った部分Bを拡大した平面図である。配線基板11上に配線31と配線層ビアランド32が設けられている。配線31は配線層ビアランド32と半導体チップ12とを接続している。配線層ビアランド32は、半導体チップ12と補強リング14との間であって、半導体チップ12の対角線の延長線から1mm以内の領域に設けられているものがある。   12 is a plan view showing the semiconductor device according to the first embodiment of the present invention, and FIG. 13 is an enlarged plan view of a portion B surrounded by a dotted line in FIG. A wiring 31 and a wiring layer via land 32 are provided on the wiring substrate 11. The wiring 31 connects the wiring layer via land 32 and the semiconductor chip 12. The wiring layer via land 32 is provided between the semiconductor chip 12 and the reinforcing ring 14 in a region within 1 mm from the diagonal extension of the semiconductor chip 12.

図14は、本発明の実施の形態1に係る配線層ビアランドから引き出された配線を示す拡大平面図であり、図15は図14のC−C´における断面図である。配線基板11上に電源パターン33及び配線層下面ビアランド34が設けられ、両者はクリアランス領域35により互いに離間されている。また、電源パターン33及び配線層下面ビアランド34は絶縁膜36により覆われている。配線層ビアランド32は絶縁膜36上に設けられている。配線層下面ビアランド34と配線層ビアランド32とは、絶縁膜36を貫通するビア37により接続されている。配線層ビアランド32から引き出された配線31はクリアランス領域35の上方を通っている。   FIG. 14 is an enlarged plan view showing wiring drawn from the wiring layer via land according to the first embodiment of the present invention, and FIG. 15 is a cross-sectional view taken along the line CC ′ of FIG. A power supply pattern 33 and a wiring layer lower surface via land 34 are provided on the wiring substrate 11, and both are separated from each other by a clearance region 35. The power supply pattern 33 and the wiring layer lower surface via land 34 are covered with an insulating film 36. The wiring layer via land 32 is provided on the insulating film 36. The wiring layer lower surface via land 34 and the wiring layer via land 32 are connected by a via 37 penetrating the insulating film 36. The wiring 31 drawn from the wiring layer via land 32 passes above the clearance region 35.

ここで、半導体チップ12と配線基板11との線膨張係数の差などによる内部応力は、半導体チップ12の対角線の延長線の方向において最も強くなる。そこで、本実施の形態1では、配線層ビアランド32からの配線31の引き出し方向と半導体チップ12の対角線の延長線との角度θを20°以上、好ましくは30°以上とする。これにより、配線層ビアランド32の近傍、特にクリアランス領域35の上方において配線31にかかる内部応力を緩和することができるため、配線層ビアランド32から引き出された配線31の断線を防止することができる。   Here, the internal stress due to the difference in coefficient of linear expansion between the semiconductor chip 12 and the wiring substrate 11 is strongest in the direction of the diagonal extension of the semiconductor chip 12. Therefore, in the first embodiment, the angle θ between the direction in which the wiring 31 is drawn out from the wiring layer via land 32 and the diagonal extension of the semiconductor chip 12 is set to 20 ° or more, preferably 30 ° or more. As a result, the internal stress applied to the wiring 31 in the vicinity of the wiring layer via land 32, particularly above the clearance region 35 can be relaxed, so that the disconnection of the wiring 31 drawn from the wiring layer via land 32 can be prevented.

実施の形態2.
図16は、本発明の実施の形態2に係る配線層ビアランド及び配線の一例を示す拡大平面図であり、図17は他の例を示す拡大平面図である。図示のように、配線31は、配線層ビアランド32との境界から0.2mm以下のところで折り曲げられている。その他の構成は実施の形態1と同様である。
Embodiment 2. FIG.
16 is an enlarged plan view showing an example of a wiring layer via land and wiring according to the second embodiment of the present invention, and FIG. 17 is an enlarged plan view showing another example. As shown in the figure, the wiring 31 is bent at a position of 0.2 mm or less from the boundary with the wiring layer via land 32. Other configurations are the same as those of the first embodiment.

これにより、配線層ビアランド32の近傍、特にクリアランス領域35の上方において配線31にかかる内部応力を緩和することができるため、配線層ビアランド32から引き出された配線31の断線を防止することができる。   As a result, the internal stress applied to the wiring 31 in the vicinity of the wiring layer via land 32, particularly above the clearance region 35 can be relaxed, so that the disconnection of the wiring 31 drawn from the wiring layer via land 32 can be prevented.

実施の形態3.
図18は、本発明の実施の形態3に係る配線層ビアランド及び配線の一例を示す拡大平面図である。図示のように、クリアランス領域35の上方における配線31の幅bは、配線31が最も細くなる部分の幅aより大きい。その他の構成は実施の形態1と同様である。
Embodiment 3 FIG.
FIG. 18 is an enlarged plan view showing an example of a wiring layer via land and wiring according to the third embodiment of the present invention. As shown in the figure, the width b of the wiring 31 above the clearance region 35 is larger than the width a of the portion where the wiring 31 is the thinnest. Other configurations are the same as those of the first embodiment.

これにより、内部応力が最も大きくなるクリアランス領域35の上方において配線31の強度を向上させることができるため、配線層ビアランド32から引き出された配線31の断線を防止することができる。   Thereby, since the strength of the wiring 31 can be improved above the clearance region 35 where the internal stress becomes the largest, the disconnection of the wiring 31 drawn from the wiring layer via land 32 can be prevented.

実施の形態4.
実施の形態4に係る半導体装置の製造方法は、配線基板へ半導体チップをフリップチップ接続させる工程に特徴があり、その他の工程は実施の形態1と同様である。以下、実施の形態4におけるフリップチップ接続について説明する。
Embodiment 4 FIG.
The method for manufacturing a semiconductor device according to the fourth embodiment is characterized in that the semiconductor chip is flip-chip connected to the wiring board, and the other steps are the same as in the first embodiment. Hereinafter, flip-chip connection in the fourth embodiment will be described.

まず、図19に示すように、配線基板11上に配線31を形成し、配線基板11上をソルダレジスト41で覆い、配線31を露出させるようにソルダレジスト41に開口42を形成する。ここで、ソルダレジスト41の厚みは26μm、開口42の幅は100μmである。配線基板11の配線31上に基板側半田バンプ24bを設け、半導体チップ12の電極43にチップ側半田バンプ24aを設ける。ステージ44上に配線基板11を載置し、ボンディングヘッド45により半導体チップ12を真空吸着する。この際、ステージ44及びボンディングヘッド45を半田融点より低い所定の予熱温度(150℃程度)に加熱しておく。   First, as shown in FIG. 19, the wiring 31 is formed on the wiring substrate 11, the wiring substrate 11 is covered with the solder resist 41, and the opening 42 is formed in the solder resist 41 so that the wiring 31 is exposed. Here, the thickness of the solder resist 41 is 26 μm, and the width of the opening 42 is 100 μm. A substrate-side solder bump 24 b is provided on the wiring 31 of the wiring substrate 11, and a chip-side solder bump 24 a is provided on the electrode 43 of the semiconductor chip 12. The wiring substrate 11 is placed on the stage 44 and the semiconductor chip 12 is vacuum-sucked by the bonding head 45. At this time, the stage 44 and the bonding head 45 are heated to a predetermined preheating temperature (about 150 ° C.) lower than the solder melting point.

次に、図20に示すように、ボンディングヘッド45を水平方向へ移動して、半導体チップ12を配線基板11の上方に位置させる。そして、ボンディングヘッド45を下降させて基板側半田バンプ24bとチップ側半田バンプ24aを接触させる。さらに、基板側半田バンプ24bとチップ側半田バンプ24aとが接触した状態で、半導体チップ12を半田融点以上(260℃程度)に加熱し、水平方向又は鉛直方向などへ周期的にスクラブさせながら、配線基板11に圧接する。これにより、半導体チップ12と配線基板11をフラックスレスでフリップチップ接合させることができる。この結果、図21に示すように、基板側半田バンプ24bとチップ側半田バンプ24aが接合されて半田バンプ24となる。その後、ボンディングヘッド45による半導体チップ12の吸着を解除し、ボンディングヘッド45を上昇させてボンディングを終了させる。   Next, as shown in FIG. 20, the bonding head 45 is moved in the horizontal direction so that the semiconductor chip 12 is positioned above the wiring substrate 11. Then, the bonding head 45 is lowered to bring the substrate-side solder bump 24b and the chip-side solder bump 24a into contact. Further, in a state where the substrate-side solder bump 24b and the chip-side solder bump 24a are in contact with each other, the semiconductor chip 12 is heated to the melting point of the solder or higher (about 260 ° C.) and periodically scrubbed in the horizontal direction or the vertical direction, Press contact with the wiring board 11. Thereby, the semiconductor chip 12 and the wiring board 11 can be flip-chip bonded without flux. As a result, as shown in FIG. 21, the substrate-side solder bump 24 b and the chip-side solder bump 24 a are joined to form the solder bump 24. Thereafter, the suction of the semiconductor chip 12 by the bonding head 45 is released, and the bonding head 45 is raised to complete the bonding.

本実施の形態4では、ソルダレジスト41の厚みを26μm以下にすることで、半田バンプ24の半田の量が、図22に示すようなソルダレジスト41の開口42の角と電極43に内接する球の体積よりも小さくなるようにする。これにより、表面張力によって球状になろうとする半田バンプがソルダレジストの開口の角から受ける応力を小さくすることができる。従って、半田バンプのオープン不良を防止することができる。特に、フリップチップ接続させる工程において半導体チップにスクラブをかける場合は半田バンプのオープン不良が生じ易いので、本発明は有効である。   In the fourth embodiment, by setting the thickness of the solder resist 41 to 26 μm or less, the amount of solder of the solder bumps 24 becomes a sphere inscribed in the corner of the opening 42 of the solder resist 41 and the electrode 43 as shown in FIG. To be smaller than the volume of. Thereby, the stress which the solder bump which is going to be spherical by surface tension receives from the corner of the opening of the solder resist can be reduced. Therefore, open defects of solder bumps can be prevented. In particular, when scrubbing a semiconductor chip in the flip-chip connection process, solder bumps are likely to be open, so the present invention is effective.

11 配線基板
12 半導体チップ
13 アンダーフィル樹脂
14 補強リング
15 ヒートスプレッダー
24 半田バンプ
31 配線
32 配線層ビアランド
33 電源パターン
34 配線層下面ビアランド
35 クリアランス領域
36 絶縁膜
37 ビア
41 ソルダレジスト
42 開口
43 電極
DESCRIPTION OF SYMBOLS 11 Wiring board 12 Semiconductor chip 13 Underfill resin 14 Reinforcement ring 15 Heat spreader 24 Solder bump 31 Wiring 32 Wiring layer via land 33 Power supply pattern 34 Wiring layer lower surface via land 35 Clearance area 36 Insulating film 37 Via 41 Solder resist 42 Opening 43 Electrode

Claims (3)

前記配線基板上に配線を形成し、前記配線基板上をソルダレジストで覆い、前記配線を露出させるように前記ソルダレジストに開口を形成する工程と、
前記配線基板の配線と半導体チップの電極とを半田バンプを介して接続させることで、前記配線基板上に前記半導体チップをフリップチップ接続させる工程とを有し、
前記半田バンプの半田の量を、前記ソルダレジストの開口の角と前記電極に内接する球の体積よりも小さくすることを特徴とする半導体装置の製造方法。
Forming a wiring on the wiring substrate, covering the wiring substrate with a solder resist, and forming an opening in the solder resist so as to expose the wiring; and
Connecting the wiring of the wiring board and the electrode of the semiconductor chip through solder bumps, and flip-chip connecting the semiconductor chip on the wiring board,
A method of manufacturing a semiconductor device, wherein the solder amount of the solder bump is made smaller than the corner of the opening of the solder resist and the volume of a sphere inscribed in the electrode.
前記配線基板上に前記半導体チップをフリップチップ接続させる工程において、前記半導体チップにスクラブをかけることを特徴とする請求項1に記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor chip is scrubbed in the step of flip-chip connecting the semiconductor chip onto the wiring board. 前記半導体チップの周囲の前記配線基板上に接着された補強リングを有しており、前記配線層ビアランドが、前記半導体チップと前記補強リングとの間の領域に設けられていることを特徴とする、請求項1又は2に記載の半導体装置の製造方法。   It has a reinforcing ring bonded on the wiring substrate around the semiconductor chip, and the wiring layer via land is provided in a region between the semiconductor chip and the reinforcing ring. A method for manufacturing a semiconductor device according to claim 1 or 2.
JP2011164159A 2011-07-27 2011-07-27 Method of manufacturing semiconductor device Pending JP2011211243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011164159A JP2011211243A (en) 2011-07-27 2011-07-27 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011164159A JP2011211243A (en) 2011-07-27 2011-07-27 Method of manufacturing semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007010262A Division JP4870584B2 (en) 2007-01-19 2007-01-19 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2011211243A true JP2011211243A (en) 2011-10-20

Family

ID=44941898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011164159A Pending JP2011211243A (en) 2011-07-27 2011-07-27 Method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2011211243A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349123A (en) * 1999-06-01 2000-12-15 Mitsubishi Electric Corp Mounting of semiconductor element
JP2004342988A (en) * 2003-05-19 2004-12-02 Shinko Electric Ind Co Ltd Method for manufacturing semiconductor package and semiconductor device
JP2006128712A (en) * 2005-12-22 2006-05-18 Renesas Technology Corp Semiconductor device
JP2006278771A (en) * 2005-03-29 2006-10-12 Nec Corp Semiconductor device and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349123A (en) * 1999-06-01 2000-12-15 Mitsubishi Electric Corp Mounting of semiconductor element
JP2004342988A (en) * 2003-05-19 2004-12-02 Shinko Electric Ind Co Ltd Method for manufacturing semiconductor package and semiconductor device
JP2006278771A (en) * 2005-03-29 2006-10-12 Nec Corp Semiconductor device and manufacturing method thereof
JP2006128712A (en) * 2005-12-22 2006-05-18 Renesas Technology Corp Semiconductor device

Similar Documents

Publication Publication Date Title
JP4870584B2 (en) Semiconductor device
US10879203B2 (en) Stud bump structure for semiconductor package assemblies
JP5712615B2 (en) Electronic component package and method of manufacturing electronic component package
JP2008159956A (en) Substrate incorporating electronic component
JP6064705B2 (en) Semiconductor device manufacturing method and semiconductor mounting substrate
JP2008135521A (en) Semiconductor device and its manufacturing method
JP4655092B2 (en) Circuit module and circuit device using the circuit module
US8889483B2 (en) Method of manufacturing semiconductor device including filling gap between substrates with mold resin
JP5459108B2 (en) Component built-in wiring board
JP2009200313A (en) Pga wiring board and method of manufacturing the same
JP2010165923A (en) Semiconductor device, and method of manufacturing the same
JP5212392B2 (en) Semiconductor device
JP2010123676A (en) Manufacturing method of semiconductor device and semiconductor device
JP2008124363A (en) Semiconductor device
JP6464762B2 (en) Semiconductor package substrate, semiconductor package, semiconductor package substrate manufacturing method, and semiconductor package manufacturing method
JP2011211243A (en) Method of manufacturing semiconductor device
US10660216B1 (en) Method of manufacturing electronic board and mounting sheet
JP2005252074A (en) Semiconductor device and electronic apparatus
JP2007142124A (en) Semiconductor device, and method of manufacturing same
JP2009266972A (en) Laminated semiconductor module and method of manufacturing the same
JP2007115789A (en) Laminated semiconductor device and its manufacturing method
JP2003037210A (en) Semiconductor device and method of manufacturing the same
JP2013012570A (en) Semiconductor device and semiconductor device manufacturing method
WO2022259619A1 (en) Electronic control device and method for manufacturing electronic control device
JP2008270324A (en) Electronic part built-in substrate and electronic device using same, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130723